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Abstract 
 
 
A substantial literature has dealt with the problem of estimating multiple-input and      
multiple-output production functions, where inputs and outputs can be good and bad. 
Numerous  studies can be found in the areas of productivity analysis, industrial organization, 
labor economics, and health economics.  While many papers have estimated the more 
restrictive output- and input-oriented distance functions, here we estimate a more general 
directional distance function. A seminal paper on directional distance functions by Chambers 
(1998) as well as papers by  Färe,  Grosskopf, and  Chung (1997), Chambers, Chung,  and 
Färe, (1998),    Färe and Grosskopf (2000), Grosskopf (2003), Färe et al. (2005), and Hudgins 
and Primont (2007) do not address the issue of how to choose an optimal direction set.  
Typically the direction is arbitrarily selected to be 1 for good outputs and -1 for inputs and 
bad outputs.  By estimating the directional distance function together with the first-order 
conditions for cost minimization and profit maximization using Bayesian methods, we are 
able to estimate optimal firm-specific directions for each input and output which are 
consistent with allocative and technical efficiency.  We apply these methods to an electric-
utility panel data set, which contains firm-specific prices and quantities of good inputs and 
outputs as well as the quantities of bad inputs and outputs.  Estimated firm-specific 
directions for each input and output are quite different from those normally assumed in the 
literature.  The computed firm-specific technical efficiency, technical change, and 
productivity change based on estimated optimal directions are substantially higher than 
those calculated using fixed directions. 
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1. Introduction 

         A large literature has dealt with the problem of estimating multiple-input and  multiple-

output production functions, where inputs and outputs can be good and bad.  Numerous  

studies can be found in the areas of productivity analysis, industrial organization, labor 

economics, and health economics. Many  studies in the area of child health estimate 

reduced form equations, thereby avoiding the direct estimation of disaggregated multiple-

input, multiple-output structural equations, as summarized in Agee, Atkinson, and Crocker 

(2012).  Another area of extensive study has been  firm efficiency, where some researchers 

assume an aggregate production technology, as in  Fernandez, Koop, and Steel (2005).     

     Other researchers have directly estimated disaggregated multiple-input, multiple-output 

production functions (structural equations) using distance and directional distance functions 

in an attempt to measure the tradeoffs among inputs and outputs, without employing  

separability or aggregation assumptions.  Using an output-oriented  distance function, the  

researcher has two options.  He can take the approach of  holding inputs constant and scale  

bad outputs and good outputs by the same parameter to reach the production frontier.    

Pittman (1983) shows that this credits the firm for increasing a bad output (say pollution) 

along with a good output (say electricity).  Alternatively,  the researcher  can hold constant  

bad outputs and inputs and measure the distance from the frontier using a proportional 

upward scaling of good outputs.  However,   no credit is given for a  simultaneous reduction 

in bad outputs or inputs.  

        Similarly,  using an input-oriented distance function, as with  Atkinson and Dorfman 

(2005), a researcher has two options.  First, he can hold constant good and bad outputs and 

scale back all inputs proportionally to reach the frontier.  However,  again  no credit is given 

for any simultaneous increase (reduction) in good (bad) outputs.  Alternatively, one can hold 

good outputs constant, treat bad outputs like inputs, and scale back both by the same factor 

of proportionally.  However,  the equal-proportionality assumption provides no  credit for  

an increase in good outputs.  None of these methods  credits the firm  for  simultaneous 

changes in all inputs and outputs. 

       The less-restrictive directional distance function allows calculation of the distance to the 

production frontier using different directions for each input and output, both good and bad.   

If non-zero directions are used to change only inputs (outputs) when measuring productivity 
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growth, the directional distance function is input- (output-) oriented. When non-zero 

directions are used for inputs and outputs, the directional distance function is technology-

oriented.   The choice of the direction of movement of a firm toward the frontier clearly  

affects measures of all structural parameters as well as the distance from a multiple-output 

production frontier. This becomes the basis for computing technical efficiency (TE), using an 

input-, output-, or technology-oriented approach,  as well as productivity change (PC), which 

is  the sum of the outward shift of the frontier, termed technical change (TC), and the extent 

to which the firm catches up to the frontier, termed efficiency change (EC).  The latter equals 

the change in TE. 

       The exact direction chosen may substantially affect the calculation of TE as well as the 

measures comprising PC.  As shown by Vardanyan and Noh (2006) and Agee, Atkinson, and 

Crocker (2012), the parameter estimates depend on the choice of the directional vectors.  

However, a seminal paper on directional distance functions by Chambers (1998), as well as 

papers by Färe,  Grosskopf, and  Chung (1997), Chambers, Chung,  and Färe, (1998),    Färe 

and  Grosskopf (2000), Grosskopf (2003), Färe et al. (2005), and Hudgins and Primont (2007) 

do not address the issue of how to choose an optimal direction set.    As is typical with the 

empirical applications for each of these studies,  Färe et al. (2005) estimated an output-

oriented directional distance function  for electric utilities involving three good inputs, one 

good output,  and one bad output using  directions of +1 for the  good output and -1 for the 

bad output and all inputs.   As a generalization of this approach, Agee, Atkinson, and Crocker 

(2012) considered the impact of four distinct sets of directions on the estimated parameters 

of an  output-oriented directional distance function, employed  to explain measures of child 

health.  While this provides information regarding sensitivity of model results to the 

directions chosen,  the choice amongst them is left to the researcher.  No framework has 

been provided within which to determine an optimal set of directions in a stochastic 

framework, although in a non-parametric framework Färe, Grosskopf, and Whittaker (2013) 

make the choice of the direction vector endogenous. 

      Feng and Serletis (2014) propose a primal Divisia-type productivity index that 

incorporates undesirable outputs in a directional distance function with fixed directions of 

(+1,-1) for good and bad outputs, respectively.  However, the paper contains numerous 

restrictive assumptions, as indicated by Tsionas, Malikov, and Kumbhakar (2014), which 

substantively affect results once they are generalized.  Below we also discuss erroneous 
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statements about  required transformations for estimating distance and directional distance 

functions.  We also note that the Feng and Serletis (2014)  proposed  aggregation index for 

productivity growth in their equation (4) is unit-sensitive and therefore is an improper 

aggregator of good and bad quantities. 

        In this paper we generalize the previous approaches by estimating  the set of directions 

that is  consistent with cost minimization and profit maximization.    In order to accomplish 

this, we first  formulate the restrictions that impose the fundamental translation property 

for input-, output-, and technology-oriented stochastic directional distance functions so that 

these restrictions contain the directions applied to each input and output.   The translation 

property, akin to the property of linear homogeneity in input (output) quantities for an input 

(output) distance function,  allows one to examine the effect of different directions of 

movement toward the frontier for different categories of  inputs and outputs, both good and 

bad.  We then generalize the dual relationship between the profit function and the  

technology-oriented directional distance function, as established by Chambers  (1998),  by 

assuming profit-maximizing behavior and deriving associated price equations for each input 

and output. These equations relate their prices to first-order partial derivatives of the 

directional distance function with respect to the  quantity of each input and output and 

allow identification of directions for each input and output.  This set of equations specializes 

to a system which models cost-minimizing behavior by utilizing only the associated price 

equations for each input. 

