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1 Introduction

As developed by Caves et al. (1982a, 1982b), the distance function (DF) has been

widely used to estimate radial representations of frontier production technologies where

firms employ multiple good inputs to produce multiple good outputs. The distance from

a production frontier is a measure of the firm’s technical efficiency (TE). The change

in this measure over time is efficiency change (EC), while the shift in the frontier over

time is technical change (TC). The sum of these two measures is productivity change

(PC). The DF is input- (output-) oriented if all inputs (outputs) are proportionally

scaled down (up) to reach the production frontier while all outputs (inputs) are held

constant.

One major shortcoming of the DF is that an entire set of inputs or an entire set of

outputs must be scaled by the same factor. This becomes problematic when modelling

the generation of electricity, since good inputs (capital, labor, and energy) and bad inputs

(such as sulfur) produce good outputs (residential and industrial/commercial electricity)

and bad outputs (pollutants). Using the DF, the researcher is not able to differentially

credit the firm for simultaneously reducing bad outputs while increasing good outputs.

In response, many authors have estimated an output DF and treated bad outputs like

good inputs (holding both constant). However, this does not credit the firm for reducing

bad outputs. Also, if bad inputs are consumed, no credit is given for their reduction.1

As an alternative, Chambers (1998) and Chambers et al. (1998) developed the direc-

tional distance function (DDF) which provides greater flexibility. It allows measurement

of unique additive changes in each input and output through the calculation of different

directions of movement for each to reach the production frontier. If non-zero directions

are used to change only inputs (outputs), the DDF is input- (output-) oriented. When

non-zero directions are used to change all inputs and outputs, the DDF is technology-

oriented.

Despite the greater flexibility of the DDF, researchers typically impose three overly-

restrictive assumptions. First, the researcher usually specifies arbitrary directions of

movement of current firm production toward the frontier to measure inefficiency.2 How-

1A bad input like sulfur would be consumed only when it is organically bound to the coal and oil
which are burned to generate electricity. To our knowledge, only Yaisawarng and Klein (1994) include
fuel sulfur content and sulfur dioxide emissions in a study of electric utility production.

2For example, assuming fixed directions, Färe et al. (2005) estimate an output DDF for electric
utilities involving good inputs, a good output, and a bad output.
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ever, different directions of movement toward the frontier will generate different measures

of inefficiency. Three Data Envelopment Analysis (DEA) studies seek to avoid arbitrary

assignment of directions by using linear programming methods to choose directions that

maximize the measured distance (i.e., technical inefficiency) of the firm relative to a

DDF. The first, by Färe et al. (2013), considers only good inputs and good outputs.

The second, by Hampf and Krüger (2015), extends this analysis by including bad out-

puts. The stated goal of the third paper, by Zofio et al. (2013), is to compute optimal

directions consistent with a firm’s profit-maximization (PM) position on a DDF. They

assume that firms are currently profit-maximizers and then measure the maximum dis-

tance from the current position. However, to measure the technology and productivity

at the PM position, one must estimate the DDF jointly with the first-order conditions

for PM. Since the latter are not included in their optimization model, the estimated di-

rections cannot be consistent with PM. In this paper we estimate these conditions jointly

with the DDF and compute directions consistent with PM, which we term “optimal-PM”

directions.

Our approach follows Chambers (1998), who formulates a PM problem which includes

a technology-oriented DDF (to measure the distance from the production frontier), and

derives the first-order price equations for good inputs and outputs. In order to compute

optimal-PM directions, Atkinson and Tsionas (2016) (AT) estimate the DDF jointly

with the first-order price equations for only good inputs and good outputs, since the

prices of bad outputs and bad inputs are missing. A complete set of utility-specific

pollution permit prices (shadow prices for bad outputs) for the years of our sample data

does not exist. As explained below, the prices of coal and oil include rebates for greater

amounts of the bad input, sulfur. However, data is not publicly available to compute an

hedonic price for sulfur.3 We generalize AT by assuming a data generating process for

latent prices of regulated bad outputs. These latent prices replace missing actual prices,

allowing us to add the first-order price equations for regulated bad outputs to the AT

system.

The second restrictive assumption of many DDF models is that all input and output

quantities are exogenous. Highly-influential papers by Olley and Pakes (1996) (OP) and

Levinsohn and Petrin (2003)(LP) consider the problem of estimating productivity in the

3In the more typical industry study, prices of all inputs are missing and our methodology can be
employed to estimate their first-order price equations having generated their estimated latent prices.
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presence of endogenous inputs using panel data. Both papers estimate a single-output

Cobb-Douglas production function with a two-component random error term. The first

component is firm- and time-varying productivity that is unobserved by the econome-

trician but observed, at least in part, by the firm. Since the firm takes productivity

into account to some degree in choosing its inputs, endogeneity results. The second

random component is an idiosyncratic error that is assumed to be uncorrelated with

the explanatory variables and the productivity component. With the OP approach, the

econometrician proxies for the unobserved productivity component with a potentially

observable function. To obtain this function, OP first specify that investment is a mono-

tonic function of productivity for a given level of capital and vintage. They then invert

this function to obtain the productivity component as a proxy function of capital, in-

vestment, and vintage. Following OP, LP replace investment with materials and solve

for the productivity component as a proxy function of capital, materials, and vintage.

Productivity is assumed to follow a first-order Markov process. After discussing the

modification of OP and LP by Ackerberg, Caves, and Frazer (2015) (regarding when

the firm chooses labor), Wooldridge (2009) provides the exact set of moment conditions

required to identify each of these models, where instruments are subsets of current and

lagged inputs. However, as Griliches and Mairesse (1998) stress, if the econometrician

incorrectly specifies the productivity function, some degree of endogeneity remains. Both

OP and LP recognize the possible invalidity of their instruments as well as the typical

validity but unavailability of input and output prices as instruments.

In this paper, we avoid assuming that inputs are exogenous for electric utilities. In

our sample, they vary input choice over time and these choices are arguably correlated

with the idiosyncratic error term, when one misspecifies the proxy equation for pro-

ductivity. This results in the endogeneity of input quantities. Such a result potentially

applies to all input quantities with a cost-minimization (CM) model and to all input and

output quantities with a PM model. Instead, we utilize the prices of good inputs and

good outputs in our instrument set, since they are arguably exogenous. Utilities are price

takers in input markets, since these markets are national (due to trans-continental oil

and natural gas pipelines, trans-continental rail lines hauling coal and oil, and national

mobility of labor and capital). Regulated utilities, which comprise the vast majority

of our sample, face output prices that are set by regulatory commissions. The smaller

number of restructured utilities face market-determined prices for good inputs and out-
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puts.4 Thus, for both types of firms, we employ input and output prices rather than

input quantities in our instrument set.

