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Abstract

Fertilizer use in sub-Saharan Africa remains below recommended levels, contributing to low
yields and persistent poverty. This study investigates whether weather-induced recency bias, a
tendency to overweigh recent weather events when forming expectations about future conditions,
affects fertilizer use among maize farmers in Nigeria. Using nationally representative household
panel data matched with geo-referenced weather and soil data, I find that recent weather shocks
significantly influence fertilizer decisions, and the effect goes beyond what can be explained with
a liquidity constraint. This effect is negatively asymmetric: negative shocks reduce fertilizer use,
while positive shocks do not generate equivalent increases. In addition, I find that this behavioral
bias explains much of the effect of previous season’s weather shocks on fertilizer use, which has
been mainly attributed to liquidity constraints following adverse weather conditions. These
results suggest that recency effect could partly explain low fertilizer use in SSA. Improving
access to accurate and timely weather forecasts can help farmers make more efficient input
decisions and increase productivity.
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1 Introduction

Low crop yields in sub-Saharan Africa (SSA) pose a significant challenge to food security. For

example, maize yields in SSA (1.4 T/ha), significantly lag behind average yields for the rest of the

world (5.7 T/ha) (FAOSTAT, 2021; Ray et al., 2012). A primary reason for low yields is the low

use of chemical fertilizers by farmers in the region (Breman and Debrah, 2003; Vanlauwe et al.,

2010; Leitner et al., 2020). For instance, the average application rate of fertilizer in SSA is just 14

kg/ha which is considerably less than the average rate in South Asia (141 kg/ha), the European

Union (154 kg/ha), South America (175 kg/ha), or East Asia (302 kg/ha) (see Figure 1 for current

fertilizer consumption by region) (FAOSTAT, 2021).

Many economic and agronomic explanations have been offered for low fertilizer1. Recently,

behavioral explanations have been explored, such as time preferences, risk aversion, beliefs about

soil quality, and distrust in the quality of input markets (Duflo et al., 2011; Hoel et al., 2024;

Michelson et al., 2021; Bold et al., 2017; Harou and Tamim, 2024). This study explores weather-

induced recency effect as an additional behavioral explanation for the low use of fertilizers in

developing countries. Weather-induced recency effect is a cognitive bias that occurs when farmers’

expectations about future weather are overly influenced by recent weather events (Camerer and

Loewenstein, 2004; Hogarth and Einhorn, 1992; Murdock Jr, 1962). This bias can cause individuals

to overemphasize recent developments and neglect historical context, resulting in inefficient input

allocation (DeNisi and Pritchard, 2006; Tversky and Kahneman, 1973; Marsh, 1987).

This paper asks whether farmers’ fertilizer adoption decisions are overly influenced by recent

weather events and explores the implications of this behavior for agricultural productivity in SSA.

This question is important for three reasons. First, fertilizer use decisions must be made before or

early in the growing season, at a time when actual weather conditions are still uncertain. With-

out timely and reliable forecasts, farmers may form expectations about upcoming weather based

primarily on recent experiences. Third, while extensive research documents the impacts of climate

shocks on agricultural outputs in developing countries (see Kala et al., 2023, for a review), we

have relatively little understanding of how farmers might adapt to these changes. This study helps

1see among others Holden and Lunduka (2014); Adjognon et al. (2017); Lambrecht et al. (2014); Quansah et al.
(2001); Minten et al. (2013); Burke et al. (2017); Koussoubé and Nauges (2017); Liverpool-Tasie et al. (2017); Marenya
and Barrett (2009a); Jayne et al. (2013); Marenya and Barrett (2009b); Alem et al. (2010); Harou et al. (2022).
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address this knowledge gap by quantifying the role of recency bias in fertilizer adoption decisions,

informing policies aimed at enhancing farmers’ adaptive capacity.

Maize farming in Nigeria provides an ideal context for examining the research question for

two primary reasons. First, Nigerian agriculture, including maize production, is predominantly

rainfed and therefore highly sensitive to weather variability, making farmers’ fertilizer adoption

decisions particularly susceptible to weather-induced recency effects (Ajetomobi et al., 2015). Given

Nigeria’s pronounced vulnerability to climate-related impacts, farmers may disproportionately rely

on recent weather events when forming expectations about future growing conditions. Second,

maize ranks among the three most important cereal crops in Nigeria, along with sorghum and

millet (USAID, 2010; Liverpool-Tasie et al., 2017). Therefore, low fertilizer adoption driven by

uncertainty over weather conditions can substantially undermine maize yields, posing significant

risks to food security and rural livelihoods in Nigeria. Using nationally representative household

panel data matched with geo-referenced historical weather and soil data, I empirically test whether

recent weather observations disproportionately influence households’ current fertilizer-use decisions

compared to more distant weather events. Furthermore, I explore how this weather-induced recency

effect contributes to persistently low fertilizer adoption and its broader implications for agricultural

productivity.

First, I develop a conceptual framework grounded in the farm household model (Sing et al., 1986)

to isolate the behavioral impact of recent weather shocks from the profits and liquidity channels.

For each household location, weather shocks are defined as deviations of the mean growing-season

rainfall and maximum temperature from their respective historical 30-year averages (Maggio et al.,

2022; Michler et al., 2022). To explicitly exclude liquidity constraints as a confounding mechanism,

I adopt a control-function approach, predicting the previous season’s maize yields (a proxy for

past profits) using a machine learning model trained on climatic and soil variables. Household-

level predictors, such as fertilizer use, are omitted from the maize yield prediction model because

these variables are not observed for lagged years (2009, 2011, and 2014) in my panel dataset,

which includes observations only for the 2010, 2012, and 2015 agricultural seasons. An advantage

of machine learning models over traditional approaches is that, rather than imposing a restrictive

functional form, they allow the data to flexibly capture complex and nonlinear relationships between

yield and its predictors. In the main empirical analysis, I regress fertilizer use outcomes on recent
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weather shocks (lags of 1 to 5 years), distant weather shocks (defined as the block averages for the

past 6-10, 11-15, 16-20 and 21-25 years), predicted maize yield from the previous season, market

prices, and additional control variables. This econometric approach exploits the plausibly exogenous

nature of weather shocks conditional on household and location-specific covariates, a method widely

employed in the existing literature. Finally, I identify a ‘recency effect’ if coefficient(s) on recent

weather shocks are statistically significant from zero, while those on distant weather shocks are

not. Additionally, a joint significance test should reject the null hypothesis of zero coefficients

for recent shocks but fail to reject the same hypothesis for distant shocks, reinforcing that recent

weather observations disproportionately shape households’ fertilizer adoption decisions even after

controlling for past profits.

I find that, contrary to the conventional view that past weather shocks influence fertilizer use

through liquidity constraints (e.g., Alem et al. (2010); Bora (2022); Dercon and Christiaensen

(2011); Heisse and Morimoto (2024)), households’ fertilizer use decisions remain significantly influ-

enced by recent weather experiences even after controlling for past profits. Specifically, a positive

rainfall shock in the previous season substantially increases fertilizer adoption2, while rainfall shocks

from the intermediate season (t-2, t-3, and t-4) do not show a significant impact. In contrast, higher

rainfall deviations five years earlier unexpectedly reduce fertilizer adoption rates. Regarding fer-

tilizer use rates, increased rainfall deviations in the immediate past (t-1) and five years ago (t-5)

significantly increase current fertilizer use rates, while intermediate and more distant shocks do not

have a significant effect. Temperature shocks present a slightly different pattern. Although none

of the single-year lagged temperature shocks individually have strong statistical significance for

the incidence of fertilizer adoption, collectively, recent temperature deviations (over the last three

years) exhibit a marginally significant joint influence, suggesting farmers integrate temperature

information from multiple recent seasons into their decision-making. For fertilizer use rates, tem-

perature shocks from three years ago significantly impact current use rates, and collectively recent

temperature shocks exhibit strong joint significance. These findings align with existing research

highlighting farmers’ behavioral responses to recent weather experiences in agricultural input de-

cisions (Karlan et al., 2014; Huang et al., 2024; Demnitz and Joslyn, 2020; Lee, 2024; Che et al.,

2020; Sesmero et al., 2018; Gallagher, 2014).

2The outcome variables are the binary measure of fertilizer adoption and unconditional fertilizer use rates in kg/ha
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After establishing the presence of weather-induced recency bias, I examine whether its impact

on fertilizer use is asymmetric, i.e., whether farmers cut fertilizer use more after bad weather than

they expand it after good weather. Following Kaur (2019), I classify last season’s rainfall as a

negative shock (below the 25th percentile), a positive shock (above the 80th percentile), or no

shock (in between), based on each location’s historical rainfall distribution. I then re-estimate

the fertilizer demand model using indicators for these rainfall shocks. The results show that,

conditional on past profit, a negative rainfall shock significantly reduces the likelihood of fertilizer

use by 7 percentage points, while a positive shock raises it by only 1 percentage point, though

the latter effect is imprecisely estimated. Fertilizer application rates exhibit a similar pattern:

a negative shock leads to a significant decline of 33.06 kg/ha, whereas the increase following a

positive shock (19.87kg/ha) is statistically insignificant. Further heterogeneity analysis reveals

that the asymmetric response is most pronounced among asset-poor households, suggesting that

poorer farmers respond more pessimistically to adverse weather conditions. These results are robust

to alternative shock definitions and point to a clear asymmetry: negative rainfall shocks reduce

fertilizer use more than positive shocks increase it, underscoring how recency bias may contribute

to persistently low input use.

Finally, I quantify the implications of weather-induced recency bias by estimating a standard

fertilizer demand model widely used in the literature and comparing it to a specification that

explicitly controls for liquidity constraints. Consistent with previous studies, I find that negative

rainfall shocks in the previous season significantly reduce fertilizer adoption and application rates

(Alem et al., 2010; Heisse and Morimoto, 2024; Bora, 2022). However, when I account for past

profits and other liquidity-related pathways, the magnitude of this effect remains largely unchanged.

This result suggests that behavioral responses to recent weather, rather than liquidity constraints,

may explain much of the observed decrease in fertilizer use after adverse shocks, at least in my

context. In other words, a sizable share of what previous studies have interpreted as liquidity-driven

input underuse instead appears to reflect farmers’ overreaction to recent rainfall experiences.

This paper is broadly related to existing studies that examine the effect of farmers’ behavioral

responses induced by climate related shocks on agricultural productivity (Lee, 2024; Huang et al.,

2024; Karlan et al., 2014; Sesmero et al., 2018; Aragón et al., 2021; Maggio et al., 2022; Jagnani

et al., 2021). Using field-level crop choice data from the U.S. Corn Belt states, Lee (2024) uncovers
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evidence that farmers’ crop choice decisions exhibit a recency effect associated with local yield

shocks largely driven by random weather. Among these studies, my empirical strategy is closest

to that of Huang et al. (2024). In a comparable setting, the authors find that lagged positive

rainfall shock leads low-productivity farmers in China to considerably reduce the area of land

rented out, increase the time allocated to farm work, and decrease the time allocated to off-farm

work. Although Huang et al. (2024) did not explicitly account for the associated effect of farmers’

liquidity on factor allocation, they argue that this effect is fully explained by farmers’ irrational

response to exogenous rainfall shocks. I explore the effect of weather-induced behavioral bias on

fertilizer use, while explicitly controlling for the confounding effect of liquidity constraints as a

potential mechanism through which weather shocks affect fertilizer use.

This paper contributes to the literature on behavioral constraints to fertilizer adoption in de-

veloping countries by focusing on the effect of weather-induced recency. Previous studies have

emphasized how behavioral factors, such as time preferences, misperceptions, and belief updating,

shape fertilizer use. Duflo et al. (2011) find that Kenyan farmers have present-biased preferences:

they express the willingness to buy fertilizer after harvest but do not save enough to follow through.

In Tanzania, Michelson et al. (2021) show that farmers underuse fertilizer due to mistaken beliefs

about its quality, and Harou and Tamim (2024) show that farmers’ subjective beliefs about soil

quality strongly influence their input decisions, especially when learning that their soil is more fer-

tile than they had assumed. Although these studies reveal how static beliefs affect behavior, little

is known about how farmers’ dynamic beliefs, particularly about weather, shape input decisions.

Building on these studies, I provide the first evidence of how weather-induced recency bias affects

fertilizer use in a developing country context. By introducing this new dimension to the discussion

of behavioral constraints, my study fills a critical gap and expands our understanding of the factors

that hinder fertilizer adoption among farmers.