       We utilize our technique to model the electric utility production process using a set of 

inputs and outputs,  both good and bad.  Good inputs are energy (E), labor (L), and capital 

(K), which  includes  the annualized capital expenditures  on environmental control for the 

two major restricted air pollutants, sulfur dioxide (SO2) and nitrogen oxide  (NOX).   These 

capital expenditures are for scrubbers to reduce SO2 and NOX   emissions and/or 

modifications of combustion processes to reduce NOX creation. We also include the sulfur 

content of fuels,  S, as a bad input.1  This generalization is important, since bad outputs can 

be reduced by switching to fuels with lower  S, as well as modifying combustion  processes 

or installing emission control devices.  Trade-offs among these options have  not been 

                                                           
1  The study by Yaisawarng and Klein (1994)  includes  S, SO2 emissions, electricity generation, and the 
required good inputs --- production capital, fuel, and labor.   However, they exclude the capital cost of 
pollution control equipment and the emissions of the other two major pollutants. 
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modeled in any previous study of electric utilities. Further,  as bad outputs we   include 

emissions of the three major pollutants ---  SO2,   carbon dioxide ( CO2), and NOX.   Since the 

emissions of  CO2 have never been regulated, typically, studies have included only SO2 as a 

bad output.   Good outputs are residential (R) and industrial/commercial (IC) electricity 

generation. 

         Using a panel of 77 U.S. privately-owned firms producing steam-electric power over 10 

years, we jointly estimate a quadratic technology-oriented directional distance function  and  

a set of first-order conditions from the dual cost-minimization and profit-maximization 

models.   The typical fixed-directions approach relies  on the assumed directions of (+1,-1) 

for good outputs and good inputs/bad outputs, respectively.  However, we argue that since 

goods and non-marketed bads are produced by utilities, their relative valuation  may not be 

1-to-1 for all firms, when we model  them as cost minimizers or profit maximizers.  Since our 

data contain input and output price data, we append price equations (where prices are 

related to marginal products) for inputs to our directional distance function to obtain a cost-

minimization directional distance system and the price equations for all good inputs and 

outputs to obtain a profit-maximization directional distance system.  We identify the 

directions for bad inputs and bad outputs, which lack prices, using methods explained 

below.     Using Markov Chain Monte Carlo (MCMC) methods we estimate these systems, 

obtaining estimates of all structural parameters, optimal directions, measures of TE, PC, TC, 

and EC, and estimates of the implied optimal percent changes in inputs and outputs.   These 

directions are those that would prevail in the industry if firms were cost minimizers or profit 

maximizers. That is, we are estimating directional distance functions, not with directions 

chosen a priori, but with optimal directions chosen that are consistent with cost 

minimization or profit maximization. 

       As we show in our empirical application, the estimated optimal directions imply 

considerably larger measures of efficiency and productivity change than obtained using the 

fixed-directions approach.  Optimal directions also imply that for the average firm to achieve 

cost minimization (i.e.,  be allocatively efficient), it must reduce K relative to L and E.   To 

achieve profit maximization (assuming that pollutant emission levels are given),  it must 

additionally reduce  R and IC output.    
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       The remainder of this paper is organized as follows.  In section 2, we present the 

properties of the directional distance function including price equations derived from the 

cost-minimization and profit-maximization models.  We develop the econometrics of 

directional technology distance functions with fixed directions in section 3. In section 4 we 

explain our MCMC inference procedure.  Data and econometric results follow in section 5 

and conclusions in section 6. 

2. The Model 

      2.1 Model Properties 

       Consider the typically employed a quadratic function of all inputs and outputs as 

                                     

                                                   

 

1
2

1 1 ' 1

( )
W W W

w w ww w w

w w w

F z z z z   

  

                                                (1) 

where  1,..., Wz z z  includes collectively all inputs and outputs (good or bad). We begin 

with a simple reformulation of the definition of the directional distance function (see eq. 1 

in  Hudgins and Primont, 2007 (hereafter HP)): 

    , max : ,x yD x g y g T   


     z g z g , with the convention that the 

directions 0, 0.y xg g   The directional distance function has the following properties: 

D1: Translation:    , ,D D 
 

  z g g z g
 

D2: g-Homogeneity of degree minus one:    1, ,D D 
 

z g z g  

D3: Good Input Monotonicity: ( , , , ; ) ( , , , ; )x x D x x y y D x x y y   g g    

D4: Bad Input Monotonicity: ( , , , ; ) ( , , , ; )x x D x x y y D x x y y   g g  

D5: Good Output Monotonicity: y y    ( , , , ; ) ( , , , ; )D x x y y D x x y y g g  

D6: Bad Output Monotonicity: y y   ( , , , ; )D x x y y g  ( , , , ; )D x x y y g  

D7: Concavity: ( , , , ; )D x x y y g  is concave in ( , )y y  ∈ ( , ).P x x  
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D8: Non-negativity: ( , , , ; ) 0D x x y y g  iff ( , )y y  ∈ ( , ).P x x   

         From  HP,  the directional distance function in (1)  must satisfy D1-D8. In equations (18)-

(21), HP derive the restrictions that must be imposed to satisfy D1.  Condition D2 is 

automatically satisfied so long as D1 is imposed and (1) is estimated with zero on the left-

hand side.  The equations that impose D1 are the only equations that involve the directions 

(they do not initially appear in equation (1)).  To see this  suppose for simplicity that 

 1 1,..., , ,...,M Ny y x x z  , where the y’s are good outputs, while the x’s are good / bad 

inputs and bad outputs, so W M N  . Suppose also that  1 1,..., , ,...,M M Wg g g g
g , 

where 1,..., 0Mg g  , and 1,..., 0M Wg g  .   The  restrictions from HP which satisfy D1 are: 

1

1
W

w w

w

g


 ,                                                               (2) 

' 1

0
W

ww w

w

g 



 , 1,...,w W  .                                                     (3) 

Now the mechanics of the model are such that only the restrictions above change when one 

selects a particular direction vector W

g .  

     2.2 Imposing the Restrictions 

         In order to impose the restrictions in (2)-(3) we must rewrite them in terms of some 

parameter. 

From (2) we have 

1

1

1
W

w w

w
W

W

g

g














  

while from (3) we have 

1

1

/ ,    1,...,
W

wW ww w W

w

g g w W 


 



     

so that we place the identically doubly-subscripted parameters on the left-hand side.