The third restrictive assumption with all previous DDF models is that actual prices

equal shadow (perceived) prices for the firm.5 If the two sets of prices differ, the re-

searcher must calculate optimal directions using shadow prices. Previous papers have

developed the methodology to estimate shadow prices for profit, cost, and distance func-

tions as summarized in Kumbhakar and Lovell (2000). However, our paper is the first

to estimate shadow prices using a DDF and the first-order price equations from PM. We

identify shadow prices by including input and firm-specific price inefficiency parameters

in these equations. These parameters are estimated jointly with optimal-PM directions.

In addition, this paper is the first to estimate a model free of these three restrictive

assumptions and, at the same time, explain the sources of firm productivity, without

resorting to inconsistent two-step methods. Typically the two steps are: 1) regress

output on a set of inputs and 2) regress the residuals on a set of explanatory variables that

were omitted from the first step. The two sets of variables must be uncorrelated to avoid

a potentially substantial bias.6 We avoid this improbable requirement by employing an

unrestricted profit function from which we derive productivity as an estimable function

of lagged productivity, profits, prices of inputs and outputs, vintage, and time. We

include this measure of productivity as an input in the DDF. This enables us to compute

the partial elasticities of productivity with respect to its arguments and decompose

productivity growth.

We apply our methodology to an unbalanced panel of U.S. electric utilities. This

sample significantly expands the AT data set by 80% to include years when a number

of utilities were restructured. We report posterior densities for optimal directions, TE,

EC, TC, PC, the resource implications of price inefficiency, and the sources of PC.

4The goal of deregulation was to increase competition, yielding greater TE, productivity growth, and
price efficiency. On the production frontier, the profit-maximizing firm achieves price efficiency when the
price of each input equals the value of its marginal product. The cost-minimizing firm achieves allocative
efficiency when ratios of input prices equal ratios of their marginal products.

5Reasons for deviations of shadow from actual prices include tax write-offs, rate-of-return regulation,
and constraints imposed by regulatory agencies or labor unions.

6See Wang and Schmidt (2002) for details on Monte Carlo experiments indicating substantial potential
bias in both steps.
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2 The Directional Distance Function

2.1 Computing Optimal Directions

We assume a firm production technology that combines good inputs,

x = (x1, . . . , xN ) ∈ RN
+ , and bad inputs, x̃ = (x̃1, . . . , x̃J) ∈ RJ

+, to produce good

outputs, y = (y1, . . . , yM ) ∈ RM
+ , and bad outputs, ỹ = (ỹ1, . . . , ỹL) ∈ RL

+. A firm with

vintage, τ , productivity shock, ω, at time t(t = 1, . . . , T ), has production technology

T (ω, τ, t) = {(x, x̃,y, ỹ;ω, τ, t) : x, x̃ can producey, ỹwith (ω, τ, t)}. (1)

Let g = (gx, gx̃, gy, gỹ) be a direction vector. Typically researchers assume that

(gx, gx̃, gy, gỹ) = (−1,−1,1,−1). Following Chambers (1998), we define the technology

DDF as

−→
DT (x, x̃,y, ỹ; g, ω, τ, t)

= sup{β : (x+ βgx, x̃+ βgx̃,y + βgy, ỹ + βgỹ) ∈ T (ω, τ, t)}, (2)

That is, the typical assumption is that the analyst measures the distance from the frontier

using equal absolute values for directions which increase good outputs and reduce all

other inputs and outputs.

We now specify the important properties of the technology DDF that hold whether

directions are assigned or estimated optimally. As shown in Hudgins and Primont (2007),

for any values of the elements of g:

D1. Translation Property:

−→
DT (x+ αgx, x̃+ αgx̃,y + αgy, ỹ + αgỹ; gx, gx̃, gy, gỹ, ω, τ, t)

=
−→
DT (x, x̃,y, ỹ; g, ω, τ, t)− α, (3)

D2. g-Homogeneity of Degree Minus One:

−→
DT (x, x̃,y, ỹ;λgx, λgx̃, λgy, λgỹ, ω, τ, t) = λ−1−→DT (x, x̃,y, ỹ; g, ω, τ, t), λ > 0, (4)

D3. Concavity:

−→
DT (x, x̃,y, ỹ; g, ω, τ, t) is concave in (x, x̃,y, ỹ; g, ω, τ, t), (5)

D4. Non-negativity:

−→
DT (x, x̃,y, ỹ; g, ω, τ, t) ≥ 0, (x, x̃,y, ỹ; g, ω, τ, t) ∈ T (ω, τ, t). (6)

Equation (3) says that the technology DDF will satisfy the translation property. For

example, increasing y and decreasing x, x̃, and ỹ by α, each multiplied by their direction,
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will result in a decrease in the technology DDF by α. This is analogous to the property

of linear homogeneity with a Shephard distance function. Equation (4) indicates that

scaling each direction by λ will scale the technology DDF by λ−1. Equation (5) imposes

concavity of the technology DDF. Finally, equation (6) requires that the technology

DDF function be non-negative, which is easily imposed after estimation.

For the following properties we let “S” represent the assumption of strong dispos-

ability of all inputs and outputs:

D5–S. Good Input Monotonicity: We first assume that good inputs are strongly

disposable. In Appendix A.1 we show that this implies7

∂
−→
DT (x, x̃,y, ỹ; g, ω, τ, t)/∂xn = 0, n = 1, . . . , N. (7)

D6–S. Good Output Monotonicity: We assume that good outputs are strongly

disposable. Following the proof of D5-S, in Appendix A.2, we show that this assumption

implies

∂
−→
DT (x, x̃,y, ỹ; g, ω, τ, t)/∂ym ≤ 0,m = 1, . . . ,M. (8)

Following the proof of D5–S, assuming that bad inputs are strongly disposable, we

can determine

D7–S. Bad Input Monotonicity:

∂
−→
DT (x, x̃,y, ỹ; g, ω, τ, t)/∂x̃j ≥ 0, j = 1, . . . , J. (9)

Again following the proof of D5–S, assuming that bad outputs are strongly dispos-

able, we can determine

D8–S. Bad Output Monotonicity:

∂
−→
DT (x, x̃,y, ỹ; g, ω, τ, t)/∂ỹl ≥ 0, l = 1, . . . , L. (10)

However, researchers typically do not assume that bads are strongly disposable. In-

stead, most investigators maintain that bad inputs and bad outputs are weakly dispos-

able with good inputs and outputs. The weak disposability of bad inputs results from

their organic combination with good inputs, so that a reduction in bad inputs implies

a reduction in good inputs, outputs held constant. Likewise, bad outputs are weakly

disposable since to reduce them, we must divert resources from the production of good

outputs, holding inputs constant. Assuming weak disposability, we cannot determine

the global monotonicity property of bad inputs and bad outputs as in D7–S and D8–

7This paper with all Appendices is stored at RePec.
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S. However, as shown shortly, if we assume weak disposability, we can determine local

monotonicity conditions given that we also assume PM and know the signs of the prices

of bad inputs and bad outputs. If instead we assume CM, the firm is subject to only

the first-order conditions for inputs, so that the monotonicity conditions for good and

bad inputs are the same as with the PM model.

