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Abstract

Because of its greater flexibility, the directional distance function (DDF) has been
employed with increasing frequency to estimate multiple-input and multiple-output
production, where inputs and outputs can be good or bad. However, typically
researchers make three restrictive assumptions. First, they assume a direction of
movement of firm production toward the frontier. Second, they assume that actual
quantities of inputs and outputs are allocatively or price efficient. Third, they
assume exogeneity of all inputs and all outputs, except for the normalized one.
The first contribution of this paper is to include parameters to estimate optimal
directions which correspond to the firm’s profit-maximizing (PM) position. The
second contribution is to generalize the DDF to a shadow-quantity DDF. This entails
adding distortion parameters to each input and output quantity of the DDF, creating
shadow quantities. To estimate the shadow quantities and the structural parameters,
we form the shadow DDF system, which includes the shadow DDF and all the
first-order price equations from the shadow-PM problem. These include prices for
bad inputs and bad outputs, where we approximate their missing prices for use in
their first-order price equations. The third contribution is that we estimate the
shadow DDF system using a Generalized Method of Moments approach, where all
variables are potentially endogenous. This approach is simpler than the Bayesian
one employed in Atkinson, Primont, and Tsionas (2016), which estimated shadow
prices and optimal directions. Using the same data set, both sets of results are
qualitatively very similar, although they differ somewhat quantitatively.

JEL CODES: C11, C33, D24

KEY WORDS: GMM estimation, directional distance function, productivity change
with goods and bads, endogeneity, optimal directions.



1 Introduction

The researcher estimating a production technology typically calculates the estimated

distance from the production frontier in different time periods. Essential questions are

how to treat endogeneity, select the direction for computing the distance, and measure

price or allocative inefficiency.1 Traditional estimation of production technologies using

the input- or output-oriented radial distance function (DF) is complicated when inputs

or outputs are bads (which are of no utility to the firm).2 Since the DF scales all good

inputs (using the input-oriented DF) or all good outputs (using the output-oriented

DF) by the same factor, differential credit is not given for reducing specific inputs or

increasing specific outputs. That is, the output-oriented DF does not credit the firm for

increasing the production of goods and reducing the production of bads. Instead, one

rescales bad outputs and good outputs by the same factor, effectively giving the firm

the same credit for increasing bads as increasing goods, which is unreasonable. Thus,

many authors have estimated an output-oriented DF and treated bad outputs like good

inputs (holding both constant). However, this does not allow crediting the firm for

simultaneously reducing good inputs and bad outputs while increasing good outputs.

See Atkinson, Primont, and Tsionas (hereafter, APT) (2016) for further discussion. In

addition this treatment is inconsistent with the materials-balance principle, which states

that the weight of all material outputs of any production process equals the weight of all

material inputs. See Ayres and Kneese (1969) for an early discussion of this point. Also

see the important recent work by Førsund (2009) and Murty, Russell, and Levkoff (2012).

Both papers impose a materials-balance constraint on production function modelling.3

More recently, researchers have estimated the directional distance function (DDF)

as a less restrictive alternative to the DF. Chambers (1998) and Chambers et al. (1998)

1The distance from the frontier is used to compute technical efficiency (TE) in each period as the
percent of the efficiency of the frontier firm. Differences betweens distance measures from one period
to the next are used to compute productivity change (PC), which is the sum of technical change (TC)
(the outward shift in the frontier) and efficiency change (EC) (the extent to which the firm catches up
to the frontier). Allocative efficiency means that ratios of prices equal ratios of marginal products for
all inputs while price efficiency means that, in addition, each output’s price equals its marginal cost.

2The DF is input- (output-) oriented if all inputs (outputs) are proportionally scaled down (up) to
reach the production frontier while all outputs (inputs) are held constant.

3We do not attempt to incorporate a materials-balance approach into this paper but rather leave this
as an important topic for future research.
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developed the DDF to allow for unique additive changes in each input and output by

employing different directions of movement for each to reach the production frontier.4

For a summary of the theory and application of the DDF see Färe and Grosskopf (2000).5

However, researchers typically use restrictive assumptions with DDF estimation. The

first of these is to specify arbitrary directions of movement of firm production toward

the frontier to measure TE (technical efficiency). As discussed in APT (2016) in greater

detail, a number of Data Envelopment Analysis (DEA) studies have attempted to avoid

the arbitrary choice of directions by choosing “optimal” directions using linear program-

ming methods to maximize measured TE. These include Färe et al. (2013), Hampf

and Krüger (2015), and Zofio et al. (2013). However, by maximizing the measured TE

of the firm relative to a DDF, they do not satisfy the first-order conditions for profit

maximization (PM), so that their computed directions do not necessarily correspond to

optimal directions that satisfy PM conditions.

The first contribution of this paper is to compute optimal directions which move the

firm from its current position to a position of PM on the production frontier. We term

these directions “optimal-PM” directions.

Typically, productivity studies also make the restrictive assumption that actual quan-

tities of inputs and outputs are price efficient. Thus, the second contribution of this paper

is to generalize the DDF to a shadow DDF. This entails adding distortion parameters to

each input and output quantity of the DDF, creating shadow quantities. These quanti-

ties are price efficient subject to profit maximization (PM) based on market prices and

allow estimation of input and output inefficiency by comparison with actual quantities.

To jointly estimate the shadow quantities, the optimal directions, and the structural

parameters, we form the shadow DDF system, which includes the shadow DDF and all

of the first-order price equations from the PM problem. Since the prices for bad inputs

and bad outputs are missing, we approximate these prices and then use them in their

first-order equations. We differ from Atkinson and Tsionas (hereafter, AT) (2016) who

4If non-zero directions change only inputs (outputs) when measuring productivity growth, the DDF
is input- (output-) oriented. When non-zero directions change all inputs and outputs, the DDF is
technology-oriented.

5Their joint production approach, discussed later in this paper, and the materials-balance approach of
Murty, Russell, and Levkoff (2012) are two alternative ways to model bad outputs. The appropriateness
of one or the other would depend on the context and the objective of the researcher.
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omit distortion parameters and include price equations only for good inputs and good

outputs, since the prices of bad inputs and bad outputs are incomplete. We also differ

from APT (2016) who estimated shadow prices rather than shadow quantities.