I also contribute to the literature on fertilizer use and weather shocks by demonstrating that

recent weather shocks may influence fertilizer demand through mechanisms beyond liquidity con-

straints. Existing studies in this area have largely attributed the effects of lagged weather shocks

on current input use to income or liquidity channels (Alem et al., 2010; Bora, 2022; Dercon and

Christiaensen, 2011; Heisse and Morimoto, 2024). Alem et al. (2010) finds that favorable rainfall in

Ethiopia increases fertilizer adoption by improving yields and, in turn, farmers’ ability to purchase
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inputs. Similarly, Heisse and Morimoto (2024) associate extreme temperature events with reduced

fertilizer use in subsequent seasons, potentially due to income effects, while acknowledging the need

for deeper research into the behavioral factors influencing smallholder decisions. My study adds to

this conversation by providing empirical evidence that weather-induced recency bias may also play

a role, particularly in contexts where farmers form expectations about future growing conditions

based on recent experiences. This perspective complements the existing literature and highlights

the value of considering both financial and behavioral responses when analyzing farmers’ input

decisions.

The findings of this paper offer important insights for agricultural policy in rain-fed systems

like Nigeria’s. In the absence of accurate and timely weather forecasts, farmers can rely heavily

on recent weather experiences to guide input decisions, leading to suboptimal fertilizer use. My

results suggest that some of the adverse effects of past weather shocks on fertilizer adoption, com-

monly attributed to liquidity constraints, may instead reflect behavioral responses shaped by recent

events. As such, policy interventions that focus exclusively on easing liquidity constraints may fail.

Complementary strategies that improve farmers’ access to reliable seasonal forecasts and provide

targeted extension services can help correct misinformed expectations and support more resilient

fertilizer use. This approach is especially relevant for asset-poor households, who are more sensitive

to weather variability and most likely to benefit from improved weather information (Rosenzweig

and Udry, 2013, 2019; Zerfu and Larson, 2010).

The remainder of the paper proceeds as follows. After laying out the conceptual model in

Section 2, I describe the data sources and methodology in Section 3. In Section 4, I present

the empirical framework and identification strategy. In Section 5, the main empirical results are

presented, followed by a series of robustness checks and asymmetric impact analysis. Sections 6 and

Sections 7 present and discuss additional implications of recency effect. Lastly, Section 8 concludes.

2 Conceptual Framework

This section develops a conceptual framework to analyze how past weather shocks influence current

fertilizer adoption among households, particularly focusing on the role of the recency effect and

liquidity constraints. The primary goal is to establish a testable hypothesis that allows us to
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Figure 1: Fertilizer application rate (kg/ha of arable land) by region. Source: World Development
Indicators (2023)

use coefficients on weather shocks to infer the presence of recency effect arising from households’

observations of past weather events on their current fertilizer demand.

To conceptualize the role of the recency effect in households’ fertilizer use, I consider a simple

dynamic farm model with financial market failures so that households face a liquidity constraint.

I start with the assumption of a risk-neutral maize farming household that seeks to maximize

expected profit in the current period. Consequently, each household must decide on the input mix

that maximizes household profits. Let πt denote household’s profit function at period t, household’s

expected profit maximization problem at the beginning of period t can be presented as follows:

max
x

Et(πt) = max
x

Et(P
M
t qt − w′

tXt) subject to

qt = F (Xt; zt)

w′
tXt ≤ π∗

t−1(wt−1, P
M
t−1; zt−1)

Xi,t ≥ 0,

(1)

where PM
t is the price of maize at period t, qt is the household’s expected maize output at period
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t, Xt is an Mx1 vector of inputs used to produce maize in period t, zt is a vector of anticipated

weather outcomes for growing period t, and w′
t is 1xM of input costs. I further assume that

the production technology F (∗) is twice continuously differentiable concave production function

in inputs and weather variables for maize crop. The third equation sets a borrowing constraint

on the acquisition of inputs in the current season. That is, household’s current expenditure on

inputs should not exceed last season’s profit π∗
t−1. This borrowing constraint reflects the financial

market failures prevalent in developing countries, where imperfect rural credit markets prevent

households from borrowing to invest in inputs due to liquidity constraints and high transaction

costs (Croppenstedt et al., 2003; Conning and Udry, 2007). Consequently, households must rely on

past profits to finance current input expenditures. Lastly, line four sets a non-negativity constraint

on the input used. For simplicity and tractability, I assume the household’s only variable input in

equation (1) is fertilizer (X) which has a price wt.

Given an interior solution, the first order necessary condition to equation (1) with respect to

fertilizer gives:

Et

[
PM
t

∂F (.)

∂xt
− wt

]
− λwt = 0 (2)

where λ denotes the Lagrange multiplier. The solution to equation (2) yields the reduced-form

optimal fertilizer demand function at the beginning of period t as:

X∗
t = f [Et(P

M
t ), Et(wt), π

∗
t−1(wt−1, P

M
t−1; zt−1);Et(zt)] (3)

Thus, by equation (3), the household will choose the fertilizer level X∗
t that maximizes his

expected contemporaneous profit. It is worth noting that from equation (3), household’s optimal

fertilizer level at the beginning of the planting period is a function of expected maize price, ex-

pected weather outcome, expected fertilizer price and last season’s profit. The expected maize

price, expected fertilizer price and expected weather outcome are the only uncertain variables that

determine household fertilizer demand. Since the household is a price taker in the maize and fer-

tilizer market (i.e, Et(P
M
t ) = PM

t and Et(wt) = wt ), a belief about the current season’s expected

weather observation is sufficient for a belief about current season’s optimal fertilizer demand.

There is empirical support for the idea that farmers form beliefs about weather expectations
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based on adaptive expectations. Previous research indicates that farmers react to biophysical

events and patterns, such as local climate and weather, over both short and long terms, which in

turn influences production decisions (Nerlove, 1958; Morton et al., 2017). Although in a different

context, Wilke and Morton (2017) show that farmers in the Mid-western US base their future

climate and weather expectations on references to past historical events and cycles. Therefore,

following Ramsey et al. (2021), I consider a process whereby households form beliefs about current

season’s weather based on past seasons as follows:

Et[zt] = S(pl; zt−1, zt−2, . . . , zt−L); l = 1, 2, . . . , L (4)

where pl is the weight that the household assigns to previous weather observations and S(∗) is

a weighting function.

In forming perceptions about current weather, households are likely to generalize distant past

observations, a simplification strategy rooted in cognitive ease (Kahneman, 2011). This approach

would be consistent with the psychological principle of recency effect, wherein recent memories

are more vivid while earlier ones tend to decay over time (Murdock Jr, 1962; Ebbinghaus, 2013).

Consequently, I assume that the weight assigned to past weather observation stabilizes after period

t−b, such that from t− (b+1) onward, the household assign equal weights on weather observations

(i.e., pb+1 = pb+2 = · · · = pL = pa). As an example, Figure 2 shows how a typical household’s

assigned weight to past weather observations could stabilize from starting period t− (b+ 1).

Thus I can simplify equation (4) as:

Et[zt] = plS(zt−1, zt−2, . . . , zt−b) + paS(zt−(b+1), . . . , zt−L); l = 1, . . . , b (5)

where pl is household’s weight assigned to the recent past time periods t− 1 to t− b and pa is the

equal weight assigned to the more distant past up to time horizon L. Thus, I expect the weight a

household places on past weather observation to be monotonically increasing in time t.

The weight placed on past events will depend on factors such as cognitive processes, level of

ambiguity, and other considerations (Hogarth and Einhorn, 1990). For instance, a household might

respond sensitively to a higher-than-normal rainfall intensity last season, if the farmer considers it

9



t− 1 t− (b+ 1)

pa

t

weight(p(t))

Figure 2: Illustration of How Households May Assign Weights to Past Weather Observations
Note: The figure depicts how households may assign weights to past weather observations when forming

expectations about current weather conditions. The horizontal axis indicates time periods relative to the current

period t, while the vertical axis shows the weight p(t) assigned to each past period’s weather outcome. The curve

demonstrates that households place larger weights on recent weather observations (t− 1 to t− b) and that the

weights decrease and stabilize at a constant value pa for more distant past periods (t− (b+ 1) to t− L).

as a signal of larger rainfall occurring this season or consider it as a signal of lower-than-normal

rainfall occurring. Household’s current weather expectation would be fully informed by the previous

season’s weather if it places larger weight on previous weather events. Instead, household would be

free of recency bias if they put equal weights on past seasons weather observations. In this case, last

season’s weather shock would have little impact on the household’s expectations for this season’s

weather, which would instead be based on the full historical weather distribution at that site.

Returning to the household’s objective, I substitute equation (5) into equation (3) to have the

optimal fertilizer demand function as;

X∗
t = f

(
PM
t , wt, π

∗
t−1(wt−1, P

M
t−1, zt−1), Et[zt] = S(pl; zt−1, . . . , zt−L)

)
; l = 1, 2, . . . , L (6)

Here, the model in equation (6) is to be viewed as illustrative rather than assertive. To understand

the total effect of previous weather shock (t − 1) on fertilizer demand, I partially differentiate

equation (6) w.r.t last season’s weather outcome as:

10



∂X∗
t

∂zt−1
=

∂f(∗)
∂Et[zt]

· ∂Et[zt]

∂zt−1
+

∂f(∗)
∂π∗

t−1

·
∂π∗

t−1

∂zt−1

= p1S
′(pl; zt−1, . . . , zt−L)︸ ︷︷ ︸

Recency Effect

+
∂f(∗)
∂π∗

t−1

·
∂π∗

t−1

∂zt−1︸ ︷︷ ︸
Liquidity Effect

(7)

Thus, from equation (7) I decompose the effect of recent past weather shocks on fertilizer demand

into two components: the first component from recency bias (p1S
′(∗)), and the second component

stems from how weather shocks influence households’ current fertilizer demand through past farm

profit ( ∂f(∗)
∂π∗

t−1
· ∂π∗

t−1

∂zt−1
).

Weather-induced recency effects on fertilizer adoption could operate through two possible chan-

nels. First, recency could amplify the effect of liquidity constraints stemming from the previous

season’s weather; that is, negative weather shocks in the prior season could signal the likelihood

of similar adverse conditions in the current season, leading farmers to reduce fertilizer application

even further beyond what liquidity constraints alone would suggest. Second, recency could par-

tially or fully offset the liquidity effect if farmers interpret recent negative shocks as temporary and

anticipate a subsequent return to normal conditions, thus choosing to maintain or even increase

fertilizer use despite immediate liquidity constraints. The direction and magnitude of the recency

effect (p1) depend on whether farmers perceive recent weather outcomes as predictive of future

conditions, either positively or negatively.

Economic theory suggests that fertilizer, being a normal good, should exhibit increased (de-

creased) demand following good (bad) weather in the previous season due to the corresponding

liquidity changes. Although there is empirical support for this (e.g. Alem et al. (2010)), evidence

from some studies also suggests that this may not always be the case. In particular, Rosenzweig

and Udry (2013) finds evidence from India showing that while rainfall positively impacts crop prof-

its, these higher profits do not significantly affect input decisions in the following season. These

findings highlight that the relationship between weather shocks, recency, and liquidity effects on

fertilizer use is nuanced, context-specific, and influenced by how farmers interpret recent weather

events in shaping their expectations.

It is also important to note that recency bias can affect fertilizer demand asymmetrically de-

pending on whether past weather shocks were favorable or unfavorable. Specifically, a negative
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weather shock in the previous season can lead households to substantially lower their expectations

of returns from fertilizer use, leading to a significant reduction in fertilizer adoption during the

current season. In contrast, a positive weather shock might not induce a proportionally equivalent

increase in fertilizer use. This asymmetry could be due to behavioral factors such as procrastina-

tion, particularly between harvest and the next planting period, which can delay input purchases

despite positive liquidity shocks from higher yields (Duflo et al., 2011).

2.1 Implications for Empirical Analysis

The conceptual model described in equation (6) provides a foundation to formulate testable hy-

potheses to determine the presence of weather-induced recency effects. Although the specific weights

(pi) farmers assign to past weather outcomes when forming expectations about the current season’s

weather are not directly observable, I test the presence of recency effect based on the observed re-

gression coefficients derived from estimating equation (6). If recency effect is present, conditional

on past profit, the regression coefficient(s) associated with recent weather shocks should be statisti-

cally significant, whereas those related to more distant weather shocks are not statistically different

from zero. In contrast, the absence of a recency effect would imply a uniform impact on all past

weather shocks, recent and distant, with no clear difference in their statistical significance.