A number of studies have modeled electric utilities assuming PM. See Atkinson and

Halvorsen (1976, 1980) and Cowing (1978). Other researchers have assumed CM subject

to a set of regulatory constraints on earned rates of return and a requirement to satisfy

all demand at a given price (that is, output is taken as given). However, output may be

endogenous as with an ex ante cost function.8 Further, if these regulatory constraints

are not binding, utilities may maximize profits. Fowlie (2010) provides evidence of this

by showing that many regulated utilities earn allowed rates of return on capital that

considerably exceed the market rate of return, indicating that constraints on profits

may not be binding and output may be endogenous. These results indicate that a PM

model may be more appropriate than a CM model. Thus, we focus on the PM model

and compare the accuracy of its results to those of the CM model.

Temporarily suppressing all the arguments of
−→
DT (x, x̃,y, ỹ; g, ω, τ, t), we follow

Chambers (1998) and assume that a firm maximizes profits, π, by choosing values of

x,y, x̃, ỹ to solve

sup
{
py(y +

−→
DT gy)− pỹ(ỹ +

−→
DT gỹ)− px(x+

−→
DT gx)− px̃(x̃+

−→
DT gx̃)

}
, (11)

where py ≥ 0,pỹ ≥ 0,px ≥ 0, and px̃ ≤ 0 are price vectors and the econometrician

either pre-determines or estimates g. Further, we define p = (py,pỹ,px,px̃).

Typically (as indicated above) the DDF is estimated without the first-order condi-

tions for PM, where one has assumed a set of a priori fixed directions. However, in this

paper we assume that the firm chooses (x, x̃,y, ỹ) subject to the first-order conditions

for PM and we estimate optimal-PM directions consistent with these conditions.9 The

8See Pope and Just (1996) regarding identification and estimation of an ex ante cost function.
9The CM model is obtained by using only the first-order conditions for input prices and assuming

that output is given.
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first-order conditions are:

pn/ϱ(p, g) = ∂
−→
DT (x, x̃,y, ỹ; g, ω, τ, t)/∂xn, n = 1, . . . , N, (12)

pm/ϱ(p, g) = −∂
−→
DT (x, x̃,y, ỹ; g, ω, τ, t)/∂ym,m = 1, . . . ,M, (13)

pj/ϱ(p, g) = ∂
−→
DT (x, x̃,y, ỹ; g, ω, τ, t)/∂x̃j , j = 1, . . . , J, (14)

pl/ϱ(p, g) = ∂
−→
DT (x, x̃,y, ỹ; g, ω, τ, t)/∂ỹl, l = 1, . . . , L, (15)

where

ϱ(p, g) =
[∑

m

pmgm −
∑
n

pngn −
∑
j

pjgj −
∑
l

plgl
]
. (16)

We assume that ϱ(p, g) > 0, where ϱ(p, g) is the optimal value of the Lagrangian

multiplier, which is the change in profits due to a small improvement in the production

technology. For details see Hudgins and Primont (2007) who show that one can solve

the profit-maximization problem in (11) or solve the equivalent Lagrangian function

L = pyy − pxx− pỹỹ − px̃x̃+ ϱ
−→
DT (x, x̃,y, ỹ; g, ω, τ, t), (17)

in order to obtain this interpretation of ϱ.

All prices are assumed to be non-negative except for the price of bad inputs, which is

non-positive. The prices of good outputs and the prices of good inputs are non-negative

by definition. The price of bad outputs is positive, since the firm must pay a fine or

buy emission permits for additional production of bad outputs. When a bad input is

organically bound to a good input, the price of the bad input is negative, since the firm

must be compensated for utilizing it.

For the following two properties, “W” indicates weakly disposable. Assuming weak

disposability of bad inputs and that px̃ ≤ 0, from (14) we obtain locally:

D7–W. Bad Input Monotonicity:

∂
−→
DT (x, x̃,y, ỹ; g, ω, τ, t)/∂x̃j ≤ 0, j = 1, . . . , J. (18)

Assuming weak disposability of bad outputs and that pỹ ≥ 0 from (15) we obtain

locally:

D8–W. Bad Output Monotonicity:

∂
−→
DT (x, x̃,y, ỹ; g, ω, τ, t)/∂ỹl ≥ 0, l = 1, . . . , L. (19)

In this manner we maintain PM and use assumptions about the prices of bad inputs

and bad outputs to locally restrict the range of the partial derivatives in D7–W and

D8–W. For the CM model, only the monotonicity conditions for good and bad inputs

apply. They are the same as with the PM model.
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Rather than assume fixed directions, in this paper we compute optimal directions

that are consistent with PM and CM. In Fig. 1, a firm increases a good output and

reduces a bad output by moving from z to z∗, the PM point. This is consistent with

the traditional assumptions, where the directions for the good output and bad output

are positive and negative, respectively. However, the signs of optimal directions may

be quite different. In Fig. 1, if a firm moved from z to the point of PM at z′, from

(2) the directions (gy, gỹ) are both positive since the good output and the bad output

would both increase. One can easily substitute x̃ or x for ỹ and obtain similar results.

An electric utility subject to the first-order conditions for PM may maximize profits by

increasing good outputs, increasing some inputs to produce the additional good outputs,

decreasing regulated bad outputs, and increasing unregulated bad outputs due to the

increase in good outputs. Thus, we impose no a priori sign restrictions on the optimal

direction of any input or output.

The input and output DDF are easily obtained as special cases of the technology

DDF. The output DDF changes good and bad outputs in the direction (0,0, gy, gỹ), for

a given level of inputs in order to move to the frontier of T (ω, τ, t). The input DDF

changes good and bad inputs in the direction (gx, gx̃,0,0), for a given level of good and

bad outputs in order to move to the frontier of T (ω, τ, t).