Productivity studies also typically assume that inputs and outputs except for the

normalized left-hand-side one are exogenous. Our third contribution is to form moment

conditions, which we estimate using the Generalized Method of Moments (GMM), where

we assume that all variables of the DDF are potentially endogenous. We employ exoge-

nous prices of good inputs and good outputs as part of our instrument set. Our approach

is a simpler alternative to Bayesian likelihood-based methods utilized by APT (2016)

and AT (2016). We also report bootstrapped finite-sample distributions of distortion

parameters and find highly non-normal distributions which have generally little overlap

with zero. The shadow DDF system also allows the identification and estimation of

measures of TE, PC, TC, and EC.

Our identification strategy relies in part on the use of good input and good output

prices as instruments. We argue that good input prices are exogenous, since utilities

shop for labor, capital, and energy in competitive national markets. We also argue that

good output prices are exogenous. A few of our sample utilities were restructured later

in our sample period, so that they sold output in competitive markets. The majority of

our sample firms faced regulatory commissions which specified their good output prices.

For an unbalanced panel of U.S. privately-owned utilities, we compute prices of bad

inputs and bad outputs, optimal-PM directions, distortion parameters, and the resource

implications of price inefficiency. These results are qualitatively similar to those in APT

(2016), who estimated optimal-PM directions and shadow prices using more complex

Bayesian methods with the same data set.

2 The Directional Distance Function

Consider a firm production technology where firms combine good inputs, x = (x1, . . . , xN ) ∈

RN
+ , and bad inputs, x̃ = (x̃1, . . . , x̃J) ∈ RJ

+, to produce good outputs, y = (y1, . . . , yM ) ∈

RM
+ , and bad outputs, ỹ = (ỹ1, . . . , ỹL) ∈ RL

+. The firm’s production technology, T (t),

can be written as
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T (t) = {(x, x̃,y, ỹ) : x, x̃ can producey, ỹ at time t}, (1)

where t = 1, . . . , T .

Let g = (gx, gx̃, gy, gỹ) be a direction vector. Following Chambers (1998), we define

the technology DDF as

−→
DT (x, x̃,y, ỹ; g)

= sup{β : (x+ βgx, x̃+ βgx̃,y + βgy, ỹ + βgỹ) ∈ T }, (2)

where we estimate optimal-PM directions (which can be positive or negative) rather

than assigning them a priori, while β ∈ R+.

Among the important properties of the technology DDF that hold whether directions

are assigned or estimated optimally are:

P1. Translation Property: Regardless of the signs of the elements of g,

−→
DT (x+ αgx, x̃+ αgx̃,y + αgy, ỹ + αgỹ; gx, gx̃, gy, gỹ)

=
−→
DT (x, x̃,y, ỹ; g)− α, (3)

as proved in Hudgins and Primont (2007),

P2. g-Homogeneity of Degree Minus One:

−→
DT (x, x̃,y, ỹ;λgx, λgx̃, λgy, λgỹ) = λ−1−→DT (x, x̃,y, ỹ; g), λ > 0, (4)

P3. Concavity:

−→
DT (x, x̃,y, ỹ; g) is concave in (x, x̃,y, ỹ), (5)

P4. Non-negativity:

−→
DT (x, x̃,y, ỹ; g) ≥ 0, (x, x̃,y, ỹ) ∈ T . (6)
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For the four following monotonicity conditions, “S” indicates that the condition

depends on the assumption of strong disposability.

P5-S. Good Input Monotonicity: APT (2016) prove, given strong disposability,

that

x′ = x → −→
DT (x

′, x̃,y, ỹ; g) = −→
DT (x, x̃,y, ỹ; g).

This follows a similar proof in Chambers (1998) for a benefit function.

Again following APT (2016), we convert this into a partial derivative obtaining

∂
−→
DT (x, x̃,y, ỹ; g)/∂xn = 0, n = 1, . . . , N. (7)

P6-S. Good Output Monotonicity: In a similar manner, assuming the strong

disposability of y we can follow P5-S and establish that

∂
−→
DT (x, x̃,y, ỹ; g)/∂ym ≤ 0,m = 1, . . . ,M. (8)

Likewise, if we make the dubious assumption that bad inputs and bad outputs are

strongly disposable, we can follow P5-S and establish P7-S and P8-S.

P7-S. Bad Input Monotonicity:

∂
−→
DT (x, x̃,y, ỹ; g)/∂x̃j ≥ 0, j = 1, . . . , J, (9)

P8-S. Bad Output Monotonicity:

∂
−→
DT (x, x̃,y, ỹ; g)/∂ỹl ≥ 0, l = 1, . . . , L. (10)

The properties P1-P4 and P5-S–P8-S do not imply that movement from the firm’s

current position to the PM position on the production frontier requires that bads de-

crease and goods increase. Färe and Grosskopf (2000) specified these directions of move-

ment a priori before measuring the distance to the frontier. However, they did not move
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the firm to a PM position. As shown in Fig. 1 of APT (2016), movement of the firm

to the frontier at a PM position can result in the increase of both a bad and good

output. For example, optimal production could require the simultaneous generation of

more electricity and more pollution as a result. We illustrate this in Fig. 1, where the

firm could move from an interior point, z, to the optimal profit-maximizing position at

z∗ or at z′, where the price line is tangent to the production possibilities curve. The

first move implies that good outputs increase while bad outputs decrease. The second

move implies that both good outputs and bad outputs increase.

In addition, we argue that strong disposability and hence P7-S and P8-S would rarely

hold true for the electric utility industry. This is because bad inputs and bad outputs

are weakly, rather than strongly, disposable for electric utilities. Weak disposability

implies that bad inputs and bad outputs cannot be unilaterally decreased, but must

be decreased jointly with some other input or output. Bad inputs can be reduced by

using fewer good inputs, with which they are bonded chemically. Bad outputs can

be reduced by diminishing good outputs and diverting some of the unused inputs to

pollution control.

Without the assumption of strong disposability, we are unable to derive general

monotonicity conditions for bad inputs and bad outputs. However, if we assume that

their prices are positive and assume that firms maximize profits, we can determine local

monotonicity conditions for bad inputs and bad outputs.