        

Substituting these expressions in (1) we obtain:
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 
1 1 1

1
2

1 1 ' 1

,
W W W

W w w
w w ww w w w W

w w wW W W

z g g
D z z z z z

g g g
 

  

 

  

   
       

   
 z g  

This can also be expressed as: 

     
1 1 1

1
2

1 1 ' 1

,
W W W

W W w w W w ww w w W w w W

w w w

D g z z g g z z g g z z 
  

 

  

     z g

 

 

 

2.3  First-order Conditions 

     The profit function has been shown to be dual to the directional distance function by 

Chambers (1998).    He then postulates that the  profit-maximizing firm solves 

               sup{ )}. (( ) ( ) ( ) 4 )(y y y x x x xD y D D x D a     yp y g p g p x g p g  

         By taking partial derivatives of the previous expression, he derives the first-order 

conditions for an interior solution to the profit-maximization problem: 

 
 

1

;
W

w
w w w ww w

w

p
J D J z

J
 



 



 
      

z g
p g

, 1,...,w W  ,                          (4b) 

or equivalently 

  1

,    1,..., ,
W

w w
w ww w

w

J p
z w W

J
   



   



p g

                                                  (4c)

 

where 1wJ   if  1,....,w M  (that is wz  is a good output), and 1wJ    otherwise, and 

these conditions are valid only for the elements of z  for which prices are available. Here 

S

p  denotes the price vector.2 This term is the sum of direction-weighted revenues and 

cost, and can be interpreted as the Lagrange multiplier.  

                                                           
2 Note that our  Jp g  is the same  direction vector as used by HP except that their 

directions are defined to be strictly positive.  This implies that their version of  D1, the 
translation property, involves   positive directions multiplied by the estimated distance  for 
inputs and bad outputs that would be subtracted from the respective initial values,  whereas 
our version of D1 involves negative directions for inputs and bad outputs would be added to 
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         Also  ,sJ J s  S , where S  is the subset of  1,...,W  indicating elements for 

which we have prices. Let  dimS  S . So we have prices for only S W variables,  

typically only for the good inputs and the good outputs.  

         One can more accurately write   (1) as  ;D


z g  to emphasize that the estimated 

distance function is conditional on g .  Suppose 
 

    

vech

 
  
 

α
γ

B
, where  1,..., W  α , and 

 
, 1,...,ww w w W

  
B  denotes all parameters in (1). Since the directions appear only in the 

restrictions (2) and (3) an even better notation is  ;D


g
z γ  to indicate that the parameters 

γ  depend explicitly on the direction g . In matrix notation, we write the restrictions (2) and 

(3)  as: 

 

1 0 α g ,                                                                      (5) 

WBg 0  , B B  .                                                                      (6) 

3. The econometrics of directional technology distance functions with fixed directions 

        Suppose we have fixed a particular vector of directions, say  1,1, 1, 1, 1    g . Then 

the restrictions (5) and (6) provide specific constraints upon the parameters of (1) and (4). 

Consider the statistical version of (1) and (4) where  error terms are added: 

  1
02

1 1 ' 1

 


 

  

    
W W W

w w ww w w

w w w

D z z z v uz ,                                  (7) 

     
1

;
W

w w w w ww w w

w

J p D J z J v 


 



 
      

 
z g p g p g , w S ,                          

(8) 

                                                                                                                                                                      
respective initial values.   The difference between the two formulations of D1 is strictly 
notational.  The denominator of  the left-hand-side of (4b) is composed of the sum of 
positive terms with our formulation.  The same is true for their equations (5) and (6). 
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with a one-sided component, u , and  standard noise components , an d o wv v , each  with 

zero mean, reflecting errors in optimization due to random events beyond the control of the 

firm. This system of equations is a nonlinear simultaneous equation model where the 

entire vector z is endogenous, while prices ( p ) and possibly other variables are 

predetermined. In total we have W  endogenous variables. There are S W equations in  

(8).  Moreover w w

w

p g


 p g
S

. 

         In our application 5 9S W   . At first sight there are S+1 equations above in S 

endogenous variables. This is not so, because for any direction g  if we multiply the 

equations of (8) by wg ( w S ) we get: 

 
1

W

w w w w w ww w w w w

w

J p g g z g J v g   



 
   

 
 p g .                                   (9) 

Summing over wS , we have 

0w w

w

v g



S

.                                                                          (10) 

Therefore, we may drop one equation from (8). Then the distance function in (7) plus the S-1 

equations in (8) provide a system of S equations in the S endogenous variables for which we 

have price data.  This leaves another W-S variables without equations but we will deal with 

this problem by appending a reduced form as in standard treatments of LIML. 

         Concentrating now on the system (7) and (8) let us write it in somewhat simpler form 

assuming we have prices for all M good outputs and N good inputs (W=M+N). If necessary, 

reorder the elements of z  so that the first M elements are good outputs, the next N 

elements are good inputs, and the remaining elements are bad inputs and bad outputs (for 

which no prices are available).  

   1
02

1 1 ' 1

; 0
W W W

w w ww w w

w w w

D z z z v u 


 

  

     gz γ                                  (11) 

 
1

W

w w w ww w w

w

J p z J v   



 
   

 
 p g , 1,..., ,w S M N                            (12) 
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where 1,  1,...,wJ w M  , 1,  1,..., 1wJ w M M N     
 
and the translation 

property restrictions in (5) and (6)  have been imposed. Equations (11) and (12) can be 

written as follows: 

1
02

,v u   α z z Bz                                                           (13) 

    d J    g gJ p p g α B z v .                                        (14) 

* * z Πw v                                                                 (15) 

where,  1 1 1,..., , ,...,d

M M M Ndiag J J J J  J , and the notation ,
g g

α B  emphasizes that 

the parameters depend on the particular direction. Moreover, we define  

 1 1 1,..., , ,...,M M M Np p p p  p , and  1 1,..., N Mv v  v . Define also the overall two-sided 

error term as  0 ,v v v . Equation (15) provides the reduced form for 

*

1,...,M N Wz z 

   z  which denotes all bad inputs and bad outputs, and w  is a 1G  

vector of predetermined variables.    In this application we do not actually use any 

predetermined variables from outside the model,  on the grounds that these are, more often 

than not, difficult to find.  Instead we construct w  using exogenous dummy variables as 

explained in Section 5.1.   If  L W M N    then 
*

z  is 1L , and the matrix of reduced 

form coefficients is L G . By *
v  we denote the 1L  vector of errors in the reduced form.   

Moreover, we assume  *, , ~ ,o M N Lv N  
 
 

v v O Σ . 