3 Econometric Formulation

3.1 The Technology Directional Distance System and the Translation

Restrictions

Assume that we have panel data for firm i(i = 1, . . . ,N ) in time period t(t = 1, . . . , T )

on all inputs and outputs. We then formulate our technology DDF as a quadratic

function of x, x̃,y, ỹ, τ, and t as:

−→
DT (xit, x̃it,yit, ỹit; τit, t) =

N∑
n=1

γn(xn,it) +

M∑
m=1

γm(ym,it) +

J∑
j=1

γj(x̃j,it) +

L∑
l=1

γl(ỹl,it)

+
1

2

N∑
n=1

N∑
n′=1

γnn′(xn,it)(xn′,it) +
1

2

J∑
j=1

J∑
j′=1

γjj′(x̃j,it)(x̃j′,it)

+
1

2

M∑
m=1

M∑
m′=1

γmm′(ym,it)(ym′,it) +
1

2

L∑
l=1

L∑
l′=1

γll′(ỹl,it)(ỹl′,it)
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+

J∑
j=1

N∑
n=1

γjn(x̃j,it)(xn,it) +

M∑
m=1

N∑
n=1

γmn(ym,it)(xn,it)

+
L∑
l=1

N∑
n=1

γln(ỹl,it)(xn,it) +
M∑

m=1

J∑
j=1

γjm(ym,it)(x̃j,it)

+
L∑
l=1

J∑
j=1

γjl(ỹl,it)(x̃j,it) +
L∑
l=1

M∑
m=1

γlm(ỹl,it)(ym,it)

+

N∑
n=1

γnt(xn,it) dt +

M∑
m=1

γmt(ym,it) dt +

J∑
j=1

γjt(x̃j,it) dt

+

L∑
l=1

γlt(ỹl,it) dt +

T∑
t=1

γtdt +

N∑
n=1

γnτ (xn,it) τit

+

M∑
m=1

γmτ (ym,it) τit +

J∑
j=1

γjτ (x̃j,it) τit

+

L∑
l=1

γlτ (ỹl,it) τit + γττit, (20)

where dt is a year dummy. We later accept the null that dt and τit enter (20) linearly using

a likelihood ratio test at the .05 level. Hence, we drop all interaction terms involving

these variables from this equation.10

We can now restate the first-order conditions for PM, (12)-(15), in terms of the

parameters of the quadratic DDF for each good input price equation as

pn,it/ϱ = γn +

N∑
n′=1

γnn′(xn′,it) +

J∑
j=1

γjn(x̃j,it) +

M∑
m=1

γmn(ym,it)

+

L∑
l=1

γln(ỹl,it), (21)

for each good output price equation as

pm,it/ϱ = −
[
γm +

M∑
m′=1

γmm′(ym′,it) +
J∑

j=1

γjm(x̃j,it) +
N∑

n=1

γmn(xn,it)

+

L∑
l=1

γlm(ỹl,it)

]
, (22)

for each bad input price equation as

pj,it/ϱ = γj +

J∑
j′=1

γjj′(x̃j′,it) +

N∑
n=1

γjn(xn,it) +

M∑
m=1

γjm(ym,it)

10Färe and Lundberg (2005) prove that only two functional forms have a second-order Taylor series
approximation interpretation of the DDF and satisfy the translation property. These are the logarithmic
transcendental and the quadratic. Also see Chambers (1998) for further discussion of this point. We
employ the quadratic since it is linear in the parameters.
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+

L∑
l=1

γjl(ỹl,it), (23)

and for each bad output price equation as

pl,it/ϱ = γl +
L∑

l′=1

γll′(ỹl′,it) +
J∑

j=1

γjl(x̃j,it) +
N∑

n=1

γln(xn,it)

+

M∑
m=1

γlm(ym,it). (24)

The restrictions guaranteeing the translation property in (3) are imposed paramet-

rically on (20) and on (21)-(24).11 To derive these restrictions for an input, an output,

and a technology DDF, we generalize Hudgins and Primont (2007) by adding bad inputs

and bad outputs. To simplify notation, let z̃ = (x, x̃,y, ỹ). First, assuming a quadratic

functional form for the technology DDF:

−→
DT (z̃) =

W∑
w=1

γwz̃w +
W∑
w=1

W∑
w′=1

γww′ z̃wz̃w′ , (25)

where w = 1, . . . ,W, W = M + N + J + L. To determine the appropriate parametric

restrictions that guarantee the translation property incorporating g, we note that the

translation property requires that

−→
DT (z̃+ αg; g) =

W∑
w=1

γw(z̃w + αgw)

+
W∑
w=1

W∑
w′=1

γww′(z̃w + αgw)(z̃w′ + αgw′)

=
W∑
w=1

γwz̃w +
W∑
w=1

W∑
w′=1

γww′ z̃wz̃w′ − α. (26)

3.2 The Stochastic Framework with Shadow and Latent Prices

3.2.1 Stochastically Imposing the Translation Property Restrictions

Generalizing Hudgins and Primont (2007), we derive the following parametric re-

strictions to stochastically impose the translation property in (26) for the technology

11An alternative to the quadratic is the logarithmic transcendental technology translation function
which automatically satisfies the translation properties. See Chambers (1998) for more details. Note
that we can approximate a DDF with a quadratic function, but not a translog. Using the former, one
can impose the translation property, since original variables are used. However, one cannot impose the
translation property on the latter.
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DDF:
M∑

m=1

γmgm +
L∑
l=1

γlgl +
N∑

n=1

γngn +
J∑

j=1

γjgj = ϑo,

M∑
m=1

γmn′gm +

L∑
l=1

γln′gl +

N∑
n=1

γnn′gn +

J∑
j=1

γjn′gj = ϑ, ∀n′,

M∑
m=1

γmm′gm +

L∑
l=1

γlm′gl +

N∑
n=1

γm′ngn +

J∑
j=1

γjm′gj = ϑ, ∀m′, (27)

M∑
m=1

γj′mgm +
L∑
l=1

γj′l′gl +
N∑

n=1

γj′ngn +
J∑

j=1

γjj′gj = ϑ, ∀ j′,

M∑
m=1

γl′mgm +

L∑
l=1

γll′gl +

N∑
n=1

γl′ngn +

J∑
j=1

γjl′gj = ϑ, ∀ l′,

where ϑo ∼ N
(
−1, c2

)
and ϑ ∼ N

(
0, c2

)
, N is the normal density, and c = 10−4 to

keep the variance small around zero. The stochastic restrictions in (27) are, in fact, semi-

informative priors placed upon g and γ, a vector of all γw parameters. These parameters

are estimated jointly, as explained below. In a more traditional, non-Bayesian approach,

one would set ϑo = −1, ϑ = 0.

To obtain the corresponding restrictions for the input and output DDF models,

simply eliminate the summation terms for the outputs and the inputs, respectively. For

the technology DDF model, we have imposed symmetry for all the double-subscripted

coefficients for all inputs and outputs. Note that the introduction of parameters to

measure the direction for each input and output occurs only through the translation

property restrictions.

3.2.2 Modeling ω

Assuming now that production is a function of inputs, outputs, vintage and a Hicks-

neutral productivity shock, ω, the resulting profit function obtained from (11) is

π = π(py,pỹ,px,px̃, ω; g, τ, t) = π(p, ω; g, τ, t). (28)

By definition, π is non-decreasing, monotonic in ω. Strengthening this condition to posi-

tive monotonicity of π in ω, we can write the inverse function for ω as ω = f(p, π; g, τ, t).