This approach will enable me to isolate and quantify the behavioral component, recency effect,

different from the liquidity constraints embedded in the fertilizer adoption decisions of households.

I discuss the empirical strategy in detail in Section 4.

3 Data and Variable Definitions

I use household-level data from the first three waves (2010, 2012, 2015) of the Nigeria Living

Standards Measurement Study-Integrated Survey on Agriculture (LSMS-ISA), managed by the

World Bank, the National Bureau of Statistics (NBS), and the Federal Government of Nigeria

(FGN). This dataset includes urban and rural areas across all thirty-six states and the Federal

Capital Territory, covering 5000 households in the first wave. The data is nationally representative,

reflecting the diverse demographics and geopolitical zones of Nigeria. The LSMS-ISA provides

geo-referenced plot details and comprehensive information on input use, cultivation practices, and
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agricultural output, collected over two visits per household per survey cycle. The first visit, which

covers post-planting activities, occurs between August and October, while the second visit, covering

post-harvest activities, takes place between February and April. For this research, I construct

variables of interest based on information collected during the main planting season.

Second, I merge household-level data with historical rainfall and temperature data at the local

government area (LGA) level. The rainfall analysis uses daily precipitation datasets from the

Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) for the period 1981 to

2016 (Funk et al., 2015). CHIRPS combines 0.05 degree resolution satellite imagery with in

situ station data to generate gridded rainfall time series that support trend analysis and seasonal

drought monitoring. Similarly, I also use monthly maximum temperature data from the WorldClim

version 2.0 database (Fick and Hijmans, 2017), which spans 1980 to 2016. WorldClim 2.0 offers

global climate datasets with a fine spatial resolution of 2.5 arc minutes—approximately 21 km2—

at the equator derived from weather station data and satellite observations.

Although climatological studies suggest that Nigeria’s maize growing season spans from March

or May to September or October, depending on the agro-ecological region (Odekunle, 2004), I adopt

the definition by Aragón et al. (2021) and Mayorga et al. (2025), identifying the growing season

as the six-month period in which most of the planting occurs. Even though maize planting is a

season-round activity (Figure 3), it is particularly concentrated between February and July, so I

define the growing season by these months.

The final sample includes only household-wave units that meet two criteria. First, the household

reports a non-zero amount of maize harvested during the main growing season. Second, the area

of the maize plot is non-zero. Hence, I exclude all household-wave observations with zero maize

harvest and plot area. I use GPS-measured areas for all maize plots to mitigate the effects of

measurement error. However, when GPS data are not available, the farmer’s self-reported plot

area is used. Finally, I have an unbalanced panel of 1,640 unique households and 2,843 household-

wave observations. This subset represents about 35% of all farm household-wave observations and

more than 60% of the plots within the study sample. Although the results may not be nationally

representative, they can be considered representative of the main agricultural system for maize

production in Nigeria.

I present the summary statistics of the variables that enter my estimation model in Table
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(a) Monthly Distribution of Maize Planting in Nigeria

Year t− 1 Year t

Jan Feb July Dec Jan Feb July Dec

Growing Season (t− 1) Growing Season (t)

Fertilizer Decision Period

(b) Growing Seasons and Fertilizer Decision Period

Figure 3: Maize Planting, Weather Shocks and Fertilizer Decision Timeline
Notes: The bar plot in panel (a) illustrates the frequency of maize planting activities across different months in

Nigeria in my sample. In Panel (b), the green indicators represent the maize growing seasons, while the blue

indicator marks the decision period between the end of the previous season and the start of the current season,

during which households decide whether to use fertilizer based on the prior season’s weather outcomes.
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1. The average area dedicated to maize cultivation is 0.43ha, suggesting that maize farming is

mostly dominated by smallholders. Approximately 54% of the households engaged hired labor for

their maize cultivation, indicating a significant reliance on external labor resources beyond family

labor. Regarding cropping practices, the study data indicates that 22% of the household maize

farm were used exclusively for maize cultivation, which implies no inter-cropping. This means

that approximately 78% of the maize farms were involved in inter-cropping with other crops. This

prevalence of inter-cropping underscores the diversification strategies employed by farmers in my

sample.

3.1 Fertilizer Use Outcomes

In this study, I examine two primary outcome variables related to fertilizer use among maize farming

households. The first variable, household fertilizer use rate (intensive margin), is constructed by

aggregating the amount of fertilizer (specifically NPK and Urea) applied per hectare across all

maize plots (including zero values) by the household during the main growing season. Data on

fertilizer usage are derived from survey questionnaires in all waves, which record the quantity of

various fertilizers used on each maize plot. For each maize plot, the amount of fertilizer used

is divided by the GPS-measured plot area to estimate the fertilizer application rate per hectare.

To mitigate the influence of extreme values, I winsorize fertilizer use rate at the 99th percentile

by replacing observations larger than the 99th percentile with value at the 99th percentile. In

instances where the estimated fertilizer use rate exceeds 1 ton per hectare, I cap the value at 700

kg/ha, consistent with the methods employed by Liverpool-Tasie et al. (2017) and Sheahan et al.

(2014). Subsequently, I define the second outcome variable, fertilizer adoption (extensive margin),

as a dummy variable coded as 1 if the aggregate use of fertilizers at the household level is positive,

indicating adoption, and 0 otherwise.

Table 1 shows that 52% of the households use fertilizer on their maize farm during the main

growing season. However, the mean unconditional fertilizer application rate in the households sur-

veyed is 188.30 kg / ha, with a standard deviation of 269.14 kg/ha, indicating significant variability

in the intensity of fertilizer use in my sample.
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Table 1: Summary Statistics of Key Variables

Dependent Variables Mean St. Dev Min Max

Unconditional Fertilizer Use (kg/ha) 188.30 269.14 0.00 987.24
Fertilizer Adoption (1/0) 0.52 0.50 0.00 1.00

Independent Variables

Growing Season Mean Rainfall Deviation (mm) -0.02 0.17 -0.99 1.00
Growing Season Max Temp. Deviation (°C) 0.36 0.37 -0.85 1.51
Male Household Head (1=Male, 0=Female) 0.88 0.32 0.00 1.00
Household Size (Adult Equivalence Unit) 4.36 2.07 1.00 25.90
HH Head Education (years) 4.54 5.04 0.00 18.00
Area of Maize Plot (hectares) 0.43 0.37 0.01 1.74
Maize Yield (kg/ha) 1857.43 1674.14 10.99 10037.41
Maize Price (Naira/kg) 86.29 32.93 10.00 250.00
Fertilizer Price (Naira/kg) 76.71 16.45 23.33 150.00
Hired Labor (1=Yes, 0=No) 0.54 0.49 0.00 1.00
Value of Household Assets Owned (000’ Naira) 33.60 30.32 0.05 180.25
No other crop planted (1=Yes, 0=No) 0.22 0.41 0.00 1.00
Chicken ownership (1=Yes, 0=No) 0.87 0.33 0.00 1.00
Cattle ownership (1=Yes, 0=No) 0.79 0.40 0.00 1.00
Small livestock ownership (1=Yes, 0=No) 0.87 0.33 0.00 1.00
Free fertilizer (1=Yes, 0=No) 0.02 0.13 0.00 1.00
Access to credit (1=Yes, 0=No) 0.23 0.43 0.00 1.00
HH distance to population center w/ 20000+ people (km) 27.59 19.93 0.10 101.50
Plot Slope (%) 3.10 2.72 0.00 40.40
Plot Elevation (mm) 377.38 268.17 10.00 1427.00
N 2,843

Source:Authors’ calculation using LSMS-ISA data (2010, 2012 and 2015). All prices and monetary values are

adjusted to 2010 constant prices using the CPI from World Bank.
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3.2 Weather Shock Variables

Building on my conceptual model, I construct weather shocks based on the deviations of the average

rainfall of the growing season and the maximum temperature from the site-specific mean over time.

Specifically, this is calculated as the difference between the average rainfall (maximum temperature)

during the growing season in the year y of the survey, with y = 2010, 2012, 2015, and the historical

mean of the same season in the local government area of the household, where the historical mean

refers to the period [1981,y-1]. In Uganda, Maggio et al. (2022) used similar rainfall and temperature

deviations to examine the relationship between high temperatures, total value of crop production,

and the adoption of sustainable practices among farmers. In Figure 4, I show the spatial and

temporal distribution of growing-season weather shock deviations across maize-growing LGAs in

Nigeria. The figure suggests that there exist some variations in the deviations of the weather

shocks over time and space. As expected, locations in northern parts experience negative rainfall

deviations coupled with positive maximum temperature deviations during the growing season.

A commonly used stylized fact in the literature is that the year-to-year (season-to-season)

variation in weather is exogenous (Kaur, 2019; Paxson, 1992; Miguel et al., 2004; Kazianga and

Udry, 2006) and does not provide useful information about weather for the subsequent growing

season. To formally assess the plausibility of this assumption in my setting, for each LGA, I

estimate the following regression: Yd,t = λs + λrYd,t−1 + et, where Yd is the average deviation of

rainfall or the maximum deviation of temperature during the growing season in LGA d. I then test

the null hypothesis H0λr = 0 against the alternative hypothesis H1 : λr ̸= 0. Table 2 shows the

proportion of LGA for which the null hypothesis H0 is rejected in favor of H1 at 1% significance

level. As the table indicates, for most LGAs, the null hypothesis is not rejected, providing suggestive

evidence that weather shocks during the growing season are random from year to year.

3.3 Maize Yield Prediction

To accurately isolate the recency effect of weather shocks on fertilizer demand, as outlined in

equation (6), it is important to control for previous season’s profits. However, LSMS-ISA data do

not provide household-level profit information for previous non-surveyed seasons (2009, 2011, and

17



Table 2: Test for Serial Correlations of Weather Shocks

Weather Shock Proportion

Average Rainfall Deviation 0.023
Maximum Temperature Deviation 0.003

Note: This table displays the proportion of LGAs where
the null hypothesis H0 : λr = 0 is rejected at the 1%
significance level in the regression Yd,t = λs+λrYd,t−1+et,
where Yd represents either the average rainfall deviation or
the maximum temperature deviation during the growing
season in LGA d.

(a) Average growing season rainfall deviation across LGA and season

(b) Growing season maximum temperature deviation across LGA and season

Figure 4: Spatial distribution of growing season weather shock deviations across maize-growing
LGAs in Nigeria, spanning both lagged and observed seasons. (a) Average growing season rainfall
deviation across LGA and season (b) Growing-season maximum temperature deviation across LGA
and season
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2014).3 To overcome this data gap, I employ machine learning (ML) techniques to predict maize

yield in these unsurveyed years, using climate and soil variables that are consistently available from

geospatial sources. This predicted maize yield then serves as a proxy for the previous season’s

profit, thus addressing this data gap. In the following, I detail the procedure for training and

implementing the ML models.

Recent advances in data science have substantially expanded the use of machine learning (ML)

for predicting crop yields (Van Klompenburg et al., 2020). An advantage of ML methods in yield

prediction is their high predictive accuracy, primarily because they are data-driven and do not rely

on restrictive assumptions about the functional form imposed by researchers. Unlike traditional

regression-based approaches, ML models can flexibly capture complex and nonlinear relationships

between yields and their predictors (Athey and Imbens, 2019; Mullainathan and Spiess, 2017). Ad-

ditionally, ML methods leverage hyper-parameter tuning through techniques such as grid search,

further enhancing their predictive power and robustness, particularly when the precise functional

form linking predictors to yields is unknown or ambiguous (Athey and Imbens, 2019; Van Klompen-

burg et al., 2020; Mullainathan and Spiess, 2017). While standard yield prediction models typically

incorporate detailed plot-level climate, soil, and field management variables, the unavailability of

household and field management data in my setting requires one to rely solely on climate and soil

data for yield prediction. Although omitting management practices may slightly reduce predic-

tive performance, given their importance in yield determination (Van Klompenburg et al., 2020),

geospatially available soil and climate data offer a practical alternative for yield prediction in my

setting.

