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Abstract

This paper studies the formation of math and verbal skills during compulsory education and

their impact on adult outcomes. We introduce a novel method to estimate dynamic, nested CES

production functions. Using a rich panel database that follows a cohort of students in England

from elementary school to university, we find that the production functions of math and verbal

skills are inherently different, where cross-effects are only present in the production of math

skills. Results on long-term outcomes indicate that verbal skills play a substantially greater

role in explaining university enrollment than math skills. This finding, combined with the large

female advantage in verbal skills, has key implications for gender gaps in college enrollment

and field of study. Finally, we show that students stuck in low quality schools have lower skill

levels at the end of compulsory education compared to students attending high quality schools,

with these skill deficits leading to a 30 percentage point gap in college enrollment among these

students. Simulation results show that about 15% of this gap is due to differences in skill levels

at the beginning of compulsory education while about 20% of this gap is attributable to the

differences in school quality, which indicates that policies aiming to improve school quality could

help to overcome initial skill disadvantages.
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1 Introduction

The employment prospects of less-educated workers have worsened significantly since the early

1980’s (Autor and Wasserman, 2013). As formal education becomes an increasingly important

determinant of lifetime income (Castex and Dechter, 2014), understanding the factors that influence

schooling decisions is essential from a policy perspective. A large literature has established that

cognitive skills play an important role in explaining educational attainment (Heckman et al., 2006;

Cawley et al., 2001; Cameron and Heckman, 2001). However, because skills are multiple in nature

(Cunha and Heckman, 2007), more attention is needed to understand exactly which types of skills

have the greatest influence on post-secondary educational outcomes and how these specific skills

are produced over the schooling career.

The aim of this paper is threefold. First, we study how math and verbal skills develop during

compulsory education with particular attention to understanding the role of schools. Unpacking

skills in the math-verbal dimension provides insight into how formal education operates and will

allow us to disentangle how these two skills impact educational decisions. Our work compliments

a growing literature that studies how childhood investments contribute to skill production (Cunha

and Heckman, 2008b; Cunha et al., 2010; Heckman et al., 2013; Attanasio et al., 2015; Agostinelli

and Wiswall, 2016). Second, we study the differential role of math and verbal skills on university

enrollment, field of study, and graduation outcomes. These questions are of central policy relevance

as they shed light on how changes to school curricula could help to improve educational attainment

of students.1 In particular, policymakers have mainly prioritized the further development of math

skills over verbal skills (e.g. the “Algebra-for-All” movement, Loveless (2008), Long et al. (2012)),

however little is known about the differential role of these skills in explaining educational outcomes.

Finally, we analyze how differences in math and verbal skills between males and females contribute

to the well established gender gaps in college enrollment and in STEM (Science, Technology, En-

gineering, and Math) major choice. Evidence from many developed countries (OECD, 2012) has

shown that males are less likely to attend university than females, but males are more likely to

1For example, Loveless (2008) claims that “the nation’s push to challenge more students by placing them in
advanced math classes in eighth grade has had unintended and damaging consequences, as some 120,000 middle-
schoolers are now struggling in advanced classes for which they are woefully unprepared.”
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enroll in STEM fields. However, there is a lack of evidence regarding the role of different types of

skills in explaining these gaps.

We study these questions using a large administrative dataset that covers an entire cohort of

public school students in England. This dataset tracks the history of educational outcomes from

age 5 to 22 of approximately 500,000 students. For each student we observe a rich set of demo-

graphic characteristics, their neighborhood and school attended at each grade, as well as university

records that include enrollment, institution, field of study, and graduation. Most importantly, for

each student we observe scores from more than 30 subject-specific exams taken over the period of

compulsory education.2 We use these performance measures to estimate a dynamic factor model

of skill formation following the spirit of Cunha and Heckman (2008b); Cunha et al. (2010); At-

tanasio et al. (2015); Agostinelli and Wiswall (2016), which allows us to recover the latent skills

(i.e. math and verbal) for each individual at different points in the schooling career and provides

a theoretical framework to understand the process of skill formation. We contribute to this litera-

ture in two important dimensions. First, we estimate nested CES production functions with three

inputs, originally described in Sato (1967), where we use the school accountability report card

(Ofsted reports) as a measure of school quality for the third input. The benefit of the nested CES

production function is that it allows the elasticity of substitution to vary across pairs of inputs.3

Second, we propose a novel two-step estimation method for dynamic factor models that takes a

similar approach to the multi-step estimators for static factor models in Heckman et al. (2013)

and Bakk et al. (2013). Our estimator shares similarities with Attanasio et al. (2015), though it

differs from theirs in several important dimensions. In the first step, we use a large measurement

system to non-parametrically recover the distribution of the latent skills. In particular, we im-

plement a minorization-maximization algorithm to overcome dimensionality problems (i.e. recover

a mixture of ten normals on a sample of approximately a half million students) and censoring of

measurement variables.4 In the second step, we use the estimates from the first stage to take draws

2Our data contain student performance on 70 different tests, of which only a subset are mandatory.
3Attanasio et al. (2017) also estimates a nested CES production function. We also relax the assumption of constant

returns to scale imposed in Cunha et al. (2010); Attanasio et al. (2015).
4Attanasio et al. (2015) do not directly address problems that arise from non-continuous data and estimate a

mixture of two normals.
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from individual-specific distributions of the latent factors and estimate the structural parameters

of the production function, treating these draws as observed data.5 This second stage requires

joint numerical optimization of eight production functions that each account for more than 23,000

neighborhood fixed effects and allows for correlation in the unobserved component of total factor

productivity.

Our estimates of the production functions shed light on important aspects of math and verbal

skill formation. Self-productivity plays a key role in the formation of skills with larger level effects

in secondary school than in elementary school.6 We also show that the relevance of cross-effects

heavily depends on the type of skill.7 While math skills have no impact on the production of

verbal skills, we do find a positive effect of verbal skills on the production of math skills. Moreover,

we find that school quality plays an important role in the formation of skills. In particular, we

show that giving all students access to high quality schools would substantially increase math and

verbal skills, increasing college enrollment in the population by 10%. Finally, we use counterfactual

simulations to understand differences in education outcomes between students attending only low

quality schools and students attending only high quality schools. Because students in low quality

schools have lower levels of skills at the end of compulsory education they are 30 percentage points

less likely to enroll in college. While 15% of this gap is due to differences in skill levels at the

beginning of compulsory education, 20% of this gap is attributable to the differences in school

quality, which indicates some scope for schools to overcome initial skill disadvantages.

The analysis of adult outcomes shows that verbal skills at the end of compulsory education

have a substantially stronger influence on university enrollment and graduation than math skills.

Specifically, we find that the marginal effect of verbal skills on college enrollment is more than

twice as large as the effect of math skills. The larger impact of verbal skills is robust to different

model specifications and accounts for multiple sources of endogeneity.8 We provide evidence that

this finding is not driven by conflating factors like socio-emotional skills or family background

5Attanasio et al. (2015) uses minimum distance to estimate the joint distribution of the latent factors and all other
variables in the model, while our estimator follows a maximum likelihood approach.

6Self-productivity refers to the effect of math (verbal) skills at time t on math (verbal) skills at time t+ 1.
7Cross-effects refers to the effect of math (verbal) skills at time t on verbal (math) skills at time t+ 1.
8This result is consistent with the findings in Chetty et al. (2014), which shows that a high quality English teacher

leads to a greater increase in students’ college quality (almost twice) compared to a high quality math teacher.
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characteristics. Furthermore, we confirm similar patterns with data from the United States. A

possible explanation of this result is that students at or below the margin of college enrollment are

less likely to enroll in STEM fields, therefore math skills may play less of a role in this subgroup of

the population.9

Our finding on verbal skills and college enrollment adds to a large literature that studies the

impact of math and verbal skills on wages and subject specific schooling curriculum on wages, which

has primarily focused on the importance of math (Levine and Zimmerman, 1995; Rose and Betts,

2004; Joensen and Nielsen, 2009; Altonji et al., 2012; Dougherty et al., 2015). One consequence of

our result is that if verbal skills have a predominant effect on college enrollment, then caution needs

to be exercised when interpreting regressions of skills on labor market outcomes that also control

for the endogenous variable education (Betts, 1995; Neal and Johnson, 1996). Regressions with

skills and curriculum effects that control for years of education may mute one of the main channels

through which verbal skills influence labor market outcomes, i.e. increasing formal education. In

this paper, using data from the United States, we demonstrate that when the control for level

of education is taken out of these regressions, the labor market return to verbal skills increases

substantially. This alternative interpretation suggests that verbal skills may play a more important

role in the labor market than previously thought.

Finally, we document that while gender differences in math skills are small, females have a

large advantage in verbal skills. This fact, combined with our main result that verbal skills have a

disproportionate influence on college enrollment suggests that gender differences in verbal skills are

a key driver of the gender gap in college enrollment. Females’ advantage in verbal skills also has

implications for the gender gap in STEM majors, as we show that comparative advantage in math

influences the decision to major in STEM. Since females and males have similar distributions of

math skills, the male disadvantage in verbal skills translates to a comparative advantage in math,

leading to an increase in male representation in STEM.

The rest of the paper is organized as follows. Section 2 describes the data and the institutional

9STEM fields require in general a strong background in math. Our data indicate that among those college enrollees
that have a below average population probability of attending college, only 23% of them enrolled in STEM fields.
While among those that have above average population probability, 31% enrolled in STEM fields.
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setting of education in England. Sections 3 and 4 describe the empirical model and our estimation

approach. Section 5 shows the main results regarding production function estimates and the impor-

tance of skills for educational attainment. Section 6 presents model simulation results. Section 7

explores external validity of our main results and discusses practical implications of the main find-

ings for empirical research. Section 8 studies gender gaps in college enrollment and field of study.

Section 9 concludes.

2 Institutional Setting and Data Summary

This section describes the institutional features of the English education system and the data we

use in our analysis.

2.1 The English School System

Compulsory education in England is organized in four Key Stages (KS). Each stage ends with

nationally assessed standardized tests, in addition to teacher assessments on different subjects.10

Table 1 summarizes the stages of the English compulsory education system. Students enter school

during the Foundation Stage, at age 4, then proceed to Key Stage 1 (KS1) during ages 5-6, and

then to Key Stage 2 (KS2) during ages 7-11.11 At the end of KS2, students move to secondary

school, where they progress to Key Stage 3 (KS3, ages 12-14) and Key Stage 4 (KS4, ages 15-

16). In KS4, students tailor their curriculum by specializing in six to eight subjects. At age 16,

when compulsory education ends, students decide to either exit formal education or continue their

studies for two more years, called A-levels (ages 17-18) where they choose a vocational or academic

curriculum, which typically concludes with qualifying exams. Most students study three or four

A-level subjects concurrently during year 12 and year 13, either in a secondary education institution

or in a Sixth Form College. Finally, higher education usually begins at age 19 with a three-year

bachelor’s degree, where admissions to university are mainly determined by A-level performance.

10Recently, a series of reforms regarding the assessment of students have been implemented. However, these reforms
were not in place for the years of our analysis.

11KS1 is equivalent to grades 1 and 2 in the US school system and KS2 to grades 3, 4, 5 and 6.
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Table 1: Key Stages in English Education System

Stage Age Years Test

Key Stage 1 5-7 1 and 2

National Program of Assessment at the end of
year 2 in Math, English, and Science (carried out
by the teacher) and annual teacher assessments
in each subject.

Key Stage 2 8-11 3-6
National Program of Assessment at the end of
year 6 in Math, English, and Science. Teacher
assessment is also provided.

Key Stage 3 12-14 7-9
National Program of Assessment at the end of
year 9 in Math, English, and Science. Teacher
assessment is also provided.

Key Stage 4 15-16 10 and 11
General Certificate of Secondary Education
(GCSE), generally taken at the end of year 11.
End of compulsory education

2.2 Data

Our analysis uses individual-level administrative panel data for the cohort of students who com-

pleted their compulsory education in the academic year 2006/07. The final dataset contains in-

formation on approximately 500,000 students, which only excludes students in independent (i.e.

private) schools because these schools are not covered in the census.12 Our database links infor-

mation from the census of all state (i.e. public) school children in England with information from

the Higher Education Statistics Agency (HESA).13 HESA collects information on all students in

publicly funded universities. The dataset allows us to track pupils over their entire academic career,

containing detailed information on student demographics; neighborhood characteristics and schools

attended; exam performance, teacher assessments, and school absences; as well as post-secondary

education outcomes. Overall, we observe on average 33 performance measures for each student out

of a total of 70 possible measures. The difference occurs because students take different combina-

tions of subject tests in KS4. However, the math and English subject tests are mandatory in KS4

for all students. In all, this provides us with about eight comprehensive measures of verbal and

12The independent sector educates around 6.5% of the total number of school children in the United Kingdom.
13The final census entails data from the National Pupil Database (NPD) and the Pupil Level Annual School Census

(PLASC), that has been replaced in 2007 by the School Census.
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math ability at each of the four Key Stages for each student.14

Table 2 presents summary statistics of the key variables in our data. The top panel shows

information on student background characteristics for KS4, the last stage of compulsory education,

though we also have similar information for earlier stages. First, we report the average Index of

Multiple Deprivation (IMD), which indicates the degree of deprivation in the neighborhood where

the student lives, with higher scores corresponding to more impoverished areas.15 The IMD is a

composite of seven indices that measure different forms of deprivation in a neighborhood. In our

empirical analysis we use the individual domains rather than the composite to more robustly control

for contextual factors.16 The data also identify students who meet eligibility requirements for free

school meals (FSM). According to Hobbs and Vignoles (2007), FSM status proxies for children

in households with family incomes below £200 (US$300) per week. The special education needs

(SEN) variable indicates whether a child has learning difficulties or disabilities. Overall, the data

show that 11% of the students in KS4 are eligible for FSM, where differences between genders are

small. On the contrary, the indicator for SEN shows that only 12% of female students are included

in this category compared to 20% of male students. Finally, 95% of the students in our sample

have a mother who speaks English, and more than 89% of students are white.

Pupils aged 5-16 in state schools must be taught the National Curriculum. The second panel of

Table 2 shows performance in math and English at each Key Stage.17 The scale of the math and

English scores have been mapped into national levels of performance that are comparable across

schooling years. The National Curriculum sets standards of achievement in each subject for pupils

aged 5 to 14. These standards, for most subjects, range from Levels 1 through 8. For example,

most 7 year olds are expected to achieve Level 2, most 11 year olds are expected to achieve Level

4, and most 14 year olds are expected to achieve Levels 5 or 6.18 A similar mapping exists with

14This paper does not use the A-level information because only those students who are college bound will continue
to A-level, producing selection bias issues.

15Neighborhood denotes a lower layer super output area (LSOA), which contains about 1,500 people, which is
roughly equivalent to a census block group in the US. This information is calculated by the Department for Commu-
nities and Local Government in England.

16See Footnote 46 for a description of the individual domains and to see how they are used in the analysis.
17In Table 2 we only report performance in math and English, while in our analysis we use information on a wide

range of test scores.
18Depending on their level of achievement, students can also be classified as performing below expec-

tation or above expectation. A description of the mapping of achievement levels to these classifications
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Table 2: Summary Statistics: Overall and by Gender

All Female Male

Mean Std. Mean Std. Mean Std.

Background Characteristics (KS4)

Index of Multiple Deprivation 22.05 15.92 22.27 16.03 21.84 15.80

Free School Meal 0.11 0.31 0.11 0.32 0.11 0.31

Special Education Needs 0.16 0.37 0.12 0.33 0.20 0.40

Mother Tongue English 0.95 0.22 0.95 0.23 0.95 0.22

Racial Distribution

White 89.5% 89.3% 89.6%

Asian 5.7% 5.8% 5.7%

Black 2.4% 2.5% 2.4%

Other 2.4% 2.5% 2.3%

Key Stage (KS) Math Scores -
National Curriculum Levels

KS1 2.0 0.6 2.0 0.6 2.1 0.7

KS2 4.0 0.8 4.0 0.8 4.0 0.8

KS3 5.6 1.2 5.6 1.2 5.6 1.3

KS4 6.6 1.8 6.6 1.8 6.6 1.8
Key Stage (KS) Verbal Scores -
National Curriculum Levels

KS1 1.8 0.6 1.9 0.6 1.7 0.6

KS2 4.0 0.8 4.1 0.8 3.9 0.8

KS3 5.2 1.0 5.3 1.0 5.0 1.0

KS4 6.8 1.6 7.1 1.5 6.6 1.6

Average Number of GCSE (KS4) Exams Taken

8.1 2.0 8.3 1.9 7.9 2.0

Average Proportion of Sessions Absent in KS4

Authorized Absences 0.07 0.07 0.08 0.08 0.07 0.07

Unauthorized Absences 0.02 0.06 0.02 0.06 0.02 0.06

Distribution of Primary School Quality (KS2)

Inadequate 6.3% 6.3% 6.2%

Satisfactory 36.9% 36.9% 36.9%

Good 45.6% 45.6% 45.6%

Outstanding 11.3% 11.2% 11.4%

Distribution of Secondary School Quality (KS4)

Inadequate 8.0% 7.8% 8.3%

Satisfactory 32.7% 31.5% 33.8%

Good 43.4% 44.1% 42.7%

Outstanding 15.9% 16.6% 15.2%

University Outcomes

Enrollment 0.36 0.48 0.40 0.49 0.33 0.47

Graduation 0.25 0.43 0.29 0.45 0.22 0.41

Enrollment STEM 0.11 0.31 0.09 0.28 0.13 0.34

Graduation STEM 0.07 0.26 0.07 0.25 0.08 0.28

Enrollment Top 24 0.07 0.26 0.08 0.27 0.07 0.25
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KS4 (i.e. GCSE) scores.19 These levels make it possible to track the progress of students over

time. For example, an eleven year old student that achieves level 2 in English while in KS2 shows

the same proficiency level of an average seven year old student in KS1. Therefore, a subgroup of

measures of performance in math and English in our database are reported on a scale that has a

specific meaning allowing us to recover latent factors that share the same scale at different points

in the schooling career.20 Table 2 shows that females outperform males on English exams at each

Key Stage, while there are almost no gender differences in math. To conclude, the remaining

rows of the second panel indicate that students take on average 8.1 GCSE subject-exams, which

includes the compulsory math and English exam, and that the average proportion of authorized

and unauthorized school sessions absent are 7% and 2%, respectively.

The third panel of Table 2 reports the distribution of students by school effectiveness. School

quality is determined by Ofsted reports, which are produced by a governmental office responsible

for inspecting a range of educational institutions, including state schools. This office carries out

regular inspections of each school in England, resulting in a published evaluation of the effectiveness

of the schools inspected. Inspections generally consist of three-day visits, with two days’ notice.

They focus on examining how well the school is managed, and what processes are in place to ensure

standards of teaching and improvement of learning.21 After each inspection schools are classified

as inadequate (1), satisfactory (2), good (3), or outstanding (4). The data indicate that 6.3% of

primary school students and 8% of secondary school students attended inadequate schools.22

Finally, the last panel of Table 2 provides an overview of post-secondary education outcomes.

Around 36% of the students in our sample enrolled in university, with females being 7 percentage

can be found at http://webarchive.nationalarchives.gov.uk/20140109220530/http://www.education.gov.uk/

schools/performance/archive/ks3_05/k5.shtml.
19
http://webarchive.nationalarchives.gov.uk/20140109214956/http://www.education.gov.uk/schools/

performance/archive/schools_10/s11.shtml and the document “A Guide to Understanding Student Progress at
KS4” extracted from http://www.abbeygrangeacademy.co.uk/assets/key-stage-4-progress-information.pdf

suggest how to link Key Stage levels to GCSE scores, which involves rescaling KS4 scores to make them comparable
over time.

20Agostinelli and Wiswall (2016) provide a thorough discussion on the importance of having access to variables
that share the same scale over time when estimating dynamic factor models.

21Ofsted inspectors look at school inputs such as the quality of teaching, safety of pupils, and the quality of
leadership and management. An adverse report may include a recommendation for further intervention in the
running of the school.

22School quality is defined in this study as the average of the Ofsted reports between 2001 and 2007.

10

http://webarchive.nationalarchives.gov.uk/20140109220530/http://www.education.gov.uk/schools/performance/archive/ks3_05/k5.shtml
http://webarchive.nationalarchives.gov.uk/20140109220530/http://www.education.gov.uk/schools/performance/archive/ks3_05/k5.shtml
http://webarchive.nationalarchives.gov.uk/20140109214956/http://www.education.gov.uk/schools/performance/archive/schools_10/s11.shtml
http://webarchive.nationalarchives.gov.uk/20140109214956/http://www.education.gov.uk/schools/performance/archive/schools_10/s11.shtml
http://www.abbeygrangeacademy.co.uk/assets/key-stage-4-progress-information.pdf


points more likely to enroll than males. On the other hand, males account for nearly 60% of

total enrollment in STEM fields. Finally, the variable “University Enrollment Top 24” denotes

the proportion of students attending the most selective institutions in the United Kingdom (the

so-called Russell group).23 Approximately 7% of students enroll in these institutions.

To conclude this section, we use simple regressions to describe two of the key aspects of the data

we intend to study more deeply with our main analysis. Table 3 shows the average marginal effect of

KS4 math and English achievement levels on the probability of university enrollment and university

graduation from linear probability models estimated separately for males and females, which also

include a robust set of controls for student characteristics (see note in Table 3). These results show

that while both math and English test scores have an effect on university enrollment and graduation,

English scores appear to have a slightly larger effect than math. While this analysis is informative,

it has serious limitations beyond the usual possible problems of endogeneity because using raw

levels of overall performance in math and English only proxies for skills, leading to problems of

measurement error that are remarkably salient in our context. In particular, apart from the well

known concerns with attenuation bias, Maddala (1992) shows that when two regressors are highly

correlated and measured with similar error, then the ratio of their coefficients tend to 1 as the

correlation goes to one, regardless of the true ratio.24 This result suggests that the coefficients

reported in Table 3 could be misleading in determining the relative importance of each skill in

predicting educational outcomes.25 While taking simple averages across the many measurements

could help to alleviate this problem, it is not clear a priori which of the measurements (e.g. more

than 30 in KS4) should be used to proxy for which skills, and any (naive) aggregation would impose

arbitrary and strong assumptions on the weighting scheme that best captures skills.26 Therefore,

23The Russell Group represents 24 leading UK universities: University of Birmingham, University of Bristol,
University of Cambridge, Cardiff University, Durham University, University of Edinburgh, University of Exeter,
University of Glasgow, Imperial College London, King’s College London, University of Leeds, University of Liverpool,
London School of Economics & Political Science, University of Manchester, Newcastle University, University of
Nottingham, University of Oxford, Queen Mary University of London, Queen’s University Belfast, University of
Sheffield, University of Southampton, University College London, University of Warwick, University of York.

24See Appendix A for a formal proof of this proposition.
25We show in the results section of the paper that bias due to measurement error understates the role of verbal

skills in educational attainment.
26Given the high correlation among these scores, a regression that includes all of them would be difficult to

understand, with many of the coefficients possibly having the wrong sign due to multicollinearity.
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Table 3: Linear Probability Model: University Outcomes

Female Male

Enrollment Graduation Enrollment Graduation

Average Marginal Effect of Test Scores

KS4 Math
Achievement Level

0.075
(0.001)

0.062
(0.001)

0.068
(0.001)

0.048
(0.001)

KS4 Verbal
Achievement Level

0.102
(0.001)

0.079
(0.001)

0.096
(0.001)

0.075
(0.001)

Observations 238,574 239,082

Note: Additional controls include mother tongue, race, KS4 free school meal eligibility,
subindices that comprise the index of multiple deprivation, KS4 special education
needs, KS4 school absences, number of GCSE exams taken, and secondary school
fixed effects. Standard errors are reported in parentheses.

we outline in the next section a dynamic factor model of skill formation that allows us to optimally

extract skills from these many measures and provides a framework to comprehensibly analyze how

skills are formed during the schooling career.

3 Dynamics of Skill Formation

To characterize how math and verbal skills develop during compulsory education, we estimate a

dynamic factor model of skill formation similar to Cunha et al. (2010). This approach provides

a natural framework to understand the role of cross effects, self-productivity, school quality, and

complementarities in the production of skills at different stages of the schooling career. Moreover,

with over 70 measures of student performance from the beginning of elementary school to the end

of compulsory education, a dynamic factor framework facilitates an efficient use of this large data

set.

We modify and expand the Cunha et al. (2010) framework in several dimensions. First, we

propose and estimate a production function of skill formation that corresponds to a nested CES

with three inputs, originally described in Sato (1967). The advantage of a two-level CES is that

it allows the elasticities of substitution to vary across pairs of inputs. With the exception of

Attanasio et al. (2017), nested CES production functions have not been widely estimated within
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this literature, however many papers in macroeconometrics (e.g., Acemoglu (1998); Krusell et al.

(2000); Pandey (2008)) have used them where input factors need further differentiation (e.g. wage

differentiation between skilled and unskilled labor). Second, we relax the assumption of constant

returns to scale imposed in Cunha et al. (2010) and Attanasio et al. (2015) and directly estimate this

parameter. Third, the model allows for total factor productivity (TFP) terms, which account for

the remaining components of the skill production functions that are not captured by the inputs.27

Fourth, we propose a novel two-step estimation method for dynamic factor models along the lines of

the multi-step estimators for static factor models in Heckman et al. (2013) and Bakk et al. (2013).

Our estimator shares similarities with Attanasio et al. (2015), though our approach differs from

them in several important dimensions as we describe in Section 3.4. Finally, each period of skill

development in our model maps to a specific stage of compulsory education in England (i.e. Key

Stages) providing clear guidance to distinguish the different periods of skill formation.

3.1 Model

During compulsory education, students take a series of national tests at different Key Stages that

represent periods of skill development in our model.28 These tests provide noisy information on the

students’ math (m) and verbal (v) skills.29 Time is indexed by t where t ∈ {1, 2, 3, 4} represents

each of the four Key Stages of compulsory education. At time period t, skill k ∈ {m, v} for student i

is denoted as Θk
i,t, where Θk

i,t > 0. We assume skills for t ∈ {2, 3, 4} develop following a nested CES

27Agostinelli and Wiswall (2016) describe the conditions under which a TFP term can be identified. Attanasio
et al. (2015) also model a TFP term.

28Table 1 reports the school grade of the students at each Key Stage.
29As we described in Section 2 certain measures of skills are on a scale that is comparable over time (i.e. National

Curriculum levels).
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production function with three inputs, while t = 1 corresponds to the initial conditions period:30

Θk
i,t = Akit

[
δkt

(
Ωk
it

)ρkt
+ (1− δkt ) (Qit)

ρkt

]rkt /ρkt
(1)

where

Ωk
it =

(
αkt
(
Θm
i,t−1

)γkt + (1− αkt )
(
Θv
i,t−1

)γkt )1/γkt

Akit = exp
(
x′itψ

k
t + πki + νkit

)
δkt ∈ [0, 1]; αkt ∈ [0, 1]; ρkt ≤ 1; γkt ≤ 1

(production function)

Equation (1) corresponds to a 3-input nested CES function. The skill aggregator Ωk
it repre-

sents the inner CES nest, which describes how the prior period’s stock of math and verbal skills

contribute to the production of skills in period t. The outer CES nest is a function of the skill

aggregator Ωk
it and the quality of the school attended by the student in period t, Qit.