Subject to (27) we specify a stochastic framework for (20) as:

12



0 =
−→
DT (x, x̃,y, ỹ; g, τ, t) + vit + ωit − uit, (29)

where the stochastic part is comprised of an idiosyncratic i.i.d. term, vit, which has zero

mean, ωit, and a one-sided component, uit. While vit reflects errors in optimization due to

random events beyond the control of the firm (such as weather), uit reflects firm-specific

inefficiencies that may vary over time. We generalize the productivity component, ωit,

by including ωi,t−1, which is lagged ωit, and utilizing p∗
it, where the star indicates that

latent prices replace missing prices:

ωit = f(ωi,t−1,p
∗
it, πit; g, τit, t) + εit,1 (30)

and we must obtain an approximation to the unknown functional form f(·). We further

specify that

log(uit) = γ1 + γ2ωit + γ3ωi,t−1 + γ4 log ui,t−1 + γ5t+ d′
itγo + Z′

i,t−1δ + εit,2, (31)

where dit denotes firm dummies, and Zi,t−1 contains lagged values of all inputs and

outputs.

We now consider different approximations of (30). To obtain a translog-neural-

network approximation, let zit = (ωi,t−1,p
∗
it, πit; g, τit, t). Then

f(zit) = ao + a′zit +
1
2z

′
itAzit +

G∑
g=1

λgφ
(
z′itbg

)
, (32)

where the activation function φ(κ) = 1
1+exp(−κ) ,−∞ < κ < ∞. As a second alternative,

we use a second-order approximation:

f(zit) = ao + a′zit +
1
2z

′
itAzit. (33)

As a third alternative, we use the Fourier approximation:

f(zit) = ao + a′zit +
1
2z

′
itAzit+∑Φ

ϕ=1

{
u0ϕ + 2

∑J
ℓ=1

(
uℓϕ cos(ℓk

′
ϕzit) + vℓϕ sin(ℓk

′
ϕzit)

)}
,

(34)

where kϕ is a multi-index, Φ is a number determined by dim(zit), J is the order of the

expansion, and u0ϕ, uℓϕ, vℓϕ are unknown parameters. The multi-indices are constructed

using the following rules: i) the zero vector and any kϕ whose first non-zero element

is negative are deleted; ii) Every index with a common integer divisor is also deleted.

Gallant (1982) shows that A = −
∑Φ

ϕ=1 u0ϕkϕk
′
ϕ. Notice that we can leave A unre-

stricted and obtain a different Fourier approximation. We use the same re-scaling as in

Gallant (1982) and Feng and Serletis (2009) with the exception that we do not use logs.

Finally, the purpose of the re-scaling is that elements of zit must lie in [0, 2π] which can

13



be achieved through a common scale in zit. Finally, we can employ a full third-order

approximation:

f(zit) = ao +

b∑
i=1

aizit +

b∑
i=1

b∑
j=1,i≤j

bijzitzjt +

b∑
i=1

b∑
j=1

b∑
k=1,i≤j≤k

cijkzitzjtzkt, (35)

where b is the number of elements in zit.

We perform posterior analysis with all these specifications, which are flexible enough

to cover nearly every empirical case. For any model with parameters θ ∈ Θ ⊆ Rdθ ,

including any latent variables in the model, denote the prior by p(θ), the likelihood by

L(θ;Y) for data Y and the posterior by p(θ|Y). We know

p(θ|Y) = L(θ;Y)p(θ)

p(Y)
, (36)

where the marginal likelihood is

p(Y) =

∫
Θ
L(θ;Y)p(θ)dθ. (37)

For two different models, say 1 and 2, we define the Bayes factor in favor of model 1 and

against model 2 as:

BF1:2 =
p1(Y)

p2(Y)
. (38)

The Bayes factors, in our application, are reported in Table 2. These results clearly favor

the third-order approximation in (35). All of our results will, therefore, be conditional

on the selection of this functional form for the productivity equation.

The computation of the marginal likelihood is an involved operation. Here, we

compute it using the importance sampling techniques in Perrakis, Ntzoufras and Tsionas

(2014).

We also treat firm-specific directions, gi, as latent variables and assume the following

prior:

gi ∼ NN+M+J+L (ḡ,Σg) , (39)

where ḡ denotes the prior mean vector whose elements consist of reasonable prior beliefs

(namely, -1 for all inputs and the bad outputs and +1 for the good outputs) and Σg is

constructed so as to reflect reasonable deviations from these prior beliefs. Below we find

that the posteriors are highly insensitive to variations in these priors.

Having estimated productivity (ωit), we compute PC = ∂ωit
∂t and EC = ∂uit

∂t , using

equations (30) and (31). Then TC = PC− EC. For more details on computing these

quantities, see Grosskopf (2003). We also compute returns to scale (RTS) as the sum of

the good output elasticities calculated from the distance function.
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3.2.3 Shadow Prices

To incorporate shadow prices as the relevant prices for the firm we write:

psn
ϱs

=
∂
−→
DT (z; g)

∂xn
, n = 1, ..., N, (40)

psm
ϱs

= −∂
−→
DT (z; g)

∂ym
, m = 1, ...,M, (41)

psj
ϱs

=
∂
−→
DT (z; g)

∂x̃j
, j = 1, ..., J, (42)

psl
ϱs

=
∂
−→
DT (z; g)

∂ỹl
, l = 1, ..., L, (43)

with ϱs =
∑M

m=1 p
s
mgm −

∑N
n=1 p

s
ngn −

∑J
j=1 p

s
jgj −

∑L
l=1 p

s
l gl, where the superscript s

denotes shadow (or perceived) prices to the firm. The shadow prices satisfy the first-

order conditions, which are used to complete the system, since we have many endogenous

variables but only one DDF equation. Shadow prices are the relevant prices for the

shadow-profit-maximizing firm. Actual prices potentially differ from shadow prices by

an amount ξq, q = n,m, j, l:

psn = pn + ξn, n = 1, ..., N, (44)

psm = pm + ξm, m = 1, ...,M, (45)

psj = pj + ξj , j = 1, ..., J, (46)

psl = pl + ξl, l = 1, ..., L. (47)

The variable ξit is latent, where we assume the following prior:

ξit = [ξ′N , ξ′M , ξ′J , ξ
′
L]

′ ∼ NN+M+J+L (0,Ω) , (48)

where ξN = [ξn,it, n = 1, ..., N ]′, ξM = [ξm,it,m = 1, ...,M ]′, ξJ = [ξj,it, j = 1, ..., J ]′,

ξL = [ξl,it, l = 1, ..., L]′, and where Ω is unknown.