The climate variables used in the model include total seasonal rainfall, rainfall in the previous

season, and average maximum daily temperature during the current and previous seasons. Soil

variables includes soil cation exchange capacity, soil pH, soil organic carbon, soil nitrogen content,

soil texture (proportion of silt and clay), bulk density and soil potential wetness index. These soil

characteristics are extracted from the high resolution SoilGrids250m 2.0 dataset provided by ISRIC-

World Soil Information (ISRIC, 2023). In addition, site characteristics such as GPS coordinates

(latitude and longitude), elevation, slope percentage, and normalized difference vegetation index

3Household-level survey data are only available for the years 2010, 2012, and 2015.
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(NDVI) are included during the first five months of the growing season4 Appendix Table B.1

presents summary statistics for all predictor and response variables.

Following Villacis et al. (2023), I optimize the hyper-parameters of the ML models through

a rigorous validation procedure, which evaluates model error rates across repeated subsamples.

Specifically, data from the three available LSMS-ISA survey waves (2010, 2012, and 2015) are

randomly partitioned into a training set (80%) and a test set (20%). Within the training set, I

implement ten-fold cross-validation, where the data are divided into ten subsets, with each subset

serving as a validation set once, while the remaining subsets are used for model training. The

results of these iterations are averaged, providing robust metrics for selecting optimal hyperpa-

rameter configurations (James et al., 2013). Subsequently, the finalized models are evaluated on

the independent 20% testing sample. To enhance robustness, I predict maize yields in both levels

and logarithmic forms, given the potential of log-transformation to improve prediction accuracy by

compressing distributional spread. Hyper-parameter tuning ranges are detailed in Appendix Table

B.2.

I train and compare three widely used machine learning algorithms known for their robust pre-

dictive performance in regression tasks: Random Forest (RF), eXtreme Gradient Boosting (XGB),

and Artificial Neural Networks (ANN) (Athey and Imbens, 2019). The predictive accuracy of

each model is evaluated using root mean square error (RMSE), normalized root mean square er-

ror (NRMSE), and mean absolute error (MAE), with lower values indicating superior predictive

accuracy. Results presented in Table 3 show that while all three algorithms perform well, the

XGB model consistently delivers the highest predictive accuracy, particularly when predicting log-

transformed maize yields. Consequently, I adopt the XGB model (log-form) as my preferred method

for predicting maize yields in the non-surveyed lagged seasons. In addition, in the empirical section,

I perform additional diagnostics to verify that the model fully captures the relationship between

maize yields and the underlying soil and climatic factors. Appendix Figure A.1 provides further

insight by illustrating the relative importance of each predictor variable within the selected XGB

model.

In summary, the methodology adopted involves: (1) training the ML models on climate, soil

4GPS coordinates, elevation, and slope data are extracted from LSMS-ISA, while NDVI data come from NASA’s
MOD13A2 Version 6 dataset (Didan, 2015).
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and observed maize yield data from available survey years (2010, 2012, and 2015), (2) using the

preferred ML model (log-form XGB) to predict maize yield for unsurveyed years (2009, 2011, and

2014), and (3) employing this predicted maize yield as a proxy for previous season’s profit in the

empirical analysis specified in equation 9.

Table 3: Comparison of Model Performance in Predicting Maize Yield

Response Variable Model Model Validation Model Testing

(80% training sample) (20% held-out sample)

RMSE MAE NRMSE (%) RMSE MAE NRMSE (%)

1. Maize Yield (kg/ha) RF 941.80 718.44 18.79 1098.34 840.14 22.18
XGB 1020.92 782.76 20.37 1080.10 831.49 21.81
ANN 1107.34 851.69 22.10 1113.43 864.61 22.48

2. Log of Maize Yield RF 0.75 0.57 14.75 0.87 0.66 17.26
XGB 0.80 0.60 15.64 0.86 0.66 17.21
ANN 0.91 0.70 17.83 0.92 0.72 18.37

Note: RF = Random Forest, XGB = XGBoost, ANN = Artificial Neural Network. RMSE (Root Mean Squared
Error) measures the average squared difference between the predicted and observed values, MAE (Mean Absolute
Error) measures the average absolute difference, and NRMSE (%) (Normalized RMSE) expresses RMSE as a
percentage of the observed mean. Model validation is performed on an 80% training subset, while model testing
uses the remaining 20% held-out sample. A lower RMSE, MAE, or NRMSE indicates better predictive performance.

3.4 Additional Controls for Household Liquidity and Asset Pathways

Households facing limited cash on hand at planting can often turn to alternative liquidity sources

or convert assets—especially poultry, goats, sheep, or cattle—into cash needed to purchase inputs

such as fertilizer (Alem et al., 2010; Dercon and Christiaensen, 2011). Other evidence underscores

how credit access and in-kind assistance (e.g., subsidized fertilizer) alleviate households’ financial

constraints (Croppenstedt et al., 2003; Melkani et al., 2024), potentially stabilizing or even increas-

ing fertilizer application after a poor season. For example, in Ethiopia, Alem et al. (2010) show

that oxen ownership strengthens the link between high rainfall in the previous season and the cur-

rent season’s fertilizer use. These studies suggest that multiple liquidity channels—ranging from

asset liquidation to formal or subsidized programs—can buffer the negative effects of adverse past

weather events on fertilizer investments.

Therefore, I build on the approaches of Kusunose et al. (2020) and Melkani et al. (2024),

leveraging LSMS-ISA data to capture multiple liquidity pathways. Specifically, I include dummies

for poultry ownership, cattle ownership, and small livestock ownership (pigs, sheep, or goats), an
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indicator for credit access at the start of the year (i.e., use of any formal financial service) and a

dummy for receiving free fertilizer—a proxy for access to the national fertilizer subsidy program.

By explicitly modeling these liquidity channels, I can isolate the behavioral effect of prior-season

rainfall shocks (via recency bias) from the mitigating influence of assets and credit. Although the

predicted maize yield for previous season serves as a proxy for past profit, these additional controls

address broader liquidity mechanisms that might otherwise confound estimates of the recency effect.

3.5 Fertilizer and Maize Prices

Using farmer-reported quantities of purchased fertilizer, I derive unit values for each household

and agricultural season. To mitigate unit value bias in fertilizer purchase prices—which may arise

from ‘fertilizer-loving’ households purchasing larger quantities—I calculate the median value of

fertilizer across households within the same geographic area and agricultural season. With this

approach, households within the same enumeration area face similar market prices at any given

time. In instances where fewer than three observations are available at the enumeration area level,

the missing price is imputed using the median price from a progressively larger administrative area,

first the local government area, then the state, and finally the zone.

I used the methods described above to derive the market price of maize for each household at

the enumeration area level, utilizing data from the community questionnaire. The questionnaire

records the unit price of maize for each enumeration area during the survey period. When multiple

unit prices are reported within the same enumeration area, I compute the mean of these prices to

establish a representative unit price for maize in the enumeration area.

4 Empirical Framework

Building on the conceptual framework, I empirically examine how recent growing-season weather

realizations influence households’ current fertilizer use decisions, beyond the effects of liquidity

constraints. To do so, I estimate a reduced-form fertilizer demand model (equation 6), derived

from a Cobb-Douglas production function, following the empirical approaches of Aragón et al.

(2021) and Dillon and Barrett (2017).

Since households’ beliefs regarding current season weather conditions are unobserved, I ap-
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proximate their expectation formation using a flexible linear weighting approach of past weather

realizations (Nerlove, 1958). Specifically, households are assumed to formulate expectations as:

Et[zt] = p1zt−1 + p2zt−2 + · · ·+ pLzt−L (8)

where each pl denotes the (unobserved) weight assigned to previous weather outcomes from l seasons

ago. Given data constraints, I operationalize this approach by including separate lagged seasonal

rainfall and temperature shocks, capturing both recent (1–5 years) and distant (block moving

averages of 6–10, 11–15, 16–20, and 21–25 years) weather events. Thus, the empirical fertilizer

demand function is specified as:

X∗
idt =

5∑
k=1

βk Rdt−k + βmRdt6:10 + βnRdt11:15 + βsRdt16:20 + βv Rdt21:25

+
5∑

k=1

θk Tdt−k + θm T dt6:10 + θn T dt11:15 + θs T dt16:20 + θv T dt21:25

+ δ π̂idt−1 +D′
idt Γ + γt + εidt.

(9)

The dependent variable X∗
idt is either a binary indicator of fertilizer adoption (extensive margin)

or a continuous measure of fertilizer application rates (intensive margin) for household i in LGA d

and period t. The key explanatory variables are lagged growing-season weather deviations: Rdt−k

and Tdt−k represent deviations of rainfall and maximum temperature, respectively, from their long-

term (30-year) seasonal averages, lagged by k = 1, . . . , 5 years. To capture more distant weather

history, Rdt6:10 and T dt6:10 denote the average growing-season rainfall and temperature deviations

over the past 6–10 year lag window, respectively. Similarly, Rdt11:15 and T dt11:15 , Rdt16:20 and T dt16:20 ,

and Rdt21:25 and T dt21:25 correspond to moving averages of rainfall and temperature deviations for

the past 11–15, 16–20, and 21–25 year lag periods, respectively.

I include π̂idt−1, the log of predicted maize yield for the previous season (discussed in Sec-

tion 3.3), to proxy for last season’s profits. The vector D′
idt includes the market prices for maize

and fertilizer, as well as variables that control for other liquidity channels, such as indicators for

poultry ownership, cattle ownership, small livestock ownership (pigs, sheep, or goats), credit access

at the beginning of the season (i.e., use of any formal financial service), receipt of free fertilizer

vouchers (Melkani et al., 2024; Kusunose et al., 2020) —proxy for access to the national fertilizer
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subsidy program —and additional household-level controls5. The model includes season fixed ef-

fects γt to control for common shocks in a given season, and εidt is the idiosyncratic error term.

Standard errors are clustered at the enumeration area level to account for the potential correlation

of errors within the enumeration areas.

The coefficients βk for k = 1, . . . , 5 and θk for k = 1, . . . , 5 capture the effects of recent growing-

season rainfall and temperature deviations, respectively, on fertilizer use decisions. The coefficients

βm, βn, βs, βv and θm, θn, θs, θv measure the influence of more distant weather shocks, averaged over

the past 6–10, 11–15, 16–20, and 21–25 years. δ controls for the effect of previous season’s farm

profit (liquidity) on fertilizer demand. To assess the presence of recency effects, I test whether

recent weather shocks exert a stronger influence than distant shocks after controlling for liquidity.

Specifically, if recency bias is present, I expect that at least one of the coefficients on recent shocks

(βk or θk) is statistically significant, while all coefficients on distant weather shocks (βm, βn, βs, βv or

θm, θn, θs, θv) should be statistically indistinguishable from zero, indicating that households overem-

phasize recent weather when making fertilizer decisions. Additionally, a joint significance test for

recent weather shocks should reject the null hypothesis that all recent shock coefficients are zero,

whereas the same test for distant shocks should fail to reject this null hypothesis, providing strong

evidence consistent with the presence of recency effect.

I estimate the binary outcome of fertilizer adoption (extensive margin) using a Linear Proba-

bility Model (LPM) with household fixed effects, and analyze fertilizer use rates (intensive margin)

using a Tobit model (Tobin, 1958) with LGA fixed effects to account for censoring at zero. The key

identifying assumption is that the variation in past weather shocks is exogenous to time-varying

unobserved household (or LGA) level characteristics, an assumption justified by the random na-

ture of seasonal weather patterns (Table 2). Furthermore, by explicitly controlling for last season’s

maize yield (π̂idt−1), which proxies for liquidity constraints arising from previous weather shocks,

I isolate the behavioral effect of recency. Thus, any remaining association between lagged weather

shocks and current fertilizer use, after conditioning on liquidity, can be interpreted as evidence of

recency effect.

5Additional control variables include: the size of the household (in adult male equivalents), the level of education
of the head of the household, the area of the cultivated maize plot, the distance to the nearest population center with
more than 20,000 inhabitants, the mean slope and elevation of the household plot, the value of the assets owned and
dummies for marital status and gender of the household head and whether the household hired labor on their maize
plots
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A potential concern is that if prediction errors from the machine learning (ML) model of last

season’s maize yield are correlated with lagged weather shocks, then the residual effects of weather

shocks estimated in equation 9 may not solely reflect recency effects. Specifically, if the ML model

systematically fails to capture certain aspects of the relationship between weather shocks and

maize yield, then the remaining impact of weather shocks might be incorrectly attributed to be-

havioral responses rather than model misspecification. For instance, if a simple linear relationship

was imposed between maize yield and weather shocks in the first-stage (Section 3.3) prediction,

conditioning on this predicted maize yield in equation 9 would leave any unmodeled nonlinear

or interactive effects incorrectly interpreted as recency bias. The strength of ML approaches lies

precisely in their flexibility and ability to approximate complex functional forms, including non-

linearities and interactions among predictors, without overfitting, a significant improvement over

traditional econometric models that often rely on restrictive functional form assumptions ((Mul-

lainathan and Spiess, 2017; Athey and Imbens, 2019)). However, this flexibility comes with the

drawback of reduced interpretability, as ML models often function as a ”black box.” Consequently,

an accompanying diagnostics to validate the adequacy of the ML predictions would be reassuring.