      We note that one error in  Feng and Serletis (2014),  which is not spelled out in Tsionas, 

Malikov, and Kumbhakar (2014), is their assertion that "Like the radial output distance 

function, the directional output distance function in (20) [analogous to our equation (11) 

above] cannot be estimated directly since , )( ( ) ;o z t tD g   is not observable".  This is 

incorrect, since for the directional distance function, one can obtain exactly the same set of 

estimated coefficients and standard errors as obtained using the transformation process in 

Feng and Serletis.  This is accomplished by setting the left-hand-side of their equation (20) to 

zero--which corresponds to efficient firm behavior--imposing the parametric restrictions that 

guarantee the translation property, and then estimating this restricted version of (20).  The 
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advantage of this approach is that the fitted directional distance is directly obtained via 

estimation of  (20) and this estimate can be directly employed in calculations of PC, TC, and 

EC.  The same approach can be taken with the output distance function by  setting the left-

hand-side of the output distance function (their equation (13)) to 0--since the efficient firm 

will have 1oD  --imposing the restrictions for linear homogeneity in outputs, and 

estimating this restricted equation.  This will yield identical estimated coefficients and 

standard errors as would be obtained using their proposed normalization. 

       From the system in (13) - (15) we  derive the Jacobian of transformation: 

  

    

J

 




α z B

p g B
J    .                                                   (16) 

 If we denote the HP Lagrange multiplier by 

  0J  g p g , 

it is clear that (14) becomes: 

 d     
g g g

J p α B z v .                                        (14b) 

In simplified terms, the equations of this system can be derived from (12) and can be written 

as: 

1

W

w w w ww w w

w

J p z v   



 
   
 

 g , 1,...,w S M N                              (12b) 

Notice that w wJ p  is wp  depending on whether wz  is input or bad output (so we get wp ) 

or good output (in which case we get wp ). The right hand side of (12) or (12b) is a linear 

function of the wz s, conditional on the HP Lagrange multiplier g . 

        Also (16) simplifies to: 

2 *

1 ,1  =    =  
  

W 



 

 
g

g g g

g g

α z B
B z B

B
J  ,                                                     (16b) 
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where 1  is the first element of α , ,1

g

B  is the first row of 
g

B , and *

gB  is the 

   1 1W W    submatrix of 
g

B whose first column is deleted. Due to the singularities 

induced by the constraints we redefine (in connection with (16b) only) α  and z  so that 

their last element is omitted while 
g

B  is redefined so that its last row is omitted.  When g is 

arbitrarily selected it is held fixed at specified values.  However, these values may not 

correspond to the cost-minimizing values.  When we estimate  g   and it is specified to be 

the same for all firms,  there is little or no problem in estimation because of its presence in 

the Jacobian.  However, when we allow g  to differ across firms, standard methods of 

estimation become problematic.  Hence we turn to MCMC based inference. 

       Of major interest are measures of TE, TC, EC, and PC, computed using the optimal 

directions relative to fixed directions for all firms.   We compute TEit as the average of 

exp(−uit) over all MCMC draws.  In constructing the other measures we follow Chambers 

(1996) by computing a Luenberger productivity change indicator which may be decomposed 

into EC and TC (see Grosskopf (2003) for additional discussion).  Specifically, we compute  

the percentage change Luenberger productivity change indicator, PC
L
it,  as  

 PCL L L

it it itC C     

Further, we define 

1

, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

1

( , , , ) ( , , , )
TC .5

( , , , ) ( , , , )

{

}

t t

T TL i t i t i t i t i t i t i t i t

it

t t

T Tit it it it it it it it

D D

A

D D

B



       









x x y y x x y y

x x y y x x y y

 

and  

1

, 1 , 1 , 1 , 1{ ( , , , ) ( , , , )}
EC ,

t t

T TL it it it it i t i t i t i t

it

D D

C



   


x x y y x x y y

 

which are identical to the definitions of Chambers (1996) except that we convert them into 

percent changes by dividing by  A, B, or C, which  are the midpoints of the two associated 

numerator terms, to produce percent change measures.   See also Agee, Atkinson, and 

Crocker (2012) for more discussion and  Grosskopf (2003) who provides details for the 

calculation and decomposition of productivity change using alternative activity analysis 

models. 
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4.  MCMC – based inference 

         Suppose dθ  is the parameter vector, augmented to include parameters for each 

direction and      | ;p pθ θ θLY Y  is the kernel of the posterior distribution where 

Y  denotes the data. The likelihood function is  ;θL Y  and  p θ  denotes the prior. Due 

to the high nonlinearity of the posterior and the fact that the parameters and the directions 

appear in the Jacobian, we use the method of Girolami and Calderhead (2011) to perform 

Bayesian inference.  As the authors write “[t]he proposed methodology exploits the 

Riemannian geometry of the parameter space of statistical models and thus automatically 

adapts to the local structure when simulating paths across this manifold providing highly 

efficient convergence and exploration of the target density”.  

         Given a kernel posterior distribution the method of Girolami and Calderhead (2011) 

aims at obtaining draws by exploiting the gradient and the Hessian. Roughly speaking 

parameters are updated so that they visit the area of high posterior probability mass, not 

unlike standard Newton-Raphson numerical optimization techniques. 

         Following Girolami and Calderhead (2011) we utilize Metropolis adjusted Langevin and 

Hamiltonian Monte Carlo sampling methods defined on the Riemann manifold, since we are 

sampling from target densities with high dimensions that exhibit strong degrees of 

correlation.  Consider the Langevin diffusion 

      1
2

log ;d t p t dt d t  θ θ BY , 

where B  denotes the d-dimensional Brownian motion. The first-order Euler discretization 

provides the following candidate generation mechanism: 

 * 21
2

log ;o op    θ θ θ zY , 

where  ~ ,dNz 0 I , and 0   is the integration step size. Since the discretization induces 

an unavoidable error in approximation of the posterior, a Metropolis step is used, where the 

proposal density is  
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    * 2 21
2

| log ; ,o o o

dq N p   θ θ θ θ IY , 

 with acceptance probability  
   
   

* *

*

*

| |
, min 1,

| |

o

o

o o

p q
a

p q

  
 
  

θ θ θ
θ θ

θ θ θ

Y

Y
.  

The Brownian motion of the Riemann manifold is given by: 

               
1/ 2 1/ 2

1 1

1

d

i ij
ij j

d t t t t dt t d t


 



     
     

B G θ G θ G θ G θ B
θ

,  

for 1,...,i d . 

         The discrete form of the above stochastic differential equations is: 

     
 

 

   
 

  

    

* 2 1 2 1 11
2

1

2 1 1 1

1

1

log ;

            

                            , .

o
d

o o o o o

i i
i

j j
ij

o
d

o o

ij ij j

o

i i

p

tr t

t

 

 

 

  



  





 
       
    

 
   
    

 
  





G θ
θ θ G θ θ G θ G θ

θ

G θ
G θ G θ G θ z

θ

μ θ G θ z

Y

 

The proposal density is     * 2 1| ~ , ,o o o

dN   
θ θ μ θ G θ  and the acceptance probability 

has the standard Metropolis form:  
   
   

* *

*

*

| |
, min 1,

| |

o

o

o o

p q
a

p q

  
  

  

θ θ θ
θ θ

θ θ θ

Y

Y
.  