Many studies have maintained the assumption that the electric utility industry max-

imizes profits. One of the earliest was Atkinson and Halvorsen (1976). More recently

see AT (2016). Fowlie (2010) provides evidence of unregulated profit-maximizing be-

havior by finding that many regulated utilities earn allowed rates of return on capital

that considerably exceed the market rate of return (implying that constraints on PM

are not binding). A more recent example is APT (2016), which compares models based

on PM and cost minimization. Using Bayesian criteria, they find that the former model

performs considerably better.

Following Chambers et al. (1998) and Färe and Grosskopf (2000), we assume that
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firms maximize profits by choosing optimal values for x, x̃,y, ỹ:

sup
{
py(y +

−→
DT gy)− pỹ(ỹ +

−→
DT gỹ)− px(x+

−→
DT gx)− px̃(x̃+

−→
DT gx̃)

}
, (11)

where py ≥ 0,pỹ ≥ 0,px ≥ 0, and px̃ ≤ 0 are price vectors. As discussed in more

detail in APT (2016), all prices are assumed to be non-negative except for the price of

bad inputs, which is non-positive. The price of a bad input is non-positive, since the

seller must reduce the price to the firm as compensation for consuming more of the bad,

all else constant. The price of a regulated bad output subject to a binding emission

standard is positive. The firm must buy permits for any emissions exceeding what are

allowed under the emission standard set by the states (which in turn must meet Federal

air quality standards). Each year under the cap-and-trade system for SO2, allowable

emissions were decreased, so that all the utilities in our sample faced a binding emission

standard during our sample period. The limited number of published permit prices

for SO2 were positive and quite high. Failure to purchase SO2 permits to cover excess

emissions resulted in a very large fine.

We have only highly limited price series for bad outputs and bad inputs. Prices of

SO2 and NOx pollution permits are unavailable for most utilities in most of our sample

time periods. Markets for these permits are very thin. In addition, we are unable to

compute an hedonic price for sulfur. We do have data on the delivered prices of coal and

oil. However, these prices (per ton and per barrel) are a function of the Btu content,

the sulfur content, and transportation costs. Since the latter are confidential, we cannot

run a hedonic regression to compute the implicit price of sulfur. Data for mine-mouth

prices of coal and well-head prices of oil would be free of transportation charges. If

these prices were available, one then could regress them on sulfur and Btu content to

obtain the implicit price of sulfur. However, mine-mouth and well-head price data are

also confidential.
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The first-order PM conditions for inputs and outputs are given in APT (2016) as:

pn/ϑ = ∂
−→
DT (x, x̃,y, ỹ; g)/∂xn, n = 1, . . . , N, (12)

pm/ϑ = −∂
−→
DT (x, x̃,y, ỹ; g)/∂ym,m = 1, . . . ,M, (13)

pj/ϑ = ∂
−→
DT (x, x̃,y, ỹ; g)/∂x̃j , j = 1, . . . , J, (14)

pl/ϑ = ∂
−→
DT (x, x̃,y, ỹ; g)/∂ỹl, l = 1, . . . , L, (15)

where

ϑ =
[∑

m

pmgm −
∑
n

pngn −
∑
j

pjgj −
∑
l

plgl
]
. (16)

We assume that ϑ > 0, where ϑ is the optimal value of the Lagrangian multiplier. which

is the change in profits due to a small improvement in the production technology. For

details see Hudgins and Primont (2007) who show that one can solve the unconstrained

profit-maximization problem in (11) or solve the equivalent Lagrangian function as

L = pyy − pxx+ ϑ
−→
DT (x, x̃,y, ỹ; g), (17)

in order to obtain this interpretation of ϑ.

Then we can state the monotonicity conditions for the case of weakly disposable

inputs and outputs, where “W” indicates weakly disposable. From (14) and the as-

sumption that px̃ ≤ 0 we obtain locally

P7-W. Bad Input Monotonicity:

∂
−→
DT (x, x̃,y, ỹ; g)/∂x̃j ≤ 0, j = 1, . . . , J. (18)

From (15) and the assumption that pỹ ≥ 0 we obtain locally

P8-W. Bad Output Monotonicity:
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∂
−→
DT (x, x̃,y, ỹ; g)/∂ỹl ≥ 0, l = 1, . . . , L. (19)

3 The Econometric Model

3.1 The Shadow Distance System

To simplify notation, let z = (x, x̃,y, ỹ). Assume that we have panel data for firm

i(i = 1, . . . , F ) in time period t(t = 1, . . . , T ) on all inputs and outputs. We add vintage

(τ) (which is an output-weighted-average of the age of the firm’s capital) to account

for the fact that capital depreciates with age. We employ a quadratic function of all

inputs, outputs, τ , time, and distortion parameters, k = (kn, km, kj , kl), which measure

deviations of shadow (efficient) quantities from actual quantities. This provides a new

formulation of the technology DDF, which we term a shadow technology DDF:

0 =
−→
DT (z, τ, t;k) + ϵit

=
M∑

m=1

γm(ym,it + km) +
L∑
l=1

γl(ỹl,it + kl)

+

N∑
n=1

γn(xn,it + kn) +

J∑
j=1

γj(x̃j,it + kj)

+
1

2

M∑
m=1

M∑
m′=1

γmm′(ym,it + km)(ym′,it + km′) +
1

2

L∑
l=1

L∑
l′=1

γll′(ỹl,it + kl)(ỹl′,it + kl′)

+
1

2

N∑
n=1

N∑
n′=1

γnn′(xn,it + kn)(xn′,it + kn′) +
1

2

J∑
j=1

J∑
j′=1

γjj′(x̃j,it + kj)(x̃j′,it + kj′)

+
J∑

j=1

N∑
n=1

γjn(x̃j,it + kj)(xn,it + kn) +
M∑

m=1

N∑
n=1

γmn(ym,it + km)(xn,it + kn)

+

L∑
l=1

N∑
n=1

γln(ỹl,it + kl)(xn,it + kn) +

M∑
m=1

J∑
j=1

γjm(ym,it + km)(x̃j,it + kj)

+

L∑
l=1

J∑
j=1

γjl(ỹl,it + kl)(x̃j,it + kj) +

L∑
l=1

M∑
m=1

γlm(ỹl,it + kl)(ym,it + km)
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+