To address this, I perform a diagnostic check by regressing the prediction error term (actual

minus predicted maize yield) from the ML model on current and previous weather shocks. If

this diagnostic regression reveals statistically significant correlations between the prediction errors

and lagged weather shocks, it suggests that the ML model inadequately captured the relationship

between maize yield and weather shocks. Such a result would undermine the validity of attributing

residual weather effects in equation 9, conditional on past maize yield, solely to behavioral responses.

Conversely, finding no significant correlation would strengthen the confidence in the ML model’s

predictive accuracy, supporting the interpretation that any residual effects of weather shocks reflect

behavioral (recency) effects rather than misspecification. I discuss the results of this test in the

results section.

Finally, an implication of the specification of equation 9 is that financial market failures are

channeled through last year’s profit. However, liquidity constraints may be persistent over time;

for instance, adverse weather events three years ago could have led to low profits two years ago,

affecting the ability of farmers to afford inputs even if subsequent weather conditions improved. To

address this concern, as additional robustness checks, I include multiple years of predicted lagged
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maize yields to control for any persistent liquidity constraints that households may face.

5 Results

This section first presents diagnostic results and then reports the baseline empirical findings on the

impact of lagged weather shocks on fertilizer use decisions, conditional on previous season’s profit

(proxied by maize yields). Diagnostic checks (Appendix Table B.9) confirm that neither current

nor lagged weather shocks significantly explain the maize yield prediction errors, implying that the

machine learning model accurately captures the yield-climate relationship. Consequently, residual

effects of lagged weather shocks in my empirical analyses can be interpreted as behavioral responses

rather than model misspecification.

Next, I present Linear Probability Model (LPM) estimates for fertilizer adoption and Tobit

estimates for fertilizer application rates based on equation (9). Results suggest recent weather

shocks influence fertilizer use decisions more strongly than distant ones, an interpretation explored

further in the subsections that follow.

5.1 Recency Effect and the Binary Measure of Fertilizer Adoption

Figure 5a plots the estimated coefficients and their 95% confidence intervals for the lagged rainfall

shock variables from Table B.3. The results indicate that, conditional on past profit, the average

rainfall deviation from the previous year (t–1) has a statistically significant positive effect, sug-

gesting a 34% increase in the likelihood of fertilizer adoption, equivalent to an 18 percentage point

increase in the probability of fertilizer use in my sample. Although difficult to explain, an increase

in average rainfall deviation five years prior significantly reduces fertilizer adoption by 44%. Mean-

while, rainfall deviations from the previous two, three, and four years do not show a significant

impact, and the coefficients for more distant time periods (averages for the past 6-10, 11-15, 16-20,

and 21-25 years) are also statistically insignificant. These findings indicate that, conditional on

past profit, recent rainfall shocks have a more pronounced impact on current fertilizer adoption

than distant shocks, thus providing evidence of recency effect in fertilizer use decisions. These re-

sults align with the existing literature on the impact of farmers’ recent weather experiences (prior

beliefs) on agricultural production investments (Karlan et al., 2014; Huang et al., 2024; Demnitz
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and Joslyn, 2020; Lee, 2024; Che et al., 2020; Sesmero et al., 2018).

To further validate these findings, I conduct two separate joint significance tests. First, I test

the null hypothesis that all coefficients on recent rainfall shocks (t–1 to t–5) are zero. I reject the

null hypothesis that all coefficients on recent rainfall shocks are zero (p-value = 0.00), indicating

that recent shocks significantly affect fertilizer adoption. In contrast, the null hypothesis that all

coefficients on distant rainfall shocks are zero yield a p-value of 0.80. Hence, I fail to reject the

null hypothesis, suggesting that distant shocks have no significant impact. These results further

support the presence of recency effect in which recent rainfall shocks play an important role in

fertilizer adoption decisions.

Turning our attention to the effect of lagged temperature shocks on fertilizer adoption, Figure

5b shows that none of the recent single year lags (t - 1 through t - 5) exhibit strongly significant

effects on current fertilizer adoption, and the more distant time periods (averages for the past 6-10,

11-15, 16-20, and 21-25 years) also remain statistically indistinguishable from zero. Furthermore,

testing the null hypothesis that all coefficients on recent temperature shocks (t-1 through t-5)

are zero yield a p-value of 0.06. At a conventional 5% significance level, I fail to reject the null;

however, I reject the null hypothesis by adopting a more lenient 10% threshold, suggesting that these

recent shocks may have a marginally significant influence on fertilizer use. In contrast, I reject the

null hypothesis that all coefficients on distant temperature shocks are zero (p-value=0.47). These

findings may provide some support for the presence of recency effect, as recent temperature shocks

seem to have more influence on fertilizer adoption than distant shocks. However, because the

individual coefficients for both recent and distant temperature shocks are not strongly significant

on their own, this conclusion should be interpreted with caution, signaling that while there may be

some marginal evidence for a recency effect, the overall statistical evidence is less definitive than

in the case of rainfall shocks.

5.2 Recency Effect and Fertilizer Application Rates

Figure 6a plots the average marginal effects of lagged rainfall shocks on fertilizer application rates

(kg/ha) from Table B.4. Notably, average rainfall deviations from the previous season (t–1) and

the last five seasons (t-5) appear to exert significant effects, while the intermediate recent years

(t–2, t–3, t–4) show statistically insignificant impacts on fertilizer use rates. In addition, rainfall
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(a) Effect of Lagged Rainfall Shocks on Fertilizer Adoption (1/0)

(b) Effect of Lagged Temperature Shocks on Fertilizer Adoption (1/0)

Figure 5: Effect of Lagged Weather Shocks on Fertilizer Adoption (1/0)

Note: This figure plots the estimated coefficients (marginal effects) and 95% confidence
intervals for rainfall (a) and temperature (b) shocks, as presented in Table B.3.
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deviations from the more distant time periods (averages for the past 6-10, 11-15, 16-20, and 21-25

years) remain largely indistinguishable from zero. These findings suggest that in fact recent rainfall

deviations (t-1 and t-5) are more important than distant rainfall shocks in current fertilizer use

rates. To further corroborate this conclusion, I test the null hypothesis that all coefficients on the

five recent rainfall shocks are zero and obtain a p-value of 0.014, indicating rejection of the null

and suggesting that recent rainfall shocks jointly influence fertilizer use rates. In contrast, the

same joint significance test for all distant rainfall shocks yields a p-value of 0.85, implying that

these shocks do not collectively affect current fertilizer use rates. Together, these results reinforce

the idea that more recent rainfall events are particularly relevant for farmers’ fertilizer decisions in

terms of application intensity.

Regarding the effect of lagged temperature shocks on fertilizer use rates, Figure 6b presents the

average marginal effects of lagged temperature shocks on fertilizer application rates (kg/ha) from

Table B.4. Examining the individual coefficients, I find that while the temperature shock from three

seasons ago (t-3) appears to have a statistically significant impact on current fertilizer use rates,

shocks from the most recent years (t-1, t-2, t-4, t-5) and distant years do not exhibit strong statis-

tical significance. A joint significance test for recent temperature shocks yields a p-value of 0.01,

which leads me to reject the null hypothesis that all coefficients on recent temperature shocks are

zero. This indicates that, collectively, recent temperature shocks may be more strongly associated

with fertilizer use rates, even if individual coefficients do not always reach statistical significance.

In contrast, I fail to reject the null hypothesis that all coefficients on distant temperature shocks are

zero (p-value = 0.43), implying that these more distant shocks do not have a meaningful combined

effect on fertilizer use.

My findings align closely with previous studies that highlight how recent weather experiences

shape farmers’ agricultural investment decisions (Karlan et al., 2014; Huang et al., 2024; Demnitz

and Joslyn, 2020; Lee, 2024; Che et al., 2020; Sesmero et al., 2018; Gallagher, 2014). In Malawi,

Sesmero et al. (2018) shows that the scarce and volatile rainfall in the past growing season leads

households to lower their expenditures on fertilizer and improved maize varieties, possibly due

to pessimistic expectations of the weather, which reduces the perceived returns of these inputs.

Similarly, Huang et al. (2024) find that in rural China, farmers become overly optimistic after

favorable rainfall shocks, resulting in inefficient input allocation. From a developed-country per-
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spective, Gallagher (2014) demonstrate that insurance uptake spikes immediately following floods,

but gradually declines thereafter. Collectively, these studies suggest that without reliable weather

forecasts, farmers form expectations about current-season weather based predominantly on recent

weather patterns, assuming future conditions will mirror the immediate past.

(a) Effect of Lagged Rainfall Shocks on Fertilizer Application Rate (kg/ha)

(b) Effect of Lagged Temperature Shocks on Fertilizer Application Rate (kg/ha)

Figure 6: Effect of Lagged Weather Shocks on Fertilizer Application Rate Rate (kg/ha)

Note: This figure plots the estimated coefficients (average marginal effect) and 95% confidence intervals for rainfall(a)
and temperature shocks (b), as presented in Table B.4.

5.3 Robustness Checks

This section demonstrates that the baseline results reported in Tables B.4 and B.3 remain robust

after accounting for the potential persistence of liquidity constraints arising from long-term weather

shocks and applying corrections for multiple hypothesis testing.
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5.3.1 Robustness to Potential Persistence of Liquidity Constraints

Equation (9) treats financial market failures as flowing through last year’s profit. However, liquidity

constraints may persist for multiple years; for example, adverse weather three years ago could reduce

profits two years ago, still limiting farmers’ ability to purchase fertilizer even if subsequent weather

conditions improve. To address this possibility, as an additional control variable, the yield of maize

for the previous two years (t-2) is included in equation (9) to account for the potential long-term

liquidity constraints.

Figure 7 plots the estimated coefficients with their 95% confidence interval from Table B.5. The

overall pattern of results remains consistent with the main findings, indicating that controlling for

potential liquidity persistence does not materially alter the estimated influence of recent weather

events on fertilizer decisions. In particular, the statistically significant coefficients for recent lags

and the absence of significance for more distant lags persist, reinforcing the conclusion that re-

cent weather shocks are the primary drivers of fertilizer adoption decisions rather than long-term

liquidity constraints.

5.3.2 Robustness to Multiple Hypotheses Tests

In each regression, I estimate the effect of lagged weather shocks on fertilizer use decisions. This

means that for each regression, I estimate eighteen separate coefficients relating to the effects of

rainfall and maximum temperature shocks. This makes it likely that one or more of these estimates

will be statistically significant by chance alone. However, as noted by Romano et al. (2014), this

is not a problem if one is focusing on a particular hypothesis a priori. In this case, the decision

can be based on the corresponding marginal p-values. The problem arises only if one searches

the list of p-values for significant results after the fact. My situation is somewhat intermediate:

studies have shown the importance of recent weather experiences in decision-making in agricultural

production, so I am not looking for significant results a posteriori. However, I am also open to

the possibility that distant weather outcomes could have an effect on current fertilizer adoption.

To be conservative, in addition to the standard hypothesis testing explained in the results section,

I report whether the statistical significance of my coefficients survives a correction for multiple
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(a) Effect of Lagged Weather Shocks on Fertilizer Adoption (0/1)

(b) Effect of Lagged Weather Shocks on Fertilizer Application Rate (kg/ha)

Figure 7: Effect of Lagged Weather Shocks on Fertilizer Adoption (1/0) and Application Rates
(kg/ha)

Note: This figure plots the estimated coefficients and 95% confidence intervals for rainfall shocks on fertilizer adoption
(a) and application rate (b), as presented in Table B.5.
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hypothesis testing. I employ the Romano–Wolf step-down procedure (Romano and Wolf, 2005)6,

which maintains the family-wise error rate at the 5% significance level.