In view of (40)–(43), equations (44)–(47) are rewritten, after introducing stochastic

15



error terms vq, q = n,m, j, l, as:

pn = ϱs(p, g, ξ) · ∂D⃗T (z; g)

∂xn
− ξn + vn, n = 1, . . . , N, (49)

pm = −ϱs(p, g, ξ) · ∂D⃗T (z; g)

∂ym
− ξm + vm,m = 1, . . . ,M, (50)

pj = ϱs(p, g, ξ) · ∂D⃗T (z; g)

∂x̃j
− ξj + vj , j = 1, . . . , J, (51)

pl = ϱs(p, g, ξ) · ∂D⃗T (z; g)

∂ỹl
− ξl + vl, l = 1, . . . , L, (52)

where ϱs(p, g, ξ) =
(
ϱ(p, g) +

∑M
m=1 ξmgm −

∑N
n=1 ξngn −

∑J
j=1 ξjgj −

∑L
l=1 ξlgl

)
, the

vector ξ = (ξN , ξM , ξJ , ξL), and the vector p = (pN ,pM ,pJ ,pL). We can normalize the

first element of ξN to zero, since we can only identify relative price distortions.12

Assuming that we have data on prices for all inputs and outputs, estimating all of the

normalized price equations in (12)–(15) together with the DDF would generate a singu-

larity in the covariance matrix of the residuals. This occurs since the normalized price

equations sum to 1 for any value of g (as is seen from adding (12)-(15) with appropriate

changes in sign and comparing to (16) ). The choice of which price equation to drop

does not impact the results. The technology system is the DDF in (20) substituted into

(29) and N +M +J +L− 1 of the price equations in (49)–(52), subject to imposition of

the restrictions in (27). Relative to one normalized input or output efficiency parameter,

we can estimate both input and output price efficiencies by estimating this system, since

all the price equations are included.

3.2.4 Completing the System using Reduced-Form Equations

Assume now a worse-case scenario where we lack prices and alternative valid instru-

ments for the endogenous bads, x̃ and ỹ, so that we are unable to identify the DDF

using equations like (51) and (52). Assume further that we are unable to generate latent

prices for x̃ and ỹ. We can still identify the technology DDF. First we create a system of

equations consisting of (20) substituted into (29) and N +M − 1 of the price equations

in (49) and (50), subject to the restrictions in (27). Then we complete this system by

including reduced-form equations for x̃ and ỹ following standard LIML practices as in

12This occurs since PM means that the firm chooses absolute levels of outputs given CM, which
requires that the firm equate ratios of input prices to ratios of marginal products. Estimation of the
extent to which the latter has been achieved requires one normalization.
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Pagan (1979). The input and output DDF systems would be constructed analogously.

The explanatory variables for these equations are prices of the good inputs and good

outputs, firm dummies, and time dummies. See Appendix B for further details.

3.2.5 Completing the System using Latent-Price Equations

Frequently, actual prices for inputs and outputs are missing. With rare exceptions,

prices for good inputs are confidential for privately-owned, unregulated firms. While data

on prices and quantities of good inputs and outputs are typically reported by regulated

electric utilities, the federal government currently allows many utilities to redact data on

wages. Publicly-available data sources intermittently report prices from thin tradable

permit markets for the regulated bad outputs that we examine, sulfur dioxide (SO2)

and nitrogen oxide (NOx). No reliable prices exist for the unregulated pollutant that we

model, carbon dioxide (CO2). Further, prices of bad inputs are missing for all firms. In

theory one could estimate prices for sulfur, a bad input, which is chemically bound to

coal and oil, which are good fuel inputs. However, this would require the use of hedonic

methods, which are infeasible due to data confidentiality.13

In place of missing actual prices, we can sample prices from their conditional poste-

riors generated by their FOCs to generate latent prices p∗
j and p∗

l for x̃ and ỹ to replace

the missing pj and pl in (51) and (52), respectively. Then we can estimate a complete

(fully-identified) system comprised of (20) substituted into (29) and (49)–(52), subject

to (27).14

Assuming that input prices are unobserved and, therefore, generated as latent vari-

ables requires stochastic assumptions. Of course, these assumptions have to be consistent

with what is known about the sector under study and the nature of sectoral input prices.

Let p∗ = [p∗l , l = 1, . . . , L; p∗j , j = 1, . . . , J ]. Assume there is a Q × 1 vector of

predetermined variables fit, so that E(p∗it,h|fit, ζh) = f ′itζh for h = 1, . . . , J + L where

13In a competitive market, the delivered price of coal is a function of the Btu/ton, the percent sul-
fur/ton, and transportation charges. Given this information, a hedonic regression would yield the implicit
price of the percent sulfur/ton. Unfortunately, the DOE publishes data on all these variables except for
transportation charges, which are confidential. A way around this would be to obtain data on the mine-
mouth price/ton, which could be regressed on Btu/ton and percent sulfur/ton. Again unfortunately,
complete mine-mouth data on price/ton linked to a specific mine and utility is confidential.

14One can apply this approach if prices are also missing for elements of x and y by simply generalizing
the following procedure.
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ζh, h = 1, . . . , J + L are Q× 1 parameter vectors. Define Fit = IJ+L ⊗ fit so that

p∗
it = Fitζ + ϵit, ϵit ∼ NJ+L(0,Σp∗). (53)

Thus, the predetermined variables are in Fit.

This can be written in the standard multivariate regression form as p∗ = Fζ+ ϵ. For

a particular observation we assume

p∗
it|Fit, ζ ∼ NJ+L(Fitζ,Σp∗), (54)

where ζ = [ζ ′1, . . . , ζ
′
J+L]

′ is Q′ × 1 where Q′ = (J + L)Q. As we lack specific prior

information, we assume:

p(ζ,Σp∗) ∝ fN,J+L(ζ; ζ̄, V̄ζ) · |Σp∗ |−(J+L+1)/2, (55)

where fN,J+L(ζ; ζ̄, V̄ζ) denotes a (J +L)−dimensional normal density with mean vector

ζ̄ = 0J+L and covariance V̄ζ = 104IJ+L. Relative to the previous approach, we now

have to draw from three additional conditional posterior distributions, viz.:

p∗|ζ,Σp∗ , . . . ,

ζ|p∗,Σp∗ , . . . ,

Σp∗ |p∗, ζ, . . . .

(56)

All three additional conditional posterior distributions are in standard form. Stan-

dard results yield the following:

ζ|· ∼ NQ′(ζ̂, V̂ ), (57)

where ζ̂ =
(
F′(I ⊗ Σ−1

p∗ )
−1F

)−1
F′(I ⊗ Σ−1

p∗ )
−1p∗ and V̂ =

(
F′(I ⊗ Σ−1

p∗ )
−1F

)−1
. For

the covariance matrix we have:

p(Σp∗ |·) ∝ |Σp∗ |−(nT+J+L+1)/2 exp
(
−trĀΣ−1

p∗

)
, (58)

where Ā = (p∗ − Fζ)′(p∗ − Fζ).