31 The main

advantage of the nested CES relative to a traditional CES with multiple inputs is that it allows the

elasticity of substitution to differ between the three inputs rather than imposing a single elasticity

of substitution for all inputs.32 We include school quality as an input in the production functions

for two reasons. First, schools are an important contributor to the development of math and verbal

skills (Hanushek, 2005). Second, using the estimates from our model, we are interested in per-

forming counterfactual simulations on relevant policy parameters, and school quality is a natural

instrument that policymakers can influence.

The remaining components contributing to skill production that are not captured by our three

main inputs are represented by the total factor productivity (TFP) term Akit. TFP is individual,

time, and skill specific, and is a function of both observed and unobserved variables. First, a vector

of observed variables, xit, which includes student background characteristics (i.e. race, mother

30While gender subscripts are omitted in Eq. (1), we estimate production functions separately for males and
females.

31School quality, Qit, is obtained from school report cards developed by Ofsted.
32For example, in the nested CES the substitutability of math skill and school quality is allowed to differ from the

substitutability of math skills and verbal skills, while in the traditional CES with multiple inputs the elasticity of
substitution is assumed to be the same.
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tongue, free school meal eligibility, special education needs) and neighborhood fixed effects (nearly

23,000). Next, the term πki represents an unobserved component of TFP that is persistent over

time and correlated across skills. Similar to Cunha et al. (2010), this term accounts for endogeneity

between the inputs and the unobserved component of TFP. Finally, the last term in the TFP, νkit,

represents an idiosyncratic shock to skill production that is independent across skills and time.

Following the literature (Cunha et al., 2010; Attanasio et al., 2015; Agostinelli and Wiswall,

2016), we estimate the log of the production function in Eq.(1), so it is convenient to define the

natural log of the skills as θki,t (i.e. θki,t = ln Θk
i,t).

3.2 Measurement System

The main challenge in estimating the parameters of our model is that the skills we aim to study are

not directly measured. We overcome this problem by using a factor model approach that allows us to

extract these unobserved skills from a large set of observed data. One shortcoming of factor models

is that the factors have no natural scale, making interpretation of results challenging. A second issue

relevant to dynamic factor models is whether the factors can be compared over time. An important

feature of our data that allows us to address these two issues is that at least one of our measures for

each skill at each Key Stage is scaled based on the Department of Education’s National Curriculum

scale. This grading system is designed in a specific way so that test scores are comparable across

Key Stages, and furthermore, their numerical values have a tangible interpretation (i.e. below

expectations, at level expected, or above expectations). Normalizing the log of our factors to this

National Curriculum scale addresses both of the previously stated concerns with factor models.

First, it facilitates valid comparison of our estimated skills over the schooling career (Agostinelli

and Wiswall, 2016). Second, it offers a clear-cut interpretation of the factors. For example, we will

be able to study how moving students to higher quality schools impacts their ability to perform at

expected level.33

Let θi =

[
θmi,1 θvi,1 · · · θmi,4 θvi,4

]′
represent student i’s complete vector of realized log math

33Alternatively, if the factors were normalized to a measure that lacked an interpretable scale, for example an exam
with arbitrary scale, then we would need to anchor our factors to an interpretable adult outcome as in Cunha et al.
(2010). However, in our analysis anchoring is not necessary since our factors are interpretable by themselves based
on the standards set out by the Department of Education’s National Curriculum scale.
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and verbal factors. While these factors are not observed, our data contain frequent and extensive

measures for each student that we use to recover the latent math and verbal skills, θki,t, in each

period. Let w∗ij for j = 1, 2, . . . , J denote the J measures for individual i. Each measure is

determined by:

w∗ij = µj + λ′jθi + ηij

(measurement equation)

Where µj is the mean of the jth measure and λj contains the loadings on the factors for measurement

j. Our factors span multiple time periods, so only the factors that are associated with a particular

skill and time period will have non-zero loadings on the measurements. Finally, ηij is the remaining

portion of the measurement that is not explained by the factors and is assumed to be independent

and normally distributed with mean zero and variance σ2
j .

Identification of factor models requires normalizations to set the scale and the location of the

factors. As stated earlier, we set the scale and location for the eight factors by normalizing the

constant equal to zero and the factor loading equal to one for the eight measures that are given

on the Department of Education’s National Curriculum scale, which normalizes our factors on this

scale and allows our factors to be comparable across skills and across time. In our measurement

system we use at least three dedicated measures per period that only load on one factor. For

example in Key Stage 1 we observe for each student, scores in reading, writing, and spelling as well

as a Key Stage 1 English teacher assessment. These four noisy measures only load on the student’s

latent verbal skills in Key Stage 1.34 Appendix E, Tables 17 and 18, provides a full list of our

measurements and the normalizations we make on the factor loadings.

34While many of our measures load only on a single factor, we allow several measures to load on multiple factors
(e.g. geography), when a priori it is not straightforward to determine which skills these measures should load on.
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3.2.1 Conditional Probabilities

A subgroup of measurements in our database cannot be characterized as continuous variables given

that they only take a limited number of values.35 Unfortunately, this type of data is generally

inconsistent with our model. Given that w∗ij is a linear function of the factors plus continuous

measurement error, it is unlikely that this model could generate a distribution with a finite number

of mass points. As we discuss later in the estimation section, our approach requires us to allow

for a non-parametric distribution of the factors. Therefore this type of discrete data needs to be

treated carefully in estimation by recognizing that its mass points occur through the construction

of the variable, not because the underlying distribution of the factors is discrete. In this regard, we

treat these variables as interval censored data.

For each j, we denote wij as the observed measure for individual i, which may differ from the

true measure w∗ij in the measurement equation. For estimation, we treat all measures that have

more than 10 finite values as continuous variables. Let Jcont denote the set of observed continuous

measures. For these measures we assume wij = w∗ij , thus the probability of an observed measure

conditional on a given value of the factors can be written as:

Pr(wij |θ) =
1√

2πσ2
j

exp

−
(
wij − µj − λ′jθ

)2

2σ2
j

 for j ∈ Jcont

The remaining set of measures, Jcens, which all have 10 or less unique values, are treated as

interval censored data, where the observed value wij is a lower bound on the true measurement

w∗ij . Constructing the likelihood for these data depends on the number of censoring points, Gj ,

and the spread of the observed values. Let {ζj1 , ζ
j
2 , . . . , ζ

j
Gj
} denote the observed values of measure

j. If wij = ζjg , then we assume this indicates that w∗ij ∈ [ζjg , ζ
j
g+1). Thus for j ∈ Jcens we define the

35 Figure 3 in Appendix B illustrates this case with specific examples. Notice that this type of data is very common
in many data sets, for example any data with letter grades A–F.
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probability of the observed measure as:

Pr(wij |θ) =



Φ

(
ζj2 − µj − λ′jθ

σj

)
if wij = ζ1

Φ

(
ζjg+1 − µj − λ′jθ

σj

)
− Φ

(
ζjg − µj − λ′jθ

σj

)
if wij ∈

{
ζ2, . . . , ζ(Gj−1)

}
1− Φ

(
ζjGj − µj − λ

′
jθ

σj

)
if wij = ζGj

Where Φ(·) corresponds to the cumulative distribution function of a standard normal distribution.

Importantly, even though w∗ij is not observed directly, since the censoring points are known a priori,

we are able to recover both the factor loadings and the scale of the measurement error for these

measurement equations.

3.3 Selection Correction

As mentioned, while the math and English tests in Key Stage 4 are mandatory, students have

the opportunity to tailor their curriculum by specializing in six to eight additional subjects. This

means that not all outcomes are observed for all students during this period of compulsory schooling

because test scores are only observed for the subjects in which a student enrolls.36 Since the score

on these subject tests will be used to recover the latent skills, this creates a potential selection

problem.

We address this potential problem by modeling Key Stage 4 course selection directly and in-

cluding a selection correction term in our likelihood. Since we observe multiple subject choices for

each student, this allows us to recover an additional level of student heterogeneity in Key Stage 4,

which we label θseli,4 . This additional factor can be estimated under arbitrary correlation with the

other factors and is identified from residual correlation in subject choices that cannot be explained

by selection on math and verbal skills. For further identification, we use the number of excused and

unexcused absences in Key Stage 4 as additional measures that only load on this additional factor.

This selection factor serves two empirical purposes. First it allows us to account for selection in the

36This is not an issue for Key Stages 1 to 3 because for these periods we have nearly universal coverage of these
measures. For the few individuals where some of the Key Stage 1 to 3 measurements are missing, we assume it is
missing at random conditional on observables.
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estimation of the parameters. Second, it serves as an additional control to be included in the TFP

in Key Stage 4 to address potential omitted variable bias in the estimation of the KS4 production

functions.

Let aic = 1 if student i enrolls in subject c in Key Stage 4. Students have a total of C = 36

possible subjects in which to enroll. Since subject selection occurs at the beginning of Key Stage

4 we assume that these decisions are a function of Key Stage 3 skills in addition to the selection

factor. We assume the probability of choosing a subject, which will be included as a selection

correction term in our likelihood, can be represented with a conditional logit:

Pr(aic|θ) =
exp(τc0 + τc1θ

m
3 + τc2θ

v
3 + τc4θ

sel
4 )aic

1 + exp(τc0 + τc1θm3 + τc2θv3 + τc4θsel4 )

3.4 Two-Step Estimation

Our estimation strategy for the dynamic factor model is motivated by the multi-step approaches

for estimating static factor models in Heckman et al. (2013) and Bakk et al. (2013). It also shares

similarities to the estimator proposed by Attanasio et al. (2015).37 To summarize our two-step

estimator, in the first step, we use a large measurement system to non-parametrically recover the

distribution of the latent skills. In the second step, we estimate the parameters of the production

function using draws from the factor distribution obtained in the first step as observed data.

Let θ ∈ {θm1 , . . . , θv4 , θsel4 } denote a possible realization of the vector of the unobserved log

factors. We can write the probability of the observed measures and observed Key Stage 4 subject

choices conditional on θ as p(wi, ai|θ) =
∏J
j=1 Pr(wij |θ)

∏C
c=1 Pr(aic|θ). Given our model, each

of these probabilities are conditionally independent once we account for the unobserved factors.

The production function outlined in Section 3.1 gives rise to a functional form of the conditional

distribution of the factors. Consider F (θ|xi, Qi) as the conditional probability of the log of the

37Attanasio et al. (2015) proposes a three stage estimator. Our approach differs from theirs in a number of ways.
First, we combine the first and second stage of Attanasio et al. (2015) into a single step. Second, a step of their
estimation algorithm relies on a minimum distance estimator while we use maximum likelihood in all stages leading
to efficiency gains. Third, our algorithm directly handles issues that arise from including non-continuous variables
in the measurement system. Fourth, our approach can easily accommodate discrete variables and a large set of
covariates (including a large vector of neighborhood fixed effects) given that it does not require us to model the entire
distribution of the population characteristics. Fifth, we allow for a larger number of components in our Gaussian
mixture distribution when recovering the non-parametric distribution of the latent factors.
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factors based on the production functions in Eq.(1), where xi is the vector of observed covariates

in TFP, and Qi is student i’s vector of school quality indices for the schools which she attended

from Key Stage 1 to Key Stage 4. Since the transitory productivity shocks, ν are i.i.d., this joint

probability can be written as the product of marginal probabilities integrating over the multi-

dimensional vector of unobserved persistent productivity shocks π:

F (θ|xi, Qi) =

∫
π
f(θv4 |θm3 , θv3 , xi4, Qi4, π) · · · f(θm1 |xi1, Qi1, π)p(π)dπ (2)

Where f(θkt |·) refers to the marginal distribution of the log of skill θkt and p(π) corresponds to the

probability density function of π, which we parameterize in Section 3.4.2.

Since θ is not observed, estimation will be based on the maximization of an integrated likelihood

function. Given observations of n individuals and letting Ψ denote the parameters of the model,

the log-likelihood is defined as:

LL(Ψ) =
n∑
i=1

lnL(wi, ai, xi, Qi)

=
n∑
i=1

ln

[∫
θ
p(wi, ai|θ)F (θ|xi, Qi)dθ

]
(3)

Rather than direct maximization of Eq. (3), we undertake a two-step estimation approach. Our

two-step estimator separates the estimation of the measurement system and production function

into two stages, which leads to a simple and straightforward estimation procedure. In the first stage,

we non-parametrically estimate the unconditional distribution of the log factors, p(θ), along with

the parameters of the measurement system. In the second stage, we construct for each individual

h(θ|wi, ai) which is the conditional distribution of individual i’s unobserved log factors conditional

on the observed measures and estimate the parameters of the production function using maximum

likelihood, integrating over these densities:

LLsecond
stage

=

n∑
i=1

∫
θ

ln [F (θ|xi, Qi)]h(θ|wi, ai)dθ (4)

Where the integral is outside of the log function, which drastically simplifies the estimation of the
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production function parameters.

The second stage of our estimator centers on the construction of the conditional density of the

unobserved factors given the individual’s observed measures and their subject choices in Key Stage

4. Letting p(θ) represent the unconditional distribution of the unobserved factors, the conditional

density is given by:

h(θ|wi, ai) =
p(wi, ai|θ)p(θ)
p(wi, ai)

(5)

Where p(wi, ai) =
∫
θ p(wi, ai|θ)p(θ)dθ. To see how this density is used in estimation, we re-write

the log-likelihood in Eq. (3) replacing F (θ|xi, Qi) = p(xi, Qi|θ)p(θ)/p(xi, Qi), which yields:38

LL =

n∑
i=1

ln

[∫
θ
p(wi, ai|θ)p(xi, Qi|θ)p(θ)/p(xi, Qi)dθ

]

=

n∑
i=1

ln

[∫
θ
h(θ|wi, ai)p(wi, ai)p(xi, Qi|θ)/p(xi, Qi)dθ

]

=

n∑
i=1

ln [p(wi, ai)] +

n∑
i=1

ln

[∫
θ
p(xi, Qi|θ)h(θ|wi, ai)dθ

]
−

n∑
i=1

ln [p(xi, Qi)]

=

n∑
i=1

ln

[∫
θ
p(wi, ai|θ)p(θ)dθ

]
︸ ︷︷ ︸

LLfirst stage

+

n∑
i=1

ln

[∫
θ
p(xi, Qi|θ)h(θ|wi, ai)dθ

]
−

n∑
i=1

ln [p(xi, Qi)] (6)

Equation (6) serves as the basis for the first stage of our two-step estimation approach. Because

of the additive separability of the log-likelihood, this equation shows that the parameters of the

measurement system as well as the unconditional distribution of the factors can be estimated by only

considering the first element in this function. While this estimator is unbiased and consistent, as

pointed out in Heckman et al. (2013) for example, it is less efficient because it ignores the information

in the second component of the log-likelihood function.39 Specifically, these estimates are not the

full information maximum likelihood estimates because they neither incorporate all of the functional

form assumptions of our production function nor the additional information that xi and Qi may

38This occurs from writing the joint distribution using the conditional distributions p(θ, x,Q) = p(x,Q|θ)p(θ) =
p(θ|x,Q)p(x,Q).

39The third component is a constant which drops out in maximization.
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contribute to the identification of the factors, θ. Although this partial likelihood approach is less

efficient, the fact that the first stage does not rely on any functional form assumptions of the

production function could be viewed as an advantage. Specifically, identification of the latent

factors is more transparent, since they are exclusively estimated based on the measurement system

and are robust to any functional form assumption on the production function. If the functional form

assumptions of the production function were imposed in the estimation of the factor model, not only

would the factors have to be re-estimated for each model, which would be computationally intensive,

but also each model would potentially be recovering different latent factors making comparisons

across models difficult (Bakk et al., 2013).

Once the parameters of the measurement system and the parameters of the unconditional

distribution of the factors, p(θ), are estimated in the first stage, they are used to form the conditional

distribution functions in Eq. (5). In the second stage, these densities are used to estimate the

parameters of the production function by maximizing Eq. (4). To show how Eq. (4) arises within

the context of our empirical strategy, it is necessary to revisit Eq. (3). The maximum likelihood

estimate of these parameters is a root of the score function:

∂LL(Ψ)

∂Ψ
=

n∑
i=1

1

L(wi, ai, xi, Qi)

∫
θ

∂ [p(wi, ai|θ)F (θ|xi, Qi)]
∂Ψ

dθ

=
n∑
i=1

∫
θ

∂ ln [p(wi, ai|θ)F (θ|xi, Qi)]
∂Ψ

p(wi, ai|θ)F (θ|xi, Qi)
L(wi, ai, xi, Qi)

dθ

=

n∑
i=1

∫
θ

∂ ln [p(wi, ai|θ)F (θ|xi, Qi)]
∂Ψ

h(θ|wi, ai, xi, Qi)dθ

=

n∑
i=1

∫
θ

∂ ln [p(wi, ai|θ)]
∂Ψ

h(θ|wi, ai, xi, Qi)dθ +

n∑
i=1

∫
θ

∂ ln [F (θ|xi, Qi)]
∂Ψ

h(θ|wi, ai, xi, Qi)dθ︸ ︷︷ ︸
second stage score

The density function h(θ|wi, ai, xi, Qi) is the conditional density of the unobserved factors condi-

tional on all of the data and the functional form assumptions of the model. Similar to Heckman

et al. (2013), our two-step estimation approach is based on the conditional independence assumption

that h(θ|wi, ai, xi, Qi) = h(θ|wi, ai), that is, once we condition on our observed measurements and
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selection correction variables, the remaining observed data is independent of the factors.40 Since

h(θ|wi, ai) is recovered in the first stage, this leads to the likelihood problem for the production

function parameters in Eq. (4).

The following subsections provide further details regarding implementation of the two-step

approach, including discussions of functional form, identification, and endogeneity.

3.4.1 First Stage

Our goal in the first stage is to use the measurement system along with the selection correction

term to recover the distribution of the factors in the population. To place minimal parametric

assumptions on the distribution of the log factors, p(θ), we assume that they can be approximated

by a mixture of D = 10 multivariate normal distributions. Let Kd(θ) = K(θ|ξd,∆d) denote the

probability density function of a multivariate normal distribution with mean ξ and full covariance

∆. We assume that θi is drawn from Kd(·) with probability κd. Let ΨA ∈ {µ, λ, σ, τ, κ, ξ,∆}

denote the parameters to be estimated in the first stage, which includes all of the parameters of the

measurement system, the selection correction parameters, as well as the distribution of the factors.

Given the functional form assumptions, we estimate these parameters from the data by maximizing

the log-likelihood function:

LL first
stage

(ΨA) =

n∑
i=1

ln

[∫
θ
p(wi, ai|θ)p(θ)dθ

]

=

n∑
i=1

ln

∫
θ

 J∏
j=1

Pr(wij |θ)
C∏
c=1

Pr(aic|θ)

 p(θ)dθ


=

n∑
i=1

ln

 D∑
d=1

κd

∫
θ

 J∏
j=1

Pr(wij |θ)
C∏
c=1

Pr(aic|θ)

Kd(θ)dθ

 (7)

Because our measures contain interval censored data and selection equations, maximizing Eq. (7)

is quite challenging because the integral does not have a closed form solution as it would in a factor

40This assumption follows Heckman et al. (2013), equation A.3. The conditional independence assumption is not
necessary for our two-step estimator. In general, without the conditional independence assumption, in the first stage
we would include x and Q non-parametrically into the conditional distribution of θ as p(θ|x,Q), in which our first
stage density would become h(θ|w, a, x,Q) ∝ p(w, a|θ)p(θ|x,Q).
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model with all continuous measures. We overcome this computational challenge by proposing

a simple iterative routine based on the minorization-maximization (MM) algorithm developed in

James (2017), which incorporates the results in Stewart (1983) to address the interval coded data.41

The steps of the MM algorithm are outlined in Appendix C.

3.4.2 Second Stage and Endogeneity

Once the parameters of the measurement system and the distribution of the factors have been

estimated in the first stage, in the second stage we form the conditional distributions in Eq. (5)

that are used to estimate the parameters of the production function in Eq. (4). We estimate the

parameters of the production function through maximum likelihood, which requires distributional

assumptions about the unobserved random variables, π and ν, as well as assumptions about the

initial conditions. We model the initial conditions as:

θki,1 = x′i1ψ
k
1 + δk1Qi,1 + π1

i + νki1

Similar to the production functions, the initial conditions include observables xi1 and the quality

of the school attended in Key Stage 1, Qi1.42 We augment the vector of unobservables, πi =

{π1
i , π

m
i , π

v
i } with an additional unobservable π1

i that is present in the unobserved component of

the initial conditions, which in the estimation is allowed to be arbitrarily correlated with the

unobserved variables πk in the future TFP. Finally, ν represents the idiosyncratic component of

the initial conditions.

Assuming ν comes from a mean zero normal distribution with skill and time specific variance,

νkit ∼ N(0, ς2
tk) for t ∈ {1, 2, 3, 4} and k ∈ {m, v}, conditional on π = {π1, πm, πv}, the probability

41Both of these methods are based on the expectation-maximization algorithm (Dempster et al., 1977).
42The vector xi1 only includes race and mother tongue due to data availability in KS1.
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density functions f(θkt |·) defined in Eq.(2) are:

f(θkt |θmt−1, θ
v
t−1, xit, Qit, π) =

1√
2πς2

tk

exp

−
(
θkt − θ̂kt

)2

2ς2
tk



Where, θ̂kt =



x′i1ψ
k
1 + δk1Qi,1 + π1

i for t = 1

x′itψ
k
t + πk +

rkt
ρkt

ln

[
δkt

(
αkt

(
eθ
m
i,t−1

)γkt
+
(

1− αkt
)(

eθ
v
i,t−1

)γkt )ρkt /γkt
+
(

1− δkt
)

(Qit)
ρkt

]
for t ∈ {2, 3, 4}

We assume that the multi-dimensional vector of unobservables π is drawn from a latent class

distribution, such that πi = {π1
u, π

m
u , π

v
u} with probability φu for u = 1, . . . , U .43 Because of the

non-linearities of the CES production function, the integral in Eq. (4) does not have a closed-

form solution and must be simulated. We approximate it with R = 10 simulated draws for each

individual using a Metropolis-Hastings algorithm.44 Let θ̂ir be the rth draw of θ for individual i

from h(θ|wi, ai, Ψ̂A). In the second stage we maximize:

LLsecond
stage

=

n∑
i=1

1

R

R∑
r=1

ln

[
U∑
u=1

φuf(θvir,4|θmir,3, θvir,3, xi4, Qi4, πu) · · · f(θmir,1|xi1, Qi1, πu)

]

One of the features of our two-step estimator is that if the production functions have no unob-

served heterogeneity, π, then the second stage log-likelihood becomes additively separable, such that

maximizing this likelihood can be done by maximizing each production function separately. How-

ever, our goal is to recover the structural parameters of a dynamic system, and failing to account

for correlation in the TFP across skills and time may produce biased estimates of the production

function. We address this problem in two ways. First, we include a rich set of controls, xit, that

43In estimation we allow U = 5 and normalize πu = {0, 0, 0} for u = 1 since the covariates in TFP contain a
constant.

44Because the integral is outside of the log operator, simulation does not produce bias. However, we use 10 draws
to reduce simulation error which affects the standard errors.
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represent the observed component of TFP (i.e. race, mother tongue, free school meal eligibility,

special education needs, and 23,000 neighborhood fixed effects in each period).45 Second, following

Cunha et al. (2010), we allow for correlation in the unobserved component of TFP through π. This

accommodates contemporaneous correlation in the unobserved production function error because

Cov(πm, πv) 6= 0. Furthermore it allows for time-series correlation in the unobserved component

of TFP through the presence of πk in each of the equations for skill k. Finally, our estimation

accounts for endogeneity of the initial conditions by allowing for correlation in π1 and {πm, πv}.

Identification of the unobserved heterogeneity is achieved through the fact that the production

function only depends on a finite number of lags. Thus, we can identify πm through the covariance

of the KS2 math and the KS4 math, as KS2 math has no direct effect on KS4 math once we

condition on KS3 math. Likewise, identification of πv is achieved through the covariance of KS2

verbal and KS4 verbal. Identification of the Cov(πm, πv) is achieved through the covariance of KS2

math and KS4 verbal as well as KS2 verbal and KS4 math. The covariance between these variables

conditional on KS3 math and verbal can be attributed to the covariance of πm and πv. Similarly,

identification of Cov(π1, πm) and Cov(π1, πv) comes from the covariance of KS3 math and KS4

math with KS1 math as well as the covariance of KS3 verbal and KS4 verbal with KS1 verbal.

Finally, π1 is identified from the covariance of the KS1 math and verbal factors.

4 Adult Outcomes

Our next objective is to relate adult outcomes to the stock of skills at the end of compulsory

education. By doing so, we will be able to analyze the differential role of math and verbal skills

in explaining post-secondary education outcomes. In particular, we study university enrollment,

university quality, major field of study, and university graduation. We characterize the level of

human capital that is responsible for the production of these outcomes as a flexible function of the

stock of skills at the end of compulsory education, θki,4.

After completing Key Stage 4, students can finish their formal education or continue their

45The fact that we control for neighborhood fixed effects is important to properly identify the effect of school
quality on test scores.
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studies. We are interested in understanding how the latent skills derived from the factor model

influence these decisions. There are S outcomes for each individual, with realization y∗is for s =

1, 2, . . . , S that follows

y∗is = z′iωs +

[
θmi,4 (θmi,4)2 θvi,4 (θvi,4)2 θmi,4θ

v
i,4

]
βs + ϕs(πi) + εis (outcome equation)

In the outcome equation, βs captures the main effects of math and verbal skills for outcome

s (e.g. college enrollment). These coefficients could support multiple economic interpretations.

However, we interpret them as capturing the differential role that skills may have on the “psychic

cost” related to schooling progression. Specifically, we argue that individuals lacking these skills

may have a more challenging time moving into more advanced educational levels. A growing

literature supports this view by establishing the relevance of psychic costs in explaining why many

students do not continue their schooling, even though it is financially convenient for them to do so.

In particular, Cunha et al. (2005, 2006a,b); Cunha and Heckman (2008a); Heckman et al. (2006)

establish that these costs are related to cognitive and/or socio-emotional skills. Therefore, to the

extent that verbal skills have a larger impact on educational attainment than math skills, this result

could reflect their larger role in shaping psychic costs associated with educational decisions.

We allow for non-linearities in the effect of skills by including interaction and squared terms.

The parameters ω represent the influence of our main control variables, which include observed co-

variates, zi, that contain race, mother tongue, free school meal eligibility, special education needs,

number of GCSE exams taken, excused and unexcused absences, eight neighborhood characteristic

variables, and school Ofsted score in Key Stage 4 or school fixed effects depending the specifi-

cation.46 The last two terms in the outcome equation, ϕs(πi) and εis, represent the unobserved

component. The first term, ϕs(πi), is equal to ϕsu if individual i’s unobserved persistent TFP

46The neighborhood characteristic variables correspond to those that conform to the different domains of the index
of multiple deprivation. This data is calculated by the Department for Communities and Local Government and
covers seven areas: Income Deprivation, Employment Deprivation, Health Deprivation and Disability, Education
Skills and Training Deprivation, Barriers to Housing and Services, Living Environment Deprivation, and Crime. We
also use an additional domain which is the IDACI index (i.e. income deprivation affecting children index). IDACI
is a subcategory of the overall Income Deprivation index. We do not include neighborhood fixed effects in adult
outcomes specifications due to the fact that many neighborhoods do not have students attending college, a specific
field of study or type of university (e.g. selective). Therefore, it is not easy to handle a large set of fixed effects when
many of them cannot be identified.
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shocks belong to class u, i.e., πi = πu. It operates as a class specific intercept for each of the out-

come equations. The final term, εis, represents the remaining determinants of the outcome variable

that cannot be explained by the other parts of the model and is assumed to be independent.