         In our case the parameter vector includes the structural parameters of the distance 

function as well as the directions. Technical inefficiency is drawn from its standard 

conditional posterior distribution resulting from (7). It is not possible to factor the 

conditional posterior distributions of directions and obtain them in known forms or, at least, 

forms that are amenable to posterior simulation so we rely on the general Girolami and 

Calderhead (2011) update. 

       In particular, we use the following blocking scheme: 

a)  Draw u, a vector all observations of u from (11), conditional on data, g, Σ and θ,  
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b) Draw directions g, conditional on data, u, Σ and θ. 

c) Draw the remaining parameters, θ, conditional on data, u, Σ and g. 

d) Draw Σ conditional on data, u, θ and g. 

 

Steps (b) and (c) are implemented using two steps of the Girolami-Calderhead  Riemannian 

manifold MCMC scheme. In step (a) the conditional distribution is 

 21

2
| , , , ~ ,  

ovu N 
  g θ Σ a z z BzY , where 2

ov  denotes the (+1,1) element of Σ  whose 

remaining elements in the first row and column are assumed zero, for simplicity. Therefore, 

2

*

  

     

ov  
  
  

0
Σ

0 Σ
. The elements of *Σ  in step (d) can be drawn from an inverted Wishart 

distribution. 

       We define our priors as the following. We assume a conditionally conjugate prior 

inverted Wishart distribution,  *,iW  Σ , for the different elements of *Σ , where we set   

to 10 and 
*Σ  to 2

110 M N L



  I . For 2

ov  we assume  2

2
~

o

o

v

q
 


 with 1o   and 0.01q  . For 

the elements of θ  we adopt a semi-informative prior implementing the theoretical 

restrictions in stochastic form. The theoretical restrictions amount to Aθ 0 . The 

restrictions are imposed using Aθ ξ , where  6~ ,10RN 
ξ 0 I , where R  is the number of 

restrictions.     The directions, g, are assumed time-invariant and firm-specific.  In principle, 

the optimal g varies with the prices and quantities of inputs and outputs and therefore is not 

time-invariant.  However, a model with time-varying g was too difficult to estimate due to 

the imposition of monotonicity and curvature restrictions that are highly involved.  This 

makes the imposition of the restrictions in stochastic rather than deterministic form, even 

more important: exact imposition of the restrictions results in a system which is highly 

nonlinear in θ and makes programming somewhat cumbersome.  

       The use of the prior allows estimating directions g in an absolute rather than relative 

manner. The latter would necessitate imposing restrictions of the form 1 g g . This 

theoretical advantage is hampered by the possibility that estimates of g can be sensitive to  

V if the data are not very informative about directions. As we will see this is not the case in 

our application when we vary V  in its plausible range.    The benchmark prior is  ~ ,2tg μ I , 
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where the elements of μ are 1 or -1 for good outputs and bad outputs/inputs, respectively,  

where t denotes the Student-t distribution with 5   degrees of freedom parameter. The 

choice of the Student-t is motivated by the need of the weighted bootstrap that the tails of 

the benchmark prior must be fatter relative to the tails of the priors for which we need to 

perform sensitivity analysis. 

5. Data and Empirical Results 

     5.1 Data 

 

     The sample consists of 77 privately owned electric utilities, listed in Table 1,  which 

operated in the U.S. over the 10-year period 1988-97, for a total of 770 observations. 

Extending the sample further results in a loss of many firms due to merger and the cessation 

of operation of fossil fuel-based steam generation. Since technologies for nuclear, 

hydroelectric, and internal combustion differ from that of fossil fuel-based steam generation 

and because steam generation dominates total production by investor-owned utilities 

during the time period under investigation, we limit our analysis to this component.            

      For our sample of utilities, total kWh output has remained relatively constant over time, 

SO2 emissions have fallen dramatically due to a cap-and-trade system, NOX emissions have 

declined somewhat, and CO2 emissions, which are unregulated, have grown over time. 

Further, the input of S and production K have dropped slightly, the usage of L has dropped 

considerably, environmental K has increased substantially, and the usage of  E has increased 

marginally. 3    

         We construct good inputs and good outputs as follows.  First, the quantity of E is  the 

total Btu of fuel consumed and we construct the quantity of L by taking the expenditures on 

labor, multiplying by the ratio of steam to total net generation (to obtain the portion 

attributable to fossil-fuel generation), and dividing  by the price of L (defined below).  Both 

variables are obtained from FERC  Form 1.  This form also reports the total of the dollars of 

interest plus depreciation paid by each utility for production K and pollution control K.  We 

multiply this sum by the ratio of steam to total net generation to obtain our measure of K 

                                                           
3 Details on aggregate inputs and outputs are available from the authors. 
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used in steam generation.  We decompose the good outputs, R  and IC, from total steam 

output in mWh by  multiplying the percent of sales revenue in each category times total 

steam output.  These data are again taken from FERC  Form 1.         

     We construct the prices of  good  inputs and outputs in the following manner. The price of  

E is computed as a weighted-average of the cost per million Btu of each fuel,  taken from the 

Department of Energy, Energy  Information Administration (EIA) Form 767 Boiler Files.  The 

price of L  is the  wage rate, defined as the sum of salaries and wages charged to electric 

operation and maintenance, divided by the number of full-time plus one half the number of 

part-time employees, obtained from FERC  Form 1. The price of  K is the product of the  yield 

of the firm's latest issue of long-term debt, adjusted for appreciation and depreciation of 

capital using the Christensen-Jorgenson (1970) cost of capital formula, and the Handy-

Whitman index for electric utility construction costs.  These data were taken from FERC 

Form 1  and  Moody's Public Utility Manual.  Prices of R and IC are derived as total revenues 

in each category divided by total sales in that category, where the data were taken from 

FERC Form 1.         The bad input, S, and the  bad outputs  --- emissions of SO2, CO2,   and NOX -

-- are obtained from the Department of Energy Information Administration (EIA) Form 767 

Boiler Files.   All pollutants are measured in tons.         Since we have panel data, we add 

dummy variables for time periods and firms to equation (13).  These appear separably from 

input and output quantities to maintain tractability of our model.  We also control for firm 

vintage, which is computed for each firm as the weighted-average age in years,  where the 

weights are  the firm's kWh output,  taken from FERC  Form 1.  This variable is not interacted 

with any other inputs or outputs.    We define w  as the set of firm dummies, time dummies, 

and their interactions, the prices of good inputs and outputs, their squares, and their 

interactions.      In rare cases we encountered missing data for some variables.  Whenever 

necessary we accounted for missing data points by either using the value of the previous 

period or the average of the previous and the subsequent period. 