Assuming the covariance matrix of errors in (51) and (52) is Σ̃ we obtain that

p∗
it|· ∼ NJ+L(p̄it, V̄p∗), (59)

where p̄it = (Σ−1
p∗ + Σ̃−1)−1(Σ−1

p∗ Fitζ + Σ̃−1G̃it) and V̄p∗ = (Σ−1
p∗ + Σ̃−1)−1, where G̃it

denotes the RHS of (51) and (52).15

15Coupled with (27), the price equations in (49)–(52) satisfy the order condition for identification.
Of course this discussion is confined to a frequentist view of identification. In Bayesian models, even
unidentified parameters can be identified with proper priors. In Table 3 and figures 10 and 11 we provide
information on the sensitivity of posterior densities to the choice of priors.
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3.3 Measurement of Allocative Inefficiency and its Resource Implica-

tions

Using (49)–(52) we can measure allocative inefficiency (AI) as the sum of the error

in each input price equation times its corresponding quantity plus the sum of the error

in each output price times its corresponding quantity all divided by ϱ(p, g) (defined in

(16)):

AIit =

 N∑
n=1

ξn,itxn,it +

M∑
m=1

ξm,itym,it +

J∑
j=1

ξj,itx̃j,it +

L∑
l=1

ξl,itỹl,it

/ϱ(p, g). (60)

To reiterate, this measure depends on the errors from (49)–(52) weighted by corre-

sponding quantities. Since we interpret ϱ as the change in profits due to an incremental

improvement in the production technology, we can decompose ϱ into two parts: that

due to reducing price inefficiency and that due to reducing technical inefficiency. The

numerator of AIit is the former component.

To account for parameter uncertainty, AIit is averaged across Markov Chain Monte

Carlo (MCMC) draws in standard Rao-Blackwell fashion. For each MCMC draw, AIit

in (60) can be transformed as ÃIit := AIit − min{AIit}. Allocative efficiency (AE) is

then computed as

AEit = 100− ÃIit. (61)

Since we make this computation for each MCMC draw, the probability of any one firm

being fully efficient is very small. Our procedure allows us to resolve the standard

problem of relative efficiency estimation by using our variant of the corrected ordinary

least-squares technique in a Bayesian framework.

We also compute the estimated percent change in input usage for inputs and outputs

due to the firm producing at profit-maximizing levels based on market prices rather than

profit-maximizing levels based on shadow prices. For each of equations (49)–(52) we

solve the linear system for each draw of parameters and latent variables, which include

the estimated value of ξ. A solution zs∗,o is obtained for iteration s, s = 1, . . . , S, for

all observations o = 1, ...,NT . This measures the optimal level of inputs subject to

market prices, since the solved equations are in terms of these prices. The amounts z

are the current optimal amounts of input usage subject to shadow prices. Then we take

the Monte Carlo average z∗,o = S−1
∑S

s=1 z
s
∗,o to account for parameter uncertainty.

Finally, we generate the sample distribution of changes co, where co =
z∗,o−zo

zo
.
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3.4 Posterior Predictive Measure of Cost-Minimization versus Profit

Maximization

As indicated above, one can obtain the CM model by estimating the DDF with only

the good and bad input price equations. This entails estimation of (20) substituted into

(29), (49), and (51), where (27) is imposed during our MCMC iterations.

We wish to be able to compare the CM model to the PM model in terms of their

predictive abilities. Suppose all T observations (say yi ∈ ℜT ) of a certain utility

i ∈ {1, . . . ,N} are omitted from the dataset Y so the new dataset is Y−i. The new

posterior is p(θ(i)|Y−i) and the posterior predictive distribution for the ith utility is:

p(ỹi|Y−i) =

∫
p(ỹi|θ(i), Y−i)p(θ(i)|Y−i)dθ(i). (62)

We are interested in the posterior distribution of the absolute prediction error:

APE =

∫
ℜT

|yi − ỹi|p(ỹi|Y−i)dỹi. (63)

This can be computed with a simple Monte Carlo simulation:

A. Obtain θsi , s = 1, ..., S using MCMC.

B. Draw ỹsi , s = 1, ..., S from the likelihood, viz., the distribution of yi given θs(i).

C. Compute APE ≃ S−1
∑S

s=1 |yi − ỹsi |.

This can be obtained for both the CM and PM models. We use as a predictive measure

the ratio:

R =
APEPM

APECM
. (64)

In Fig. 13 we present predictive R for our sample.

Apparently, the vector yi must include only the endogenous variables that are com-

mon in the two models. A ratio that has most posterior probability mass R < 1 would

indicate that the PM model does a better job in terms of posterior prediction. In step

1, the MCMC is implemented using the same size of burn-in and subsequent draws to

convergence as in the original MCMC simulations using the PM and CM model.

3.5 Comparison of PM Models with and without Latent Prices

We compare three shadow-PM models that estimate the DDF together with ancil-

lary equations. All models include the quadratic DDF (20) substituted into (29). We
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also include in all models two good input price equations containing price inefficiency

terms from (49) for capital and energy (dropping that for labor), and two good output

price equations from (50) for residential and industrial/commercial electricity produc-

tion. With Model I, we ignore endogeneity and simply estimate this system without

instruments. With Model II, we identify the DDF using reduced-form equations for the

bad input and the three bad outputs. In Appendix B we explain in more detail the

reduced-form equations, whose explanatory variables are always the prices of the good

inputs and good outputs, firm dummies, and time dummies.

For Model III we identify the DDF by utilizing the specification for Model II, but

replacing the reduced-form equations with latent price equations from (52) for the two

bad outputs, SO2 and NOx, which are regulated. To determine which variables should

be included in (53), we argue that in equilibrium, the price of each regulated bad output

for the firm should equal its marginal cost of control (which should also equal the price of

an emissions permit if the emission constraint is binding). The marginal cost of control

of each bad output is a function of exogenous prices of inputs used to control that bad

output: the prices of capital, labor, and energy.16

Thus, for Model III, we estimate latent prices for SO2 and NOx as functions of firm

dummies, time dummies, vintage, and the prices of the good inputs, which comprise Fit

in (53). We do not include a first-order price equation for sulfur, since it is purchased

jointly with the good input, energy, and we lack the data to compute the negative hedonic

price of sulfur as discussed above. Also, we omit the price equation for CO2, since it

is an unregulated pollutant with zero price to the firm. We complete this system by

specifying reduced-form equations for the endogenous variables, the quantities of sulfur

and CO2. The translation property restrictions for a technology DDF from (27) are

substituted into all equations except for the reduced-form ones. Estimating the DDF in

conjunction with first-order price equations in terms of shadow prices means that the

directions are estimated subject to PM conditions (satisfied with near equality). In this

sense, the estimated directions are optimal. We summarize Bayes factor comparisons of

our models in Fig. 2 discussed below.