4.1 Estimation

Each of the outcomes that we aim to study are discrete, so y∗is represents the underlying latent

variable process. We assume that ε is distributed type-I extreme value, and we only observe the

outcome yis = 1 if y∗is > 0 and zero otherwise. Conditional on zi, θ, and π, each εis is assumed

to be independent, so the likelihood of the observed outcomes is the product of the probabilities

for each individual outcome yielding, L(yi|zi, θ, π) =
∏S
s=1 Pr(yis|zi, θ, π). In principle we intend to

estimate:

LL adult
outcomes

=
n∑
i=1

ln

[∫
θ,π
L(yi|zi, θ, π)p(θ, π|xi, Qi, wi, ai)dθdπ

]
(8)

Similar to Heckman et al. (2013) and the second stage estimation of the production function,

we assume conditional independence of the unobservables π and θ with respect to the observed

outcomes, i.e. h(θ|wi, ai, yi, zi) = h(θ|wi, ai) and p(πi|θ, xi, Qi, yi, zi) = p(πi|θ, xi, Qi).47 As men-

tioned in the discussion of the production function, the primary purpose of these assumptions is

that it facilitates validation of the model and provides more transparency over the identification of

the effect of the factors on the outcomes. Under these assumptions, the objective function can be

re-written as:48

LL adult
outcomes

=
n∑
i=1

∫
θ,π

ln [L(yi|zi, θ, π)] p(π|θ, xi, Qi)h(θ|wi, ai)dθdπ (9)

47This conditional independence assumption is reasonable given our data. This is in large part because we are
using a very large measurement system that contains many continuous variables. For example, we find that 96%
of the variation in the KS4 factors can be explained by the observed measures, which we calculate using the law of
total variance as E(Var(θ|w, a))/Var(θ). Thus, we consider this remaining 4% as classical measurement error that
cannot be informed by the observed outcomes or covariates and our estimator is primarily concerned with addressing
attenuation bias.

48Given the conditional independence assumptions, this log-likelihood is derived in a manner similar to the deriva-
tion of Eq. (4).
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Let ΨB denote the parameters of the production function. Conditional on θir, the same draws

used to estimate the production function, we draw πir with probability p(πir = πu|θir, xi, Qi, Ψ̂B).49

Thus we simulate the integral in the likelihood above as:

LL adult
outcomes

=
n∑
i=1

1

R

R∑
r=1

ln [L(yi|zi, θir, πir)] (10)

Since θ and π are treated as data, the outcome equations can be estimated by S standard logit

models.50

5 Main Results

This section presents our main findings. First, we characterize the distribution of the recovered skills

in the population. Second, we report the factor loadings and residual variance for a selection of the

KS4 measurements to provide insight into the nature of skills. Third, we present the estimates of the

production function parameters. Fourth, we show the effect of math and verbal skills on educational

decisions. Finally, we provide robustness checks to address possible endogeneity concerns.

5.1 Factor Distribution

Our empirical strategy recovers nine correlated factors, a math and a verbal factor for each of the

four Key Stages, in addition to a selection factor in KS4. Table 4 displays the mean, standard

deviation and correlation matrix for the estimated factors. The top panel shows that the factor

means increase over time, which is expected given that they are scaled based on the National

Curriculum levels. We also find that while gender disparities in math skills are small at each stage

of compulsory education, females’ large advantage in verbal skills is persistent and increasing during

the schooling career.

49ΨB = {ψ, r, ρ, δ, γ, α, ς, π1, . . . , πU , φ1, . . . , φU}.
50The log-likelihood in Eq. (10) is only valid under the conditional independence assumptions. For robustness

we estimate the parameters of the model without imposing the conditional independence assumption using the log-
likelihood in Eq. (8), which takes the form:

∑n
i=1 ln[ 1

R

∑R
r=1 L(yi|zi, θir, πir)]. Because the integration is inside of

the log function, we use a larger number of draws (R = 25) to reduce simulation bias (Lee, 1995). We get very similar
results with this alternative specification, which we discuss in more detail in Footnote 68.
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Table 4: Factor Moments By Gender

Math Verbal KS4
Selec-
tionKS1 KS2 KS3 KS4 KS1 KS2 KS3 KS4

Factor Means

Female
2.277
(0.003)

4.493
(0.003)

6.068
(0.006)

7.117
(0.009)

2.134
(0.002)

4.565
(0.003)

5.838
(0.004)

7.622
(0.008)

4.312
(0.003)

Male
2.304
(0.003)

4.536
(0.002)

6.107
(0.004)

7.097
(0.007)

1.966
(0.002)

4.363
(0.002)

5.491
(0.003)

7.068
(0.007)

4.341
(0.003)

Difference
-0.027
(0.002)

-0.043
(0.002)

-0.039
(0.004)

0.021
(0.005)

0.168
(0.001)

0.203
(0.002)

0.347
(0.003)

0.554
(0.004)

-0.029
(0.002)

Factor Standard Deviation

Female
0.557
(0.002)

0.671
(0.001)

1.139
(0.002)

1.698
(0.003)

0.499
(0.001)

0.653
(0.001)

0.818
(0.001)

1.399
(0.003)

0.756
(0.002)

Male
0.612
(0.001)

0.704
(0.001)

1.176
(0.001)

1.712
(0.004)

0.495
(0.001)

0.686
(0.001)

0.862
(0.001)

1.503
(0.004)

0.708
(0.002)

Factor Correlation: Lower Diagonal Female, Upper Diagonal Male

KS1 Math 1
0.779
(0.001)

0.776
(0.001)

0.654
(0.001)

0.847
(0.001)

0.744
(0.001)

0.672
(0.001)

0.588
(0.002)

0.286
(0.002)

KS2 Math
0.777
(0.001)

1
0.942
(0.000)

0.796
(0.001)

0.703
(0.001)

0.844
(0.001)

0.749
(0.001)

0.677
(0.002)

0.373
(0.002)

KS3 Math
0.775
(0.001)

0.941
(0.000)

1
0.924
(0.000)

0.708
(0.001)

0.840
(0.001)

0.839
(0.001)

0.798
(0.001)

0.522
(0.002)

KS4 Math
0.664
(0.001)

0.801
(0.001)

0.929
(0.000)

1
0.621
(0.001)

0.753
(0.001)

0.821
(0.001)

0.898
(0.001)

0.729
(0.001)

KS1 Verb
0.869
(0.001)

0.727
(0.001)

0.730
(0.001)

0.644
(0.001)

1
0.826
(0.001)

0.740
(0.001)

0.640
(0.002)

0.338
(0.002)

KS2 Verb
0.756
(0.001)

0.859
(0.001)

0.852
(0.001)

0.764
(0.001)

0.842
(0.001)

1
0.906
(0.001)

0.793
(0.001)

0.416
(0.002)

KS3 Verb
0.689
(0.002)

0.774
(0.001)

0.861
(0.001)

0.836
(0.001)

0.757
(0.001)

0.914
(0.000)

1
0.902
(0.000)

0.520
(0.002)

KS4 Verb
0.611
(0.002)

0.705
(0.001)

0.824
(0.001)

0.916
(0.000)

0.663
(0.001)

0.807
(0.001)

0.904
(0.001)

1
0.748
(0.002)

KS4 Selection
0.307
(0.002)

0.382
(0.002)

0.538
(0.002)

0.747
(0.001)

0.338
(0.002)

0.402
(0.002)

0.508
(0.002)

0.744
(0.001)

1

Note: The last panel reports the correlation of the factors by gender. The lower diagonal corresponds to
females and the upper diagonal to males. Bootstrapped standard errors are reported in parentheses.
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Figure 1: Distribution of Key Stage 4 Skills By Gender

The middle panel of Table 4 reports the standard deviations for the factors, showing that skill

dispersion increases over time. These estimates suggest that the math factors have higher variation

than the verbal factors at each stage of the schooling career, and the variance of the factors tends

to be larger for males than females, with the exception of verbal skills in KS1 and the selection

factor. To complete the characterization of the skill distributions, Figure 1 plots the density of the

KS4 factors by gender. Despite the fact that we allow for a mixture of 10 normals, none of the

distributions exhibit “separation” or bi-modality, however the Kolmogorov-Smirnov test rejects the

normality assumption for each of the nine factors.51

Finally, the last panel of Table 4 shows the correlation matrix of the factors, where the lower

diagonal corresponds to females and the upper diagonal to males. The correlation between con-

temporaneous math and verbal skills is around 0.85 at each Key Stage for both gender groups.

However, as expected, factors that are more distant in time have a declining correlation, where

the coefficient of correlation for females between the KS1 and KS2 math (verbal) factors is 0.777

(0.842) while the correlation between KS1 and KS4 is around 0.664 (0.663). Towards the end of

51Moreover, our estimates show that we are not drawing from a single component mixture. In particular, the
probability for each of the 10 mixtures is as follows for females [0.093, 0.109, 0.102, 0.084, 0.145, 0.086, 0.063, 0.185,
0.032, 0.101], while for males is [0.085, 0.156, 0.097, 0.078, 0.105, 0.082, 0.081, 0.160, 0.034, 0.123].
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compulsory education, skills in adjacent periods are highly correlated, where female KS3 and KS4

math (verbal) factors have a correlation of 0.929 (0.904), similar correlations can be found among

males. Finally, the KS4 selection factor correlates similarly with both math and verbal skills.52

5.2 Factor Loadings

The factor model relies on multiple Key Stage test scores to identify the latent skills. To assess how

skills load on each of the different tests and to determine the importance of measurement error,

Table 5 displays, for each gender, the loadings on the math and verbal factors and the residual

‘noise’ for a subset of KS4 measurements. These results show that performance in statistics mainly

relies on math skills while social science relies heavily on verbal skills. However, geography, design

and technology and applied business load on both skills. Columns (3) and (6) of Table 5 report

the proportion of the total variance of a given measurement that can be interpreted as ‘noise’

(i.e. V ar(ηij)/[V ar(λ
′
jθi) + V ar(ηij)]) for females and males, respectively. Estimates show that

measurement error is pervasive in some of our measures. For example, 39.1% of the variability of

design and technology scores corresponds to ‘noise’ when considering female estimates, while for

geography it is substantially smaller (14.5%). Finally, there does not appear to be any consequential

differences in the loadings between males and females, suggesting that measurements tend to provide

similar information regardless of gender. A full list of the estimated factor loadings and residual

‘noise’ for the 70 measurements are reported in Table 17 for females and Table 18 for males in

Appendix E.

5.3 Skill Production Functions

The skill production function estimates characterize the process of skill formation. However, it is

important to emphasize that while the CES production technologies are well known, their mathe-

matical simplicity can be deceitful. La Grandville (1989); La Grandville and Solow (2009); Klump

and de La Grandville (2000); Klump et al. (2007a,b); Temple (2012), among others have argued

52Table 19 in Appendix F shows a transition matrix that illustrates the share of students that are able to climb up
the skill distribution between KS1 and KS4. For example, among those students that were in the bottom quartile of
the math skill distribution in KS1, 63% of them remained in that same quartile in KS4, and only 2% were able to
reach the top quartile in KS4.
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Table 5: Factor Loadings: Selected Measurements only loading in Key Stage 4

Females Males

Measurement
KS4
Math

KS4
Verbal

Percent
Noise

KS4
Math

KS4
Verbal

Percent
Noise

Math 1 0 0.097 1 0 0.097

English 0 1 0.111 0 1 0.106

Design and Technology:
Resistant Materials Technology

0.497 0.427 0.391 0.362 0.455 0.478

Geography 0.498 0.827 0.145 0.428 0.794 0.176

Physics 1.111 0 0.077 1.064 0 0.095

Chemistry 1.095 0 0.085 1.041 0 0.102

Social Science 0.146 0.996 0.303 0.096 1.013 0.333

English Literature 0 1.092 0.176 0 1.117 0.164

Statistics 0.994 -0.040 0.174 0.978 0.026 0.175

Applied Business 0.498 0.724 0.298 0.476 0.711 0.330

Note: Values of 0 or 1 denote normalizations. Appendices 17 and 18 report the loadings and percent noise
as well as standard errors for all the measurements used in the identification of the KS1-KS4 factors. Percent
noise refers to V ar(ηij)/[V ar(λ

′
jθi) + V ar(ηij)].

that comparisons of CES technologies require caution when production technology parameters dif-

fer. For example, according to Temple (2012) comparisons of the following production functions,

AF (I1; I2) and BG(I1; I2), are not straightforward. While, the parameters A and B have the same

interpretation (i.e. TFP parameters), the production technologies differ, making comparison of the

magnitudes of A and B not very informative.53 In a similar vein, La Grandville (1989) claims that

if the elasticity of substitution varies then both the TFP and the input share parameters cannot be

analyzed independently of the elasticity. Therefore, while in the following subsection we describe

(mainly within period) the nested CES parameters, we also provide a more cohesive characteriza-

tion of our key estimates by reporting overall marginal effects of each of the production function

inputs.

53Temple (2012) also discusses issues that arise when normalizing CES production functions due to differences in
the scale of the inputs. However, in our case all the inputs are on the same scale, given that 1 log-unit increase in
any of our inputs is interpreted as a 100% increase.
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5.3.1 Parameters of the Nested CES Technology of Skill Formation

Table 6 displays selected parameter estimates by gender for the nested-CES production functions

in Eq.(1) for each Key Stage.54 Appendix H reports for completeness estimates corresponding to

regular two-input CES and nested CES production functions that do not account for unobserved

heterogeneity or covariates in the TFP term.55

Math Production Function We begin by describing the parameters of the inner-nest (Ωk
it).

The share parameters (α) indicate that self-productivity effects play a large role in the production

of math skills at each Key Stage. Furthermore, cross effects (i.e. verbal skills) are only relevant in

the production of math skills in later Key Stages. In the case of KS2, our estimates indicate that

(α) is essentially one. Therefore, the data are indicating that the production function resembles a

two-input CES (i.e. math skills and school quality), where verbal skills do not seem to play any

role in the production of math skills for this specific period. Due to this fact, it is not possible

to recover a meaningful elasticity of substitution between math and verbal skills in KS2.56 It

is important to emphasize that the absence of cross effects in KS2 emerges once we account for

unobserved heterogeneity and background characteristics in the TFP, highlighting their relevance

in our model.57 Regarding the elasticities of substitution between math and verbal skills (1/(1−γ))

in KS3 and KS4, our estimates indicate that γ’s are in almost all cases not statistically different

from zero, suggesting that the inner nest approximates a Cobb-Douglas production function. The

share parameters of the outer nest (δ) indicate that while lagged skills play a predominant role

in the production of future skills, school quality is also important. The elasticities of substitution

corresponding to skills-school quality (1/(1− ρ)) show some degree of complementarities at earlier

stages of the schooling career (i.e. KS2). This implies that high-skilled 11 year old students in

54Appendix G reports the TFP and unobserved heterogeneity parameters.
55In particular, we estimated models that correspond to regular CES production functions (i.e. not nested), where

the production function is characterized as follows: Θk
i,t = Akit[δ

k
t

(
Θm
i,t−1

)ρkt + (1 − δkt )
(
Θv
i,t−1

)ρkt ]r
k
t /ρ

k
t . The main

difference with respect to the nested CES models is that we include school quality in the TFP instead of being an
input. Moreover, given that school quality enters linearly in these specifications, we model it through school fixed
effects.

56Dashes in the table indicate that the complementarity parameter between math and verbal skills is not meaningful
given that the share parameter of the inner nest is close to 1.

57Tables 22 and 23 in Appendix H show production function estimates by gender when we do not control for
unobserved heterogeneity or covariates in the TFP.
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Table 6: Production Function: 3-Input Nested-CES(m,v,Q)

Math Verbal

KS2 KS3 KS4 KS2 KS3 KS4

Panel A: Female

Math Coefficient (α)
0.980
(0.002)

0.923
(0.003)

0.926
(0.003)

0.013
(0.005)

0.000
(0.000)

0.001
(0.000)

Verbal Coefficient (1− α)
0.020
(0.002)

0.077
(0.003)

0.074
(0.003)

0.987
(0.005)

1.000
(0.000)

0.999
(0.000)

Complementarity Parmaeter
Math/verbal (γ)

–
-0.180
(0.136)

0.143
(0.037)

– – –

Math/Verbal Aggregator Coefficeint (δ)
0.893
(0.002)

0.915
(0.002)

0.879
(0.003)

0.939
(0.002)

0.868
(0.003)

0.982
(0.002)

School Coefficient(1− δ) 0.107
(0.002)

0.085
(0.002)

0.121
(0.003)

0.061
(0.002)

0.132
(0.003)

0.018
(0.002)

Complementarity Parameter Skill/School
(ρ)

-0.282
(0.046)

0.295
(0.013)

0.285
(0.009)

0.055
(0.064)

0.436
(0.019)

-0.153
(0.030)

Return to Scale (r)
0.735
(0.004)

1.458
(0.004)

1.075
(0.003)

0.866
(0.004)

1.025
(0.004)

1.095
(0.003)

Variance of shocks ν (ς2)
0.114
(0.001)

0.083
(0.001)

0.105
(0.001)

0.074
(0.000)

0.073
(0.000)

0.119
(0.001)

Panel B: Male

Math Coefficient (α)
0.992
(0.001)

0.933
(0.004)

0.976
(0.003)

0.062
(0.005)

0.000
(0.000)

0.001
(0.001)

Verbal Coefficient (1− α)
0.008
(0.001)

0.067
(0.004)

0.024
(0.003)

0.938
(0.005)

1.000
(0.000)

0.999
(0.001)

Complementarity Parmaeter
Math/verbal (γ)

–
0.117
(0.295)

-0.072
(0.070)

0.034
(0.100)

– –

Math/Verbal Aggregator Coefficeint (δ)
0.893
(0.003)

0.901
(0.002)

0.858
(0.004)

0.940
(0.002)

0.851
(0.002)

0.954
(0.004)

School Coefficient(1− δ) 0.107
(0.003)

0.099
(0.002)

0.142
(0.004)

0.060
(0.002)

0.149
(0.002)

0.046
(0.004)

Complementarity Parameter Skill/School
(ρ)

-0.390
(0.046)

0.423
(0.012)

0.308
(0.009)

0.133
(0.046)

0.581
(0.012)

0.107
(0.023)

Return to Scale (r)
0.738
(0.004)

1.460
(0.004)

1.056
(0.003)

0.894
(0.004)

1.020
(0.004)

1.117
(0.003)

Variance of shocks ν (ς2)
0.132
(0.001)

0.087
(0.001)

0.128
(0.001)

0.091
(0.001)

0.087
(0.000)

0.144
(0.001)

Note: Panel A corresponds to estimates using the female sample, while panel B corresponds to estimates
based on the male sample. Models account for covariates in TFP, and unobserved heterogeneity. Covariates
in TFP include: race, mother tongue, free school meal eligibility, special education needs, and neighborhood
fixed effects. Dashes in the table indicate that the complementarity parameter is not recovered because the
share parameter of the inner nest is close to 1. Therefore, these models should essentially be interpreted as
a two-input CES. Bootstrapped standard errors are reported in parentheses.

35



math would benefit more from better schools than low-skilled students. To conclude, the returns

to scale parameters (r) are not necessarily equal to 1, indicating that relaxing the assumption of

constant returns may not be trivial.

Verbal Production Function The parameters corresponding to the inner-nest indicate that

self-productivity effects (1−α) play an important role in the production of verbal skills. However,

verbal skills do not rely on cross-effects as α is essentially zero at all stages of the schooling career

with the exception of the KS2 production function for males.58 Due to this fact, the elasticity of

substitution between math and verbal skills (1/(1−γ)) is not meaningful. Regarding the outer-nest,

we do not find complementarities between skills and school quality at earlier stages of the schooling

career (as it is in the case of math). However, the share parameters corresponding to the outer

nest (1− δ) are relatively large and different from zero in most Key Stages suggesting that schools

do play a relevant role in the formation of skills. Finally, the returns to scale parameters are close

to one (with the exception of KS2). This finding indicates that the assumption of constant returns

to scale at later stages of the schooling career is sensible for the production of verbal skills.

5.3.2 Marginal Effects

To provide a more cohesive characterization of the overall effects of each of the nested CES inputs,

this section analyses the marginal effects of the inputs under three different specifications of the

CES production function.59 Our aim is twofold. First, we attempt to better characterize the

overall role of self-productivity, cross-effects and school quality in the production of skills. Second,

we intend to assess the sensitivity of our main findings. Table 7 displays the marginal effects by

gender for the three models. Panels A and B correspond to nested CES production functions, where

the main difference between them is the inclusion of covariates and unobserved heterogeneity in

the TFP term. Panel C reports marginal effects of a regular two-input (i.e. math and verbal skills)

CES production function, where the TFP accounts for background characteristics, unobserved

58Similar to math skills, a comparison between model specifications shows that the inclusion of covariates and
unobserved heterogeneity substantially reduces the size of the share parameters. See Appendix H: Tables 22 and 23
with estimates that correspond to alternative specifications.

59Marginal effects of the CES have a closed analytical form which are derived in Appendix D.
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heterogeneity, and school fixed effects.60 Therefore, the main difference between panels A and

C is how we account for school effects.61 While the regular two-input CES model specifies school

quality as fixed effects in the TFP, the nested CES models account for school quality from the Ofsted

report cards as an additional input in the production function. Given that marginal effects of CES

production functions depend on the ratio of inputs, we evaluate them at the somewhat “typical”

student (i.e. performing at expected level in each skill, and attending a satisfactory school for the

three-input CES).62

Five main results emerge from Table 7. First, irrespective of how we model school inputs,

as an input in the nested CES production function (Panel A) or as school fixed effects included

in the TFP (Panel C), the skill marginal effects are very similar. Second, a comparison between

Panels A and B shows that allowing for a rich specification of the TFP leads to large drops in skill

marginal effects, particularly when considering cross effects.63 Third, self-productivity effects play

an important role in the formation of skills where the level effects are larger in secondary school (i.e.

KS3 and KS4) than in elementary school (i.e. KS2). For example, Panel A shows that increasing

KS1 female (male) math skills by one log unit would increase KS2 math skills by 0.643 (0.653) log

units, while a similar increase in KS3 skills would lead to an increase of 0.940 (0.967) log units in

KS4.64 Fourth, the relevance of cross-effects heavily depends on the type of skill. Panels A and C

show that math skills have almost no impact in the production of verbal skills, while verbal skills

have a positive effect on the production of math skills, particularly in secondary school. Finally,

Panel A shows that school quality, included as an input in the nested CES production function,

plays an important role in the production of skills. For example, moving a female student from a

60The two-input CES takes the form Θk
i,t = Akit[δ

k
t

(
Θm
i,t−1

)ρkt + (1− δkt )
(
Θv
i,t−1

)ρkt ]r
k
t /ρ

k
t , where Akit includes school

fixed effects in addition to race, mother tongue, free school meal eligibility, special education needs, and neighborhood
fixed effects.

61Appendix H shows the estimates of the CES parameters that lead to the marginal effects that are derived in
Panels B and C of Table 7, while Table 6 shows the parameter estimates that lead to the marginal effects reported
in Panel A.

62Performing at expected level corresponds to a specific classification determined by the National Curriculum
Standards of achievement for pupils in compulsory education. In particular, it implies assigning skill log levels of 2,
4, and 5 in KS1, KS2, and KS3, respectively. See Section 2 for more details.

63The zeros in Table 7 are given by the fact that the input elasticity in the production function is essentially zero.
64The scale has a specific interpretation that corresponds to the National Curriculum levels, one log unit could

imply (depending on the Key Stage and the lagged level of the student) moving a student from below to meeting
expectations in performance.
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Table 7: Marginal Effects (elasticities) of Skills

Math Verbal

KS2 KS3 KS4 KS2 KS3 KS4

Female

Panel A: 3-Input Nested-CES(m,v,Q), With Covariates in TFP†, With Unobserved Heterogeneity

Math (θmi,t−1)
0.643
(0.003)

1.280
(0.003)

0.940
(0.002)

0\ 0\ 0\

Verbal (θvi,t−1) 0\
0.107
(0.004)

0.076
(0.003)

0.803
(0.005)

0.964
(0.004)

1.063
(0.003)

School (Qit)
0.079
(0.002)

0.071
(0.001)

0.060
(0.001)

0.052
(0.002)

0.061
(0.001)

0.030
(0.001)

Panel B: 3-Input Nested-CES(m,v,Q), No Covariates in TFP, No Unobserved Heterogeneity

Math (θmi,t−1)
0.847
(0.005)

1.366
(0.003)

1.179
(0.003)

0.125
(0.008)

0\
0.189
(0.004)

Verbal (θvi,t−1)
0.138
(0.007)

0.284
(0.003)

0.312
(0.004)

0.981
(0.011)

1.161
(0.002)

1.295
(0.004)

School (Qit)
0.079
(0.002)

0.077
(0.002)

0.107
(0.002)

0.054
(0.003)

0.061
(0.001)

0.079
(0.002)

Panel C: 2-Input CES(m,v), With Covariates in TFP‡, With Unobserved Heterogeneity

Math (θmi,t−1)
0.658
(0.004)

1.271
(0.003)

0.939
(0.001)

0.018
(0.002)

0\ 0\

Verbal (θvi,t−1)
0.017
(0.001)

0.095
(0.004)

0.073
(0.003)

0.790
(0.004)

0.929
(0.003)

1.060
(0.004)

Male

Panel A: 3-Input Nested-CES(m,v,Q), With Covariates in TFP†, With Unobserved Heterogeneity

Math (θmi,t−1)
0.653
(0.003)

1.300
(0.004)

0.967
(0.002)

0.052
(0.004)

0\ 0\

Verbal (θvi,t−1) 0\
0.094
(0.005)

0.024
(0.003)

0.788
(0.006)

0.967
(0.003)

1.077
(0.003)

School (Qit)
0.079
(0.002)

0.066
(0.001)

0.065
(0.002)

0.054
(0.002)

0.053
(0.002)

0.038
(0.001)

Panel B: 3-Input Nested-CES(m,v,Q), No Covariates in TFP, No Unobserved Heterogeneity

Math (θmi,t−1)
0.931
(0.003)

1.382
(0.003)

1.085
(0.003)

0.203
(0.005)

0\
0.119
(0.003)

Verbal (θvi,t−1)
0.026
(0.001)

0.254
(0.004)

0.368
(0.005)

0.953
(0.007)

1.174
(0.002)

1.412
(0.004)

School (Qit)
0.074
(0.003)

0.070
(0.001)

0.102
(0.002)

0.041
(0.002)

0.049
(0.001)

0.083
(0.002)

Panel C: 2-Input CES(m,v), With Covariates in TFP‡, With Unobserved Heterogeneity

Math (θmi,t−1)
0.659
(0.004)

1.278
(0.007)

0.956
(0.002)

0.052
(0.004)

0\ 0\

Verbal (θvi,t−1) 0\
0.074
(0.009)

0.021
(0.003)

0.768
(0.006)

0.906
(0.003)

1.066
(0.002)

Note: The top panels correspond to estimates using the female sample, while the bottom panels correspond
to estimates based on the male sample. Bootstrapped standard errors are reported in parentheses.
† Controls include race, mother tongue, free school meal eligibility, special education needs, and neighborhood
fixed effects.
‡ Controls include race, mother tongue, free school meal eligibility, special education needs, neighborhood
fixed effects and school fixed effects.
\ Denotes that the effect is zero given that the input elasticity estimate from the production function is
essentially zero. 38



satisfactory school to a good school would increase log math skills in KS2 (KS4) by 0.079 (0.06)

log points.