Table B.6, column 2, presents the Romano–Wolf corrected p-values for LPM estimates of the

effects of lagged weather shocks on the binary measure of fertilizer adoption7. The coefficients

that remain statistically significant at the 5% level after this correction are shown in italics. For

rainfall shocks, the coefficients for the previous season (t–1) and the previous five seasons (t–5)

remain significant, while the other lag estimates are statistically insignificant, consistent with the

baseline results in Table B.3. Similarly, none of the coefficients on lagged temperature shocks is

statistically significant at 5% after correction, which again aligns with the baseline findings. These

results suggest that my baseline results are robust to the problem of multiple hypotheses tests and

that coefficients that are statistically significant in my baseline results are unlikely to be spurious

as a result of multiplicity of coefficients being estimated.

6 Asymmetric Effects of Weather-Induced Recency

The baseline results provide evidence for the effect of recency in farmers’ fertilizer use decisions

induced by lagged weather shocks. Specifically, I find that recent weather shocks have a greater

influence on fertilizer use than distant shocks. Therefore, farmers may tend to increase fertilizer

use after recent favorable weather and reduce it after unfavorable shocks, as they expect current

weather conditions to mirror recent outcomes. However, one might argue that if the effect of recency

reduces fertilizer use below optimal levels after unfavorable weather but increases it above optimal

levels after favorable weather, then the net effect could still increase or leave overall fertilizer use

unchanged. Therefore, in principle, recency bias might not have a negative net effect on fertilizer

use decisions.

To address this concern, I demonstrate that the weather-induced recency effect has a negative

asymmetric impact on households’ fertilizer use decisions. Specifically, I show that unfavorable

weather shocks in the previous season reduce current fertilizer use, while favorable shocks do not

necessarily lead to an equivalent increase. Since the baseline results strongly indicate that last

6See Romano et al. (2014) for technical discussion and implementation in Stata.
7Because I report average marginal effects from the Tobit results for the effects of lagged weather shocks on

fertilizer use rates, I am unable to report the Romano–Wolf corrected p-values for those coefficients.
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season rainfall shocks significantly influence both the intensive and extensive margins of fertilizer

use, I construct positive, negative and no rainfall shock dummies from the previous season to

accomplish this task.8. I then compare the effects of positive and negative rainfall shocks against

the omitted category of no shock from previous season to assess the asymmetric influence of recency

bias.

I follow Kaur (2019) in defining an LGA as subject to a discrete positive (negative) rainfall

shock in a given season if the total rainfall is above the 80th percentile (below the 25th percentile)

of the historical rainfall distribution for that LGA. Rainfall realizations that fall between these

percentiles are classified as no shock.9 I ran the following empirical model;

Xidlt = α0 + βpPosdt−1 + βwNegdt−1 +D′
idtµ+ vt + εidt (10)

whereXidt is either binary measure of fertilizer use (1/0) or unconditional fertilizer use rate (kg/ha).

Posdt−1 and Negdt−1 are indicators for a positive and negative rainfall shock last season, respec-

tively. The omitted category is an indicator for no rainfall shock last season, so the effect of each

category is evaluated relative to this omitted category. The model also includes a set of control

variables10, season fixed effect, vt, and error term εidt.

Table B.7, Panel A, presents the results for equation 10, examining the impact of last season’s

rainfall shocks on the binary measure of fertilizer adoption. The findings suggest that, although

not statistically significant, a positive rainfall shock in the previous season increases the likelihood

of fertilizer use in the current season by 0.1% compared to the absence of a shock. In contrast,

experiencing a negative rainfall shock last season significantly decreases the probability of fertilizer

use by 7%, an effect that is statistically significant at the 1% level. A similar pattern emerges when

8While it would be interesting to show the asymmetric impact of the recency effect using discrete temperature
shocks, the lack of definite cutoff points for positive, negative, and no temperature shocks in the literature makes
such analysis highly subjective. Thus, I focus on rainfall shocks to illustrate the negative asymmetry of recency bias

9As robustness, Tables B.7 and B.8 include columns for alternative percentile cutoffs for defining positive and
negative rainfall shocks.

10The control variables include: last season’s maximum temperature as well as its squared, last season’s log of
maize yield, fertilizer and maize price, the size of the household (in adult male equivalents), the level of education
of the head of the household, the area of the cultivated maize plot, the distance to the nearest population center
with more than 20,000 inhabitants, the mean slope and elevation of the household plot, the value of the assets owned
and dummies for marital status and gender of the household head and whether the household hired labor on their
maize plots, indicators for poultry ownership, cattle ownership, small livestock ownership (pigs, sheep, or goats),
credit access at the beginning of the year and the receipt of free fertilizer vouchers as proxy for access to the national
fertilizer subsidy program
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examining fertilizer application rates (Table B.8, Panel A). Compared to the absence of shock last

season, a positive rainfall shock leads to an increase of 19.87 kg/ha in fertilizer use, but this effect

is not statistically significant. However, a negative rainfall shock results in a reduction of 33.06

kg/ha, and this effect is statistically significant at 5% level. Consistent with my hypothesis, the

results suggest that farmers significantly reduce fertilizer use following unfavorable shocks, yet do

not increase it to the same extent after favorable conditions.

6.1 Heterogeneity and Mechanism

Section 6 establishes that recency effect induced by weather shocks exhibits an asymmetric effect on

fertilizer use: negative rainfall shocks significantly reduce fertilizer demand, while positive shocks do

not proportionally increase it. However, the impact of recency bias is unlikely to be uniform across

all households. Asset-poor households, which typically face more severe liquidity constraints, may

be particularly sensitive to recent negative weather shocks due to their limited capacity to absorb

financial constraints after negative weather shocks (Dercon and Christiaensen, 2011; Alem et al.,

2010; Amare et al., 2018). Indeed, existing studies (e.g., Huang et al. (2024); Sesmero et al. (2018))

highlight that poorer or low-productivity households disproportionately drive observed behavioral

responses to recent weather events. To this end, I examine heterogeneity in the previously reported

results in Section 6 by estimating equation (10) separately across household asset levels, classifying

households into asset tertiles ranging from asset-poor to asset-rich.

Figure 8 shows the asymmetric effect of recency on fertilizer adoption (Panel A) and fertilizer

application rates (Panel B), disaggregated by household asset tertiles. Consistent with my expec-

tations, the behavioral bias induced by recent negative rainfall shocks disproportionately affects

asset-poor households (Q1). Specifically, negative rainfall shocks significantly reduce both the like-

lihood of fertilizer adoption and the quantity of fertilizer applied among asset-poor households,

while positive rainfall shocks do not significantly increase fertilizer use. In contrast, asset-rich

households (Q2 and Q3) exhibit relatively balanced and statistically insignificant responses to both

positive and negative shocks. Moreover, households in the third (richest) asset tertile seem to

react more optimistically to recent shocks, a contrast to the overly pessimistic reactions observed

among the poorer groups. Taken together, these results confirm that the asymmetric recency bias

identified in the full sample is primarily driven by asset-poor households, whose fertilizer decisions
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are particularly sensitive to recent negative weather experiences.

Regarding the mechanisms underlying increased irrationality to weather shocks, results show

that relative asset-rich households are less prone to biases arising from past weather shocks than

the asset-poor. Although I am limited in my ability to identify the causes of these patterns, I posit

that asset-rich households might be more accessible to timely and accurate weather forecasts. It is

also worth noting that due to the limitations of the LSMS-ISA data used in this study, I do not

attempt to evaluate the causes or rationality behind weather-induced recency bias. I use the term

‘recency bias’ to refer to the tendency to weigh recent weather information more heavily than older

information when forming beliefs about current season’s weather expectations. Weather-induced

recency bias can arise for various reasons, such as limited memory, time-varying states, high levels

of ambiguity regarding growing-season weather distribution, a strong aversion to ambiguity, and

reliance on heuristics due to the complexity of processing information (Hogarth and Einhorn, 1990;

Kala, 2017).

7 Implications of Recency Effect on Fertilizer Use and Agricul-

tural Productivity

The evidence of weather-induced recency bias among maize farmers in Nigeria has important im-

plications for agricultural productivity in sub-Saharan Africa. The asymmetric nature of farmers’

responses to recent weather shocks, where negative shocks substantially reduce fertilizer use, while

positive shocks do not produce equivalent increases, may generate a persistent downward pressure

on fertilizer use over time. In this section, I quantify the impact of this recency bias on fertil-

izer adoption decisions and situate these findings within the broader literature on the influence of

previous weather shocks on fertilizer use in developing countries.

To quantify this impact, I first estimate the standard regression model commonly employed in

existing literature to examine how rainfall shocks from the previous season affect current-season

fertilizer decisions (e.g., Alem et al. (2010); Heisse and Morimoto (2024); Bora (2022)). Considering

Nigeria’s evolving climate—characterized by decreasing rainfall, rising temperatures, and increased

frequency of drought (Amanchukwu et al. (2015); Elisha et al. (2017); Ebele and Emodi (2016);

Pörtner et al. (2022))—I specify the regression model as follows:
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(a) Asymmetric effect of recency bias on fertilizer adoption (1/0)

(b) Asymmetric effect of recency bias on fertilizer use rate (kg/ha)

Figure 8: Asymmetric Effect of Recency by Household Asset Tertile
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Xidlt = α0 + βqNegdt−1 + F′
idtµ+ vt + εidt, (11)

where Xidlt, Negdt−1, vt, and εidt maintain the definitions given in equation (10), and F′
idt rep-

resents a vector of household-level control variables excluding previous season’s maize yield and

other liquidity-related indicators described in the data section. The coefficient βq captures the

total effect of the previous season’s negative rainfall shock on fertilizer use decisions. Traditional

interpretations of this coefficient primarily attribute it to liquidity constraints, reasoning that un-

favorable rainfall reduces yields, thereby limiting farmers’ ability to finance fertilizer purchases the

following season. However, this interpretation tends to overlook an important behavioral dimen-

sion, the recency effect, where farmers place disproportionate weight on recent weather outcomes

in forming expectations about current-season weather conditions.

To explicitly isolate the recency mechanism, I re-estimate equation (11) while explicitly control-

ling for liquidity pathways by including previous season’s maize yields and other liquidity-related

variables discussed in the data section. The residual impact of past rainfall shocks that persists af-

ter controlling for these liquidity constraints can be interpreted as capturing a behavioral response

consistent with the recency effect. Unlike previous studies, this refined approach enables me to

clearly distinguish and quantify the influence of weather-induced recency bias on farmers’ fertilizer

adoption decisions.

Table 4 presents the estimated effects of negative rainfall shocks in the previous season on

fertilizer adoption and application intensity. Columns (1) and (3) report estimates from a stan-

dard specification commonly employed in the literature, in which fertilizer use is regressed solely on

lagged rainfall shocks and standard control variables, without explicitly accounting for potential liq-

uidity channels. Columns (2) and (4) extend this specification by explicitly controlling for liquidity

constraints using lagged maize yields and additional liquidity indicators. Consistent with findings

from previous studies (Alem et al. (2010), Heisse and Morimoto (2024), and Bora (2022))—which

document increased (decreased) fertilizer use following favorable (adverse) weather—I find that

negative rainfall shocks significantly reduce the probability of fertilizer adoption by approximately

40 percentage points (column 1) and reduce fertilizer application rates by 25 kg/ha (column 3).

Accounting explicitly for past liquidity via lagged maize yields has a negligible impact on these
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estimates, with coefficient magnitudes slightly increasing to 42 percentage points for adoption like-

lihood (column 2) and 25.6 kg/ha for application intensity (column 4).

These findings suggest that liquidity constraints alone cannot fully account for the observed

reduction in fertilizer use following negative rainfall shocks. Even after explicitly controlling for

liquidity effects through lagged maize yields, the adverse impact of rainfall shocks on fertilizer

adoption remains substantial and increases slightly in magnitude. This indicates that the recency

effect plays an important role, possibly explaining a larger portion of previously documented results

than has been recognized.

Therefore, policies aimed at reducing the adverse effects of weather shocks through liquidity-

enhancing measures, such as credit access, may be ineffective unless combined with interventions

addressing the effect of recency, such as providing timely and accurate weather forecasts. Using

farm-level data in India, Burlig et al. (2024) show that farmers adjust critical agricultural decisions,

including land use, crop selection, and input expenditures, in response to credible weather forecasts.