M∑
m=1

γmt(ym,it + km) t+

L∑
l=1

γlt(ỹl,it + kl) t +

N∑
n=1

γnt(xn,it + kn) t

+

J∑
j=1

γjt(x̃j,it + kj) t+
∑
t

γtdt +
∑
i

di + γττit + ϵit, (20)

where

ϵit = vit − uit, (21)

so that ϵit is an additive error with a one-sided component, uit, and a standard noise

component, vit, with zero mean, reflecting errors in optimization due to random events

beyond the control of the firm. We specify that dt is a year dummy, di is a firm dummy,

and the kq, q = n,m, j, l are parameters which define shadow quantities as xq + kq, q =

n,m, j, l. APT (2016) provides the restrictions on the parameters of the technology

distance function (γ) and the optimal-PM directions (g) that impose the translation

property in (3) for a technology-oriented DDF:

M∑
m=1

γmgm +
L∑
l=1

γlgl +
N∑

n=1

γngn +
J∑

j=1

γjgj = −1,

M∑
m=1

γmn′gm +

L∑
l=1

γln′gl +

N∑
n=1

γnn′gn +

J∑
j=1

γjn′gj = 0, ∀ n′,

M∑
m=1

γmm′gm +

L∑
l=1

γlm′gl +

N∑
n=1

γm′ngn +

J∑
j=1

γjm′gj = 0, ∀ m′, (22)

M∑
m=1

γj′mgm +
L∑
l=1

γj′lgl +
N∑

n=1

γj′ngn +
J∑

j=1

γjj′gj = 0, ∀ j′,

M∑
m=1

γl′mgm +

L∑
l=1

γll′gl +

N∑
n=1

γl′ngn +

J∑
j=1

γjl′gj = 0, ∀ l′.

We impose the translation property restrictions in (22) on (20) to yield
−→
DT (z, τ, t;k, g).

Note that parameters which measure optimal-PM directions (g) occur only in these

constraints. Let us rewrite the above restrictions more compactly in the following form:

h (θ) = c, (23)
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where c = [−1
...0] and θ = [γ ′, g′].

We can rewrite the first-order PM conditions from (12)-(15) in terms of the param-

eters of the quadratic shadow DDF in (20) for each good input price equation as:

pn,it/ϑ = γn +
N∑

n′=1

γnn′(xn′,it + kn′) +
J∑

j=1

γjn(x̃j,it + kj) +
M∑

m=1

γmn(ym,it + km)

+
L∑
l=1

γln(ỹl,it + kl) + γntt+ vn,it, (24)

for each good output price equation as:

pm/ϑ = −

γm +

M∑
m′=1

γmm′(ym′,it + km′) +

J∑
j=1

γjm(x̃j,it + kj) +

N∑
n=1

γmn(xn,it + kn)

+

L∑
l=1

γlm(ỹl,it + kl) + γmtt

]
+ vm,it,(25)

for each bad input price equation as:

pj/ϑ = γj +
J∑

j′=1

γjj′(x̃j′,it + kj′) +
N∑

n=1

γjn(xn,it + kn) +
M∑

m=1

γjm(ym,it + km)

+
L∑
l=1

γjl(ỹl,it + kl) + γjtt+ vj,it, (26)

and for each bad output price equation as:

pl/ϑ = γl +

L∑
l′=1

γll′(ỹl′,it + kl′) +

J∑
j=1

γjl(x̃j,it + kj) +

N∑
n=1

γln(xn,it + kn)

+

M∑
m=1

γlm(ym,it + km) + γỹtt+ vl,it, (27)

where the vg,it, g = n,m, j, l have zero mean. We impose the restrictions in (22) on

(24)-(27).

We do not have prices for bad inputs or bad outputs. However, we include the first-

order conditions involving latent prices for bad outputs and bad inputs with equations
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(26) and (27). Their latent prices are assumed to follow the process:

pj,it/ϑit =

T∑
t=1

η
(1)
ijt dt +

F∑
i=1

η
(2)
ijt di + η

(3)
ijt τit + η

(4)
ijt pE,it, ∀j = 1, . . . , J, (28)

and

pl,it/ϑit =

T∑
t=1

η
(1)
ilt dt +

F∑
i=1

η
(2)
ilt di + η

(3)
ilt τit + η

(4)
ilt pE,it, ∀l = 1, . . . , L, (29)

where {dt, t = 1, ..., T ; i = 1, ..., F} is a full set of time dummies, {di, i = 1, ..., F ; t = 1, ..., T}

is a full set of firm dummies, pE,it is the price of energy relative to capital, and η
(1)
ijt , η

(2)
ijt ,

η
(1)
ilt , η

(2)
ilt are firm-specific coefficients with the normalization

∑T
t=1 η

(1)
ijt =

∑F
i=1 η

(2)
ijt =∑T

t=1 η
(1)
ilt =

∑F
i=1 η

(2)
ilt = 0. Specifically, we rewrite each constraint so that the first firm

(among the F) and the first time period (among the T) appear on the left-hand-side of

each constraint equation before substitution into (28) and (29).

The firm-specific ηijt and ηilt in (28) and (29) are still not yet identifiable. To identify

them we assume that:

η
(ϱ)
ijt =

F∑
i=1

δ
(ϱ)
ij1di + δ

(ϱ)
ij2τit + δ

(ϱ)
ij3pE,it, ϱ = 1, ..., 4; j = 1, ..., J. (30)

η
(ϱ)
ilt =

F∑
i=1

δ
(ϱ)
il1 di + δ

(ϱ)
il2 τit + δ

(ϱ)
il3 pE,it, ϱ = 1, ..., 4; l = 1, ..., L. (31)

We then substitute (30) and (31) into (28) and (29). Then these latter two equations

replace pj,it/ϑit and pl,it/ϑit in the LHS of (26) and (27). The resulting equations do not

involve non-linearities in the parameters, but instead, non-linearities in the variables,

so that estimation is straightforward. Non-linearities in the variables are necessary to

identify the firm-specific parameters. Specifically, identification results from assuming

that the ηijt and ηilt depend on di, τit, and pE,it, all of which involve the subscript i, and

the non-linearities obtained through substitution of (30) and (31) into (28) and (29).

There is no empirical complication to replacing pj,it/ϑit and pl,it/ϑit with a function of

additional parameters and variables, since in Section 4 we carry out GMM estimation.