5.3.3 Comparing the Production Function of Females and Males

To conclude, the estimates in Table 6 and the marginal effects in Table 7 do not seem to show

important gender differences in the production of skills, indicating that female advantage in verbal

skills is likely driven by initial conditions rather than by differences in the production of these skills.

However, given the large number of parameters and the complexity of the nested CES functions it

is difficult to form a definitive conclusion. To provide a concise answer to this matter, we perform

a simple simulation where we apply the female nested CES production function parameters to the

male skill production functions.65 This exercise will not only provide an overall measure of gender

differences in the production of skills, but it will also help to determine whether the large female

advantage in verbal skills is driven by disparities in initial conditions or in the production of skills.

Table 8 shows the results of two simulations. Column (1) displays the actual KS4 skills of males,

which serves as the benchmark. Column (2) reports counterfactual KS4 skills of males when KS1

skills and KS2–KS4 TFP terms, which are a function of background characteristics, are equalized

between gender groups. Finally, Column (3) shows KS4 skills of males in the counterfactual scenario

where they share the same CES production functions as females during KS2–KS4, though we hold

constant their initial skills and the TFP terms.66 Results indicate that equalizing the nested CES

parameters between females and males does not lead to substantial changes in the level of skills

of males. For example, assigning to males the female nested CES production function parameters

in the KS2–KS4 period would increase (decrease) their math (verbal) skills by 0.065 (0.113) log

points. While these differences are not negligible, their size does not suggest large differences in

how the CES parameters impact the skills of males and females. Moreover, they cannot explain

the gender disparities in verbal skills. In fact, the current gender differences in the production of

these skills contribute to close the gap. However, if instead we equalize the initial skills and the

65We recover counterfactual KS4 skills of males by combining their initial conditions with the female production
functions.

66This implies that these results are focused on the main components of the production functions.
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Table 8: Male Key Stage 4 Skills with Female Production Function

Baseline

Equalize
Initial KS 1
Skills and
KS2–KS4

TFP

Equalize
KS2–KS4

CES
Parameters

(1) (2) (3)

KS4 Math
7.134

(0.007)

7.041
(0.047)

7.199
(0.051)

KS4 Verbal
7.101

(0.007)

7.767
(0.045)

6.988
(0.045)

Note: This table presents two counterfactual simulation results. Column (1)
reports actual level of skills for males, which serves as a benchmark. Column (2)
reports counterfactual KS4 skills of males after equalizing initial skills (i.e. KS1
skills) and TFP terms (i.e. males are given the female characteristics). Finally,
in Column (3) males are assigned the female nested CES production function
parameters at the different stages of the schooling career (i.e between KS2 and
KS4), while holding fixed the initial skills (i.e. KS1 skills) and the TFP term.

TFP terms, then we can fully explain the gap in verbal skills in KS4. In summary, these findings

suggest that differences in the nested CES parameters are not driving the large gender disparities

in verbal skills and that initial skills and the TFP components are the main drivers of the gap in

KS4 skills.

5.4 The Role of Skills in Overall University Enrollment

In this section, we study how skills impact educational outcomes. Table 9 reports the results

by gender for different logistic models that analyze the effect of KS4 math and verbal skills on

university enrollment. We focus on KS4 skills because this is the period when students begin

making educational decisions. All specifications include a rich set of baseline controls (i.e. race,

mother tongue, eight covariates of neighborhood characteristics, free school meal eligibility, special

education needs, number of GCSE exams taken in KS4, number of excused and unexcused absences

in KS4, KS4 school quality determined by Ofsted reports, and unobserved heterogeneity derived

from the production functions).67 Columns (1) and (2) of Table 9 display the average marginal

67The eight covariates of neighborhood characteristics correspond to Income Deprivation, Employment Deprivation,
Health Deprivation and Disability, Education Skills and Training Deprivation, Barriers to Housing and Services, Living
Environment Deprivation, Crime and Income Deprivation Affecting Children. We do not include neighborhood fixed
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effect of each skill on college enrollment when included in separate specifications, which indicate that

both skills have a large impact on educational attainment when considered separately. Column (3)

of Table 9 shows the average marginal effects for each skill when both skills are included in the same

specification. These results show that the partial effect of a one log-unit increase in verbal skills

is approximately 3 times larger than an analogous increase in math.68 Specifications in Columns

(4)-(6) provide further robustness checks to this finding. Column (4) adds higher order factor terms

(i.e. squared term of each factor, and their interaction), Column (5) additionally controls for Key

Stage 1 math and verbal skills to further control for differences in background characteristics, and

Column (6) includes KS4 school fixed effects instead of the school quality measures obtained from

the Ofsted reports. Each of these specifications further confirm the finding that verbal skills play

a larger role than math skills in explaining college enrollment.69 Finally, while males and females

show a similar pattern of a higher importance of verbal skills relative to math skills in explaining

college enrollment, the ratio of the math-verbal skills coefficients for males tend to be larger than

for females, suggesting differential responses to skill endowments.70 To conclude, while this analysis

is informative in terms of assessing the relevance of each skill in predicting adult outcomes, it does

not provide any evidence on the cost to improve one skill relative to the other, making it more

difficult to suggest policy recommendations on which skill should be targeted. Section 6 provides

a set of counterfactual simulations that will shed light on this issue.

To further analyze the role of KS4 skills in adult outcomes, we explore the extent to which

non-linear effects impact college enrollment decisions. The aim of this exercise is to determine

effects given that many neighborhoods do not have students attending college or enrolled in a given field of study,
making the identification of fixed effects more problematic given the sparsity of the data.

68The results in Table 9 are estimated under the conditional independence assumption in Section 4. We also
estimated the outcome equations without imposing the conditional independence assumption and obtained results
very similar to the ones in the table. For example, for females, the equivalent Column (4) marginal effects in Table 9
without imposing conditional independence is 0.049 for math and 0.172 for verbal.

69If the actual scores in the main math and verbal (i.e. English) tests were used instead of the recovered latent
skills, the differences in the coefficients between the math and verbal scores would be substantially smaller (see Table
3). This result suggests that addressing problems of measurement error as discussed in Section 2 is highly relevant.

70Our main analysis does not include any features of the supply-side of the university market, which could exaggerate
the importance of verbal skills relative to math skills. To consider the supply-side, we conduct a program-by-program
analysis of degree prerequisites that shows that nearly half of all degrees granted in England, weighted by total
population enrolled, require some math or science preparation prior to enrollment, which suggests that the imbalance
of math and verbal is not necessarily a byproduct of university course/majors offerings. Appendix J provides the
details of this analysis.
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Table 9: Logistic Regression: University Enrollment and KS4 Skills

(1) (2) (3) (4) (5) (6)

Average Marginal Effect of 1 log unit increase in Skills

Females

KS4 Math
0.142
(0.001)

–
0.053
(0.001)

0.054
(0.001)

0.057
(0.001)

0.054
(0.001)

KS4 Verbal –
0.198
(0.001)

0.149
(0.001)

0.147
(0.001)

0.150
(0.001)

0.148
(0.001)

Males

KS4 Math
0.131
(0.001)

–
0.055
(0.001)

0.058
(0.001)

0.061
(0.001)

0.058
(0.001)

KS4 Verbal –
0.173
(0.001)

0.128
(0.001)

0.126
(0.001)

0.127
(0.001)

0.125
(0.001)

Controls For:

Baseline
Controls

X X X X X X

Higher Order
Factor Terms

– – – X X X

Key Stage 1
Factors

– – – – X X

School Fixed
Effects

– – – – – X

Note: Results correspond to logistic regressions. Baseline controls include race, mother tongue,
Key Stage 4 school quality or school fixed effects depending on the specification, free school lunch,
special education needs, number of GCSE exams taken in KS4, number of excused and unexcused
absences in KS4, neighborhood characteristics, and unobserved persistent TFP shock. Key Stage
1 factors correspond to math and verbal skills in KS1. Higher order factor terms involve squared
terms of Key Stage 4 skills and their interactions. Bootstrapped standard errors at the school level
reported in parentheses.
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whether increases in verbal and math skills are particularly important in specific areas of the skill

distributions. Figure 2 shows the predicted share of college enrollment at different points of the skill

distributions if all students in the population were assigned that given value of math (verbal) skills,

while holding fixed the population distribution of the other covariates impacting college enrollment,

including their verbal (math) skills.71 Two key messages emerge from this figure. First, if verbal

skills are sufficiently low, then a very low share of students would enroll in college. However, this

is not the case for math skills, where giving students low levels of math skills would still lead to

a relatively high share of students attending college (i.e. 30%). Second, increases in math skills

when their level is low enough (i.e. log-skill between 4 and 7) have almost no impact on improving

the probability of enrolling in college. However, this is not the case with verbal skills, where

improvements, even at low levels, increase the probability of enrolling in college.72 In summary,

Figure 2 indicates that verbal skills play an important role in explaining college enrollment and

that increasing math skills among low ability students has a very small impact on educational

attainment. Therefore, these findings suggest that targeting the verbal skills of the students that

lag behind (instead of their math skills) could be more efficient if the goal is to improve educational

attainment. This result is consistent with the fact that among students with low probability of

attending college, their probability of choosing a STEM field is substantially smaller. For example,

our data show that among those college enrollees that have a below average population probability

of attending college, only 23% of them enrolled in STEM fields. While among those that have an

above average population probability, 31% enrolled in STEM fields.

5.4.1 Endogeneity Concerns

Given that our findings point towards a more relevant role of verbal skills in explaining educational

attainment than previously discussed in the literature, it is important to show that this result is

not driven by endogeneity bias. Despite the fact that we control for a large number of background

covariates, unobserved heterogeneity, number of GCSE exams taken, KS4 absences, and school

71These figures are derived from the model in Column (4) of Table 9, where squared terms of the factors and their
interactions are included as additional covariates.

72We perform a similar analysis but focusing on unconditional STEM enrollment. Figure 4 in Appendix I shows
important non-linearities, suggesting that in order to enroll in STEM fields a minimum level of math skills is necessary.
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Figure 2: College Enrollment By Key Stage 4 Skill and Gender
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Note: Shares refer to average probability of college enrollment when all students are assigned a given level of math

(verbal) skills while holding fixed the rest of their characteristics, including their verbal (math) skills.

quality or school fixed effects and neighborhood characteristics, it is still possible that some un-

observed characteristic could disproportionately correlate with, for example, verbal skills. In this

regard, we performed several robustness checks to assess the extent to which confounding factors

may be driving this result. To preserve space, we briefly describe these strategies in this subsection

and provide detailed explanations and complete results in Appendix J.

Role of Motivation A possible concern is that students at KS4 (age 16) may have already made

their educational decisions (e.g. whether to attend university and field of study if attending), and

therefore the effort that they may exert is a function of these decisions. For example, students who

have already planned to obtain a degree in history may not spend much time studying math. One

way to address this concern is to look at the relative importance of skills using earlier measures

(e.g. KS1, age 7), when effort and motivation at school are less likely to be determined by decisions

that will be made 11 years later. The top panel of Appendix Table 24 repeats the analysis in

Table 9 but instead including skills from earlier Key Stages. Results show that verbal skills uni-

formly have a larger effect on university enrollment than math skills at each stage of the schooling
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career. Moreover, the magnitude of the differential effect is sizable across the board, which further

substantiates our main findings.73

Decomposition of KS4 Skills We propose a statistical decomposition of KS4 skills into the

component that is predicted by early skills and a component that represents the prediction er-

ror/residual. In particular, we express θi4 as:

θi4 =
(
θi4 − θ̂i4|3,2,1

)
︸ ︷︷ ︸

KS4 Residual

+
(
θ̂i4|3,2,1 − θ̂i4|2,1

)
︸ ︷︷ ︸

KS3 Residual

+
(
θ̂i4|2,1 − θ̂i4|1

)
︸ ︷︷ ︸

KS2 Residual

+θ̂i4|1 (11)

where θ̂i4|3,2,1 = E(θi4|θi3, θi2, θi1), θ̂i4|2,1 = E(θi4|θi2, θi1), and θ̂i4|1 = E(θi4|θi1). The benefit of

this approach is to study the relative contribution to university enrollment of math and verbal

skill “residuals” after conditioning on prior skill levels. We include all these “KS residual” terms

in a college enrollment regression, which will allow us to recover the marginal effect of the new

information received (in terms of predicting KS4 skills) at different school stages. Appendix Table

25 shows that, at each Key Stage, performing better than expected in verbal has a much larger

impact on college enrollment than performing better than expected in math. This finding shows

that even after conditioning on different KS skills (that could be considered as playing the role of

sufficient statistics) our result on the relevance of verbal skills still holds. Therefore, it suggests

that endogeneity in parental inputs that benefit one skill over the other is not likely to be driving

our findings. A more detailed description of this analysis can be found in appendix J.74

Interrelation between Test Scores and Externalizing Behavior, Family Background

Characteristics, and IQ It is possible that our verbal factor is capturing other types of skills

73As an additional robustness check, we repeated the analysis but this time constrained the sample in two different
ways. First, we focused on students whose mother’s native language is English. Second, we further constrained this
group to only include white students. Table 24 in Appendix J shows that in all cases verbal skills are more important
than math skills in explaining college enrollment.

74Our analysis does not include any features of the supply-side of the university market, which could exaggerate
the importance of verbal skills relative to math skills. To consider the supply-side, we conduct a program-by-program
analysis of degree prerequisites that shows that nearly half of all degrees granted in England, weighted by total
population enrolled, require some math or science preparation prior to enrollment, which suggests that the imbalance
of math and verbal is not necessarily a byproduct of university course/majors offerings. Appendix J provides the
details of this analysis.
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that affect schooling outcomes, which are not present in the math factor. For example, if external-

izing behavior/socio-emotional skills are more related to English test scores than math test scores,

then we could be confounding the larger effect of verbal skills with the role played by externalizing

behavior. While we control for special education needs, number of absences, number of GCSE

exams taken and, and unobserved heterogeneity in our main estimates in Table 9, we further in-

vestigate this issue using a database that contains richer measures of externalizing behavior. We

use the Avon Longitudinal Study of Parents and Children (ALSPAC) which is a large scale longi-

tudinal study of children born in Avon (United Kingdom) during the early 1990s. Although this

database cannot be linked to one of our main databases (i.e. HESA), it is useful for further analysis

because it contains rich information on student background characteristics, and the individuals in

the sample are UK students that are similar in age to students in our main database. The data

contains proxies for externalizing behavior obtained from the Strengths and Difficulties Question-

naire (SDQ), and student performance on KS2 math and English tests. To study if externalizing

behavior/socio-emotional skills have a higher correlation with verbal skills than math skills, we per-

form a regression analysis where the dependent variables are performance in KS2 math or verbal

(English) exams and the independent variables are the SDQ measures. Appendix Table 26 shows

that, while these proxies for externalizing behavior are highly predictive of math and English test

scores, they do not favor one skill over the other, i.e. all components of the SDQ questionnaire

have similar effects on both tests. We provide a detailed description of this analysis in Appendix

J, where we also extend the analysis by considering detailed family background characteristics and

measures of student IQ. Results show in all cases that these variables have a very similar impact

on KS2 math and English scores.

5.5 The Effect of Skills in University Selectiveness, Field of Study, and Grad-

uation

To further explore how math and verbal skills affect educational outcomes, Table 10 shows logistic

regression results by gender that focus on selectiveness of the university attended, field of study,
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and graduation.75

University Selectiveness In Column (1), we analyze the effect of math and verbal skills on

university enrollment when those attending the most selective institutions are removed from the

sample (i.e. 20% of total enrollees). The purpose of this analysis is to distinguish whether our

previous findings are driven by the bottom 80% of enrollees or the top 20%. Removing the top

20% of enrollees produced estimates that were nearly identical to the full sample in Table 9. This

further confirms that the larger effect of verbal skills on university enrollment is likely driven

by those students who are at the extensive margin of the university enrollment decision not the

intensive margin of school selectivity. To provide additional insight, Column (2) of Table 10 shows

the effect of skills on the probability of enrolling in a selective institution (i.e. Russell group). This

analysis only looks at college enrollees and shows that math and verbal skills have a much similar

impact on the probability of attending a selective institution. Moreover, depending on gender

the relative importance in the size of skills’ effects is changed. While among females verbal skills

continue to be more important than math skills to enroll in selective institutions, among males we

find that math skills become as important as verbal skills. In summary, this last result suggests

that selective universities are enrolling students from the top of both skill distributions.

STEM Enrollment Column (3) and (4) display results for enrollment in STEM fields uncondi-

tional and conditional on university enrollment, respectively.76 As expected, Column (3) shows that

math skills have a positive effect on enrolling in STEM fields, while verbal skills have an effect close

to zero. Similarly, results in Column (4), where the sample is restricted to college enrollees, show

large positive effects for math and negative effects for verbal.77 However, this column highlights

interesting disparities between males and females, suggesting that males are much more responsive

to skills than females. The larger responsiveness of males to skills occurs in both directions. For

example, a 1 log unit skill increase in math leads to a 16.2 percentage point increase in STEM

75All these specifications include the same controls as in Column (4) of Table 9.
76The following majors are considered as STEM: biology sciences, physical sciences, math sciences, engineering,

computer sciences, technologies, and combined sciences.
77The negative coefficient is driven by the fact that the sample includes only those who enrolled in college, therefore

the alternative option is enrollment in non-STEM.
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Table 10: Logistic Regression Other Outcomes

Enroll in
Non-

Selective
Institu-

tion

Enroll in
Russell

Enroll in
STEM

Enroll in
STEM

Graduation
Overall

Graduation
in STEM

Graduation
in Non-
STEM

conditional

not

enrolling

Russell

conditional

enrollment
unconditional

conditional

enrollment
unconditional

conditional

enrollment

STEM

conditional

enrollment

Non-STEM

(1) (2) (3) (4) (5) (6) (7)

Average Marginal Effect of 1 log-Skill Increase

Females

KS4 Math
0.051
(0.001)

0.069
(0.001)

0.052
(0.001)

0.107
(0.002)

0.039
(0.001)

0.020
(0.004)

0.004
(0.002)

KS4 Verbal
0.146
(0.001)

0.115
(0.002)

-0.007
(0.001)

-0.089
(0.003)

0.122
(0.001)

0.060
(0.005)

0.061
(0.003)

Base Prob. 35% 19% 9% 22% 29% 76% 72%

Obs. 229339 98302 248479 98302 248479 21879 76423

Males

KS4 Math
0.052
(0.001)

0.093
(0.001)

0.075
(0.001)

0.162
(0.002)

0.032
(0.001)

0.013
(0.003)

-0.006
(0.003)

KS4 Verbal
0.125
(0.001)

0.090
(0.003)

-0.008
(0.001)

-0.170
(0.004)

0.108
(0.001)

0.089
(0.005)

0.085
(0.004)

Base Prob. 28% 20% 13% 39% 22% 64% 68%

Obs. 233802 82528 250257 82528 250257 32327 50201

Note: Results correspond to logistic regressions, we report average marginal effects. Baseline controls include race,
mother tongue, Key Stage 4 school quality, free school lunch, special education needs, number of GCSE exams taken
in KS4, number of excused and unexcused absences in KS4, neighborhood characteristics, unobserved persistent TFP
shock, and higher order factor terms (i.e. squared terms and their interactions). Bootstrapped standard errors at the
school level.
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enrollment probabilities for males, while a similar increase for females will only increase enrollment

by 10.7 percentage points. Looking at the effect of verbal skills, a 1 log unit skill increase will

lead to a 17 percentage point drop in STEM enrollment for males, while it only produces a 8.9

percentage point drop in STEM enrollment for females. This result suggests that males are more

sensitive to skill comparative advantage than females when deciding to enroll in scientific fields.78

Graduation Finally, we study overall graduation outcomes and graduation by field of study.

Consistent with the findings in Table 10, Column (5) shows a larger role for verbal skills when

analyzing overall graduation. However, it is important to highlight that this effect is not entirely

driven by the larger effect of verbal skills on enrollment. As it can be inferred from the results

in Columns (6) and (7) that examine graduation outcomes in STEM and Non-STEM conditional

on enrollment in those fields, marginal changes in verbal skills have a large effect on graduation

in STEM. Specifically, conditional on enrolling in STEM, increasing verbal skills by 1 log unit

increases graduation rates for females by 6 percentage points, while a similar increase in math skills

only increases graduation rates by 2 percentage points. While, this last result is likely to be driven

by the presence of less variation in math skills conditional on STEM enrollment, it is consistent

with our previous finding that points toward a key role of verbal skills in explaining educational

attainment.

6 Simulations: The Role of Schools, Initial Skills, and TFP

In this section, we perform a set of counterfactual simulations to provide a deeper understanding

of the role of school quality, initial skills, and TFP in explaining gaps in adult outcomes.

Simulation 1 Three exercises are performed to understand how the different inputs of the skill

production functions contribute to explain gaps in adult outcomes. In particular, we compare

two specific groups of the student population: 1) students that consistently attended low quality

schools (disadvantaged students) and, 2) students that consistently attended high quality schools

78More detailed analysis on the gender gap in college enrollment and STEM majors is discussed in Section 8.
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(advantaged students).79 Table 11 shows baseline characteristics and gaps between these groups.

For example, students in the advantaged group are 31 to 35 percentage points more likely to attend

college than disadvantaged students, depending on the gender. Differences in KS4 skills are also

substantial with gaps of at least of 1.3 log points. We explore three different mechanisms that could

contribute to explain these gaps. First, we study the role of schools. In particular, we equalized

school quality by assigning disadvantaged students into “outstanding” schools at each stage of

compulsory education.80 Table 11 shows that this counterfactual would lead to a 20% (approx. 7

percentage points) drop in the college enrollment gap, and a 30% decline (approx.) in the math and

verbal skill gaps. These effects are sizable suggesting that schools could play an important role in

closing gaps in the population. The second exercise focuses on the role of initial skills. We equalized

KS1 math and verbal skills between groups, while keeping school quality and TFP constant. Table

11 indicates that the college enrollment gap would drop by 15% (approx. 5 percentage points),

while differences in skills would decline by 20%. Finally, the last exercise involves equalizing the

TFP component (i.e. background characteristics). This counterfactual suggests a large decrease in

the college enrollment gap, around 60% (approx. 20 percentage points), as well as sizable declines

in skill gaps.81 Overall, this analysis indicates that school quality is a greater contributor to gaps

in adult outcomes than differences in initial skill levels, suggesting that policies aiming to improve

school quality could help overcome initial skill disadvantages. However, initial conditions as a whole

(i.e. initial skills and background characteristics) play a fundamental role in explaining gaps in the

population as well.

Simulation 2 Next, we explore counterfactual outcomes in the hypothetical situation where all

schools in England were of “outstanding” quality (i.e. Ofsted highest scale value). This implies

assigning a high quality school at each stage of the schooling career to all students in the popula-

79The group of disadvantaged students is defined by those that attended inadequate or satisfactory schools at
each stage of their schooling career, while the group of advantaged students is constituted of those that attended
outstanding schools at each stage of their schooling career.

80We assume that all the remaining covariates that are included in the TFP (such as background characteristics
and unobserved heterogeneity) remain constant.

81We would like to emphasize that in these simulations the only channel that leads to an increase in college
enrollment is an increase in skills, we are not considering any direct effect that schools may have on college enrollment
(e.g. helping students with their college applications). Finally, as a caveat we should also mention that these
simulations do not allow parents to react to changes in school quality or in initial skills.
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Table 11: Simulation (1) - The Effect of School Quality, Initial Skills, TFP on Adult Outcomes

School
Quality

(Q)
KS2-KS4

KS1
Math

KS1
Verbal

KS4
Math

KS4
Verbal

College
Enroll-
ment

Panel A: Female

Only Attended Outstanding School
(obs. = 3721)

4.000
(0.000)

2.503
(0.014)

2.341
(0.013)

8.189
(0.037)

8.464
(0.031)

0.624
(0.009)

Only Attended Inadequate or
Satisfactory School (obs. = 14360)

1.860
(0.004)

2.153
(0.005)

2.018
(0.005)

6.538
(0.020)

7.135
(0.019)

0.273
(0.004)

Gap
-2.140

(0.004)

-0.350
(0.016)

-0.323
(0.014)

-1.651
(0.042)

-1.329
(0.036)

-0.351
(0.010)

Counterfactual Gap

Equalizing KS2 – KS4 School Quality -1.147
(0.043)

-0.967
(0.036)

-0.279
(0.011)

Equalizing KS1 Math and KS1 Verbal Skills -1.329
(0.034)

-1.056
(0.029)

-0.297
(0.010)

Equalizing KS2 – KS4 Total Factor Product -0.821
(0.016)

-0.618
(0.015)

-0.128
(0.003)

Panel B: Male

Only Attended Outstanding School
(obs. = 3395)

4.000
(0.000)

2.542
(0.013)

2.167
(0.013)

8.119
(0.039)

7.977
(0.033)

0.537
(0.010)

Only Attended Inadequate or
Satisfactory School (obs. = 15508)

1.856
(0.004)

2.179
(0.008)

1.856
(0.005)

6.560
(0.024)

6.575
(0.022)

0.227
(0.004)

Gap
-2.144

(0.004)

-0.363
(0.015)

-0.310
(0.013)

-1.559
(0.047)

-1.402
(0.037)

-0.310
(0.011)

Counterfactual Gap

Equalizing KS2 – KS4 School Quality -1.049
(0.051)

-0.986
(0.041)

-0.242
(0.011)

Equalizing KS1 Math and KS1 Verbal Skills -1.232
(0.037)

-1.124
(0.030)

-0.262
(0.009)

Equalizing KS2 – KS4 Total Factor Product -0.832
(0.013)

-0.663
(0.011)

-0.120
(0.003)

Note: Bootstrapped standard errors in parentheses.
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tion. It is important to emphasize that evidence on the impact of schools on adult outcomes once

conditioning on neighborhood characteristics is a result that is not often discussed in the literature.

Therefore, our goal is to further analyze the scope of a key policy instrument (i.e. improving school

quality) that has been at the center of the educational debate for the last two decades. In addition,

this exercise will shed light on the differential degree of malleability of math and verbal skills in

response to a given treatment. Column (1) of Table 12 reports the average counterfactual increase

in school quality (i.e. treatment) experienced by females and males.82 Columns (2) and (3) show

the effect of a such policy on the accumulation of math and verbal skills, indicating that improving

school quality would increase female (male) average KS4 math and verbal skills by 0.284 (0.293) and

0.207 (0.245) log points, respectively.83 Column (4) shows that such changes in skills would trans-

late into a 11% (13.5%) increase in female (male) college attendance (i.e. 4.5 percentage points).

The fact that math skills have increased slightly more in log levels than verbal skills in response

to the same intervention could suggest a differential degree of malleability of skills. However, it is

important to highlight that due to the larger impact of verbal skills on college enrollment, approxi-

mately 65% of the total counterfactual increase in college enrollment corresponds to improvements

in verbal skills as displayed in the last row of each panel. In summary, these findings quantify the

likely role that school quality plays in improving educational outcomes and its likely importance

as a policy instrument.84

7 Further Exploration of the Role of Math and Verbal skills in

Educational Attainment: Evidence from the U.S.