Farmers who receive accurate forecasts regarding the timing of the Indian Summer Monsoon up-

date their expectations accordingly: those interpreting forecasts positively expand cultivated areas,

increase farm expenditures, plant more cash crops, and reduce engagement in off-farm activities.

In contrast, farmers who perceive forecasts as negative relative to their initial expectations reduce

cultivated areas and farm expenditures while intensifying their participation in off-farm business

activities.

8 Conclusion

SSA’s crop yields are significantly lower than global averages, with maize yields at 1.4 T/ha com-

pared to the global average of 5.7 T/ha. To close this gap, an increase in fertilizer use is essential.

However, the current average fertilizer application rates in the region is considerably lower than

in regions such as South Asia, the European Union, South America, and East Asia (FAOSTAT,

2021; Ray et al., 2012; Leitner et al., 2020). In this study, I integrate data from multiple sources,

including household and plot-level information from the first three waves of the Nigeria LSMS-ISA

to investigate whether fertilizer adoption decisions of maize households in Nigeria are overly sen-

sitive to recent weather outcomes and its implications on agricultural productivity. This focus on
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Table 4: Effect of Previous Negative Rainfall Shock on Fertilizer Use

Fertilizer Adoption (1/0) Fertilizer Use Rate (kg/ha)
(1) (2) (3) (4)

Negative Shock (t-1) -0.040* -0.042* -25.000** -25.559**
(0.022) (0.021) (11.811) (11.679)

Log Maize Yield (t-1) -0.153 -84.626
(0.152) (67.260)

Controls Yes Yes Yes Yes
HH FE Yes Yes No No
District FE No No Yes Yes
Year FE Yes Yes Yes Yes
R-Squared 0.045 0.046 0.080 0.080
N 2,843 2,843 2,843 2,843

Note: This table presents the results for equation (11). Columns 1 and 2 uses the LPM
regression while columns 3 and 4 uses the Tobit model for estimation. Control variables
for columns 1 and 3 include: prices for maize and fertilizer; age, education, gender (1/0)
of household head; household size (adult equivalence unit), household hired labor (1/0),
household planted maize crop only (1/0), average slope (%) of plot, average elevation in
meters of plot, distance to nearest population center with over 20,000 inhabitants, value
of household owned assets (’000 Naira) and area of maize plot (ha). In columns 2 and
4 we add indicators for poultry ownership, cattle ownership, small livestock ownership,
credit access and the receipt of free fertilizer vouchers as additional controls for liquidity
pathways. Standard errors are clustered at the enumeration area level. *, **, ***
indicate the statistical significance at the 10%, 5%, and 1% level, respectively.

behavioral mechanisms, often overlooked in previous studies that examined the effects of recent

weather shocks on fertilizer adoption in SSA, provides new insights into factors that could in part

explain the low level of fertilizer use in SSA.

I find that, conditional on past profits, recent weather shocks exert a stronger effect on fertilizer

use decisions than more distant shocks. This finding suggests that households disproportionately

weigh recent weather experiences when making expectations about future growing conditions, which

subsequently shapes their investment decisions in fertilizer for the current season. Such behavioral

patterns are striking, given that in the study region, growing season weather shocks are exogenous

and provide little reliable information about weather in subsequent seasons. These results add to a

growing body of evidence documenting how behavioral biases among farmers can hinder agricultural

productivity (Duflo et al., 2011; Huang et al., 2024; Michelson et al., 2021; Wouterse and Odjo,

2021; Karlan et al., 2014; Fufa and Hassan, 2006; Hoel et al., 2024).

My results also reveal that the recency effect exerts an asymmetric influence on fertilizer use,

with negative rainfall shocks leading to sharp reductions in adoption, especially among poorer

households, while positive shocks have limited upward effects. This pattern suggests that adverse

40



weather experiences weigh more heavily on farmers’ decisions, reinforcing both underinvestment in

fertilizer and existing inequalities in input use. I also show that much of the decline in fertilizer

use after adverse weather - previously attributed to liquidity constraints (e.g. Alem et al. (2010);

Heisse and Morimoto (2024); Bora (2022)) - can be explained by farmers’ behavioral responses to

recent rainfall shocks. Even after controlling for past profits, the effect remains large, underscoring

the central role of recency bias in shaping input decisions.

My findings have important implications for improving fertilizer use and agricultural produc-

tivity among maize farming households in Nigeria. Although liquidity enhancing measures, such

as credit access, are necessary, they may be insufficient on their own to sustain fertilizer adop-

tion following adverse weather shocks. Since weather-induced recency bias plays a critical role in

shaping farmers’ fertilizer decisions, policies must also aim to improve farmers’ expectations about

future weather conditions. Providing accurate and timely weather forecasts before the growing

season would allow farmers to make better informed input decisions, mitigating the adverse ef-

fects of recent unfavorable weather experiences. Given that low fertilizer use is often associated

with information and knowledge gaps (Rosenzweig and Udry, 2013, 2019; Zerfu and Larson, 2010),

targeted educational programs, especially for asset-poor households that are most vulnerable to

weather shocks, could further improve fertilizer adoption and strengthen agricultural resilience in

sub-Saharan Africa.

Despite the valuable insights from this study, some limitations must be acknowledged. First, due

to data constraints, I do not directly observe the weight households place on past weather shocks.

Instead, I infer this from the direct effect of lagged weather shocks after controlling for past profit.

Lastly, a limitation of my study is the assumption of risk neutrality in the profit maximization

approach. While this assumption is commonly made in agricultural economics literature, it may

be contested, as farmers are generally found to be risk- and loss-averse in SSA (Duflo et al., 2011;

Shin et al., 2022; Alemayehu et al., 2019).

The limitations of this study highlight the need for further research to use primary data to

directly observe how households form weather expectations based on past weather events and

to assess the rationality of their behavioral responses. In addition, comparative studies across

different crops and regions are necessary to validate the generalizability of my findings and to

better understand weather-induced behavioral factors affecting fertilizer use in SSA.
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A Appendix A. Additional Figures

Figure A.1: Variable Importance in the XGBoost Model
Notes: Importance is reported as the mean increase in mean square error for the regression model if that variable

was removed from the analysis. The climate variables include: total precipitation in the 1st and 2nd months of the

growing season (precip p1), during the 3rd month (precip p2), and during the 4th and 5th months (precip p3),

average daily temperature during the 1st and 2nd months of the growing season (tmax p1), during the 3rd month

(tmax p2), and during the 4th and 5th months (tmax p3). The soil variables include: soil pH as determined in a

soil/water mixture (soilph), soil clay content share by volume (claypct), soil silt content share by volume (siltpct),

soil nitrogen content in g per kg soil (soiln), the site’s elevation (elevm).
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B Appendix B. Additional Tables

Table B.1: Summary Statistics of Response and Predictor Variables

Variables Mean St. Dev Min Max

Response Variables

Maize Yield (kg/ha) 1857.43 1674.14 10.99 10,037.41

Log Maize Yield 6.99 1.04 2.39 8.58

Predictor Variables

Total Season Rainfall (mm) 269.56 117.39 41.53 850.20

Lag Total Season Rainfall (mm) 273.00 120.57 41.86 918.56

Season Max Temperature (°C) 33.40 1.75 28.38 39.04

Lag Season Max Temperature (°C) 33.43 1.84 28.62 38.92

NDVI M1 0.31 0.11 0.16 0.68

NDVI M2 0.32 0.12 0.15 0.66

NDVI M3 0.35 0.14 0.15 0.76

NDVI M4 0.41 0.15 0.15 0.76

NDVI M5 0.43 0.13 0.09 0.81

Soil Clay Content (%) 19.15 4.00 10.18 36.20

Soil Silt Content (%) 21.57 7.66 6.39 64.23

Soil Nitrogen Content (g/kg) 15.52 5.07 8.10 38.28

Site Elevation (m) 377.38 268.17 10.00 1427.00

Soil Bulk Density (g/cm³) 0.13 0.01 0.11 0.15

Soil Potential Wetness Index 13.77 2.09 11.00 36.00

Soil Slope (%) 3.10 2.72 0.00 40.40

Cation Exchange Capacity (cmolc/kg) 9.38 1.93 5.17 17.35

Soil Organic Carbon (g/kg) 18.40 7.72 4.99 42.92

N 2843

Note: NDVI M1 to NDVI M5 denote the mean Normalized Difference Vegetation
Index values for the first to fifth months of the growing season, respectively. The
total season rainfall is the aggregated precipitation across the growing season,
while lagged total season rainfall and lagged maximum temperature refer to the
previous season’s values. Soil variables are extracted from 0–5 cm depth.
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Table B.2: Model Parameters

Model Parameter Tuning Details

RF n estimators: {100, 200, 300, 500}
max features: {auto, sqrt, log2}
max depth: {10, 20, 30, None}
min samples split: {2, 5, 10}
min samples leaf: {1, 2, 4}
RandomizedSearchCV with 100 iterations, 10-fold CV

XGB n estimators: {100, 200, 300, 500}
max depth: {3, 5, 7, 10}
learning rate: {0.01, 0.05, 0.1}
subsample: {0.7, 0.8, 1.0}
colsample bytree: {0.7, 0.8, 1.0}
RandomizedSearchCV with 100 iterations, 10-fold CV

ANN hidden layer sizes: {(50,), (100,), (50,50), (100,50)}
alpha: {0.0001, 0.001, 0.01}
learning rate init: {0.0001, 0.001}
activation: {tanh, relu}
RandomizedSearchCV with 100 iterations, 10-fold CV
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Table B.3: LPM Results for the Effect of Lagged Weather Shocks on Fertilizer Adoption (1/0)

Fertilizer Adoption (1/0)

(1) (2)
Variable Coeff. Std. error

Avg Rainfall Dev:
t-1 0.34*** 0.11
t-2 -0.06 0.16
t-3 -0.04 0.19
t-4 0.03 0.17
t-5 -0.44** 0.18
t:{6:10} 0.19 0.52
t:{11:15} 0.18 0.46
t:{16:20} 0.41 0.53
t:{21:25} 0.07 0.43

Max Temperature Dev:
t-1 0.11 0.12
t-2 0.2 0.19
t-3 0.28 0.17
t-4 -0.05 0.18
t-5 -0.14 0.23
t:{6:10} 0.52 0.43
t:{11:15} 0.93* 0.55
t:{16:20} -0.11 0.47
t:{21:25} 0.06 0.35

Log Maize Yield (t-1) -0.16 0.16
Log Fertilizer Price -0.07 0.06
Log Maize Price 0.08 0.06

Controls YES
Household FE YES
Year FE YES
Within R-squared 0.09
Observation 2,843

Note: This table presents the LPM results for equation (9). The time lags are defined
as follows: t-1, t-2, t-3, t-4, t-5 refers to the past year, past two years, past three years,
past four years and past five years respectively. t:{6:10}, t:{11:15}, t:{16:20}, t:{21:25}
represents the averages for the past 6 to 10 years, past 11 to 15 years, past 16 to 20
years and the past 21 to 25 years respectively. Control variables include: indicators
for poultry ownership, cattle ownership, small livestock ownership, credit access and
the receipt of free fertilizer vouchers; age, education, gender (1/0) of household head;
household size (adult equivalence unit), household hired labor (1/0), household planted
maize crop only (1/0), average slope (%) of plot, average elevation in meters of plot,
distance to nearest population center with over 20,000 inhabitants, value of household
owned assets (’000 Naira) and area of maize plot (ha). Standard errors are clustered at
the enumeration area level. *, **, *** indicate the statistical significance at the 10%,
5%, and 1% level, respectively.
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Table B.4: Tobit Results for the Effect of Lagged Weather Shocks on Fertilizer Use Rate

Fertilizer Appl. Rate (kg/ha)

(1) (2)
Variable Coeff. Std. error

Avg Rainfall Dev:
t-1 162.84** 65.42
t-2 -11.6 61.33
t-3 1.67 88.45
t-4 -52.92 73.04
t-5 -236.63*** 84.17
t:{6:10} 42.02 247.63
t:{11:15} 223.02 245.24
t:{16:20} 264.98 263.89
t:{21:25} 174.63 218.27

Max Temperature Dev:
t-1 -44.45 63.17
t-2 -154.00* 93.16
t-3 271.63*** 88.92
t-4 -46.37 88.82
t-5 16.49 104.88
t:{6:10} 437.09 329.10
t:{11:15} 436.70 328.76
t:{16:20} -164.55 192.15
t:{21:25} 224.26 171.17