  

   5.2 MCMC Modeling 

       Potentially all variables are endogenous, since they are quantities of inputs or outputs 

that are  under the control of the firm.  Referring to eq. (14), we have prices and hence price 

equations only for good inputs and good outputs.  These equations identify these 
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endogenous variables.  For the other endogenous bad input and bad outputs we need the 

reduced form equations in (15) to achieve identification      In our MCMC computations, we 

specify that each structural parameter has prior mean zero with a diffuse prior covariance 

matrix.  In our application the Hessian of the log-likelihood is not available in closed form, so 

 G θ  and  1
G θ  are not available. Instead we consider the observed Fisher information 

matrix    cov log ;
 

   
G θ θ

θ
L Y , as in  BHHH. The score of the log-likelihood is 

computed numerically.    In all applications we take 600,000 passes, the first 100,000 of 

which are discarded to mitigate the impact of start-up effects, and then we keep every 10th 

draw resulting in a total of 50,000 draws which, as we have found, are practically 

uncorrelated.  Inferences for the parameters and functions of interest are based on these 

50,000 draws. During the burn in phase, we choose the step size parameter, ε, so that the 

acceptance rate later on is approximately 80% (see Girolami and Calderhead, 2011, p. 22) 

resulting in values close to 0.01.         

        Each of these is a function of both the data (firm- and time- dependent) and the 

parameters. The functions are recorded for each firm and time period for a given parameter 

draw of the Riemann Manifold--Metropolis Adjusted Langevin Algorithm (RM-MALA). 

Suppose a function of interest  , it D  depends on the data and the parameters θ which 

include latent variables like the optimal directions. If   , 1, ...,
s

s S   denotes the available 

draws, the posterior mean can be computed as     1

| 1
, ,    


   

S s

D it its
E D S D . 

Functions of interest may include technical inefficiency and, of course, the optimal directions 

themselves. Sample distributions of functions of interest are reported using their posterior 

means and standard deviations so that parameter uncertainty is fully taken into account. 

   

 

     5.3  Posterior Densities        

       In Table 2 we present the optimal directions computed for five models.   With model I, 

we calculate optimal directions for the three good inputs, the bad input, and the three bad 

outputs.  In model II we do this for only the good inputs and in Model III for these inputs and      
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CO2 emissions.  Model IV computes optimal directions for all good inputs and good outputs, 

while Model V computes optimal directions for all inputs and outputs, both good and bad. 

Thus Model II is our pure cost-minimization model while Models IV is our pure profit-

maximization model, assuming that levels of the pollutants and the bad input are held 

constant. 

         The posterior mean estimated directions for the  good outputs and the set of bad 

outputs, bad input, and good inputs  are  quite different from the priors of +1 and -1, 

respectively, which typically have been imposed in previous studies estimating directional 

distance functions.  Across all five models, the estimated direction for K is negative, while 

the estimated directions for L and E are positive.  This implies that  cost-minimizing and 

profit-maximizing firms (which would  no longer be regulated) wish to decrease their usage 

of K and increase their usage of L and E.  The current over capitalization is due to the 

operation of nearly all of our sample utilities in rate-of-return-regulated jurisdictions, where 

the regulated rate of return exceeds the market rate.  This phenomenon is known  as the 

Averch-Johnson effect, postulated by Averch and Johnson (1962).  With Model IV, the 

utilities on average will also choose to reduce their production of R and IC since they were 

forced to produce more good output than is profit-maximizing by the regulatory 

commissions.  Models I and III are cost-minimizing  cases with the inclusion of additional 

equations for  S, SO2, CO2,  and NOX   in Model I and for CO2 in Model III.  Model V examines 

profit maximization with the additional inclusion of equations for the bad input and all the 

bad outputs.  With Models I, III,  and V, since we have no prices for  bad outputs and  the 

bad input,  their directions cannot be optimized as part of a cost-minimization or profit-

maximization solution.  Rather, their directions reflect historical trends exhibited by the 

reduced-form equations for the bad outputs and the bad input.  Thus, with Model V, the  

historical decreases in S, SO2, and NOX  determine negative directions.  With all models, CO2 

is optimally increased, since it is an unregulated pollutant, which determines a positive 

direction.  With regard to S, in Model I the negative direction for the bad input is similar to 

that with Model V--firms historically have reduced the use of sulfur due to environmental 

regulations.  Although the directions for SO2  and NOX  differ in sign between Models I and  V, 

we place more confidence in the latter, since the posterior densities for these two pollutants 

are considerably more separated from zero than are those of Model I.    In fact, Models II-V 

are  more precisely identified in terms of posterior densities and tell a very consistent story 
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of expected changes in inputs and outputs under a change to either cost-minimization or 

profit-maximization from the current system of rate-of-return regulation.   

        In Figures 1-5 we illustrate the value of estimating firm-specific optimal directions, 

focusing on firms 1, 22, 28, 46, and 54 (see Table 1), which are five geographically disperse, 

large utilities.  One burns primarily natural gas, one primarily coal, and the others a mix of 

fuels.  In Figure 1,  we present these firms' Model I estimated  posterior densities for optimal 

directions of K, L, and E.  Firm-specific information is useful for all of these inputs, both in 

terms of the relative inter-firm sizes of directions for each input as well as their relative 

dispersion.  In Figures 2-5, we see that firm-specific posterior densities for optimal  

directions with Models II-V are often well-separated for all good inputs.  In addition, for 

some firms, noticeable differences exist in the location of the posteriors, when compared 

across the models. 

      We also present aggregate (over all firms) posterior densities for optimal directions of 

Models IV and V in Figures 6a-6b.   In Figure 6a we show the aggregate  estimated posterior 

densities for optimal directions of K,L,E, R, and IC for Models IV and V, while in Figure 6b we 

present the additional Model V aggregate posterior densities for the optimal directions of   

S, SO2, CO2,  and NOX .  Considerable separation of individual densities is clearly exhibited in 

both figures. 

        In Table 3 we examine the implications of cost-minimizing or profit-maximizing behavior 

in terms of percent changes in inputs and outputs for all models relative to actual quantities.  

These  range from approximately -.07 (in the case of SO2  in Model V) to approximately .07 

(for E in Model IV).   Such estimated changes are reasonable in magnitude for a switch from 

a rate-of-return regime to either profit maximization or cost minimization.  In addition, the 

posteriors of all changes are well-separated from zero. We have already discussed the 

reasonableness of the signs attached to the estimated changes, which are identical to those 

in Table 2. With Model IV,  the approximate average  percent change in K is  -.05,  in L  is  .03,  

in E is  .07, in R is -.06, and in IC  is  -.03.  With Model V,  the approximate  average percent 

change in K is  -.04, in L is  .06, in E is .04, in R  is  -.05, and in IC is  .06.  The approximate 

average percent change for S is -.04, for SO2   is  -.06,  for CO2 is  .04, and for NOX   is -.06.   

         Figure 7a  displays the posterior densities of the percent changes in good inputs and 

good outputs for Models IV and V, while Figure 7b presents these densities for the bad 

outputs and the bad input of Model V.  With Model IV, the percent changes for K and L are 

more precisely estimated than those for E, R, and IC.   With Model V, R has a more disperse 
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posterior than the other inputs and outputs.   In Figure 7b,  there is considerable separation 

of all posteriors from zero, although there is little separation among the posteriors for  S, 

SO2 , and NOX .     