Our data only covers students in the English education system. It is possible that the relative

importance of verbal skills is strictly a phenomenon among this population. To address this critique,

82Ofsted evaluations take values between 1 (inadequate) to 4 (outstanding). Notice that this policy would only have
an effect on those students that are attending lower quality schools (i.e. inadequate, satisfactory or good schools)
which approximately represent 90% of the total student population.

83These effects approximately represent 15% of KS4 skills standard deviations.
84School accountability programs have been implemented in many countries with the aim to improve student

achievement. For example, No Child Left Behind (which has been implemented by the US federal government)
punishes schools if students do not show adequate progress.
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Table 12: Simulation (2) - The Effect of School Quality on Adult Outcomes

School
Quality

(Q)
KS2-KS4

KS4
Math

KS4
Verbal

College
Enrollment

(1) (2) (3) (4)

Females

Baseline - Full Population
2.803
(0.005)

7.160
(0.009)

7.657
(0.008)

0.402
(0.002)

Counterfactual - Attend
Outstanding School KS2-KS4

4.000
(0.000)

7.445
(0.010)

7.864
(0.009)

0.446
(0.002)

Difference
1.197
(0.005)

0.284
(0.004)

0.207
(0.004)

0.045
(0.001)

Approximate Contribution to
Change in Enrollment

– 33.7% 66.3% –

Males

Baseline - Full Population
2.772
(0.004)

7.134
(0.007)

7.101
(0.007)

0.334
(0.002)

Counterfactual - Attend
Outstanding School KS2-KS4

4.000
(0.000)

7.427
(0.011)

7.346
(0.011)

0.380
(0.002)

Difference
1.228
(0.004)

0.293
(0.006)

0.245
(0.006)

0.045
(0.001)

Approximate Contribution to
Change in Enrollment

– 35.3% 64.7% –

Note: Baseline refers to the whole population of students. Approximate contribution to change
in enrollment refers to how changes in math and verbal skills due to treatment have affected
changes in college enrollment. Bootstrapped standard errors in parentheses.
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we analyze university enrollment decisions using data from the United States and show that similar

patterns to our main findings persist in these data as well. Finally, we conclude this section by

discussing the implications of our main findings when interpreting results from Mincer specifications

that intend to quantify the return to math and verbal skills.

7.1 Is the Larger Effect of Verbal Skills on University Enrollment a Specific

Phenomenon of the UK?

To assess the possibility that our result on the larger role of verbal skills in college enrollment is

a consequence of the particular institutional features in the UK, we examine US data for similar

patterns on skills and college enrollment. One shortcoming of such a comparison is that few datasets

contain such extensive and repeated measures of subject-specific performance as we have available

in the UK data. Nonetheless, we make use of subject-specific aptitude and high school transcript

data available in the National Longitudinal Survey of Youth of 1997 (NLSY97). The NLSY97

is a nationally representative sample of youths from the United States who were 13 to 17 years

old when they were first surveyed in 1997. It collects extensive information on family background

characteristics, educational experiences, and labor market outcomes through time. In addition,

for a subset of respondents, the data also contains performance on the Armed Services Vocational

Aptitude Battery (ASVAB), which involves 12 subject-specific tests, including tests that assess

math and verbal skills. Moreover, for a subset of survey respondents, high school transcript records

were collected, providing detailed information on course taking and grades from their high school

career.

Columns (1) to (4) of Table 13 show the results from a linear probability model that studies the

effect of the scores on two of the subject-specific ASVAB tests on college enrollment. We use the

score on Paragraph Comprehension (PC) as a proxy for verbal skill and the score on Mathematical

Knowledge (MK) as a proxy for math skill. The exam was administered to most participants in

1997. Given that the respondents took the test at different ages, each of the subject-specific scores

are normalized by the age-specific mean and age-specific standard deviation of the respondent to

make the scores comparable across test takers. In addition, the regressions control for gender, race,
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and ethnicity. The results in Column (1) appear to refute our main findings. Math skills appear to

be substantially more important than verbal skills for college enrollment. The implicit assumption

in this model is that once we normalize the scores by age of test taker, the marginal effect on college

enrollment of a one standard deviation increase in test score for a 13 year old is the same as the

effect of a one standard deviation increase for a 16 year old. However, given the characteristics of

the education system in the US, the distribution of scores for 16 year olds is less likely a reflection of

differences in true ability and more likely due to differences in course taking (e.g., not all students

have taken geometry by age 16).

To address this potential problem, we analyze the impact of test scores across test taker age.

Apart from possible cohort effects, test taker age should be independent of college enrollment. In

fact, in Column (1) we include in the regression a control for age at ASVAB test. Since skills are

independent of age by construction, the near-zero coefficient confirms this assertion. Column (2),

in addition to the base controls, only includes the verbal skill in the regression and the verbal skill

interacted with age of test taker.85 In this regression, age of test taker appears independent of

college enrollment. Column (3) performs a similar regression, only looking at the math skill. The

coefficient on the skill interacted with age is positive and significant. This suggests that math rank

is more predictive of college enrollment for 16 year olds than it is for 13 year olds, which raises

concerns of reverse causality given the proximity of the older test takers to the college decision.

The regression results in Column (4) include both the math and verbal skills and their inter-

actions with age of test taker. Both of the interaction terms are economically and statistically

significant. These results show that, for the youngest respondents, performance on the verbal

measure is slightly more predictive of college enrollment than performance on the math measure.

However, for older respondents, the importance of verbal skill declines and the importance of math

skill rises. This result raises questions about the appropriateness of using MK as a measure of

math skill, especially given that its stated aim is “measuring knowledge of high school mathematics

principles” when a large proportion of the respondents were not even exposed to most of the ma-

terial. This test may simply be measuring differences in exposure to mathematics principles (due

85For the interaction, age is subtracted by 13 (the age of the youngest members in the sample), so the coefficient
on the non-interacted term is the effect on the skill for a 13 year old.
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to the characteristics of the US education system) that are correlated with college enrollment and

not actual differences in skill. All the same, this regression demonstrates that the entirety of the

disparity in Column (1) is driven by the older respondents, at least those in the ninth grade and

higher.86

To address the possibility that MK is contaminated with other factors that influence college

enrollment beyond math ability, we explore two other measures of math ability. The first is the

Arithmetic Reasoning (AR) subject test of the ASVAB. This alternative measure of math aims to

test the respondents “ability to solve arithmetic word problems.” Differences in these scores may

reflect deeper math skills rather than curriculum exposure. Column (5) compares this measure of

math to the verbal component and finds that verbal is significantly more important than math,

with magnitudes closer to those found in our main regressions in Table 9. Column (6) offers further

analysis by interacting these skills with age of test taker. Unlike MK, the effect of AR on college

enrollment is roughly constant for all test takers with results very similar to those in Column (5).

Finally, we study the impact of subject-specific grades on college enrollment for a subset of

the respondents in the high school transcript data. Course grades possibly offer more breadth as

skill measures than the ASVAB subject scores. Whereas the ASVAB MK section only contains 15

questions and PC only contains 10 questions, course grades represent a measure taken over a long

period of time, which is directly linked to school performance. This aspect makes course grades most

similar to the type of data used in the UK analysis. In this analysis, we focus only on ninth graders

who were enrolled in Algebra I and ninth grade English concurrently and earned credit (i.e. did not

fail) in both courses, and we compare the impact of grades in these courses on college enrollment.87

This analysis leaves out students who took Algebra I in the eighth grade (high-achieving students)

86Given that older students are more likely to be exposed to different sets of math courses than younger students,
results based on these students are less likely to be contaminated by an “exposure effect” and, therefore, are more
reliable.

87We exclude those who failed or did not receive credit because many of these students were either expelled,
suspended, or dropped out. Because we cannot easily distinguish between these students and those who simply had
unsatisfactory performance, we look only at those with a D grade or better in both classes. We focus exclusively
on ninth graders because for many states in the US, Algebra I is required for graduation and taken in ninth grade.
Math course taking beyond ninth grade is highly tailored to student preferences and ability. Secondly ninth grade
English curriculum appears to be more uniform across schools. For example, in tenth grade, some schools offer courses
classified as “English Survey, Basic, Grade 10” and others offer “Literature.”
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and students taking Pre-Algebra in the ninth grade (low-achieving students).88 Column (7) of

Table 13 shows the impact of a student’s ninth grade English grade and Algebra I grade, measured

in grade points, on college enrollment. These results show that moving a student up one letter grade

in ninth grade English increases the probability of college enrollment by 10 percentage points. In

comparison, a similar increase in the Algebra I grade only increases the probability of enrollment

by 7 percentage points. In summary, these findings using US data suggest that the key role of

verbal skills in explaining college enrollment and graduation does not appear to be unique to the

UK education system.

7.2 Undermining the Returns to Verbal Skills: The Role of Intermediate Out-

comes

There are two main channels through which skills can impact labor market outcomes. The first is a

direct return to different skills in the labor market. The second is an indirect effect in which skills

impact a worker’s total years of schooling. Previous work on the causal effect of skills on labor

market outcomes has predominantly focused on the effect of skills net of total years of schooling, i.e.

controlling for level of schooling (Altonji et al., 2012; Rose and Betts, 2004; Levine and Zimmerman,

1995).89 However, if different types of skills have a differential effect on schooling attainment, as

our results suggest, then simultaneously controlling for skills and level of education may understate

the overall importance of certain skills, shutting off the second channel stated above.90 Given that

our UK data do not have wages, we use the individuals in the NLSY97 that were analyzed in

Table 13 to study the multiple channels in which skills affect wages. Using both subject-specific

ASVAB scores and high school course grades as skill measures, we conduct simple OLS regressions

on log wages with and without a control for college degree to study how the inclusion of this control

impacts the implied returns to different skills.

The first column in Table 14 shows the impact of the scores in paragraph comprehension (PC)

88While some of the transcript data contains information on eighth grade, most do not. In many cases it is not
even possible to determine if a student took Algebra I in the eighth grade.

89Altonji et al. (2012) provides some discussion about this specific point.
90Neal and Johnson (1996) also discusses the implications of controlling for educational attainment in a wage

regression.
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Table 14: Linear Regression Model: Log Wage (NLSY97)

(1) (2) (3) (4) (5)

College Graduate – –
0.3387∗∗∗

(0.0224)
–

0.2941∗∗∗

(0.0323)

ASVAB test specific scores†

Paragraph
Comprehension (PC)

0.0358∗∗

(0.0149)
0.0550∗∗

(0.0250)
0.0114

(0.0234)
– –

Arithmetic Reasoning
(AR)

0.1369∗∗∗

(0.0159)
0.0866∗∗∗

(0.0276)
0.0624∗∗

(0.0254)
– –

Age at ASVAB (age)
0.0171∗∗

(0.0082)
0.0142∗

(0.0083)
-0.0008
(0.0078)

– –

(PC) × (age-13) –
-0.0094
(0.0105)

-0.0038
(0.0098)

– –

(AR) × (age-13) –
0.0245∗∗

(0.0111)
0.0166

(0.0103)
– –

Subject Course Grades‡

Ninth Grade English – – –
0.0440∗∗

(0.0217)
0.0018

(0.0214)

Algebra 1 – – –
0.0787∗∗∗

(0.0187)
0.0536∗∗∗

(0.0184)

R-squared 0.136 0.138 0.217 0.093 0.160

Obs. 2448 2448 2448 1060 1060

† Individual test scores are standardized by age when the test was administered.
‡ Course grades are in grade points, e.g. A is 4.0, B is 3.0, etc.
Notes: This analysis only includes the NLSY97 cross-sectional sample of 6,748 respondents designed to be
representative of people living in the United States. Wages are only analyzed for respondents in their most
recent survey year if they were a full-time (35+ hours per week), full-year (50+ weeks per year) worker.
The top 1% ($120+/hr) of wages and those less than $5/hr were removed. College graduate is defined as
having a Bachelor’s degree or more at their most recent interview. Those whose age at last interview was
less than 25 were not included in this analysis. Round 1 observation weights were used for all regressions.
All specifications include controls for gender, ethnicity, race, actual full-time experience, and experience
squared.
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and arithmetic reasoning (AR) on wages, where the scores have been standardized by age of test

taker. In Column 2, we interact these scores with the age of test taker. These results show that,

for 13 year olds a one standard deviation increase in PC will increase future earnings by 5.5%,

while a one standard deviation increase in AR will increase future earnings by 8.6%. Column 3

shows what happens to the return to skills when an indicator is included for level of schooling.

Unsurprisingly, given that PC has a larger impact on college enrollment than AR, adding a control

for college completion significantly reduces the coefficient on the verbal skill to 0.011, which is not

statistically different from zero, and represents an 80% reduction in the return to verbal skills. In

contrast, including the control for level of education only reduces the coefficient on AR by 30%.

This large decline on the verbal skill coefficient when level of education is included in the regression

has also been documented in the context of a different question by Fredriksson et al. (2015). More

specifically, Table 1 of their paper shows, using Swedish administrative data, that the labor market

returns to verbal skills suffer a substantially larger drop (i.e. from 0.0253 to 0.0031) than math

skills (i.e. from 0.0373 to 0.0216) once controls for educational attainment are included in the

econometric specification. Shutting off the channel in which verbal skill affects wages through level

of education, as is done in Column 3 of Table 14, may significantly understate the importance of

verbal skills for labor market outcomes.

Columns 4 and 5 in Table 14 perform a similar analysis using course grades as an alternative

measure of skill. As before, we only include ninth graders who enrolled in and earned credit in

Algebra I and ninth grade English. These results are consistent with our findings for the ASVAB

subject tests, where the return to the verbal skills goes from positive and statistically significant

to statistically insignificant once the control for schooling level is added. To conclude, the fact

that controlling for schooling largely undermines the role of verbal skills on wages may partially

explain why the economics literature (Levine and Zimmerman, 1995; Joensen and Nielsen, 2009;

Cortes et al., 2015; Dougherty et al., 2015) and policymakers (e.g. the “Algebra-for-All” movement,

Loveless (2008)) have mainly prioritized their attention to math skills over verbal skills (Long et al.,

2012).
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8 Understanding the Gender Gap in College Enrollment and STEM

Majors

Evidence from many countries (OECD, 2012) has shown that males are less likely to attend uni-

versity than females, but they are more likely to enroll in STEM fields. In particular, the gender

gap in college enrollment is 6.6 percentage points in our sample, while the STEM gap conditional

on enrollment is -16.9 percentage points. Despite the fact that these empirical regularities have

been extensively described in the literature, there is not much evidence regarding the role of math

and verbal skills in explaining these gaps.91 Section 5.1 shows that while there are small gender

differences in math skills, females have a large advantage in verbal skills. This fact, combined with

our findings on the importance of verbal skills in explaining college enrollment, suggests a possible

mechanism that could explain the gender gap in educational attainment.

Gender Gap in College Enrollment To analyze the extent to which differences in verbal

skills could explain the gender gap in college enrollment, we rely on the results of the logistic

college enrollment regression model presented in Table 9 to perform a set of simple decomposition

exercises.92 First, Table 15 shows that giving males the female coefficients from the enrollment

probability model cannot explain the gap. In fact, males seem to show larger “preferences” for

college than females.93 In a similar vein, Table 15 also indicates that equalizing the mean math

skill between gender groups has almost no impact on the gap, which is expected given that gender

differences in math skills are close to zero. Finally, equalizing the mean verbal skills between males

and females (i.e. shifting up the male distribution of verbal skills to have the same mean as female

verbal skills) provides a completely different picture, where the gap is fully explained (i.e. females

becoming 0.9 percentage points less likely to attend college than males). In summary, this simple

decomposition exercise strongly indicates that gender differences in verbal skills play a strong role

in the gender gap in college enrollment.

91See for example, Buchmann and DiPrete (2006); Becker et al. (2010); Autor and Wasserman (2013); Osikominu
and Pfeifer (2018); Aucejo and James (2018).

92In particular, we use the coefficients from Column (4) in Table 9.
93This result is consistent with the findings in Becker et al. (2010).
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Table 15: Gender Gap in College Enrollment

Female Male Difference

Baseline College Enrollment
0.396

(0.002)

0.330
(0.002)

0.066
(0.002)

Males w/ Coefficeints of Females –
0.325

(0.002)

0.071
(0.001)

Equalize Mean Math of Males to Female Mean –
0.331

(0.002)

0.065
(0.001)

Equalize Mean Verbal of Males to Female Mean –
0.405

(0.002)

-0.009
(0.002)

Note: Baseline college enrollment corresponds to the actual enrollment rates. Decomposition exer-
cises in rows 2-4 rely on the the results of the logistic regression model presented in Table 9 Column
(4). Bootstrapped standard errors in parentheses.

Gender Gap in STEM Conditional on College Enrollment Table 16 focuses on the STEM

gap. First, it shows that males have slightly higher average math skills than females once condition-

ing on college enrollment, while females still hold a large advantage in verbal skills. Our estimates

of the KS4 skills also indicate that males display a comparative advantage in math, while females

display a comparative advantage in verbal. More specifically, the average difference between math

and verbal skills among females is -0.292 log points, while among males it is 0.177 log points.94

Given this fact, we are interested in determining the extent to which comparative advantage in

math could contribute to explain the gender gap in STEM. To isolate its effect, we first consider a

simple linear specification model:95

y∗i = z′iω + θmi,4β
m + θvi,4β

v + ϕ(πi) + εi (12)

Let δ = βm + βv be the effect of a joint one unit increase in skills on the outcome y∗ (e.g., if both

skills are increased by 1 then y∗ will increase by δ). Re-writing δ in terms of βm and substituting

into Eq. (12) provides an analogous specification form that makes easier to interpret the role of

comparative advantage:

y∗i = z′iω + θmi,4δ + (θmi,4 − θvi,4)γ + ϕ(πi) + εi (13)

9467% of males show a percentile rank in math skills that is larger than the analogous rank in verbal skills, while
only 33% of females present such an advantage.

95We rely on a linear model because it simplifies the interpretation of the parameters.
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Table 16: Gender Gap in STEM Enrollment Conditional on College Attendance

Female Male Difference

Baseline STEM Major Probability
0.223

(0.001)

0.392
(0.002)

-0.169
(0.002)

Mean Math Conditional on College Enrollment
8.368

(0.007)

8.501
(0.005)

-0.133
(0.008)

Mean Verbal Conditional on College Enrollment
8.660

(0.004)

8.324
(0.004)

0.336
(0.005)

Mean Math Comparative Advantage (θm − θv)
Conditional on College Enrollment

-0.292
(0.004)

0.177
(0.003)

-0.469
(0.004)

δ
0.124

(0.012)

-0.018
(0.011)

0.142
(0.015)

γ
0.501

(0.020)

0.720
(0.017)

-0.219
(0.024)

STEM Major Probability: Equalize Comparative
Advantage

0.264
(0.003)

–
-0.127

(0.002)

STEM Major Probability: Equalize Comparative
Advantage and γ

0.277
(0.002)

–
-0.115

(0.002)

Note: See Eq .(13) to interpret δ and γ. Equalize comparative advantage reports counterfactual
female STEM enrollment and the STEM enrollment gap after equalizing the term θmi,4 − θvi,4 for
males and females. Equalize comparative advantage and γ reports counterfactual female STEM
enrollment and the STEM enrollment gap after equalizing for both gender groups all the channels
in which comparative advantage could operate. Baseline controls include race, mother tongue, Key
Stage 4 school quality, free school lunch, special education needs, number of GCSE exams taken
in KS4, number of excused and unexcused absences in KS4, neighborhood characteristics, and
unobserved persistent TFP shock. Bootstrapped standard errors in parentheses.

While γ = −βv from Eq. (12), its interpretation in this specification is the partial effect of

increasing the individual’s comparative advantage holding fixed their math skill level. Thus, Eq.

(13) specifies that enrolling in a STEM major depends on the level of math skills, a comparative

advantage term, and some baseline controls. Table 16 shows key coefficients (δ, γ) for males and

females. While STEM enrollment for females is relatively more responsive to their overall skills

advantage (i.e. δ, level of math and verbal skills), males are more responsive to their comparative

advantage (i.e. γ) than females. The fact that males have a large math comparative advantage,

and are more responsive to it, suggests a channel to explain the STEM gap. In this regard, we

performed two simple decomposition exercises. First, we equalized the comparative advantage term

(i.e. θmi,4− θvi,4) of males and females while holding fixed their math level. Results in Table 16 show

that the gender gap in STEM enrollment would drop by 4.2 percentage points, corresponding to

a 25% decrease in the gap. Second, we analyzed the overall drop in the gender STEM gap when
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shutting down all the channels in which comparative advantage can operate. This implies equalizing

θmi,4 − θvi,4 and the differential gender responses to it (γ). The last row of Table 16 shows that the

STEM gap would drop by an additional 1.2 percentage points, therefore explaining 32% of the

STEM gap. Overall, we interpret these findings as indicating that comparative advantage is an

important predictor of the gender gap in STEM.

To conclude, our results show that gender differences in verbal skills are a key factor in explaining

the gender gap in college enrollment. However, the female advantage in verbal skills also translates

into differential comparative advantages between gender groups which has important implications

in shaping the gender STEM gap (conditional on college enrollment).

9 Conclusion

This paper estimates a dynamic factor model of skill formation with the aim of understanding how

math and verbal skills develop during compulsory education, and to study their impact on adult

outcomes. In addition, we further contribute to the literature on skill formation by proposing a

novel estimation approach of nested CES production functions with three inputs.

We find that the production of math and verbal skills is inherently different. In particular, cross-

effects are only present in the production of math skills. We also show that school quality plays

an important role in the formation of skills, affecting adult outcomes. Counterfactual simulations

show that improving school quality could increase college enrollment by 10%.

The analysis on adult outcomes indicates that the effect of verbal skills on university enrollment

is at least twice as large as the effect of math skills. In this regard, we find that targeting verbal skills

rather than math skills could be more efficient if policymakers aim to improve overall educational

attainment. We also document that females hold a large advantage in verbal skills relative to males,

which explains the gender gap in college enrollment. However, males’ comparative advantage in

math skills jointly with gender differences in response to comparative advantage contribute to

increased male representation in STEM majors.

Finally, our finding on the predominant effect of verbal skills on college enrollment suggests that

the role of these skills in explaining labor market outcomes could have been artificially undermined
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in previous studies. We show that log wage specifications that simultaneously control for skills

and educational attainment tend to largely diminish the effect of verbal skills on wages due to

the inclusion of an endogenous variable (i.e., educational attainment). By including educational

attainment, previous work has inadvertently shut off one of the main mechanisms through which

verbal skills affect wages.

To conclude, while the many curriculum based policy proposals designed to increase college

attendance focus on enhancing math skills (e.g., the Algebra-for-All movement), our findings suggest

broadening the scope of these types of policies to improve verbal skills as well.

References

D. Acemoglu. Why do new technologies complement skills? directed technical change and wage
inequality. The Quarterly Journal of Economics, 113(4):1055–1089, 1998.

F. Agostinelli and M. Wiswall. Estimating the technology of children’s skill formation. Technical
report, National Bureau of Economic Research, 2016.

J. Altonji, E. Blom, and C. Meghir. Heterogeneity in human capital investments: High school
curriculum, college major, and careers. NBER working Paper Series 17985, pages 1–35, 2012.

O. Attanasio, C. Meghir, and E. Nix. Human capital development and parental investment in india.
Technical report, National Bureau of Economic Research, 2015.

O. Attanasio, C. Meghir, E. Nix, and F. Salvati. Human capital growth and poverty: Evidence
from ethiopia and peru. Review of economic dynamics, 25:234–259, 2017.

E. Aucejo and J. James. Catching up to girls: Understanding the gender imbalance in educational
attainment within race. 2018.

D. Autor and M. Wasserman. Wayward sons: The emerging gender gap in labor markets and
education. Third Way Report, 2013.

Z. Bakk, F. B. Tekle, and J. K. Vermunt. Estimating the association between latent class member-
ship and external variables using bias-adjusted three-step approaches. Sociological Methodology,
43(1):272–311, 2013.

G. S. Becker, W. H. Hubbard, and K. M. Murphy. Explaining the worldwide boom in higher
education of women. Journal of Human Capital, 4(3):203–241, 2010.

J. R. Betts. Does school quality matter? evidence from the national longitudinal survey of youth.
The Review of Economics and Statistics, pages 231–250, 1995.

65



C. Buchmann and T. A. DiPrete. The growing female advantage in college completion: The role
of family background and academic achievement. American sociological review, 71(4):515–541,
2006.

S. Cameron and J. Heckman. The dynamics of educational attainment for black, hispanic, and
white males. Journal of Political Economy, 109(3):pp. 455–499, 2001.

G. Castex and E. K. Dechter. The changing roles of education and ability in wage determination.
Journal of Labor Economics, 32(4):pp. 685–710, 2014.

J. Cawley, J. Heckman, and E. Vytlacil. Three observations on wages and measured cognitive
ability. Labour Economics, 8(4):pp. 419–42, 2001.

R. Chetty, J. N. Friedman, and J. E. Rockoff. Measuring the impacts of teachers ii: Teacher value-
added and student outcomes in adulthood. The American Economic Review, 104(9):2633–2679,
2014.

K. E. Cortes, J. S. Goodman, and T. Nomi. Intensive math instruction and educational attainment
long-run impacts of double-dose algebra. Journal of Human Resources, 50(1):108–158, 2015.

F. Cunha and J. Heckman. The technology of skill formation. Technical report, National Bureau
of Economic Research, 2007.

F. Cunha and J. Heckman. A new framework for the analysis of inequality. Macroeconomic
Dynamics, 12(S2):315–354, 2008a.

F. Cunha and J. J. Heckman. Formulating, identifying and estimating the technology of cognitive
and noncognitive skill formation. Journal of human resources, 43(4):738–782, 2008b.

F. Cunha, J. Heckman, and S. Navarro. Separating uncertainty from heterogeneity in life cycle
earnings. oxford Economic papers, 57(2):191–261, 2005.

F. Cunha, J. J. Heckman, and S. Navarro. Counterfactual analysis of inequality and social mobility.
Mobility and inequality: Frontiers of research in sociology and economics, pages 290–348, 2006a.

F. Cunha, J. J. Heckman, and S. Navarro. The evolution of earnings risk in the us economy. In
9th World Congress of the Econometric Society, London, 2006b.

F. Cunha, J. J. Heckman, and S. M. Schennach. Estimating the technology of cognitive and
noncognitive skill formation. Econometrica, 78(3):883–931, 2010.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the royal statistical society. Series B (methodological), pages 1–38,
1977.

S. Dougherty, J. Goodman, D. Hill, E. Litke, and L. Page. Early math coursework and college
readiness: Evidence from targeted middle school math acceleration. NBER working Paper Series,
pages 1–50, 2015.

P. Fredriksson, L. Hensvik, and O. Nordstrom Skans. Mismatch of talent: Evidence on match
quality, entry wages, and job mobility. IZA Discussion Paper Series No. 9585, pages 1–54, 2015.

66



E. A. Hanushek. Economic outcomes and school quality, volume 4. International Institute for
Educational Planning Paris, 2005.

J. Heckman, R. Pinto, and P. Savelyev. Understanding the mechanisms through which an influential
early childhood program boosted adult outcomes. The American Economic Review, 103(6):1–35,
2013.

J. J. Heckman, J. Stixrud, and S. Urzua. The effects of cognitive and noncognitive abilities on
labor market outcomes and social behavior. Journal of Labor Economics, 24(3):411–482, 2006.