This simply requires rewriting the set of estimated equations, (24)-(27) and (20) in terms
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of their error terms on the left-hand-side and then constructing the sample moment

conditions in (46). Some or all of the terms in (30) and (31) could be employed in

estimation. Below we report results that indicate the superiority of the full specification

of these equations. Clearly, if one does not wish to obtain firm-specific parameters, then

(30) and (31) would not be employed. This approach to generating latent prices is much

simpler than the Bayesian approach utilized in APT (2016).

3.2 Shadow Prices and Shadow Quantities

Two methods exist to estimate the extent of resource misallocation. APT (2016)

estimated a DDF system assuming PM and incorporated additive terms in the first-

order price equations to measure deviations of shadow prices from market prices. Firms

are assumed to determine actual levels of input and output quantities using shadow

prices (prices that are relevant to the firm). Actual quantities are inefficient if shadow

prices differ from actual (market) prices. Shadow prices may deviate from actual prices

due to taxes, subsidies, rate-of-return regulation on capital, and other similar reasons.

Then APT (2016) calculated the inefficient usage of inputs and generation of outputs

from the fitted first-order price equations. This involved setting shadow prices equal to

market prices and computing the implied shadow quantities.

In this paper, instead of estimating shadow prices that are consistent with actual

quantities as in APT (2016), we estimate shadow quantities that are consistent with

actual prices. This requires generalizing the DDF to a shadow DDF, where shadow

quantities replace actual ones. Resources are misallocated by the amount that directly

computed shadow quantities (based on actual prices) differ from actual quantities. That

is, if actual values of xq, q = n,m, j, l can be adjusted up or down by a non-zero kq

to increase price efficiency, then actual quantities are inefficient by that amount. We

use bootstrap methods to compute distributions for parameters that measure inefficient

resource allocation.
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3.3 Measurement of Inefficiencies

We assume that uit is a one-sided, non-negative error term in (21). Following Corn-

well, Schmidt, and Sickles (1990) we regress the residual ϵ̂it on a function of time and

firm dummies:

ϵ̂it =
∑
i

fidi + bidit+ cidit
2 + ξit, (32)

where di are firm dummies (and coefficients bi and ci result from interacting trend and

trend squared with the dummies in di) while ξit is a two-sided i.i.d. error term. The

fitted values of this equation are ûit. Then, we compute TEit as exp(−ûit) and report

its distribution for our sample.

Estimation of price efficiency requires identification of the kq distortion parameters.

For all inputs and outputs, we first specify equations for input-specific and output-

specific (constant across firms) k values, (kn, km, kj , kl), as

kn =
∑
t

kntdt, ∀ n = 1, . . . , N − 1, (33)

km =
∑
t

kmtdt, ∀ m = 1, . . . ,M, (34)

kj =
∑
t

kjtdt, ∀ j = 1, . . . , J, (35)

kl =
∑
t

kltdt, ∀ l = 1, . . . , L, (36)

We refer to these as Case A.

We also specify equations for input- and firm-specific k values, (kn,i, km,i, kj,i, kl,i),
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as

kn,i =
∑
t

kntdt +
∑
t

kn,itdidt, ∀ n = 1, . . . , N − 1; i = 1, . . . , F, (37)

km,i =
∑
t

kmtdt +
∑
t

km,itdidt, ∀ m = 1, . . . ,M ; i = 1, . . . , F, (38)

kj,i =
∑
t

kjtdt +
∑
t

kj,itdidt, ∀ j = 1, . . . , J ; i = 1, . . . , F, (39)

kl,i =
∑
t

kltdt +
∑
t

kl,itdidt, ∀ l = 1, . . . , L; i = 1, . . . , F. (40)

We refer to these as Case B and use these equations to replace the input-specific k values

in (20).

This approach assumes the errors in allocative efficiency can be specified as parame-

ters, following the work of Atkinson and Halvorsen (1976), Atkinson and Primont (2002),

and Kumbhakar (1992). A random effects approach is an alternative as in Kumbhakar

and Tsionas (2005). The current approach avoids the need to make distributional as-

sumptions and simplifies the estimation process relative to the random effects approach.

Standardized data are employed so that comparisons of efficiency parameters and

optimal-PM directions are not dependent on the unit of measure (i.e., the scale of the

data). If the kq are not significantly different from zero, we fail to reject the null that

firms are employing the resource q in a price-efficient manner. We compute the percent

change in input and output usage, %∆q, required to achieve their price efficient level.

We define %∆q = [(xq + kq)− xq]/xq = kq/xq, which is the shadow quantity minus the

actual quantity divided by the actual quantity. Thus if kq is estimated to be negative,

the efficient quantity is less than the actual quantity.
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3.4 Satisfying P1-P8

As indicated above, we satisfy the translation property of the DDF, P1, by imposing

on (20) the translation property restrictions, (22), for the technology-oriented DDF.

In APT (2016) we show that P1 for our DDF system implies P2. We have imposed

concavity, P3, on our model at random points and found violations in less than 1 % of

the observations. After estimation, we impose non-negativity, P4, for all observations via

a normalization of the fitted DDF. Finally, our fitted model satisfies the monotonicity

properties P5-S, P6-S, p7-W, and P8-W for approximately 99% of the data.

3.5 Estimation of Productivity Change

The calculation of PC and its decomposition into EC and TC proceeds by focusing on

(20). As indicated above, in each period we normalize our estimates of
−→
DT (z, τ, t;k, g)

so that all estimated values of
−→
DT (z, τ, t;k, g) ≥ 0 and the frontier firm has an estimated

−→
DT (z, τ, t;k, g) = 0. Adding a superscript t to indicate the time period (but temporarily

suppressing τ,k, and g), we eliminate the effect of arbitrarily scaling of the data by

defining a percentage change Luenberger technical change measure, TCL, as

TCL
it = .5

{−→
D

t+1

T (xi,t+1,x̃i,t+1,yi,t+1,ỹi,t+1)−
−→
D

t

T (xi,t+1,x̃i,t+1,yi,t+1,ỹi,t+1)
A

+
−→
D

t+1

T (xit,x̃it,yit,ỹit)−
−→
D

t

T (xit,x̃it,yit,ỹit)
B

}
, (41)

where

A = .5{
−→
D

t+1

T (xi,t+1, x̃i,t+1,yi,t+1, ỹi,t+1) +
−→
D

t

T (xi,t+1, x̃i,t+1,yi,t+1, ỹi,t+1)}

B = .5{
−→
D

t+1

T (xit, x̃it,yit, ỹit) +
−→
D

t

T (xit, x̃it,yit, ỹit)}. (42)