       For Models IV and V in Figure 8, we graph TE computed using optimal and  fixed 

directions of (+1,-1) for good outputs and inputs/bad outputs, respectively.  Using the 

optimally estimated directions, the mode of TE is approximately .10 to .15 points higher for 

these models.  From Figure 9, we see that  by using optimal directions, TC increases from an 

average of about -.01 with fixed directions to an average of about .02 for Model IV and from 

an average of about -.018 with fixed directions to an average  of about .025 for Model V.    

Finally, in Figure 10, we examine the changes in PC due to the use of optimal directions.  For 

Model IV,  PC increases from an average just above zero to an average of about .02 and for 

Model V from an average of -.03 to an average of about .025.   The increased levels of TE, TC, 

and PC are quite dramatic, yet still very reasonable, and cast the electric utility industry in a 

considerably more efficient and progressive light when viewed using optimal directions.    

       In Table 4 we present the MCMC convergence diagnostics which indicate that the MCMC 

process did converge for  Models I-V.  Specifically we have used Geweke’s (1992) 

convergence diagnostics (GCD) and the relative numerical efficiency (RNE). The GCD 

convergence diagnostic tests whether the draws for each parameter have converged by 

computing a t-statistic between the first 20% and last 50% of draws. The variance used in 

the t-statistic is computed using the value of the spectral density at the origin with an AR(10) 

approximation.     For i.i.d. sampling from the posterior, RNEs should be close to one. Since, 

unavoidably, MCMC introduces autocorrelation (as indicated by the autocorrelation function 

(acf)),  RNEs should not be very close to zero. As seen from the table, the RNEs are large 

enough , so we expect that the posterior is adequately explored--although not as efficiently 

as by an i.i.d. sampler, which, unfortunately,  we do not have at our disposal.  For the RNE 

and the GCD, we compute 99% intervals by ranking the values of these statistics across all 

parameters and then constructing  99% intervals around the median. The Girolami-

Calderhead sampler  seems to overcome the problems that other algorithms (like 

straightforward implementations of Metropolis-Hastings) would have. This is additional 

evidence that the Girolami-Calderhead sampler has great potential in applied econometrics 

and performs well in the context of MCMC with data augmentation: convergence is achieved 

in reasonably few iterations, autocorrelation is mitigated, and RNEs are improved drastically.  
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  5.4  Sensitivity Analysis 

       Suppose we have a model whose likelihood function is  ;L θ Y  where pθ  

represents the parameter vector and Y   is the data. Suppose also we have a benchmark 

prior of the form  op θ  --it is not necessary that all integrating constants are present in the 

likelihood and the prior. The posterior distribution is 

     | ;o op L p θ Y θ Y θ . 

From the posterior we have obtained an MCMC sample 
  , 1,...,
s

s Sθ . Suppose now we 

have a different prior  p θ  and the posterior is: 

     | ;p L p θ Y θ Y θ . 

We are interested in an examination of how the posterior mean  |p d


 θ θ θ Y θ  

changes as we change the prior  p θ . In more precise notation the prior is denoted by 

   ;p p θ θ  and    ;o op p θ θ  so that the priors differ with respect to the 

parameters  . Here we use the weighted bootstrap method presented by Smith and 

Gelfand (1992), which is similar to the sampling-importance-resampling method of Rubin 

(1988). Define  

 

  
  

s

s

s

o

p
w

p


θ

θ
 and  

 

 

1

s
s

S
s

s

w
w

w





. Next we draw 

 
*

s
θ  from the discrete distribution 

whose support is 
  , 1,...,
s

s Sθ  with probabilities 
 s

w . In turn this is, approximately, a 

sample from  |p θ Y  and the posterior mean is, approximately, 
 1

*

1

S
s

s

S 



 θ θ . The 

approximation improves as S  . Care should be taken that the tails of  op θ  are fatter 

relative to any of  p θ s that we are going to examine. 
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     To implement sensitivity analysis we vary the critical parameters of the prior for 

directions  ~ ,Ng μ V . Since we use standardized data we vary the elements of μ  between 

-2 and 2 and the diagonal elements of V  between 0.12 and 32. The weighted bootstrap 

approach is implemented using 1,000 different priors which produce 1,000 different 

posterior means for the directions g . The disributions of posterior means relative to the 

posterior mean from the benchmark prior (percentage changes) are reported in Figure 12.  

The posterior estimates of directions show little  sensitivity to the choice of priors. 

6. Conclusions 

 

         A considerable literature has dealt with the problem of estimating multiple-input and  

multiple-output production functions, where inputs and outputs can be a mix of good and 

bad, in the areas of productivity analysis, industrial organization, labor economics, and 

health economics, among others.    Typically researchers have estimated  output- and input-

oriented distance functions.  However, in this paper we have estimated a more general 

directional distance function.  Although the chosen distances can substantially affect 

measures of TE, PC, TC, and EC, no published work has addressed the issue of how to choose 

an optimal direction set.  By estimating the directional distance function together with the 

first-order conditions for cost minimization and profit maximization using Bayesian methods, 

we estimate optimal directions, which are consistent with cost minimization and profit 

maximization, respectively,  by the firm.  We find that these estimated directions vary 

noticeably from the typically used (+1,-1) for good outputs and inputs/bad outputs.   Models 

with estimated optimal directions generate substantial increases in computed technical 

efficiency and productivity change relative to the fixed-directions case.  Further, the 

estimated percent changes in input usage and  output generated by  firms  to achieve cost 

minimization or profit maximization are very reasonable. 

 

 

 

 

Table 1: List of firms 

 

1 Alabama_Power_Co.  40 KGE,_A_Western_Resources_Company 

 2 AmerenCIPS  41 Long_Island_Lighting_Co. 
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 3 AmerenUE  42 Louisville_Gas_&_Electric_Co. 