G. Hobbs and A. Vignoles. Is free school meal status a valid proxy for socio-economic status (in
schools research)? Centre for the Economics of Education, London School of Economics and
Political Science, 2007.

J. James. Mm algorithm for general mixed multinomial logit models. Journal of Applied Econo-
metrics, 32(4):841–857, 2017.

J. S. Joensen and H. S. Nielsen. Is there a causal effect of high school math on labor market
outcomes? Journal of Human Resources, 44(1):171–198, 2009.

R. Klump and O. de La Grandville. Economic growth and the elasticity of substitution: Two
theorems and some suggestions. American Economic Review, 90(1):282–291, 2000.

R. Klump, P. McAdam, and A. Willman. Factor substitution and factor-augmenting technical
progress in the united states: a normalized supply-side system approach. The Review of Eco-
nomics and Statistics, 89(1):183–192, 2007a.

R. Klump, P. McAdam, and A. Willman. The long-term success of the neoclassical growth model.
Oxford Review of Economic Policy, 23(1):94–114, 2007b.

P. Krusell, L. E. Ohanian, J.-V. Ŕıos-Rull, and G. L. Violante. Capital-skill complementarity and
inequality: A macroeconomic analysis. Econometrica, 68(5):1029–1053, 2000.

O. La Grandville. In quest of the slutsky diamond. The American Economic Review, pages 468–481,
1989.

O. d. La Grandville and R. Solow. Capital-labour substitution and economic growth. Economic
Growth: A Unified Approach, pages 389–416, 2009.

L.-F. Lee. Asymptotic bias in simulated maximum likelihood estimation of discrete choice models.
Econometric Theory, 11(3):437–483, 1995.

P. B. Levine and D. J. Zimmerman. The benefit of additional high-school math and science classes
for young men and women. Journal of Business & Economic Statistics, 13(2):137–149, 1995.

M. C. Long, D. Conger, and P. Iatarola. Effects of high school course-taking on secondary and
postsecondary success. American Educational Research Journal, 49(2):285–322, 2012.

T. Loveless. The Misplaced Math Student: Lost in Eighth Grade Algebra. Washington, DC: Brown
Center on Education Policy, Brookings Institution, 2008.

67



G. S. Maddala. Introduction to econometrics. Macmillan New York, second edition, 1992.

D. A. Neal and W. R. Johnson. The role of premarket factors in black-white wage differences.
Journal of political Economy, 104(5):869–895, 1996.

OECD. Education at a glance 2012: Highlights. Technical report, OECD, 2012.

A. Osikominu and G. Pfeifer. Perceived wages and the gender gap in stem fields. 2018.

M. Pandey. Human capital aggregation and relative wages across countries. Journal of Macroeco-
nomics, 30(4):1587–1601, 2008.

H. Rose and J. R. Betts. The effect of high school courses on earnings. Review of Economics and
Statistics, 86(2):497–513, 2004.

K. Sato. A two-level constant-elasticity-of-substitution production function. The Review of Eco-
nomic Studies, 34(2):201–218, 1967.

M. B. Stewart. On least squares estimation when the dependent variable is grouped. The Review
of Economic Studies, 50(4):737–753, 1983.

J. Temple. The calibration of ces production functions. Journal of Macroeconomics, 34(2):294–303,
2012.

P. E. Todd and K. I. Wolpin. On the specification and estimation of the production function for
cognitive achievement. The Economic Journal, 113:3–33, 2003.

68



Appendix

A Parameter Bias With Multiple Variables Measured With Error

Consider the data generating process Y = β1x1 + β2x2 + v. Only noisy measures of the variables
x1 and x2 are observed:

X1 = x1 + u1

X2 = x2 + u2

Without loss of generality, normalize Var(X1) = Var(X2) = 1 and let λ1 = Var(u1)/Var(X1) and
λ2 = Var(u2)/Var(X2) denote the fraction of the variance of the observed variables measured with
error.

Under the assumption of classical measurement error, Maddala (1992) gives formulas for the
probability limits of b1 and b2, the OLS estimates of Ŷ = b1X1 + b2X2 that are a function of β1,
β2, λ1, λ3, and ρ, where ρ = Cov(X1, X2):

plim b1 = β1 −
β1λ1 − ρβ2λ2

1− ρ2

plim b2 = β2 −
β2λ2 − ρβ1λ1

1− ρ2

These equations suggest a rather surprising result. If λ1 = λ2, the level of measurement error
of both of the variables is the same, then regardless of the true ratio of the parameters, β1 and β2,
the ratio of the OLS estimates converges to 1 as x1 and x2 become more correlated. To see this,
let Cov(x1, x2) = ρ∗. Since Cov(X1, X2) = Cov(x1, x2), then ρ = ρ∗

√
(1− λ1)(1− λ2). Setting

λ1 = λ2 and taking the ratio of the probability limits we have

plim b1
plim b2

=
β1(1− ρ2)− λ(β1 − ρβ2)

β2(1− ρ2)− λ(β2 − ρβ1)

=
β1

[
1− (ρ∗)2(1− λ)2

]
− λ(β1 − ρ∗(1− λ)β2)

β2 [1− (ρ∗)2(1− λ)2]− λ(β2 − ρ∗(1− λ)β1)

Taking the limit as ρ∗ approaches 1:

lim
ρ∗→1

plim b1
plim b2

= 1

B Interval Censored Measurements

This section provides two examples of the different types of variables that are used in the measure-
ment system. In particular, Figure 3 illustrates a common issue facing researchers when analyzing
educational outputs. The plot on the left shows a histogram of the Key Stage 2 Reading Test,
which we use as a measure to identify θvi,2. This variable is approximately continuous on the scale
of 0 to 50. The plot on the right shows the histogram of another measure we use to identify θvi,2,
which is the Key Stage 2 English Teacher Assessment. Unlike the previous plot of the reading test,
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Figure 3: Histograms of Select Key Stage 2 Measurements

the teacher assessment is coarsely distributed across seven mass points. Notice that this type of
data is very common in other data sets, for example any data with letter grades A–F.

C Estimation Algorithm for Factor Model

This section outlines the iterative algorithm used in the first stage to estimate the non-parametric
distribution of the factors as well as all of the parameters of the measurement system and selection
equation. Estimating these parameters requires maximizing Eq. (7). Our estimation approach
uses the MM algorithm proposed in James (2017) and incorporates the results in Stewart (1983)
to address the interval coded data. Both of the these methods are based on the ideas of the
expectation-maximization algorithm in Dempster et al. (1977). To simplify the description of the
algorithm, we define the following likelihood elements

f(θ) =

D∑
d=1

κdKd(θ) PDF of the factors

LJcont(wi|θ) =
∏

j∈Jcont

Pr(wij |θ) Likelihood of observed continuous measures

LJcens(wi|θ) =
∏

j∈Jcens

Pr(wij |θ) Likelihood of observed censored measures

Lsel(ai|θ) =

C∏
c=1

Pr(aic|θ) Likelihood of observed selection outcomes
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The likelihood in Eq. (7) can be written as

LL(Ψ) =
n∑
i=1

ln

[∫
θ
LJcont(wi|θ)LJcens(wi|θ)Lsel(ai|θ)f(θ)dθ

]
Where Ψ ∈ {µ, λ, σ, τ, κ, ξ,∆} includes all of the first stage parameters.
The algorithm begins with an initial value of the parameter vector Ψ(0). Given these parameters,

using the likelihood function above, the posterior distribution for each individual given their data
is constructed using

h(θ|wi, ai,Ψ(0)) =
LJcont(wi|θ)LJcens(wi|θ)Lsel(ai|θ)f(θ)∫

θ′ LJcont(wi|θ′)LJcens(wi|θ′)Lsel(ai|θ′)f(θ′)dθ′

Using these distribution functions, Dempster et al. (1977) shows that the original likelihood can
be bound below around Ψ(0) by the function:

Q(Ψ|Ψ(0)) =
n∑
i=1

∫
θ

ln [LJcont(wi|θ)LJcens(wi|θ)Lsel(ai|θ)f(θ)]h(θ|wi, ai,Ψ(0))dθ (14)

By finding Ψ(1) that maximizes this function above produces a new set of values that are guaranteed
to improve the likelihood, i.e., LL(Ψ(1)) > LL(Ψ(0)) replacing Ψ(0) with Ψ(1) and repeating the
process produces a sequence of estimates that converges to the maximum of the likelihood function.

The integral in Eq. (14) does not have a closed form and must be simulated by drawing from
h(θ|wi, ai,Ψ(m)), where m denotes the mth iteration of the algorithm. To do this, we take R draws

of θ, each labeled θ
(m)
ir from f(θ|Ψ(m)) and then compute the weight

w
(m)
ir =

LJcont(wi|θ
(m)
ir )LJcens(wi|θ

(m)
ir )Lsel(ai|θ

(m)
ir )∑R

r′=1 LJcont(wi|θ
(m)
ir′ )LJcens(wi|θ

(m)
ir′ )Lsel(ai|θ

(m)
ir′ )

The lower bound function at the mth iteration becomes

Q(Ψ|Ψ(m)) =
n∑
i=1

R∑
r=1

w
(m)
ir ln

[
LJcont(wi|θ

(m)
ir )LJcens(wi|θ

(m)
ir )Lsel(ai|θ

(m)
ir )f(θ

(m)
ir )

]
(15)

The lower bound function is a complete data likelihood that treats θ as observed and includes
the weights. So the parameters of the model that maximize this function has a familiar form. For
example the loadings for the continuous measures can be found with weighted OLS. The parameters
for the censored variables can be found using the closed form solutions in Stewart (1983), and the
parameters for the selection equations can be found by applying the closed form solutions in James
(2017). The parameter updates for the mixture distribution are found by computing

κ̂ir = w
(m)
ir

κ
(m)
d normpdf(θ

(m)
ir , ξ

(m)
d ,∆

(m)
d )∑D

d′=1 κ
(m)
d′ normpdf(θ

(m)
ir , ξ

(m)
d′ ,∆

(m)
′d )
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Then we have the following updating equations for all d

κ
(m+1)
d =

∑n
i=1

∑R
r=1 κ̂ir

n

ξ
(m+1)
d =

∑n
i=1

∑R
r=1 κ̂irθ

(m)
ir∑n

i=1

∑R
r=1 κ̂ir

∆
(m+1)
d =

∑n
i=1

∑R
r=1 κ̂irθ

(m)
ir (θ

(m)
ir )′∑n

i=1

∑R
r=1 κ̂ir

− ξ(m+1)
d (ξ

(m+1)
d )′

We use R = 4, 500 and define convergence when the first, second, third, and fourth uncentered
moments of the factor distribution change by less than 1/10 of one percent.

D Marginal Effects

This section derives the closed form expressions for the marginal effects for the 3-input CES pro-
duction function characterized in Eq. (1), which takes the form

y = eA
[
δ (αxγ1 + (1− α)xγ2)

ρ/γ
+ (1− δ)xρ3

]r/ρ
eε

We are interested in expressions for ∂ ln y/∂ lnxk for k ∈ {1, 2, 3}. We begin writing the log of
output.

ln y = A+
r

ρ
ln
[
δ (αxγ1 + (1− α)xγ2)

ρ/γ
+ (1− δ)xρ3

]
+ ε

∂ ln y

∂x1
=
r

ρ

ρ

γ

γ

1

(
δ (αxγ1 + (1− α)xγ2)

ρ/γ

δ (αxγ1 + (1− α)xγ2)
ρ/γ

+ (1− δ)xρ3

)(
αxγ1

αxγ1 + (1− α)xγ2

)
1

x1

∂ ln y

∂x1/x1
=r

(
δ (αxγ1 + (1− α)xγ2)

ρ/γ

δ (αxγ1 + (1− α)xγ2)
ρ/γ

+ (1− δ)xρ3

)(
αxγ1

αxγ1 + (1− α)xγ2

)
∂ ln y

∂ lnx1
=r

(
δ (αxγ1 + (1− α)xγ2)

ρ/γ

δ (αxγ1 + (1− α)xγ2)
ρ/γ

+ (1− δ)xρ3

)(
αxγ1

αxγ1 + (1− α)xγ2

)
Repeating similar steps for the other inputs

∂ ln y

∂ lnx2
=r

(
δ (αxγ1 + (1− α)xγ2)

ρ/γ

δ (αxγ1 + (1− α)xγ2)
ρ/γ

+ (1− δ)xρ3

)(
(1− α)xγ2

αxγ1 + (1− α)xγ2

)
∂ ln y

∂ lnx3
=r

(
(1− δ)xρ3

δ (αxγ1 + (1− α)xγ2)
ρ/γ

+ (1− δ)xρ3

)

E Measurement System and Normalizations

72



Table 17: Measurement System and Normalizations: Female

Loadings

No. Description
Data
Type

No. of
Inter-
vals

Intercept
KS1
Math

KS1
Verbal

KS2
Math

KS2
Verbal

KS3
Math

KS3
Verbal

KS4
Math

KS4
Verbal

KS4
Motive

Percent
Noise

1 Math Test Intervaled 6 0 1 0 0 0 0 0 0 0 0
0.181
(0.001)

2 Math Using and Applying TA Intervaled 4
0.414
(0.003)

0.875
(0.001)

0 0 0 0 0 0 0 0
0.111
(0.001)

3 Math Number and Algebra TA Intervaled 4
0.545
(0.002)

0.863
(0.001)

0 0 0 0 0 0 0 0
0.086
(0.001)

4 Math Shapes and Measure TA Intervaled 4
0.545
(0.003)

0.844
(0.001)

0 0 0 0 0 0 0 0
0.123
(0.002)

5 Writing Test Intervaled 6 0 0 1 0 0 0 0 0 0 0
0.148
(0.001)

6 Writing TA Intervaled 4
0.255
(0.002)

0
1.023
(0.001)

0 0 0 0 0 0 0
0.083
(0.001)

7 Reading TA Intervaled 4
0.263
(0.004)

0
1.139
(0.002)

0 0 0 0 0 0 0
0.170
(0.001)

8 Listening TA Intervaled 4
0.719
(0.005)

0
0.892
(0.002)

0 0 0 0 0 0 0
0.307
(0.002)

9 Math Test Paper A Continuous –
-26.573
(0.051)

0 0
11.308
(0.011)

0 0 0 0 0 0
0.123
(0.001)

10 Math Test Paper B Continuous –
-26.545
(0.070)

0 0
11.517
(0.014)

0 0 0 0 0 0
0.145
(0.001)

11 Math Arithmetic Test Continuous –
-17.005
(0.049)

0 0
6.604
(0.011)

0 0 0 0 0 0
0.189
(0.001)

12 Math TA Intervaled 6 0 0 0 1 0 0 0 0 0 0
0.156
(0.004)

13 Reading Test Continuous –
-30.746
(0.086)

0 0 0
12.953
(0.019)

0 0 0 0 0
0.218
(0.001)

14 Writing Test Continuous –
-0.164
(0.078)

0 0 0
5.153
(0.016)

0 0 0 0 0
0.416
(0.002)

15 Spelling Test Continuous –
-6.757
(0.033)

0 0 0
2.945
(0.007)

0 0 0 0 0
0.402
(0.001)

16 English TA Intervaled 6 0 0 0 0 1 0 0 0 0 0
0.132
(0.003)

17 Math Test Paper 1 Continuous –
0.235
(0.004)

0 0 0 0
0.341
(0.001)

0 0 0 0
0.402
(0.002)

18 Math Test Paper 2 Continuous –
0.194
(0.005)

0 0 0 0
0.352
(0.001)

0 0 0 0
0.408
(0.002)

19 Math Arithmetic Test Continuous –
-0.848
(0.006)

0 0 0 0
0.365
(0.001)

0 0 0 0
0.404
(0.001)

20 Math TA Intervaled 7 0 0 0 0 0 1 0 0 0 0
0.108
(0.001)

21 Writing Test (Longer) Continuous –
-18.261
(0.091)

0 0 0 0 0
5.538
(0.016)

0 0 0
0.349
(0.001)

22 Reading Test Continuous –
-20.373
(0.059)

0 0 0 0 0
6.383
(0.009)

0 0 0
0.253
(0.001)

23 Writing Test (Shorter) Continuous –
-11.361
(0.053)

0 0 0 0 0
3.774
(0.009)

0 0 0
0.337
(0.001)

24 Reading Test (Shakespeare) Continuous –
-11.642
(0.039)

0 0 0 0 0
3.268
(0.007)

0 0 0
0.448
(0.002)

25 English TA Intervaled 7 0 0 0 0 0 0 1 0 0 0
0.241
(0.001)

26 Math Intervaled 8 0 0 0 0 0 0 0 1 0 0
0.097
(0.000)

27 English Intervaled 8 0 0 0 0 0 0 0 0 1 0
0.111
(0.001)

28 Design and Technology: Graphic Products Intervaled 8
-0.146
(0.071)

0 0 0 0 0 0
0.491
(0.012)

0.515
(0.013)

0
0.371
(0.003)

(Continued on next page)

Note: TA denotes teacher assessment. Any values of 0, 1, or -1 denote normalizations. Standard errors in parentheses.
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Table 17: Measurement System and Normalizations: Female

Loadings

No. Description
Data
Type

No. of
Inter-
vals

Intercept
KS1
Math

KS1
Verbal

KS2
Math

KS2
Verbal

KS3
Math

KS3
Verbal

KS4
Math

KS4
Verbal

KS4
Motive

Percent
Noise

29
Design and Technology: Resistant Materials

Technology
Intervaled 8

0.704
(0.064)

0 0 0 0 0 0
0.497
(0.016)

0.427
(0.019)

0
0.391
(0.007)

30 Design and Technology: Textiles Technology Intervaled 8
0.523
(0.051)

0 0 0 0 0 0
0.397
(0.013)

0.568
(0.017)

0
0.351
(0.005)

31 Art and Design Intervaled 8
2.140
(0.022)

0 0 0 0 0 0
0.209
(0.007)

0.552
(0.006)

0
0.475
(0.003)

32 History Intervaled 8
-4.775
(0.028)

0 0 0 0 0 0 0
1.516
(0.003)

0
0.154
(0.001)

33 Geography Intervaled 8
-2.891
(0.040)

0 0 0 0 0 0
0.498
(0.006)

0.827
(0.009)

0
0.145
(0.001)

34 French Intervaled 8
-1.459
(0.038)

0 0 0 0 0 0
0.384
(0.008)

0.727
(0.011)

0
0.213
(0.002)

35 German Intervaled 8
-0.969
(0.056)

0 0 0 0 0 0
0.399
(0.009)

0.653
(0.012)

0
0.229
(0.003)

36 Business Studies Intervaled 8
-2.102
(0.061)

0 0 0 0 0 0
0.390
(0.011)

0.833
(0.014)

0
0.214
(0.004)

37 Religious Studies Intervaled 8
-3.041
(0.036)

0 0 0 0 0 0 0
1.373
(0.004)

0
0.212
(0.002)

38 Short Religious Studies Intervaled 8
-3.037
(0.038)

0 0 0 0 0 0 0
1.329
(0.005)

0
0.277
(0.002)

39 Physical Education Intervaled 8
0.071
(0.038)

0 0 0 0 0 0
0.436
(0.011)

0.545
(0.013)

0
0.372
(0.003)

40 Physics Intervaled 8
-1.582
(0.049)

0 0 0 0 0 0
1.111
(0.005)

0 0
0.077
(0.002)

41 Chemistry Intervaled 8
-1.324
(0.084)

0 0 0 0 0 0
1.095
(0.009)

0 0
0.085
(0.003)

42 Biology Intervaled 8
-1.505
(0.058)

0 0 0 0 0 0
0.853
(0.011)

0.277
(0.013)

0
0.097
(0.003)

43 Drama Intervaled 8
0.858
(0.042)

0 0 0 0 0 0
-0.003
(0.009)

0.899
(0.011)

0
0.404
(0.004)

44 Information Technology Intervaled 8
-0.567
(0.088)

0 0 0 0 0 0
0.564
(0.018)

0.481
(0.024)

0
0.345
(0.004)

45 Short Information Technology Intervaled 8
-1.005
(0.075)

0 0 0 0 0 0
0.585
(0.019)

0.441
(0.023)

0
0.411
(0.004)

46 Spanish Intervaled 8
-2.263
(0.093)

0 0 0 0 0 0
0.343
(0.012)

0.868
(0.016)

0
0.245
(0.005)

47 Music Intervaled 8
-0.916
(0.067)

0 0 0 0 0 0
0.255
(0.015)

0.817
(0.020)

0
0.366
(0.005)

48 Social Science Intervaled 8
-1.412
(0.071)

0 0 0 0 0 0
0.146
(0.012)

0.996
(0.017)

0
0.303
(0.004)

49 Design and Technology: Electronic Products Intervaled 8
0.688
(0.372)

0 0 0 0 0 0
0.548
(0.105)

0.370
(0.129)

0
0.371
(0.023)

50 Design and Technology: System and Control Intervaled 8
0.213
(0.510)

0 0 0 0 0 0
0.661
(0.122)

0.258
(0.166)

0
0.330
(0.033)

51 English Literature Intervaled 8
-0.777
(0.012)

0 0 0 0 0 0 0
1.092
(0.001)

0
0.176
(0.001)

52 Design and Technology: Food Technology Intervaled 8
-0.107
(0.043)

0 0 0 0 0 0
0.352
(0.008)

0.693
(0.010)

0
0.294
(0.002)

53 Science Intervaled 8
-0.547
(0.033)

0 0 0 0 0 0
0.455
(0.011)

0.544
(0.013)

0
0.199
(0.003)

54 Statistics Intervaled 8
-0.120
(0.063)

0 0 0 0 0 0
0.994
(0.010)

-0.040
(0.014)

0
0.174
(0.004)

55 Medial, Film and Television Studies Intervaled 8
-0.824
(0.034)

0 0 0 0 0 0
0.060
(0.013)

1.061
(0.014)

0
0.259
(0.003)

56 Fine Art Intervaled 8
2.016
(0.040)

0 0 0 0 0 0
0.190
(0.014)

0.588
(0.015)

0
0.441
(0.005)

57 Office Technology Intervaled 8
-0.205
(0.097)

0 0 0 0 0 0
0.534
(0.014)

0.496
(0.019)

0
0.293
(0.006)

(Continued on next page)

Note: TA denotes teacher assessment. Any values of 0, 1, or -1 denote normalizations. Standard errors in parentheses.
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Table 17: Measurement System and Normalizations: Female

Loadings

No. Description
Data
Type

No. of
Inter-
vals

Intercept
KS1
Math

KS1
Verbal

KS2
Math

KS2
Verbal

KS3
Math

KS3
Verbal

KS4
Math

KS4
Verbal

KS4
Motive

Percent
Noise

58 Home Economics: Child Development Intervaled 8
-1.122
(0.051)

0 0 0 0 0 0
0.266
(0.015)

0.889
(0.017)

0
0.286
(0.005)

59 Italian Intervaled 8
-0.790
(0.274)

0 0 0 0 0 0
0.212
(0.079)

0.878
(0.088)

0
0.382
(0.020)

60 Urdu Intervaled 8
1.883
(0.215)

0 0 0 0 0 0
0.164
(0.057)

0.635
(0.066)

0
0.588
(0.017)

61 Additional Applied Science Intervaled 8
0.085
(0.164)

0 0 0 0 0 0
0.436
(0.028)

0.523
(0.040)

0
0.192
(0.010)

62 Leisure and Tourism Intervaled 8
-1.734
(0.107)

0 0 0 0 0 0
0.240
(0.031)

0.919
(0.032)

0
0.344
(0.006)

63 Applied ICT Intervaled 8
-0.241
(0.136)

0 0 0 0 0 0
0.476
(0.026)

0.470
(0.032)

0
0.444
(0.010)

64 Applied Science Intervaled 8
0.507
(0.055)

0 0 0 0 0 0
0.341
(0.015)

0.560
(0.015)

0
0.319
(0.005)

65 Health and Social Care Intervaled 8
-0.974
(0.068)

0 0 0 0 0 0
0.207
(0.012)

0.899
(0.015)

0
0.350
(0.006)

66 Applied Business Intervaled 8
-1.937
(0.129)

0 0 0 0 0 0
0.498
(0.027)

0.724
(0.032)

0
0.298
(0.007)

67 Double Science Intervaled 8
-0.138
(0.014)

0 0 0 0 0 0
0.995
(0.002)

0 0
0.135
(0.001)

Selection Equations

68 Took any science course Binary –
-3.198
(0.040)

0 0 0 0
0.047
(0.009)

0.543
(0.009)

0 0
0.753
(0.006)

–

69 Took any college preperation science Binary –
-5.494
(0.063)

0 0 0 0
0.313
(0.008)

0.539
(0.011)

0 0
0.448
(0.009)

–

70 Took any advanced science Binary –
-13.970
(0.038)

0 0 0 0
0.957
(0.007)

0.461
(0.010)

0 0
0.403
(0.005)

–

71 Took any relgion course Binary –
-3.465
(0.057)

0 0 0 0
-0.146
(0.010)

0.442
(0.017)

0 0
0.610
(0.009)

–

72 Took Religious Studies Binary –
-5.213
(0.063)

0 0 0 0
-0.137
(0.013)

0.500
(0.016)

0 0
0.488
(0.011)

–

73
Took Design and Technology: Graphic

Products
Binary –

-4.016
(0.045)

0 0 0 0
0.100
(0.005)

0.108
(0.009)

0 0
0.131
(0.007)

–

74
Took Design and Technology: Resistant

Materials Technology
Binary –

-2.396
(0.032)

0 0 0 0
0.321
(0.006)

-0.529
(0.009)

0 0
0.101
(0.007)

–

75
Took Design and Technology: Textiles

Technology
Binary –

-2.577
(0.040)

0 0 0 0
0.030
(0.009)

-0.076
(0.013)

0 0
0.248
(0.009)

–

76 Took Art and Design Binary –
-1.979
(0.041)

0 0 0 0
-0.081
(0.007)

0.184
(0.011)

0 0
0.185
(0.006)

–

77 Took History Binary –
-7.152
(0.028)

0 0 0 0
-0.294
(0.011)

1.051
(0.012)

0 0
0.439
(0.007)

–

78 Took Geography Binary –
-5.029
(0.040)

0 0 0 0
0.190
(0.009)

0.068
(0.014)

0 0
0.541
(0.009)

–

79 Took French Binary –
-7.410
(0.041)

0 0 0 0
0.066
(0.008)

0.633
(0.008)

0 0
0.561
(0.009)

–

80 Took German Binary –
-7.871
(0.032)

0 0 0 0
0.268
(0.010)

0.438
(0.012)

0 0
0.359
(0.008)

–

81 Took Business Studies Binary –
-3.634
(0.041)

0 0 0 0
0.284
(0.008)

-0.139
(0.011)

0 0
0.130
(0.007)

–

82 Took Physical Education Binary –
-2.436
(0.047)

0 0 0 0
0.326
(0.011)

-0.326
(0.015)

0 0
0.241
(0.008)

–

83 Took Drama Binary –
-3.519
(0.045)

0 0 0 0
-0.355
(0.011)

0.609
(0.013)

0 0
0.147
(0.010)

–

84 Took Information Technology Binary –
-3.940
(0.050)

0 0 0 0
0.141
(0.006)

-0.013
(0.011)

0 0
0.259
(0.009)

–

(Continued on next page)