Log Maize Yield (t-1) -119.61* 67.69
Log Fertilizer Price -92.80*** 26.19
Log Maize Price 19.59 24.05

Controls YES
District FE YES
Year FE YES
Pseudo R-squared 0.08
Observation 2,843

Note: This table shows the Tobit estimation results for equation (9), with coefficients
representing the average marginal effects calculated using the margins command in
STATA. The time lags are defined as follows: t-1, t-2, t-3, t-4, t-5 refers to the past
year, past two years, past three years, past four years and past five years respectively.
t:{6:10}, t:{11:15}, t:{16:20}, t:{21:25} represents the averages for the past 6 to 10
years, past 11 to 15 years, past 16 to 20 years and the past 21 to 25 years respectively. .
Control variables include: indicators for poultry ownership, cattle ownership, small live-
stock ownership, credit access and the receipt of free fertilizer vouchers; age, education,
gender (1/0) of household head; household size (adult equivalence unit), household hired
labor (1/0), household planted maize crop only (1/0), average slope (%) of plot, aver-
age elevation in meters of plot, distance to nearest population center with over 20,000
inhabitants, value of household owned assets (’000 Naira) and area of maize plot (ha).
Standard errors are clustered at the enumeration area level. *, **, *** indicate the
statistical significance at the 10%, 5%, and 1% level, respectively.
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Table B.5: Robustness to Persistence to Profit Effect

Fertilizer Adoption (1/0) Fertilizer Appl. Rate (kg/ha)
(1) (2) (3) (4)

Variable Coeff. Std. error Coeff. Std. error
Avg Rainfall Dev:

t-1 0.34*** 0.12 157.58** 66.62
t-2 -0.06 0.17 -24.46 62.96
t-3 -0.04 0.19 5.80 88.34
t-4 0.03 0.17 -50.14 72.73
t-5 -0.44** 0.18 -234.26*** 85.06
t:{6:10} 0.19 0.51 72.73 254.72
t:{11:15} 0.18 0.45 250.31 248.24
t:{16:20} 0.41 0.53 263.39 264.95
t:{21:25} 0.07 0.44 175.32 218.72

Max Temperature Dev:
t-1 0.11 0.13 -42.10 63.86
t-2 0.20 0.19 -161.44* 93.20
t-3 0.28 0.17 275.55*** 89.57
t-4 -0.05 0.18 -46.27 88.70
t-5 -0.14 0.23 31.50 104.34
t:{6:10} 0.52 0.44 401.33* 237.20
t:{11:15} 0.93* 0.55 426.91 328.47
t:{16:20} -0.11 0.48 -187.57 191.29
t:{21:25} 0.06 0.35 214.76 172.51

Log Maize Yield (t-1) -0.16 0.16 -150.92** 72.98
Log Maize Yield (t-2) 0.01 0.12 61.18 67.00
Log Fertilizer Price -0.07 0.06 -92.65*** 26.58
Log Maize Price 0.08 0.06 19.69 23.90

Controls YES YES
Household FE YES NO
LGA FE NO YES
Year FE YES YES
R-squared 0.09 0.09
Observation 2,843 2,843

Note: This table shows the estimation results for equation (9) with Log Maize yield for past two seasons
as an additional independent variable to control for persistent of profit effect as discussed in Section 4.
Column (1) is estimated using the LPM with household fixed-effects while column (3) is estimated with a
Tobit model with LGA fixed effect. The coefficients of column (3) represents the average marginal effects
calculated using the margins command in STATA. The time lags are defined as follows: t-1, t-2, t-3, t-4,
t-5 refers to the past year, past two years, past three years, past four years and past five years respectively.
t:{6:10}, t:{11:15}, t:{16:20}, t:{21:25} represents the averages for the past 6 to 10 years, past 11 to 15
years, past 16 to 20 years and the past 21 to 25 years respectively. Control variables include: indicators
for poultry ownership, cattle ownership, small livestock ownership, credit access and the receipt of free
fertilizer vouchers; age, education, gender (1/0) of household head; household size (adult equivalence
unit), household hired labor (1/0), household planted maize crop only (1/0), average slope (%) of plot,
average elevation in meters of plot, distance to nearest population center with over 20,000 inhabitants,
value of household owned assets (’000 Naira) and area of maize plot (ha). Standard errors are clustered
at the enumeration area level. *, **, *** indicate the statistical significance at the 10%, 5%, and 1% level,
respectively.
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Table B.6: Robustness to Multiple Hypothesis Testing

Fertilizer Adoption (1/0)
(1) (2)

Variable Coeff. Romano-Wolf p-values
Avg Rainfall Dev:

t-1 0.34*** 0.04
t-2 -0.06 0.70
t-3 -0.04 0.90
t-4 0.03 0.91
t-5 -0.44** 0.04
t:{6:10} 0.19 0.76
t:{11:15} 0.18 0.73
t:{16:20} 0.41 0.55
t:{21:25} 0.07 0.89

Max Temperature Dev:
t-1 0.11 0.59
t-2 0.20 0.45
t-3 0.28 0.19
t-4 -0.05 0.87
t-5 -0.14 0.64
t:{6:10} 0.52 0.39
t:{11:15} 0.93* 0.18
t:{16:20} -0.11 0.83
t:{21:25} 0.06 0.92

Note: The time lags are defined as follows: t-1, t-2, t-3, t-4, and t-5 refer to the past one, two, three,
four, and five years, respectively; t:{6:10}, t:{11:15}, t:{16:20}, and t:{21:25} represent the averages for
the past 6–10, 11–15, 16–20, and 21–25 years, respectively. Additional variables include: log of maize
yield for previous season, prices of maize and fertilizer, indicators for poultry ownership, cattle ownership,
small livestock ownership, credit access, and receipt of free fertilizer vouchers; age, education, and gender
(1/0) of the household head; household size (in adult equivalence units), household hired labor (1/0),
whether the household planted only maize (1/0), average plot slope (%), average plot elevation (meters),
distance to the nearest population center with over 20,000 inhabitants, value of household assets (in ’000
Naira), and area of the maize plot (ha). *, **, *** indicate statistical significance at the 10%, 5%, and
1% levels, respectively. Coefficients in italics survives a correction for multiple hypothesis testing on a 5%
significance level
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Table B.7: LPM Results for the Asymmetric Effect of Lagged Rainfall Shock on Fertilizer Adoption
(1/0)

Percentile Cut-off for Positive/Negative Shocks
80/25 80/20 85/25

Panel A: Full Sample (1) (2) (3)

Positive Shock (t-1) 0.01 0.03 -0.02
(0.06) (0.06) (0.09)

Negative Shock (t-1) -0.07*** -0.05* -0.09***
(0.02) (0.03) (0.02)

Observation 2,843 2,843 2,843

Panel B: First Tertile (Q1)
Positive Shock (t-1) -0.01 -0.01 0.27**

(0.09) (0.09) (0.11)
Negative Shock (t-1) -0.15*** -0.16*** -0.14***

(0.050) (0.05) (0.05)
Observation 949 949 949

Panel C: Second Tertile (Q2)
Positive Shock (t-1) 0.12 0.20 0.11

(0.13) (0.13) (0.15)
Negative Shock (t-1) -0.14*** 0.014 -0.14***

(0.05) (0.05) (0.04)
Observation 947 947 947

Panel D: Third Tertile (Q3)
Positive Shock (t-1) 0.20** 0.22** 0.12

(0.10) (0.10) (0.09)
Negative Shock (t-1) -0.10 -0.11 -0.11**

(0.05) (0.06) (0.05)
Observation 947 947 947

Note: This tables examines robustness of the results to alternate cut-offs for positive and negative shocks.
The dependent variable is dummy for fertilizer adoption (1/0). In each column, positive and negative
shocks are defined under different cut-offs, as labeled at the top of each column. E.g., in Column (1), a
positive (negative) shock is defined as rainfall above (below) the 80th (25th) percentile of the historical
distribution. This correspond to the definition of shocks in the main specification in the paper. Similarly,
in Column (2), a positive (negative) shock is defined as rainfall above (below) the 80th (20th) percentile of
the historical distribution, and so on. All regressions include lagged maximum temperature and its square,
lagged maize yield in log, log of maize and fertilizer prices. Additional control variables are: indicators
for poultry ownership, cattle ownership, small livestock ownership, credit access and the receipt of free
fertilizer vouchers; age, education, gender (1/0) of household head; household size (adult equivalence unit),
household hired labor (1/0), household planted maize crop only (1/0), average slope (%) of plot, average
elevation in meters of plot, distance to nearest population center with over 20,000 inhabitants, value of
household owned assets (’000 Naira) and area of maize plot (ha). Standard errors are in parenthesis and
clustered at the enumeration area level. *, **, *** indicate the statistical significance at the 10%, 5%,
and 1% level, respectively.
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Table B.8: Tobit Results for the Asymmetric Effect of Lagged Rainfall Shock on Fertilizer Appli-
cation Rate (kg/ha)

Percentile Cut-off for Positive/Negative Shocks
80/25 80/20 85/25

Panel A: Full Sample (1) (2) (3)

Positive Shock (t-1) 19.87 30.30 12.90
(30.52) (30.57) (41.03)

Negative Shock (t-1) -33.06** -11.65 -33.56***
(12.78) (14.61) (12.75)

Observation 2,843 2,843 2,843

Panel B: First Tertile (Q1)
Positive Shock (t-1) 61.71 79.47 74.92

(45.67) (49.57) (74.10)
Negative Shock (t-1) -65.61*** -52.02** -65.01***

(14.47) (22.73) (19.47)
Observation 949 949 949

Panel C: Second Tertile (Q2)
Positive Shock (t-1) 21.72 32.39 54.41

(54.66) (53.70) (69.47)
Negative Shock (t-1) -3.96 31.48 -2.03

(22.50) (26.81) (22.64)
Observation 947 947 947

Panel D: Third Tertile (Q3)
Positive Shock (t-1) -18.69 -9.13 -58.09

(44.53) (44.71) (53.20)
Negative Shock (t-1) -41.20** -22.18 -43.35**

(20.90) (22.42) (21.39)
Observation 947 947 947

Note: This tables examines robustness of the results to alternate cut-offs for positive and negative
shocks. The dependent variable is fertilizer application rate (kg/ha). The coefficients represents the
average marginal effects calculated using the margins command in STATA. In each column, positive and
negative shocks are defined under different cut-offs, as labeled at the top of each column. E.g., in Column
(1), a positive (negative) shock is defined as rainfall above (below) the 80th (25th) percentile of the
historical distribution. This correspond to the definition of shocks in the main specification in the paper.
Similarly, in Column (2), a positive (negative) shock is defined as rainfall above (below) the 80th (20th)
percentile of the historical distribution, and so on. All regressions include lagged maximum temperature
and its square, lagged maize yield in log, log of maize and fertilizer prices. Additional control variables
are: indicators for poultry ownership, cattle ownership, small livestock ownership, credit access and the
receipt of free fertilizer vouchers; age, education, gender (1/0) of household head; household size (adult
equivalence unit), household hired labor (1/0), household planted maize crop only (1/0), average slope
(%) of plot, average elevation in meters of plot, distance to nearest population center with over 20,000
inhabitants, value of household owned assets (’000 Naira) and area of maize plot (ha). Standard errors are
in parenthesis and clustered at the enumeration area level. *, **, *** indicate the statistical significance
at the 10%, 5%, and 1% level, respectively.
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Table B.9: Error in Maize Yield Prediction and weather shocks

Predicted Error Sq. Predicted Error
(1) (2) (3) (4)

Avg. rain dev (t) 0.0645 0.0082 0.1276 0.0583
(0.0965) (0.2743) (0.1918) (0.4753)

Avg. rain dev (t-1) -0.1954 -0.3696 0.0300 0.3783
(0.1215) (0.2660) (0.2125) (0.3168)

Tmax dev (t) 0.0396 0.1338 0.0095 -0.4067
(0.0479) (0.2420) (0.0834) (0.3287)

Tmax dev (t-1) 0.0182 -0.1130 -0.0279 0.3115
(0.0510) (0.2115) (0.1059) (0.2995)

HH FE No Yes No Yes
Wave FE No Yes No Yes
R squared 0.0013 0.0037 0.0005 0.0043
N 1990 1990 1990 1990

Note: Standard errors are in parenthesis and clustered at the enumeration area
level. *, **, *** indicate the statistical significance at the 10%, 5%, and 1% level,
respectively.
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