We define a percentage change Luenberger efficiency change measure, ECL, as

ECL
it =

{
−→
D

t

T (xit, x̃it,yit, ỹit)−
−→
D

t+1

T (xi,t+1, x̃i,t+1,yi,t+1, ỹi,t+1)}
C

, (43)
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where C = .5{−→D
t

T (xit, x̃it,yit, ỹit) +
−→
D

t+1

T (xi,t+1, x̃i,t+1,yi,t+1, ỹi,t+1)}. Note that the

bases–A, B, and C–are midpoints between one fitted DDF and an adjacent one. Finally,

the percentage change Luenberger productivity change indicator, PCL
it, is defined as

PCL
it = TCL

it + ECL
it. (44)

If the frontier firm is the same in two adjoining periods, the numerators and denom-

inators in (41) and (43) would be zero. In this case, we set ECL
Ft = TCL

Ft = PCL
Ft = 0,

since the numerator value is zero for the frontier firm, F .

4 GMM-Based Methods

As indicated above, we first impose the translation property restrictions in (22) on

the DDF, (20). Then we substitute the price efficiency equations, (37)-(40), into (20), the

DDF, to yield
−→
DT (z, τ, t;k, g) and into (24)-(27), the price equations. Since prices for

bad inputs and outputs are missing, we substitute the firm-specific latent price equations,

(30) and (31), into the original latent price equations, (28) and (29), and then substitute

these resulting equations into (26)-(27). The resulting restricted DDF and restricted

price share equations, which are now functions of (z, t;k, g), comprise our shadow DDF

system. which allows identification of parameters measuring optimal-PM directions (g),

the structural parameters of the DDF (γ), parameters measuring deviations of shadow

quantities from actual quantities (k), and latent price parameters.

Let us formally specify the moment conditions using the restricted versions of (20)

and (24)-(27). First, as indicted above, we must rewrite these equations so that the

error of each equation is on its left-hand-side. Then the moment conditions for all of

these equations are:

E
[
Z′
itV it(θ)

]
= 0, (45)

where Zit(i = 1, ..., F ; t = 1, . . . , T ) denotes a column vector of instruments (exogenous

variables including the Xit regressors), such that dim(Zit) is at least as large as the num-

ber of unknown parameters in the system, θ = [γ ′, g′]′ ∈ Θ ⊆ Rp is the parameter vector,
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and Vit (θ) = [(vit − uit)]
′,v′

n,it,v
′
m,it,v

′
j,it,v

′
l,it]

′, where vn,it = [v1,it, . . . , vN,it]
′,vm,it =

[v1,it, . . . , vM,it]
′,vj,it = [v1,it, . . . , vJ,it]

′,vl,it = [v1,it, . . . , vL,it]
′.

The sample moment conditions are:

G (θ;Z) = (FT )−1
∑
i,t

Z′
itV it(θ) = 0. (46)

For estimation purposes, we adopt a Generalized Method of Moments-Continuously

Updated Estimator (GMM-CUE), which relies on moment conditions generated from

(20) and (24)-(27). The modified GMM criterion that we minimize is the following

penalized version of GMM:

min
θ∈Θ

: G (θ;Z)′Ω (θ)−1G (θ;Z)+(FT )−1

{
1

ω2
g

(g − g̃)′ (g − g̃) +
1

ω2
[h (θ)− c]′ [h (θ) − c]

}
,

(47)

where Ω (θ) is the usual GMM weighting matrix used for the CUE version of GMM.

Recall that g is a vector of optimal-PM directions and that g̃ = (g̃x, g̃x̃, g̃y, g̃ỹ) =

(−1,−1,+1,−1) is a vector of initial conditions for the directions. These values are

typically selected as fixed directions in the literature and hence make reasonable initial

values. The required translation property restrictions are imposed through the regular-

ization (“prior”) in (23). The weight matrix is given by

Ω (θ) = (FT )−1
∑
i,t

[
G (Zit;θ)G (Zit;θ)

′] . (48)

Clearly, we want ωg to be large and ω to be small. When ωg is large we make

the first half of the penalty function small so that we place a weak constraint on the

values that the optimally chosen directions can assume. When ω is small we make the

second half of the penalty function large, so that the translation property restrictions

will be satisfied with near equality. Given the form of the criterion we see that (47)

acts to regularize estimation in the context of GMM. For example, in the normal linear

model y = Zβ+v the prior β ∼ N
(
0, ω2

gI
)
produces the ridge or regularized estimator

β̂ =
(
Z′Z+ ω−2

g I
)−1

Z′y. The set Θ guarantees that certain regularity restrictions on
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the technology directional distance function are imposed at the mean of the data which

is normalized to zero for simplicity. In a Bayesian setting our penalty term for g is

equivalent to the following:

g|γ ∼ N
(
g̃, ω2

gI
)
. (49)

The criterion function in (47) can be minimized using standard optimization al-

gorithms for a range of values for ω and ωg using penalty function methods for the

restrictions θ ∈ Θ . Initial conditions can be obtained from the “first stage” GMM

where Ω (θ) = I. This optimization is, typically, easy to implement and its numerical

performance in terms of speed has been found quite satisfactory.

Our computational experience suggests that while various small values of ω do not

make a large difference, this is not the case for different values of ωg. Therefore, we

follow a cross-validation approach to the selection of this parameter. One firm (with T

temporal observations) is omitted at a time and the criterion in (47) is minimized. The

observations for the omitted firm are “predicted” at the final parameter values and the

value of ωg is selected so that the sum of squares between the actual and predicted is

minimum. We have found that this cross-validation criterion works well and different

values of the parameter ωg result in a rather “deep” U-shaped curve which facilitates

the choice of the optimal parameter. With regard to (47), we find that the optimal value

for ωg is 103 while the optimal value for ω is 10−5, although results are not sensitive to

other values such as 10−4, 10−6, and 10−7.

We also apply cross-validation with respect to another parameter, λ. The covariance

matrix is replaced by Ω (θ) + λ̃I, since Ω (θ) turned out to be (numerically) singular in

several instances. This happens often in GMM. We set λ̃ = 10−7. Our instrument set

consists of predetermined variables as explained in the data section. Since our model is

over-identified, we compute the validity of the over-identifying restrictions.