Note: TA denotes teacher assessment. Any values of 0, 1, or -1 denote normalizations. Standard errors in parentheses.
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Table 17: Measurement System and Normalizations: Female

Loadings

No. Description
Data
Type

No. of
Inter-
vals

Intercept
KS1
Math

KS1
Verbal

KS2
Math

KS2
Verbal

KS3
Math

KS3
Verbal

KS4
Math

KS4
Verbal

KS4
Motive

Percent
Noise

85 Took Short Information Technology Binary –
-3.918
(0.059)

0 0 0 0
-0.056
(0.010)

0.246
(0.014)

0 0
0.258
(0.011)

–

86 Took Spanish Binary –
-7.487
(0.047)

0 0 0 0
0.110
(0.007)

0.520
(0.014)

0 0
0.297
(0.006)

–

87 Took Music Binary –
-7.350
(0.039)

0 0 0 0
-0.010
(0.007)

0.629
(0.009)

0 0
0.269
(0.006)

–

88 Took Social Science Binary –
-2.545
(0.055)

0 0 0 0
-0.089
(0.012)

0.052
(0.016)

0 0
0.173
(0.010)

–

89
Took Design and Technology: Electronic

Products
Binary –

-7.998
(0.012)

0 0 0 0
0.536
(0.002)

-0.365
(0.003)

0 0
0.240
(0.001)

–

90
Took Design and Technology: System and

Control
Binary –

-10.137
(0.012)

0 0 0 0
0.645
(0.002)

-0.067
(0.003)

0 0
0.079
(0.001)

–

91 Took English Literature Binary –
-7.988
(0.054)

0 0 0 0
0.048
(0.009)

1.306
(0.012)

0 0
0.631
(0.007)

–

92
Took Design and Technology: Food

Technology
Binary –

-0.665
(0.050)

0 0 0 0
-0.086
(0.010)

-0.195
(0.016)

0 0
0.205
(0.007)

–

93 Took Statistics Binary –
-6.631
(0.059)

0 0 0 0
0.899
(0.013)

-0.308
(0.013)

0 0
0.149
(0.010)

–

94 Took Medial, Film and Television Studies Binary –
-2.235
(0.041)

0 0 0 0
-0.178
(0.012)

0.226
(0.013)

0 0
-0.039
(0.009)

–

95 Took Fine Art Binary –
-3.977
(0.042)

0 0 0 0
-0.094
(0.007)

0.239
(0.011)

0 0
0.205
(0.006)

–

96 Took Office Technology Binary –
-2.239
(0.041)

0 0 0 0
0.042
(0.011)

-0.213
(0.013)

0 0
0.112
(0.007)

–

97 Took Home Economics: Child Development Binary –
1.050
(0.043)

0 0 0 0
-0.095
(0.007)

-0.407
(0.014)

0 0
-0.073
(0.009)

–

98 Took Italian Binary –
-11.941
(0.016)

0 0 0 0
-0.034
(0.004)

0.816
(0.005)

0 0
0.435
(0.002)

–

99 Took Urdu Binary –
-5.342
(0.012)

0 0 0 0
-0.354
(0.005)

-0.488
(0.005)

0 0
1.175
(0.006)

–

100 Took Leisure and Tourism Binary –
-0.059
(0.035)

0 0 0 0
-0.037
(0.007)

-0.441
(0.008)

0 0
-0.153
(0.006)

–

101 Took Applied ICT Binary –
-3.969
(0.044)

0 0 0 0
0.158
(0.007)

-0.189
(0.007)

0 0
0.199
(0.008)

–

102 Took Health and Social Care Binary –
1.553
(0.059)

0 0 0 0
-0.124
(0.013)

-0.407
(0.017)

0 0
-0.162
(0.011)

–

103 Took Applied Business Binary –
-2.665
(0.029)

0 0 0 0
0.152
(0.006)

-0.300
(0.007)

0 0
0.004
(0.006)

–

104 Missing absence information Binary –
-2.018
(0.011)

0 0 0 0 0 0 0 0
-0.842
(0.002)

–

105 Any authorize absences Binary –
4.732
(0.025)

0 0 0 0 0 0 0 0
-0.367
(0.006)

–

106 Any unauthorized absences Binary –
5.072
(0.030)

0 0 0 0 0 0 0 0
-1.239
(0.007)

–

107 log authorize absences Continuous –
-0.860
(0.013)

0 0 0 0 0 0 0 0
-0.474
(0.004)

0.868
(0.001)

108 log unauthorized absences Continuous – 0 0 0 0 0 0 0 0 0
-1.000
(0.000)

0.653
(0.001)

Note: TA denotes teacher assessment. Any values of 0, 1, or -1 denote normalizations. Standard errors in parentheses.
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Table 18: Measurement System and Normalizations: Male

Loadings

No. Description
Data
Type

No. of
Inter-
vals

Intercept
KS1
Math

KS1
Verbal

KS2
Math

KS2
Verbal

KS3
Math

KS3
Verbal

KS4
Math

KS4
Verbal

KS4
Motive

Percent
Noise

1 Math Test Intervaled 6 0 1 0 0 0 0 0 0 0 0
0.163
(0.001)

2 Math Using and Applying TA Intervaled 4
0.374
(0.002)

0.886
(0.001)

0 0 0 0 0 0 0 0
0.096
(0.001)

3 Math Number and Algebra TA Intervaled 4
0.521
(0.002)

0.869
(0.001)

0 0 0 0 0 0 0 0
0.074
(0.001)

4 Math Shapes and Measure TA Intervaled 4
0.524
(0.002)

0.841
(0.001)

0 0 0 0 0 0 0 0
0.101
(0.001)

5 Writing Test Intervaled 6 0 0 1 0 0 0 0 0 0 0
0.138
(0.001)

6 Writing TA Intervaled 4
0.030
(0.002)

0
1.139
(0.001)

0 0 0 0 0 0 0
0.069
(0.001)

7 Reading TA Intervaled 4
0.105
(0.005)

0
1.226
(0.002)

0 0 0 0 0 0 0
0.166
(0.001)

8 Listening TA Intervaled 4
0.667
(0.003)

0
0.940
(0.001)

0 0 0 0 0 0 0
0.322
(0.002)

9 Math Test Paper A Continuous –
-26.236
(0.053)

0 0
11.316
(0.011)

0 0 0 0 0 0
0.116
(0.000)

10 Math Test Paper B Continuous –
-24.872
(0.061)

0 0
11.194
(0.013)

0 0 0 0 0 0
0.149
(0.001)

11 Math Arithmetic Test Continuous –
-16.373
(0.036)

0 0
6.541
(0.007)

0 0 0 0 0 0
0.174
(0.001)

12 Math TA Intervaled 6 0 0 0 1 0 0 0 0 0 0
0.154
(0.004)

13 Reading Test Continuous –
-27.226
(0.074)

0 0 0
12.450
(0.016)

0 0 0 0 0
0.225
(0.001)

14 Writing Test Continuous –
-1.272
(0.078)

0 0 0
5.258
(0.017)

0 0 0 0 0
0.413
(0.002)

15 Spelling Test Continuous –
-7.116
(0.028)

0 0 0
3.054
(0.006)

0 0 0 0 0
0.392
(0.002)

16 English TA Intervaled 6 0 0 0 0 1 0 0 0 0 0
0.139
(0.002)

17 Math Test Paper 1 Continuous –
0.467
(0.004)

0 0 0 0
0.310
(0.001)

0 0 0 0
0.436
(0.001)

18 Math Test Paper 2 Continuous –
0.161
(0.004)

0 0 0 0
0.348
(0.001)

0 0 0 0
0.399
(0.002)

19 Math Arithmetic Test Continuous –
-0.796
(0.003)

0 0 0 0
0.367
(0.001)

0 0 0 0
0.398
(0.001)

20 Math TA Intervaled 7 0 0 0 0 0 1 0 0 0 0
0.105
(0.001)

21 Writing Test (Longer) Continuous –
-18.504
(0.072)

0 0 0 0 0
5.722
(0.013)

0 0 0
0.313
(0.002)

22 Reading Test Continuous –
-18.701
(0.044)

0 0 0 0 0
6.094
(0.008)

0 0 0
0.253
(0.001)

23 Writing Test (Shorter) Continuous –
-12.412
(0.044)

0 0 0 0 0
3.937
(0.007)

0 0 0
0.308
(0.001)

24 Reading Test (Shakespeare) Continuous –
-11.948
(0.045)

0 0 0 0 0
3.274
(0.008)

0 0 0
0.410
(0.002)

25 English TA Intervaled 7 0 0 0 0 0 0 1 0 0 0
0.236
(0.001)

26 Math Intervaled 8 0 0 0 0 0 0 0 1 0 0
0.097
(0.001)

27 English Intervaled 8 0 0 0 0 0 0 0 0 1 0
0.106
(0.000)

28 Design and Technology: Graphic Products Intervaled 8
-0.233
(0.052)

0 0 0 0 0 0
0.397
(0.013)

0.565
(0.014)

0
0.456
(0.005)

(Continued on next page)

Note: TA denotes teacher assessment. Values of 0, 1, or -1 denote normalizations. Standard errors in parentheses.
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Table 18: Measurement System and Normalizations: Male

Loadings

No. Description
Data
Type

No. of
Inter-
vals

Intercept
KS1
Math

KS1
Verbal

KS2
Math

KS2
Verbal

KS3
Math

KS3
Verbal

KS4
Math

KS4
Verbal

KS4
Motive

Percent
Noise

29
Design and Technology: Resistant Materials

Technology
Intervaled 8

1.277
(0.023)

0 0 0 0 0 0
0.362
(0.006)

0.455
(0.008)

0
0.478
(0.003)

30 Design and Technology: Textiles Technology Intervaled 8
0.386
(0.233)

0 0 0 0 0 0
0.204
(0.069)

0.700
(0.087)

0
0.492
(0.022)

31 Art and Design Intervaled 8
2.348
(0.032)

0 0 0 0 0 0
0.116
(0.013)

0.573
(0.014)

0
0.574
(0.004)

32 History Intervaled 8
-3.480
(0.019)

0 0 0 0 0 0 0
1.400
(0.002)

0
0.174
(0.001)

33 Geography Intervaled 8
-1.962
(0.023)

0 0 0 0 0 0
0.428
(0.007)

0.794
(0.008)

0
0.176
(0.001)

34 French Intervaled 8
-1.354
(0.023)

0 0 0 0 0 0
0.362
(0.006)

0.701
(0.006)

0
0.256
(0.002)

35 German Intervaled 8
-1.056
(0.032)

0 0 0 0 0 0
0.366
(0.011)

0.671
(0.012)

0
0.258
(0.004)

36 Business Studies Intervaled 8
-1.860
(0.051)

0 0 0 0 0 0
0.352
(0.013)

0.841
(0.016)

0
0.236
(0.003)

37 Religious Studies Intervaled 8
-2.690
(0.043)

0 0 0 0 0 0 0
1.319
(0.005)

0
0.222
(0.002)

38 Short Religious Studies Intervaled 8
-2.527
(0.024)

0 0 0 0 0 0 0
1.250
(0.004)

0
0.299
(0.002)

39 Physical Education Intervaled 8
1.253
(0.024)

0 0 0 0 0 0
0.349
(0.007)

0.527
(0.007)

0
0.342
(0.002)

40 Physics Intervaled 8
-0.951
(0.052)

0 0 0 0 0 0
1.064
(0.005)

0 0
0.095
(0.002)

41 Chemistry Intervaled 8
-0.862
(0.057)

0 0 0 0 0 0
1.041
(0.006)

0 0
0.102
(0.002)

42 Biology Intervaled 8
-0.471
(0.046)

0 0 0 0 0 0
0.786
(0.012)

0.224
(0.014)

0
0.120
(0.003)

43 Drama Intervaled 8
1.308
(0.050)

0 0 0 0 0 0
-0.018
(0.014)

0.852
(0.014)

0
0.444
(0.004)

44 Information Technology Intervaled 8
-0.944
(0.071)

0 0 0 0 0 0
0.474
(0.011)

0.592
(0.016)

0
0.368
(0.004)

45 Short Information Technology Intervaled 8
-0.936
(0.061)

0 0 0 0 0 0
0.549
(0.017)

0.422
(0.021)

0
0.463
(0.005)

46 Spanish Intervaled 8
-1.840
(0.076)

0 0 0 0 0 0
0.345
(0.017)

0.787
(0.017)

0
0.290
(0.006)

47 Music Intervaled 8
-0.233
(0.044)

0 0 0 0 0 0
0.194
(0.015)

0.817
(0.017)

0
0.428
(0.004)

48 Social Science Intervaled 8
-1.281
(0.047)

0 0 0 0 0 0
0.096
(0.012)

1.013
(0.015)

0
0.333
(0.005)

49 Design and Technology: Electronic Products Intervaled 8
0.024
(0.098)

0 0 0 0 0 0
0.580
(0.019)

0.378
(0.023)

0
0.437
(0.009)

50 Design and Technology: System and Control Intervaled 8
0.028
(0.121)

0 0 0 0 0 0
0.543
(0.026)

0.380
(0.033)

0
0.432
(0.012)

51 English Literature Intervaled 8
-0.995
(0.012)

0 0 0 0 0 0 0
1.117
(0.002)

0
0.164
(0.001)

52 Design and Technology: Food Technology Intervaled 8
0.254
(0.053)

0 0 0 0 0 0
0.252
(0.016)

0.684
(0.018)

0
0.385
(0.006)

53 Science Intervaled 8
0.202
(0.032)

0 0 0 0 0 0
0.478
(0.008)

0.450
(0.006)

0
0.250
(0.003)

54 Statistics Intervaled 8
-0.666
(0.042)

0 0 0 0 0 0
0.978
(0.012)

0.026
(0.014)

0
0.175
(0.004)

55 Medial, Film and Television Studies Intervaled 8
-0.641
(0.062)

0 0 0 0 0 0
-0.023
(0.013)

1.100
(0.016)

0
0.285
(0.005)

56 Fine Art Intervaled 8
2.179
(0.040)

0 0 0 0 0 0
0.071
(0.022)

0.645
(0.023)

0
0.530
(0.006)

57 Office Technology Intervaled 8
-0.403
(0.054)

0 0 0 0 0 0
0.486
(0.018)

0.553
(0.020)

0
0.300
(0.006)

(Continued on next page)

Note: TA denotes teacher assessment. Values of 0, 1, or -1 denote normalizations. Standard errors in parentheses.
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Table 18: Measurement System and Normalizations: Male

Loadings

No. Description
Data
Type

No. of
Inter-
vals

Intercept
KS1
Math

KS1
Verbal

KS2
Math

KS2
Verbal

KS3
Math

KS3
Verbal

KS4
Math

KS4
Verbal

KS4
Motive

Percent
Noise

58 Home Economics: Child Development Intervaled 8
-0.560
(0.424)

0 0 0 0 0 0
0.145
(0.117)

0.817
(0.144)

0
0.445
(0.049)

59 Italian Intervaled 8
0.380
(0.487)

0 0 0 0 0 0
0.190
(0.095)

0.756
(0.112)

0
0.466
(0.047)

60 Urdu Intervaled 8
2.030
(0.222)

0 0 0 0 0 0
0.207
(0.072)

0.507
(0.089)

0
0.619
(0.019)

61 Additional Applied Science Intervaled 8
0.294
(0.179)

0 0 0 0 0 0
0.473
(0.042)

0.462
(0.059)

0
0.211
(0.010)

62 Leisure and Tourism Intervaled 8
-1.786
(0.079)

0 0 0 0 0 0
0.166
(0.022)

0.956
(0.025)

0
0.366
(0.009)

63 Applied ICT Intervaled 8
-1.102
(0.100)

0 0 0 0 0 0
0.389
(0.020)

0.631
(0.022)

0
0.433
(0.008)

64 Applied Science Intervaled 8
0.661
(0.051)

0 0 0 0 0 0
0.338
(0.013)

0.543
(0.015)

0
0.330
(0.008)

65 Health and Social Care Intervaled 8
-0.905
(0.307)

0 0 0 0 0 0
0.093
(0.068)

0.927
(0.083)

0
0.413
(0.029)

66 Applied Business Intervaled 8
-1.864
(0.119)

0 0 0 0 0 0
0.476
(0.023)

0.711
(0.028)

0
0.330
(0.008)

67 Double Science Intervaled 8
0.270
(0.016)

0 0 0 0 0 0
0.943
(0.002)

0 0
0.168
(0.001)

Selection Equations

68 Took any science course Binary –
-3.425
(0.039)

0 0 0 0
0.189
(0.008)

0.381
(0.010)

0 0
0.860
(0.007)

–

69 Took any college preperation science Binary –
-5.998
(0.042)

0 0 0 0
0.395
(0.009)

0.536
(0.012)

0 0
0.523
(0.011)

–

70 Took any advanced science Binary –
-14.794
(0.032)

0 0 0 0
0.974
(0.007)

0.558
(0.011)

0 0
0.526
(0.007)

–

71 Took any relgion course Binary –
-4.221
(0.047)

0 0 0 0
-0.090
(0.008)

0.398
(0.014)

0 0
0.721
(0.011)

–

72 Took Religious Studies Binary –
-5.957
(0.043)

0 0 0 0
-0.121
(0.011)

0.491
(0.016)

0 0
0.599
(0.012)

–

73
Took Design and Technology: Graphic

Products
Binary –

-3.378
(0.038)

0 0 0 0
-0.031
(0.009)

0.165
(0.007)

0 0
0.193
(0.009)

–

74
Took Design and Technology: Resistant

Materials Technology
Binary –

0.130
(0.050)

0 0 0 0
0.116
(0.007)

-0.544
(0.012)

0 0
0.224
(0.010)

–

75
Took Design and Technology: Textiles

Technology
Binary –

-3.991
(0.015)

0 0 0 0
-0.366
(0.001)

0.063
(0.003)

0 0
0.100
(0.002)

–

76 Took Art and Design Binary –
-1.110
(0.040)

0 0 0 0
-0.195
(0.007)

0.060
(0.012)

0 0
0.173
(0.010)

–

77 Took History Binary –
-6.496
(0.035)

0 0 0 0
-0.282
(0.009)

0.931
(0.011)

0 0
0.523
(0.010)

–

78 Took Geography Binary –
-5.117
(0.041)

0 0 0 0
0.120
(0.006)

0.145
(0.012)

0 0
0.631
(0.009)

–

79 Took French Binary –
-8.060
(0.033)

0 0 0 0
0.124
(0.008)

0.631
(0.012)

0 0
0.571
(0.011)

–

80 Took German Binary –
-8.974
(0.029)

0 0 0 0
0.305
(0.009)

0.515
(0.012)

0 0
0.440
(0.007)

–

81 Took Business Studies Binary –
-4.847
(0.038)

0 0 0 0
0.281
(0.007)

0.020
(0.010)

0 0
0.278
(0.011)

–

82 Took Physical Education Binary –
-1.600
(0.041)

0 0 0 0
0.195
(0.007)

-0.178
(0.011)

0 0
0.140
(0.009)

–

83 Took Drama Binary –
-3.581
(0.033)

0 0 0 0
-0.430
(0.006)

0.555
(0.009)

0 0
0.250
(0.009)

–

84 Took Information Technology Binary –
-4.635
(0.056)

0 0 0 0
0.151
(0.008)

0.051
(0.013)

0 0
0.365
(0.010)

–

(Continued on next page)

Note: TA denotes teacher assessment. Values of 0, 1, or -1 denote normalizations. Standard errors in parentheses.
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Table 18: Measurement System and Normalizations: Male

Loadings

No. Description
Data
Type

No. of
Inter-
vals

Intercept
KS1
Math

KS1
Verbal

KS2
Math

KS2
Verbal

KS3
Math

KS3
Verbal

KS4
Math

KS4
Verbal

KS4
Motive

Percent
Noise

85 Took Short Information Technology Binary –
-3.432
(0.047)

0 0 0 0
-0.040
(0.009)

0.163
(0.010)

0 0
0.203
(0.010)

–

86 Took Spanish Binary –
-8.238
(0.037)

0 0 0 0
0.179
(0.007)

0.494
(0.010)

0 0
0.331
(0.007)

–

87 Took Music Binary –
-6.334
(0.040)

0 0 0 0
-0.078
(0.007)

0.620
(0.009)

0 0
0.226
(0.006)

–

88 Took Social Science Binary –
-3.155
(0.053)

0 0 0 0
-0.100
(0.008)

0.095
(0.016)

0 0
0.261
(0.008)

–

89
Took Design and Technology: Electronic

Products
Binary –

-4.798
(0.031)

0 0 0 0
0.445
(0.007)

-0.391
(0.008)

0 0
0.265
(0.006)

–

90
Took Design and Technology: System and

Control
Binary –

-6.805
(0.033)

0 0 0 0
0.477
(0.004)

-0.269
(0.007)

0 0
0.394
(0.005)

–

91 Took English Literature Binary –
-8.123
(0.054)

0 0 0 0
0.063
(0.011)

1.269
(0.013)

0 0
0.644
(0.010)

–

92
Took Design and Technology: Food

Technology
Binary –

-2.719
(0.033)

0 0 0 0
-0.207
(0.010)

0.060
(0.010)

0 0
0.297
(0.006)

–

93 Took Statistics Binary –
-7.074
(0.042)

0 0 0 0
0.856
(0.011)

-0.220
(0.013)

0 0
0.187
(0.007)

–

94 Took Medial, Film and Television Studies Binary –
-2.310
(0.045)

0 0 0 0
-0.190
(0.006)

0.181
(0.009)

0 0
0.068
(0.010)

–

95 Took Fine Art Binary –
-3.328
(0.032)

0 0 0 0
-0.188
(0.007)

0.151
(0.011)

0 0
0.215
(0.008)

–

96 Took Office Technology Binary –
-2.740
(0.041)

0 0 0 0
0.012
(0.006)

-0.127
(0.011)

0 0
0.154
(0.007)

–

97 Took Home Economics: Child Development Binary –
-5.543
(0.004)

0 0 0 0
-0.206
(0.001)

0.046
(0.001)

0 0
0.029
(0.001)

–

98 Took Italian Binary –
-11.725
(0.011)

0 0 0 0
0.074
(0.002)

0.726
(0.002)

0 0
0.286
(0.002)

–

99 Took Urdu Binary –
-4.813
(0.011)

0 0 0 0
-0.166
(0.002)

-0.618
(0.004)

0 0
0.849
(0.004)

–

100 Took Leisure and Tourism Binary –
-0.805
(0.022)

0 0 0 0
-0.186
(0.006)

-0.321
(0.006)

0 0
-0.044
(0.005)

–

101 Took Applied ICT Binary –
-4.324
(0.045)

0 0 0 0
0.166
(0.006)

-0.101
(0.008)

0 0
0.227
(0.008)

–

102 Took Health and Social Care Binary –
-3.520
(0.010)

0 0 0 0
-0.474
(0.003)

0.061
(0.003)

0 0
0.158
(0.002)

–

103 Took Applied Business Binary –
-3.025
(0.028)

0 0 0 0
0.144
(0.006)

-0.196
(0.008)

0 0
0.021
(0.007)

–

104 Missing absence information Binary –
-0.955
(0.022)

0 0 0 0 0 0 0 0
-0.994
(0.005)

–

105 Any authorize absences Binary –
4.077
(0.033)

0 0 0 0 0 0 0 0
-0.302
(0.008)

–

106 Any unauthorized absences Binary –
5.204
(0.035)

0 0 0 0 0 0 0 0
-1.262
(0.008)

–

107 log authorize absences Continuous –
-0.937
(0.014)

0 0 0 0 0 0 0 0
-0.487
(0.003)

0.881
(0.002)

108 log unauthorized absences Continuous – 0 0 0 0 0 0 0 0 0
-1.000
(0.000)

0.680
(0.002)

Note: TA denotes teacher assessment. Values of 0, 1, or -1 denote normalizations. Standard errors in parentheses.
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F Transition Matrix: Key Stage 1 to Key Stage 4

Table 19: Factor Transition Matrix KS1 to KS4

KS4
0-25th
PCTL

KS4
25-50th
PCTL

KS4
50-75th
PCTL

KS4
75-100th
PCTL

Math

KS1 0-25th PCTL 63% 26% 9% 2%

KS1 25-50th PCTL 26% 40% 27% 7%

KS1 50-75th PCTL 9% 22% 37% 32%

KS1 75-100th PCTL 3% 12% 27% 58%

Verbal

KS1 0-25th PCTL 61% 27% 10% 2%

KS1 25-50th PCTL 29% 39% 26% 7%

KS1 50-75th PCTL 8% 23% 39% 30%

KS1 75-100th PCTL 3% 10% 26% 61%

Note: Rows sum to 100 percent. This table shows how students transition in the
skills distribution between Key Stage 1 and Key Stage 4. For example, the first
row shows that among the students that started in the bottom quartile of the
math skills distribution in Key Stage 1, 63% remained in the same quartile in
Key Stage 4, while only 2% were able to transition to the top quartile.
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G Additional Nested CES Production Function Parameters

Table 20: Nested CES Production Function: TFP Coefficients
Math Verbal

KS2 KS3 KS4 KS2 KS3 KS4

Female

Intercept
2.991
(0.012)

-0.200
(0.021)

-2.090
(0.024)

2.866
(0.011)

1.443
(0.018)

-1.401
(0.022)

Asian
0.039
(0.006)

0.097
(0.008)

0.083
(0.006)

0.030
(0.006)

0.061
(0.005)

0.053
(0.005)

Black
-0.039
(0.006)

0.011
(0.005)

0.011
(0.007)

-0.003
(0.005)

0.022
(0.005)

0.026
(0.006)

Race Other
0.008
(0.006)

0.009
(0.007)

0.010
(0.005)

0.028
(0.004)

0.026
(0.005)

0.030
(0.005)

Race Missing
-0.002
(0.007)

-0.022
(0.005)

-0.002
(0.005)

-0.003
(0.005)

-0.011
(0.004)

-0.002
(0.005)

Mother Tounge Not English
0.022
(0.008)

0.049
(0.007)

0.032
(0.007)

0.015
(0.005)

0.043
(0.004)

0.042
(0.005)

Free School Meal Eligible
-0.040
(0.003)

-0.096
(0.002)

-0.026
(0.002)

-0.051
(0.002)

-0.068
(0.002)

-0.041
(0.002)

Special Education Needs
-0.303
(0.004)

-0.067
(0.004)

0.023
(0.003)

-0.308
(0.003)

-0.024
(0.004)

-0.067
(0.003)

FSM/SEN Missing
-0.068
(0.010)

-0.112
(0.014)

-0.033
(0.015)

-0.074
(0.006)

-0.078
(0.013)

-0.081
(0.017)

KS4 Selection Factor – –
0.717
(0.003)

– –
0.655
(0.003)

Male

Intercept
3.010
(0.011)

-0.181
(0.018)

-2.143
(0.017)

2.739
(0.010)

1.329
(0.017)

-2.091
(0.018)

Asian
0.033
(0.008)

0.076
(0.007)

0.084
(0.007)

0.021
(0.007)

0.053
(0.006)

0.069
(0.005)

Black
-0.071
(0.006)

-0.043
(0.006)

-0.021
(0.008)

-0.033
(0.006)

-0.012
(0.006)

0.006
(0.006)

Race Other
-0.004
(0.005)

-0.005
(0.006)

0.007
(0.004)

0.022
(0.005)

0.019
(0.005)

0.019
(0.005)

Race Missing
0.005
(0.005)

-0.013
(0.006)

-0.005
(0.005)

0.002
(0.004)

-0.004
(0.005)

-0.001
(0.004)

Mother Tounge Not English
0.017
(0.009)

0.039
(0.006)

0.032
(0.008)

-0.002
(0.007)

0.028
(0.006)

0.022
(0.006)

Free School Meal Eligible
-0.035
(0.003)

-0.086
(0.002)

-0.028
(0.002)

-0.050
(0.003)

-0.068
(0.002)

-0.040
(0.003)

Special Education Needs
-0.254
(0.003)

-0.076
(0.002)

0.030
(0.002)

-0.285
(0.003)

-0.055
(0.002)

-0.040
(0.002)

FSM/SEN Missing
-0.087
(0.007)

-0.146
(0.013)

0.018
(0.015)

-0.095
(0.006)

-0.124
(0.015)

-0.028
(0.015)

KS4 Selection Factor – –
0.747
(0.003)

– –
0.752
(0.003)

Note: These coefficients correspond to the TFP (Ait
k) parameters described in eq. (1), which is our

main nested CES specification. Neighborhood fixed effects are not reported and unobserved heterogeneity
parameters are reported in appendix G.
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Table 21: Nested CES Production Function: Unobserved Heterogeneity

Type
Share

Math Verbal

KS1 KS2 KS3 KS4 KS1 KS2 KS3 KS4

Female

Type 1 0.118 0.728 0.258 0.258 0.258 0.728 0.176 0.176 0.176

Type 2 0.249 -0.189 -0.386 -0.386 -0.386 -0.189 -0.327 -0.327 -0.327

Type 3 0.156 0.594 -0.138 -0.138 -0.138 0.594 -0.121 -0.121 -0.121

Type 4 0.076 -0.966 -0.251 -0.251 -0.251 -0.966 -0.183 -0.183 -0.183

Type 5 0.400 0 0 0 0 0 0 0 0

Male

Type 1 0.109 0.694 0.282 0.282 0.282 0.694 0.243 0.243 0.243

Type 2 0.236 -0.162 -0.391 -0.391 -0.391 -0.162 -0.351 -0.351 -0.351

Type 3 0.144 0.586 -0.139 -0.139 -0.139 0.586 -0.093 -0.093 -0.093

Type 4 0.112 -0.914 -0.210 -0.210 -0.210 -0.914 -0.144 -0.144 -0.144

Type 5 0.400 0 0 0 0 0 0 0 0

Note: This table reports the unobserved heterogeneity parameters corresponding to the TFP of the produc-
tion function described in eq. (1), which is our main nested CES specification (see section 3.1). Type share
denotes the probability of each of the five types.
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H CES Production Functions Estimates: Robustness Checks

Table 22: CES Production Function: 3-Input Nested-CES(m,v,Q) and 2-Input CES(m,v),Female

Math Verbal
KS2 KS3 KS4 KS2 KS3 KS4

Panel A: 3-Input Nested-CES(m,v,Q), No Covariates in TFP, No Unobserved Het.