 4 Appalachian_Power_Co.  43 Minnesota_Power_&_Light_Co. 

 5 Arizona_Public_Service_Co.  44 Mississippi_Power_Co. 

 6 Atlantic_City_Electric_Co.  45 Montana_Dakota_Utilities_Co. 

 7 Baltimore_Gas_&_Electric_Co.  46 Montana_Power_Co. 

 8 Boston_Edison_Co.  47 New_York_State_Electric_&_Gas_Corp. 

 9 Carolina_Power_&_Light_Co.  48 Niagara_Mohawk_Power_Corp. 

 10 Central_Hudson_Gas_&_Electric_Corp.  49 Northern_Indiana_Public_Service_Co. 

 11 CLECO_Corp.  50 Northern_States_Power_Co. 

 12 Central_Maine_Power_Co.  51 Ohio_Edison_Co. 

 13 Central_Power_&_Light_Co.  52 Ohio_Power_Co. 

 14 Cincinnati_Gas_&_Electric_Co.  53 Oklahoma_Gas_&_Electric_Co. 

 15 Cleveland_Electric_Illuminating_Co.  54 Pacific_Gas_&_Electric_Co. 

 16 Columbus_Southern_Power_Co.  55 PacifiCorp 

 17 Commonwealth_Edison_Co.  56 PECO_Energy_Co. 

 18 Consolidated Edison Co. of New York, Inc.  57 PP&L,_Inc. 

 19 Dayton_Power_&_Light_Co.  58 Potomac_Edison_Co. 

 20 Delmarva_Power_&_Light_Co.  59 Potomac_Electric_Power_Co. 

 21 Detroit_Edison_Co.  60 PSC_of_Colorado 

 22 Duke_Energy_Corp.  61 PSC_of_New_Hampshire 

 23 Duquesne_Light_Co.  62 PSC_of_New_Mexico 

 24 Entergy_Arkansas,_Inc.  63 PSI_Energy,_Inc. 

 25 Entergy_Gulf_States,_Inc.  64 Public_Service_Electric_&_Gas_Co. 

 26 Entergy_Louisiana,_Inc.  65 Rochester_Gas_&_Electric_Corp. 

 27 Entergy_Mississippi,_Inc.  66 San_Diego_Gas_&_Electric_Co. 

 28 Entergy_New_Orleans,_Inc.  67 South_Carolina_Electric_&_Gas_Co. 

 29 Florida_Power_&_Light_Co.  68 Southern_California_Edison_Co. 

 30 Florida_Power_Corp.  69 Southwestern_Electric_Power_Co. 

 31 Georgia_Power_Co. 70 Southwestern_Public_Service_Co. 

 32 Gulf_Power_Co.  71 Tampa_Electric_Co. 

 33 Houston_Lighting_&_Power_Co.  72 Texas_Utilities_Electric_Co. 

 34 Illinois_Power_Co.  73 United_Illuminating_Co. 

 35 Indiana_Michigan_Power_Co.  74 Virginia_Electric_&_Power_Co._(Virginia_Power) 

 36 Indianapolis_Power_&_Light_Co.  75 West_Penn_Power_Co. 

 37 Interstate_Power_Co.  76 Wisconsin_Electric_Power_Co. 

 38 Kansas_City_Power_&_Light_Co.  77 Wisconsin_Public_Service_Corp. 

 39 Kentucky_Utilities_Co.  

  

 

  

 Table 2. Optimal directions for all Models 

Across-the-sample posterior means and standard deviations, in parentheses, of optimal                

directions. 
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model K L E R IC Sulfur CO2 SO2 NOx 

I -0.876 

(0.172) 

0.485 

(0.135) 

0.335 

(0.175) 

  -0.56 

(0.175) 

0.440 

(0.125) 

0.210 

(0.151) 

0.362 

(0.155) 

II -0.85 

(0.112) 

0.594 

(0.082) 

0.526 

(0.157) 

      

III -0.652 

(0.241) 

0.711 

(0.093) 

0.820 

(0.225) 

   0.350 

(0.171) 

  

IV -0.593 

(0.191) 

0.354 

(0.084) 

0.655 

(0.176) 

-0.662 

(0.172) 

-0.325 

(0.125) 

    

V -0.451 

(0.112) 

0.597 

(0.095) 

0.437 

(0.167) 

-0.512 

(0.142) 

0.620 

(0.201) 

-0.433 

(0.154) 

0.470 

(0.150) 

-0.651 

(0.255) 

-0.722 

(0.254) 

Notes: I, II and III are types of cost-minimization models, while IV and V are types of profit-maximization 

models.    

                                     Figure 1:  Optimal Posterior Directions -- Model I                           
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                     Figure 2: Optimal Posterior Directions –Model II 

  

                           

                       Figure 3: Optimal Posterior Directions -- Model III 
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   Figure 4: Optimal Posterior Directions -- Model IV 

 

 

  

                   Figure 5: Optimal Posterior Directions -- Model V 
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Figure  6a:  Optimal Posterior Directions-Inputs and Good Outputs --Models IV and V 

 

 

 

Figure  6b:  Optimal Posterior Directions-Bad Input and Bad Outputs for Model V 
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Table 3. Percent Changes in Inputs and Outputs (decimals)--All Models 

Across-the-sample posterior means and standard deviations, in parentheses, of changes in inputs and 

outputs. 

model K L E R IC Sulfur CO2 SO2 NOx 

I -0.051 

(0.022) 

0.027 

(0.013) 

0.021 

(0.008) 

  -0.025 

(0.009) 

0.035 

(0.009) 

0.027 

(0.009) 

0.038 

(0.012) 

II -0.055 

(0.011) 

0.061 

(0.015) 

0.048 

(0.014) 

      

III -0.043 

(0.015) 

0.078 

(0.022) 

0.061 

(0.013) 

   0.033 

(0.015) 

  

IV -0.051 

(0.022) 

0.038 

(0.015) 

0.073 

(0.016) 

-0.057 

(0.009) 

-0.028 

(0.008) 

    

V -0.043 

(0.015) 

0.060 

(0.021) 

0.044 

(0.012) 

-0.050 

(0.008) 

0.059 

(0.013) 

-0.044 

(0.014) 

0.036 

(0.009) 

-0.065 

(0.015) 

-0.061 

(0.025) 

Notes : I, II and III are types of  cost- minimization models, while  IV  and V are types of profit-maximization 

models. 

 

Figure  7a:  Percent Changes in Inputs and  Good Outputs for  Models IV and V 
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Figure  7b:  Percent Changes in the Bad Input and Bad Outputs for  Model V 

 

 

 

                  Figure 8: Technical Efficiency for Models IV and V 
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                          Figure 9: TC for Models IV and V 

 

 
                        Figure 10: PC for Models IV and V 
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                           Table 4. MCMC convergence diagnostics 

model Max acf 

at lag 1 

Max acf 

at lag 5 

Max acf 

at lag 20 

99% values 

GCD 

99% values 

RNE 

I 0.515 0.333 0.110 -1.712, 1.917 0.225,  0.615 

II 0.412 0.312 0.171 -1.652, 1.815 0.171, 0.415 

III 0.488 0.251 0.180 -1.782, 1.915 0.120,  0.551 

IV 0.610 0.410 0.095 -1.601, 1.816 0.231, 0.415 

V 0.625 0.425 0.122 -2.151, 2.017 0.171, 0.655 

 

Notes: While acf is the autocorrelation function, GCD is Geweke’s convergence diagnostic, and RNE is the 

relative numerical efficiency. The intervals are constructed by ranking the values of these statistics calculated 

across all parameters and then constructing a 99% interval around the median.  

                 

    Figure 11:  Sensitivity Analysis to Prior Parameters for Directions 
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