In some cases local optimization does not work very well suggesting the existence of

a multimodal criterion function especially when we choose to work with the GMM-CUE

version instead of either (i) one-step GMM only, or (ii) two-step GMM.6 Therefore, we

6One-step GMM estimates parameters based on an initial weight matrix and no updating of the
weight matrix is performed except when calculating the appropriate variance-covariance matrix. Two-
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use simulated annealing to locate a global optimum of the criterion function.

We have found it useful to experiment also with a bootstrapped version of GMM-

CUE to avoid well-known difficulties with the finite-sample distribution of GMM being

quite different from its asymptotic normal distribution. This allows us to derive boot-

strapped versions of the inefficiency measures outlined above. We employ the pairs block

bootstrap.

5 Data

The sample consists of an unbalanced panel, subject to attrition, of at most 77

privately-owned electric utilities (whose names are available upon request from the au-

thors) operating in the U.S. over the period 1988-2005, for a total of 1201 observations.

A balanced panel would have yielded 1386 observations. We examine only fossil-fuel-

based steam generation. Further, we include a full set of 77 firm-specific dummies and

omit the intercept in the quadratic DDF, equation (20).

We model the use of three good inputs (energy, labor, and capital) and one bad input

(sulfur) to produce two good outputs (residential and industrial/commercial electricity

generation) and three bad outputs (sulfur dioxide (SO2), carbon dioxide (CO2), and

nitrogen oxide (NOx)).
7 We also calculate actual prices for the good inputs and good

outputs. The price of energy is computed as a weighted average of the cost per million

Btu of each fuel, while the price of labor is the wage rate. The price of capital is the yield

of the firm’s latest issue of long-term debt adjusted for appreciation and depreciation of

capital. The prices of residential and industrial/commercial production are derived as

total revenues in each category divided by total sales in that category. Data are available

step GMM obtains parameter estimates based on the initial weight matrix, computes a new weight
matrix based on those estimates, and then reestimates the parameters based on that weight matrix.
Finally, GMM-CUE obtains parameter estimates based on the initial weight matrix, computes a new
weight matrix based on those estimates, reestimates the parameters based on that weight matrix, and
continues this process to convergence.

7Residential electricity is 110 volts as distributed exclusively to residential users, primarily using
single-phase wiring. The few residential appliances that require 220 volts (such as water heaters and
heat pumps) combine two 110 voltage phases within the home. Industrial/commercial electricity is
typically 220 and 110 volts and is sold exclusively using three-phase wiring, which provides a smoother
form of electricity that makes large machinery run more efficiently and longer. Thus, the two goods are
clearly distinct.
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on the quantities, but not prices, for the bad input (sulfur) consumed and bad outputs

(CO2, SO2 and NOx) generated by the firm.

In addition to utilizing time dummy variables, we control for firm vintage, τ . This

variable and the time dummies are assumed to be separable from the other inputs and

outputs.

In rare cases we encountered missing data for some variables. Whenever necessary we

accounted for such data by either using the value of the previous period or the average

of the previous and the subsequent period, depending on how related variables changed.

All continuous variables are standardized to eliminate the sensitivity of results to the

scale of the data. For a full discussion of this issue and a more complete description of

the data see APT (2016).

All of our empirical results are based on GMM-CUE estimation with a given set of

instruments. This set includes time dummies, firm dummies, and all actual (but not

latent) prices for good inputs and good outputs, complemented with their squares and

their interactions. As indicated above, we assume that utilities are price takers in input

markets and are subject to output prices set by regulatory agencies or market forces

(if restructured). The vast majority of the utilities in our sample are observed during

regulated rather than restructured periods.

6 Empirical Results

Since our model is over-identified, we compute the J-test of the validity of the over-

identifying restrictions. This statistic has a p-value of .55 for the full specification of

(30) and (31). If we employ only the first terms in these equations, the J-statistic has

a p-value of .32, and if we employ only the first two terms, the J-statistic is .47. Thus,

firm-specific parameters are estimated using the full specification.

Figs. 2-5 provide summary statistics for the GMM-CUE method. Fig. 2 gives results

for price and technical efficiencies of our sample firms. For Case A (with input-specific

distortion parameters which are the same for all firms) the median TE is about .84 and

for Case B (with firm-specific distortion parameters) median TE is about .85. For Cases

A and B, the median AE is about .87 and .82, respectively. Compared to the results
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in APT (2016), TE is about the same and AE is slightly higher. Differences are not

great either between Cases A and B in the current paper or between the results in APT

(2016) and those in the current paper.

In Fig. 3 we consider PC, TC, and EC for Cases A and B. For Case A, median

posterior values of PC,TC, and EC are very close to zero. The dispersion of PC is

greater than that of EC and TC. With Case B, while the median value of TC is

approximately zero, those of TC and PC are about .01. Clearly, the Case B results are

closer to those in APT (2016) than are the Case A results.

In Fig. 4 we report Case A results for the percent changes in inputs and outputs

moving from their current levels with price inefficiency (where all kq = 0) to a state

of price efficiency (where all kq are estimated subject to PM). The results, with capi-

tal increasing and energy decreasing are of opposite signs from those in APT (2016).

Further, in APT (2016), only SO2 increases moving to a position of efficient allocation

of resources. By contrast, in the present study, SO2 and NOx increase, while CO2 and

sulfur decrease.

Fig. 5 presents the same statistics for Case B. The median percent change in energy

is about .05, which is positive as with APT (2016), although somewhat smaller. The

increases in electricity output for residential and industrial/commercial have median

values of approximately .02 and .03, respectively. Median decreases for capital and

labor are about -.035 and -.04, respectively. The signs and magnitudes of these changes

are nearly identically to those found in APT (2016) and are consistent with Fowlie

(2910), who argues that many regulated electric utilities earn super-normal rates of

return on capital. Thus the inefficient quantity of capital exceeds its efficient level.