Math Coefficient (α)
0.860
(0.007)

0.828
(0.002)

0.791
(0.002)

0.113
(0.007)

0.000
(0.000)

0.127
(0.003)

Verbal Coefficient (1− α)
0.140
(0.007)

0.172
(0.002)

0.209
(0.002)

0.887
(0.007)

1.000
(0.000)

0.873
(0.003)

Complementarity Parmaeter
Math/verbal (γ)

-3.209
(0.133)

-0.200
(0.040)

0.722
(0.027)

-2.356
(0.354)

–
0.620
(0.031)

Math/Verbal Aggregator Coefficeint (δ)
0.926
(0.002)

0.905
(0.002)

0.765
(0.006)

0.954
(0.003)

0.849
(0.003)

0.930
(0.005)

School Coefficient(1− δ) 0.074
(0.002)

0.095
(0.002)

0.235
(0.006)

0.046
(0.003)

0.151
(0.003)

0.070
(0.005)

Complementarity Parameter
Skill/School (ρ)

-0.290
(0.050)

0.406
(0.019)

0.486
(0.013)

0.051
(0.096)

0.615
(0.019)

0.116
(0.027)

Return to Scale (r)
1.064
(0.003)

1.728
(0.002)

1.597
(0.002)

1.159
(0.003)

1.222
(0.002)

1.563
(0.003)

Variance of shocks ν (ς2)
0.166
(0.001)

0.131
(0.001)

0.349
(0.003)

0.118
(0.001)

0.105
(0.001)

0.321
(0.003)

Panel B: 3-Input Nested-CES(m,v,Q), With Covariates in TFP, No Unobserved Het.

Math Coefficient (α)
0.939
(0.006)

0.850
(0.002)

0.847
(0.002)

0.086
(0.004)

0.000
(0.000)

0.039
(0.001)

Verbal Coefficient (1− α)
0.061
(0.006)

0.150
(0.002)

0.153
(0.002)

0.914
(0.004)

1.000
(0.000)

0.961
(0.001)

Complementarity Parmaeter
Math/verbal (γ)

-4.194
(0.158)

-0.200
(0.040)

0.171
(0.019)

1.000
(0.087)

–
-0.544
(0.048)

Math/Verbal Aggregator Coefficeint (δ)
0.935
(0.003)

0.903
(0.002)

0.832
(0.004)

0.975
(0.002)

0.847
(0.003)

0.977
(0.004)

School Coefficient(1− δ) 0.065
(0.003)

0.097
(0.002)

0.168
(0.004)

0.025
(0.002)

0.153
(0.003)

0.023
(0.004)

Complementarity Parameter
Skill/School (ρ)

0.135
(0.077)

0.474
(0.016)

0.547
(0.013)

0.747
(0.060)

0.652
(0.019)

0.141
(0.050)

Return to Scale (r)
0.925
(0.004)

1.684
(0.003)

1.243
(0.002)

1.006
(0.003)

1.191
(0.002)

1.219
(0.003)

Variance of shocks ν (ς2)
0.134
(0.001)

0.112
(0.001)

0.124
(0.001)

0.093
(0.000)

0.091
(0.001)

0.129
(0.001)

Panel C: 2-Input CES(m,v), With Covariates in TFP, With Unobserved Het.

Math Coefficient (α)
0.974
(0.002)

0.930
(0.003)

0.928
(0.003)

0.022
(0.002)

0.000
(0.000)

0.002
(0.001)

Verbal Coefficient (1− α)
0.026
(0.002)

0.070
(0.003)

0.072
(0.003)

0.978
(0.002)

1.000
(0.000)

0.998
(0.001)

Complementarity Parmaeter
Math/verbal (γ)

-5.690
(0.159)

-0.211
(0.167)

0.294
(0.038)

1.000
(0.000)

– –

Return to Scale (r)
0.676
(0.005)

1.366
(0.004)

1.012
(0.003)

0.809
(0.005)

0.929
(0.003)

1.062
(0.004)

Variance of shocks ν (ς2)
0.099
(0.000)

0.080
(0.001)

0.103
(0.001)

0.066
(0.000)

0.069
(0.000)

0.117
(0.001)

Note: Panels A and B correspond to three-input nested CES production functions (i.e. math and verbal skills,
and school quality), as described in Section 3.1. However, the TFP term of the model in Panel A does not
include covariates or unobserved heterogeneity, while in Panel B it only includes background covariates (i.e.
race, mother tongue, free school meal eligibility, special education needs, and neighborhood fixed effects).

Panel C corresponds to the following production function, Θk
i,t = Akit[δ

k
t

(
Θm
i,t−1

)ρkt +(1−δkt )
(
Θv
i,t−1

)ρkt ]r
k
t /ρ

k
t ,

where Akit includes background covariates, unobserved heterogeneity, and school fixed effects. The main
difference between this two-input CES production function and the nested CES in Section 3.1 is how we
account for school effects. While the two-input CES model specifies school quality as fixed effects in the
TFP, the nested CES accounts for school quality as an additional input in the production function
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Table 23: CES Production Function: 3-Input Nested-CES(m,v,Q) and 2-Input CES(m,v), Male

Math Verbal
KS2 KS3 KS4 KS2 KS3 KS4

Panel A: 3-Input Nested-CES(m,v,Q), No Covariates in TFP, No Unobserved Het.

Math Coefficient (α)
0.972
(0.001)

0.845
(0.002)

0.747
(0.003)

0.175
(0.005)

0.000
(0.000)

0.078
(0.002)

Verbal Coefficient (1− α)
0.028
(0.001)

0.155
(0.002)

0.253
(0.003)

0.825
(0.005)

1.000
(0.000)

0.922
(0.002)

Complementarity Parmaeter
Math/verbal (γ)

-4.528
(0.070)

-0.125
(0.043)

0.561
(0.013)

-0.367
(0.057)

–
0.656
(0.019)

Math/Verbal Aggregator Coefficeint (δ)
0.929
(0.002)

0.896
(0.002)

0.821
(0.005)

0.966
(0.002)

0.844
(0.002)

0.954
(0.003)

School Coefficient(1− δ) 0.071
(0.002)

0.104
(0.002)

0.179
(0.005)

0.034
(0.002)

0.156
(0.002)

0.046
(0.003)

Complementarity Parameter
Skill/School (ρ)

-0.171
(0.047)

0.502
(0.012)

0.379
(0.011)

0.460
(0.044)

0.748
(0.013)

-0.041
(0.020)

Return to Scale (r)
1.031
(0.003)

1.706
(0.002)

1.555
(0.003)

1.197
(0.003)

1.222
(0.002)

1.614
(0.003)

Variance of shocks ν (ς2)
0.182
(0.001)

0.138
(0.001)

0.374
(0.003)

0.140
(0.001)

0.127
(0.001)

0.382
(0.003)

Panel B: 3-Input Nested-CES(m,v,Q), With Covariates in TFP, No Unobserved Het.

Math Coefficient (α)
0.988
(0.001)

0.865
(0.003)

0.882
(0.002)

0.159
(0.004)

0.000
(0.000)

0.040
(0.002)

Verbal Coefficient (1− α)
0.012
(0.001)

0.135
(0.003)

0.118
(0.002)

0.841
(0.004)

1.000
(0.000)

0.960
(0.002)

Complementarity Parmaeter
Math/verbal (γ)

–
-0.113
(0.051)

0.074
(0.022)

-0.026
(0.045)

–
-0.230
(0.054)

Math/Verbal Aggregator Coefficeint (δ)
0.930
(0.003)

0.887
(0.002)

0.816
(0.005)

0.975
(0.001)

0.830
(0.002)

0.912
(0.005)

School Coefficient(1− δ) 0.070
(0.003)

0.113
(0.002)

0.184
(0.005)

0.025
(0.001)

0.170
(0.002)

0.088
(0.005)

Complementarity Parameter
Skill/School (ρ)

0.053
(0.057)

0.587
(0.013)

0.514
(0.008)

0.787
(0.030)

0.796
(0.015)

0.555
(0.025)

Return to Scale (r)
0.895
(0.003)

1.663
(0.003)

1.218
(0.002)

1.032
(0.003)

1.188
(0.003)

1.251
(0.002)

Variance of shocks ν (ς2)
0.148
(0.001)

0.119
(0.001)

0.153
(0.002)

0.111
(0.001)

0.111
(0.001)

0.159
(0.002)

Panel C: 2-Input CES(m,v), With Covariates in TFP, With Unobserved Het.

Math Coefficient (α)
0.990
(0.001)

0.945
(0.007)

0.978
(0.003)

0.063
(0.005)

0.000
(0.000)

0.001
(0.000)

Verbal Coefficient (1− α)
0.010
(0.001)

0.055
(0.007)

0.022
(0.003)

0.937
(0.005)

1.000
(0.000)

0.999
(0.000)

Complementarity Parmaeter
Math/verbal (γ)

–
0.585
(0.848)

0.403
(0.086)

0.344
(0.085)

– –

Return to Scale (r)
0.665
(0.004)

1.352
(0.004)

0.977
(0.002)

0.820
(0.005)

0.906
(0.003)

1.067
(0.002)

Variance of shocks ν (ς2)
0.114
(0.000)

0.083
(0.001)

0.126
(0.001)

0.080
(0.000)

0.082
(0.000)

0.141
(0.001)

Note: Panels A and B correspond to three-input nested CES production functions (i.e. math and verbal skills,
and school quality), as described in Section 3.1. However, the TFP term of the model in Panel A does not
include covariates or unobserved heterogeneity, while in Panel B it only includes background covariates (i.e.
race, mother tongue, free school meal eligibility, special education needs, and neighborhood fixed effects).

Panel C corresponds to the following production function, Θk
i,t = Akit[δ

k
t

(
Θm
i,t−1

)ρkt +(1−δkt )
(
Θv
i,t−1

)ρkt ]r
k
t /ρ

k
t ,

where Akit includes background covariates, unobserved heterogeneity, and school fixed effects. The main
difference between this two-input CES production function and the nested CES in Section 3.1 is how we
account for school effects. While the two-input CES model specifies school quality as fixed effects in the
TFP, the nested CES accounts for school quality as an additional input in the production function

85



I The Effect of Math Skills on Unconditional STEM Enrollment
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Figure 4: Unconditional Share Enrolled in STEM for Assigned KS4 Math Skills
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J Endogeneity Concerns

Role of Motivation Table 24 repeats the analysis in Table 9 but using skills from earlier Key
Stages. Table 24 shows that verbal skills uniformly have a larger effect on university enrollment than
math skills at each stage of the schooling career and even after conditioning on different subsamples
(i.e. white students, white students whose mother speaks English). Moreover, the magnitude of
the differential effect is sizable across the board, which further substantiates our main findings. For
example, the top panel of Table 24 indicates that among females the effect of KS1 verbal skills on
university enrollment is three times larger than KS1 math skills.

Decomposition of KS4 Skills Since we have skill measures at each time period, we can sta-
tistically decompose the skills observed in KS4 as a function of the earlier skills. Let θ̂i4|3,2,1 =
E(θi4|θi3, θi2, θi1) denote the expected value of skills in KS4, conditional on everything that has
happened to the student as of KS3. We can re-write θi4 as:

θi4 =
(
θi4 − θ̂i4|3,2,1

)
︸ ︷︷ ︸

residual change in skill occurring in KS4

+ θ̂i4|3,2,1

Writing the variable in this way is useful because it informs us about the portion of the skill that
was determined in the preceding periods and the portion that was determined in the current period.
In fact, we can further decompose this variable period-by-period

θi4 =
(
θi4 − θ̂i4|3,2,1

)
︸ ︷︷ ︸

KS4 Residual

+
(
θ̂i4|3,2,1 − θ̂i4|2,1

)
︸ ︷︷ ︸

KS3 Residual

+
(
θ̂i4|2,1 − θ̂i4|1

)
︸ ︷︷ ︸

KS2 Residual

+θ̂i4|1 (16)

where θ̂i4|2,1 = E(θi4|θi2, θi1), and θ̂i4|1 = E(θi4|θi1)
While the results in Table 9 show the total effect of skills when each of the four components

in Eq. (16) are combined, an alternative approach would be to include each of these differences in
a regression, which will allow us to recover the marginal effect of the new information received at
each Key Stage. The benefit of this approach is that it is possible to study the relative contribution
to university enrollment of math and verbal skills after conditioning on prior skills.

Table 25 shows the results of logistic regressions on college enrollment that includes the decom-
position of KS4 math and verbal skills by gender as described in Eq. (16). This regression allows
us to consider the following counterfactual: does performing better than expected in math, once we
condition on earlier skills, have a larger impact on college enrollment than performing better than
expected in verbal? These specifications also control for background characteristics and unobserved
heterogeneity obtained from the production function estimation. The results in table 25 show that,
at each Key Stage, performing better than expected in verbal has a much larger impact on college
enrollment than performing better than expected in math. For example, a one log-unit increase in
the predicted value of KS4 verbal skills occurring from an outcome in KS2, after conditioning on
family background characteristics and KS1 information, leads to an increase in female (male) col-
lege enrollment of 15.6 (13) percentage points, while for math would lead to an increase of 5.5 (6.4)
percentage points. These results strongly suggest that the conclusions from our earlier analysis are
not driven by endogeneity in parental inputs that benefit one skill over the other.
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Table 24: Logistic Regression: University Enrollment, Early Factors and Sub Samples

Females Males

KS1 KS2 KS3 KS4 KS1 KS2 KS3 KS4

(1) (2) (3) (4) (5) (6) (7) (8)

Average Marginal Effect of 1 log unit increase in Skills

Full Sample

Math
0.047
(0.004)

0.035
(0.003)

0.073
(0.002)

0.054
(0.001)

0.043
(0.002)

0.046
(0.002)

0.075
(0.001)

0.058
(0.001)

Verbal
0.153
(0.002)

0.206
(0.002)

0.174
(0.001)

0.147
(0.001)

0.132
(0.003)

0.186
(0.002)

0.156
(0.001)

0.126
(0.001)

Obs. 248479 250257

Mother Tongue English Only

Math
0.045
(0.004)

0.033
(0.003)

0.073
(0.002)

0.054
(0.001)

0.041
(0.002)

0.046
(0.002)

0.075
(0.001)

0.057
(0.001)

Verbal
0.162
(0.003)

0.213
(0.002)

0.178
(0.001)

0.150
(0.001)

0.140
(0.004)

0.192
(0.002)

0.157
(0.001)

0.127
(0.001)

Obs. 235016 237109

White and Mother Tongue English Only

Math
0.046
(0.004)

0.032
(0.003)

0.074
(0.002)

0.054
(0.001)

0.041
(0.002)

0.046
(0.002)

0.076
(0.001)

0.057
(0.001)

Verbal
0.168
(0.004)

0.218
(0.002)

0.180
(0.002)

0.151
(0.001)

0.147
(0.003)

0.198
(0.002)

0.160
(0.002)

0.128
(0.001)

Obs. 214263 216057

Note: Results correspond to logistic regressions where we analyze the average marginal effect of math and verbal skills
at each Key Stage. The top panel includes the whole sample where the dependent variable is college enrollment, and
the independent variables correspond to KS skills at different stages of the schooling career and baseline controls. The
middle panel constrains the sample to students whose mother’s native tongue is English, while the bottom panel further
constrains this sample by only considering white students. All regressions include as the dependent variable university
enrollment. Baseline controls include race, mother tongue, Key Stage 4 school quality, free school lunch, special education
needs, neighborhood characteristics, and higher order factor terms (i.e. squared terms of skills and their interactions)
and the unobserved persistent TFP shock. Bootstrapped standard errors at the school level.
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Table 25: Logistic Regression: Effect of Residual Skills on University Enrollment

Female Male

(1) (2)

Average Marginal Effect of 1 log unit increase in Skills

θmath
i4 − θ̂math

4|3,2,1
0.065
(0.003)

0.060
(0.003)

θ̂math
4|3,2,1 − θ̂

math
4|2,1

0.056
(0.002)

0.063
(0.002)

θ̂math
4|2,1 − θ̂

math
4|1

0.050
(0.002)

0.059
(0.001)

θ̂math
4|1

0.046
(0.002)

0.043
(0.001)

θverbi4 − θ̂verb4|3,2,1
0.146
(0.003)

0.127
(0.002)

θ̂verb4|3,2,1 − θ̂
verb
4|2,1

0.161
(0.002)

0.135
(0.002)

θ̂verb4|2,1 − θ̂
verb
4|1

0.153
(0.002)

0.126
(0.001)

θ̂verb4|1
0.145
(0.002)

0.131
(0.001)

Note: Logistic regressions by gender. Dependent variable: college enrollment.
Independent variables correspond to residuals from the KS4 skills decomposi-
tion. Specifications include controls for family background characteristics and
unobserved heterogeneity obtained from the production function estimation.
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Interrelation between Test Scores and Externalizing Behavior, Family Background
Characteristics, and IQ It is possible that our verbal factor is capturing other types of skills
that affect schooling outcomes, which are not present in the math factor. We further investigate
this issue using a database that contains richer measures of externalizing behavior. We use the
Avon Longitudinal Study of Parents and Children (ALSPAC) database which is a large scale
longitudinal study of children born in Avon (United Kingdom) during the early 1990s. Although
these data cannot be linked to one of our main databases (i.e. HESA), it is useful for further analysis
because it has very rich information on student background characteristics, and the individuals in
the sample, which also attend the UK educational system, are similar in age to students in our
main database. This data contains proxies for externalizing behavior obtained from the Strengths
and Difficulties Questionnaire (SDQ), which was completed by the student’s teacher at age 7.96

We have measures for emotional problems, conduct problems, hyperactivity/inattention, and peer
relationship problems. Higher scores (scale of 0 to 10) indicate greater levels of severity. In addition,
we have a measure for pro-social behavior that takes values from 0 to 10, where a higher value
denotes more pro-social behavior.

This database also contains aggregate scores on math and English exams for each Key Stage.97

To study if externalizing behavior/socio-emotional skills have a higher correlation with verbal skills
than math skills, we perform a regression analysis where the dependent variables are performance
in KS2 math or verbal (English) exams and the independent variables are the SDQ measures.98

Table 26 shows regression outcomes where each coefficient corresponds to a separate regression
(in each of them we control for gender).99 Panel A of Table 26 shows that, while these proxies
are highly predictive of math and verbal scores, they do not favor one skill over the other, i.e. all
components of the SDQ questionnaire have similar effects on both exams. For example, a one-point
increase in hyperactivity problems decreases the verbal test score by 0.169 of a standard deviation,
which is very similar to the effect in math (0.165). Therefore, these results suggest that the larger
effect of verbal skill on college enrollment is not likely to be driven by a larger correlation between
verbal skill and externalizing behavior.100

Similarly, as we have discussed, family background characteristics might disproportionately
impact verbal skill relative to math skill, and with inadequate controls we risk misattributing the
effect of these characteristics on university enrollment to verbal skill. In our empirical model, we
address this issue by following two strategies. First, we included the following controls for family
background characteristics: free school meal eligibility, race, mother tongue, special education
needs, eight measures of neighborhood characteristics, and effectiveness of school attended. Second,

96The SDQ is a behavioral screening questionnaire for children and adolescents ages 2 through 17 years old and
was developed by the child psychiatrist Robert N. Goodman.

97We cannot reproduce the factor model analysis with this database because it only contains aggregate measures of
performance in math and English rather than the detailed measures needed to identify the factor model. In addition,
this database lacks college enrollment outcomes.

98The test scores on KS2 math and verbal have been standardized to have mean 0 and standard deviation 1
99We did not include all the measures in one regression because they are highly correlated, making the interpretation

of the coefficients difficult due to multicolinearity.
100To resemble the structure of the factor model, this analysis considers math and English test scores as dependent

variables. If instead, we were performing regressions where the SDQ questions would have been the dependent
variable, and math and English test scores independent variables (i.e. controlling for math and English performance
simultaneously), our results would have remained the same. Specifically, the coefficients on math and English in an
OLS regression where the dependent variable is the average of the SDQ questions are -0.306 and -0.300, respectively
(both coefficients are significant at the 1% level).
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Table 26: Linear Regression Model: Key Stage 2 Test Scores and ALSPAC Data

Verbal Math

Panel A: Strengths and Difficulties Questionnaire (SDQ)

Hyperactivity Problems
(obs. = 5,434)

-0.169 (0.005) -0.165 (0.005)

Emotional Problems
(obs. = 5,464)

-0.092 (0.007) -0.112 (0.006)

Conduct Problems
(obs. = 5,460)

-0.163 (0.009) -0.149 (0.009)

Peer Problems
(obs. = 5,464)

-0.094 (0.007) -0.103 (0.007)

Pro-social
(obs. = 5,461)

0.084 (0.006) 0.081 (0.006)

Average SDQ
(obs. = 5,424)

-0.247 (0.009) -0.250 (0.009)

Panel B: Family Background Characteristics

Parents Own House
(obs. = 9,356)

0.549 (0.023) 0.534 (0.024)

Father Lives at Home
(obs. = 7,985)

0.327 (0.032) 0.322 (0.032)

Mother College Degree
(obs. = 10,232)

0.789 (0.028) 0.756 (0.029)

Father College Degree
(obs. = 9,845)

0.753 (0.025) 0.727 (0.025)

Panel C: IQ Test

WISC IQ Test
(obs. = 6,427)

0.035 (0.001) 0.038 (0.001)

Notes: Each coefficient corresponds to a separate regression. The dependent
variables, overall Key Stage 2 math and verbal test scores, have been standardized
to have mean 0 and standard deviation 1. Average SDQ denotes the mean of the
Strengths and Difficulties Questionnaire, where a higher value represents more
severe externalizing behavior problems. All specifications include controls for
gender.
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we further examined our findings by conditioning on early Key Stage skills (i.e. KS1), which
perhaps serve as sufficient statistics for any unobserved family background characteristic.101 In
order to perform a final check on this assumption, we make further use of the ALSPAC database,
which provides more detailed information on parental background characteristics. Panel B of Table
26 shows OLS regressions of family background covariates such as parental education (i.e. parents’
holding a college degree), and proxies for family composition (i.e. father living at home) and
parental income (i.e. home ownership status) on KS2 math and verbal performance (note that
each coefficient corresponds to a separate regression). Overall, the results seem to indicate that
there is no differential effect of family background characteristics on math and verbal performance.
For example, having a mother (father) with a college degree increases KS2 English and math
performance by 0.789 (0.753) and 0.756 (0.727) of a standard deviation, respectively. In summary,
these findings further suggest that our main results are not likely to be driven by differential effects
of family characteristics on math and verbal test scores.

Finally, using the ALSPAC database, we also explore the correlation between IQ tests and KS2
test scores. Panel C of Table 26 shows the interrelation between the Wechsler Intelligence Scale
for Children (WISC) IQ test and KS2 exams.102 Results show that both math and verbal scores
are highly and similarly correlated with the WISC score, suggesting that verbal test scores are not
proxying students’ IQ differentially than math test scores.

Can University Supply Explain the Relative Importance of Verbal Skills? It is possible
to argue that the large effect of verbal skills on post-secondary enrollment could be a consequence
of universities in the United Kingdom mainly offering programs that do not require an intensive use
of math skills, e.g., humanities or social science. To study this possibility, for each enrolled student,
we look at the subject specific A-level course requirements for the actual degree program in which
they are enrolled. This information was extracted from the document “Informed Choices” created
by the Institute of Career Guidance and the Russell Group universities. This publication provides
information to all students considering A-level and equivalent options. We find that nearly half
(44.5%) of students enrolled in university were required to obtain a qualification in the sciences,
e.g., math or physics, before enrolling in college. The remaining 55.5% enrolled in programs with no
science requirement, with 31% having a non-science requirement, and 24.5% having no requirement.

Using the same method, but broadening our definition to include programs that either require
or recommend taking at least one science related A-level, we find that 62.3% of those in University
are enrolled in a degree program with a recommended science qualification prior to enrollment.
Overall, these simple statistics suggest that math skills are in fact required by universities and,
therefore, our results are not likely to be driven by the type of majors that are offered in the higher
education system in the UK.

101Similar assumptions have been made in the literature of teacher value-added (Todd and Wolpin, 2003).
102The Wechsler Intelligence Scale for Children (WISC) is an intelligence test for children between the ages of 6

and 16. The total IQ score represents a child’s general intellectual ability. It also provides five primary index scores:
verbal comprehension index, visual spatial index, fluid reasoning index, working memory index, and processing speed
index. In this sample, the mean of the IQ score is 104 points and the standard deviation is 16.1. The raw correlations
between the verbal and math test scores with the WISC index are 0.69 and 0.61, respectively.
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