Other magnitudes found in the current paper are somewhat smaller than those in APT

(2016). We find that the median percent change in NOx is about -.02, whereas in APT

(2016) the this figure is about -.1. In the current paper the median percent change in

CO2 is about -.03, while in APT (2016) this figure is about -1.2. Unlike APT (2016),

where the median percent increase in SO2 is about .08, in the current paper this figure is

about -.02. Overall, however, the Case B results are more plausible and closer to those

in APT (2016) than are Case A results from Fig. 4. This similarity of results occurs

since the estimated distortions in APT (2016) and Case B are both firm-specific.
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In Figures 6 and 7 we report bootstrapped finite-sample distributions of distortion

parameters for the case of global optimization using two-stage GMM. In Figure 6 the

estimator is computed using two-step simulated annealing for global optimization. In

Figure 7 we use a local Gauss-Newton procedure (with numerical first- and second-

order derivatives and starting values obtained from two-step GMM estimates from the

original data set). For both figures, we employ 10,000 replications using the pairs block

bootstrap (where the time observations of each firm are kept together), with starting

values from the parameter estimates of the two-step GMM in the original sample. We

present the empirical distributions for each k where we have averaged across the N

bootstrap sampling distributions for each. The results from Fig. 6 for the GMM two-step

global estimates provide evidence that the empirical distributions are far from normal,

especially the ones that are bimodal. This information is very valuable since standard

errors from GMM are well-known to be biased and the finite-sample distribution of

GMM is known to be quite different from its asymptotic normal distribution.

This is true (although to a somewhat lesser extent) for the GMM two-step local

estimates in Fig. 7. Clearly, in neither case is the assumption of normality justified in

the construction of confidence intervals. Otherwise, in terms of mean and dispersion,

the results in Fig. 7 are highly similar to those in Fig. 6. In both figures, there is

little overlap of the bootstrap distributions with zero, indicating that many significant

(although relatively small) distortions of actual quantities from shadow quantities exist

in our data. We then compute the minimum p-values among the NT Case B bootstrap

estimates of t-values for each distortion parameter to test the null that each coefficient

equals zero. These values are reported in Table 1, where the smallest p-value of .00

occurs for energy, capital, residential, industrial, and sulfur. Only the p-values for labor

(.13), CO2 (.17) SO2 (.22), and NOx(.23) are greater than .05. Together, these results

are consistent with Figs. 6 and 7.

7 Conclusions

Due to its greater flexibility, the DDF has been employed with increasing frequency to

estimate multiple-input and multiple-output production, where some inputs and outputs
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are good while others are bad. Despite this, typically researchers make three restrictive

assumptions. First, they a priori assume a direction of movement of firm production

toward the frontier in order to measure inefficiency. Second, they assume away the

possibility that actual quantities of inputs and outputs are price inefficient. Third, they

assume exogeneity of all inputs and all outputs (except for the normalized one).

This paper relaxes each of these assumptions. The first contribution of this paper

is that we include parameters to estimate optimal directions which correspond to the

firm’s PM position. The second contribution is to generalize the DDF to a shadow DDF.

This entails adding distortion parameters to each input and output of the DDF, creating

shadow quantities. They measure efficient levels of inputs and outputs which correspond

to actual prices, subject to PM. Actual levels of inputs and outputs correspond to shadow

prices, which we do not measure. To estimate the shadow quantities and the structural

parameters, we form the shadow DDF system, which includes the shadow DDF and the

first-order price equations from the PM problem. Missing prices for bad inputs and bad

outputs are approximated and then used in the first-order conditions for PM. We jointly

estimate distortion parameters with the optimal-PM directions which correspond to the

firm’s PM position.

The third contribution is to estimate the shadow DDF system using a GMM-CUE

approach, where we assume that all input and output quantities are potentially endoge-

nous. We use good input and good output prices as part of our instrument set, since

their prices are exogenously determined. Our approach is considerably simpler than the

Bayesian approach employed in APT (2016).

We compute empirical densities for the parameters and latent variables of our system

using an unbalanced panel of 77 U.S. electric utilities for the years 1988-2005. We

find modest productivity gains. Bootstrapped finite-sample distributions of distortion

parameters indicate relatively small distortions that have little overlap with zero. Using

firm-specific estimates of distortion parameters, our results are qualitatively similar to

APT (2016), who employ the same data set and compute firm-specific distortions.
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Färe, R. and S. Grosskopf 2000, Theory of application of directional distance functions,
Journal of Productivity Analysis 13, 93-103.

Førsund, F., 2009, Good modelling of bad outputs: pollution and multiple-output pro-
duction, International Review of Environmental and Resource Economics 3, 1-38.

Fowlie, M., 2010, Emissions trading, electricity restructuring, and investment in pollu-
tion abatement, American Economic Review 100, 837-69.
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8 Tables and Figures

Fig. 1: Movement from Interior Point to Profit-Maximizing Position

y

Bad output y~

Good 

output z* 

z 

z’ 

Fig. 2. Sample-mean technical and allocative efficiency
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Fig. 3. Sample-mean technical efficiency and productivity change

Fig. 4. Input / output changes (sample distributions) for common

distortion parameters
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Fig. 5. Input / output changes (sample distributions) for firm-specific

distortion parameters

Fig. 6. Bootstrapped distributions, two-stage GMM, global optimiza-

tion
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Fig. 7. Bootstrapped distributions, two-stage GMM, local optimization

Table 1. Minimum p-values for Bootstrap t-values for Distortion Pa-

rameters from Fig. 6

variable minimum p− value

energy .00

labor .13

capital .00

residential .00

industrial .00

sulfur .00

CO2 .17

SO2 .22

NOx .23
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9 Appendix: Pseudo-code to implement our GMM Algo-

rithm

We follow the standard GMM procedure of specifying a GMM weight matrix initially

and then updating this weight matrix on successive iterations. For a given parameter

vector θ, choose ω and ωg, using values suggested above.

1. Solve (20), the directional distance function, in terms of its error term, ϵit.

2. Solve (24) - (27) in terms of their error terms, vq,it, q = n,m, j, l.

3. Insert (30) and (31) into (28) and (29).

4. Insert (28) and (29) into (26) and (27).

5. Specify the matrix of instruments, Z.

6. Compute G(θ;Z) in (46) using Ω(θ) = I, an identity matrix.

7. Use the previously computed penalty functions using ω and ωg, and formulate the

minimization problem in (47).

8. Solve this problem using a minimization algorithm.

9. After convergence use the Ω(θ)+λImatrix in (48) (for numerical stability, λ = 10−7)

and solve the minimization problem in (47) again.

We have used a standard conjugate-gradients algorithm to solve the optimization prob-

lems in steps 8 and 9. This algorithm can be written easily in R, Gauss, Matlab, C, or

Fortran.

31