We follow the practice of computing and reporting predictive Bayes factors instead

of reporting a single Bayes factor for the entire sample since the possibility always exists

16Our data contains an overall price for each good input, but does not provide separate prices for the
portion used to reduce bad outputs and increase good outputs.
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that some observations are particularly influential in driving the Bayes factor in favor

of a particular model. For our data, this does not appear to be the case.

4 Econometric Implementation

4.1 Data

The sample consists of an unbalanced panel, subject to attrition, of at most 77

privately-owned electric utilities (whose names are available upon request from the au-

thors) operating in the U.S. over the period 1988-2005, for a total of 1201 observations.

This data set is 80% longer than that used by AT, which runs from 1988-1997, thereby

omitting a period when many states restructured (deregulated) the generation and de-

livery of electricity. Approximately 11% of our observations are for periods of restruc-

turing.17 A number of firms either merged or sold their assets and dropped out of the

sample from 1998 onward. A balanced panel would have yielded 1386 observations.

Since technologies for nuclear, hydroelectric, and internal combustion differ from

that of fossil-fuel-based steam generation and because steam generation dominates total

production by investor-owned utilities during the time period under investigation, we

limit our analysis to this component. We include a full set of 77 firm-specific dummies

and omit the intercept in the DDF (20).

We model the use of three good inputs (energy, labor, and capital) and one bad input

(sulfur) to produce two good outputs (residential and industrial/commercial electricity)

and three bad outputs, SO2, CO2, and NOx. From Federal Energy Regulatory Commis-

sion (FERC) Form 1 (1988-2005) we obtain the quantity of energy in total Btu of fuel

consumed and the quantity of labor as the number of full-time plus one-half the number

of part time employees. In this form, utilities report total capital expenses as the dol-

lars of interest plus depreciation paid by each utility for the sum of production capital

and pollution-control capital. From this same form, we decompose total generation into

residential and industrial/commercial generation by multiplying total steam output by

the percent of sales revenue in each category.

17For a summary of the goals from restructuring the electricity utility industry see Borenstein and
Bushnell (2015).
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We also calculate prices for the good inputs and good outputs. The price of energy

is computed as a weighted average of the cost per million Btu of each fuel, taken from

Department of Energy Information Administration (EIA) Form 767 Boiler Files. The

price of labor is the wage rate, defined as the sum of salaries and wages charged to electric

operation and maintenance, divided by the number of full-time plus one-half the number

of part-time employees taken from FERC Form 1 (1988-2005). The price of capital

is the yield of the firm’s latest issue of long-term debt adjusted for appreciation and

depreciation of capital using the Christensen-Jorgenson (1970) cost of capital formula.

These data were taken from FERC Form 1 (1988-2005) and Moody’s Public Utility

Manual (1988-2005). The prices of residential and industrial/commercial production

are derived as total revenues in each category divided by total sales in that category,

where the data are taken from FERC Form 1 (1988-2005).

Data are available on the quantities, but not prices, for the bad input (sulfur) con-

sumed and all bad outputs generated by the firm. These data are obtained from the

EIA Form 767 Boiler Files.

We compute τ (vintage) using the weighted-average age in years for the firm’s capital,

where weights are computed using the firm’s kilowatt-hour (kWh) output, taken from

FERC Form 1 (1988-2005)). This variable and the time dummies are found to be

separable from the other inputs and outputs.

In rare cases we encountered missing data for some variables. Whenever necessary we

accounted for such data by either using the value of the previous period or the average

of the previous and the subsequent period, depending on how related variables changed.

Consumption of total kWh by industrial/commercial customers (66%) was consider-

ably larger than that of residential users (34%) over the sample period. Over the years

1988-1998, total generation remained relatively constant for our sample firms. How-

ever, in 1999 total kWh production began a steady decline through the year 2005. For

our sample, SO2/kWh has fallen by about 35% over the sample period in response to

the increasingly tight emission restrictions under the SO2 cap-and-trade system. While

NOx/kWh has fallen slightly, CO2/kWh has risen significantly, since this pollutant is

unregulated. All continuous variables are standardized to eliminate variation due to

different units of measure when computing directions.
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4.2 Satisfying Properties D1-D8

As indicated above, we satisfy the translation property of the DDF, D1, by imposing

on each estimated model the restrictions in (27). The restriction D1 implies D2 for our

estimated system. To see this, first impose the restrictions in (27) on (25) (with zero on

the left-hand-side in order to guarantee frontier efficiency), using ϑo = −1, ϑ = 0, and

scale g by λ. We obtain

0 =
−→
DT (z+ λα̃g; g) =

−→
DT (z; g)− λα̃, (65)

where α̃ is the new estimated distance (which obtains after scaling g by λ). This implies

that

α̃ = λ−1−→DT (z; g), (66)

which says that the new estimated distance, α̃, equals λ−1 times the original distance,

which is a function of the original g. A similar demonstration can be made for the input

and output models. We randomly test for concavity, D3, and find that it is satisfied

99% of the time. Non-negativity, D4, is imposed after estimation for all observations

via a normalization of the fitted DDF. The monotonicity properties–D5-S, D6-S, D7-W,

and D8-W–are satisfied for nearly all of the data via the MCMC estimation process, as

explained in the following subsection.

4.3 Statistical Inference in the PM and CM Systems

Our implementation of MCMC relies on a burn-in or transient phase whose length is

determined by using Geweke’s diagnostic (1992). In preliminary experiments with vari-

ous priors, the length of the transient phase ranged from 250,000 to 500,000 iterations.

For the baseline prior we used 500,000 burn-in draws followed by another million draws

which we use to compute marginal posterior densities and statistics for the functions of

interest.

We include a restructuring dummy and also consider the interactions of the restruc-

turing dummy with all first-order terms. Although the restructuring dummy itself is

significant with a p-value of .0031, a traditional F-test of the interactions as a whole has

a p-value of 0.230. This is really a Bayesian F-test which averages across all MCMC

draws.

Monotonicity constraints are often violated in empirical applications. In this paper,
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we impose the monotonicity constraints at the means of the variables (which are nor-

malized to zero) and also at a number of points whose distance from the mean is r.

Since the data are normalized to have unit standard deviation, values of r up to 3 are

considered.

Pertaining to all monotonicity properties, the number of violations for the baseline

prior is very similar to that for the other priors. Without any restrictions, we have

68 violations. When the restrictions are imposed at the mean we have 31. When the

restrictions are imposed at the mean plus a point which is r = 0.5 units away from

the mean we have 11 violations. Imposing the restrictions with r = 2 we have zero

violations at the posterior mean of the parameters and a maximum of 2 violations

across all MCMC draws. We employ this value for r in the results reported below. The

imposition of monotonicity constraints is done using standard rejection techniques.

Our figures and tables pertain only to the shadow-PM system, with the exception of

Fig. 13, which indicates that PM is superior to CM. Table 1 summarizes our identifica-

tion strategies for Models I-III. In Appendix B we explain our use of a Fourier expansion

to generate reduced-form expressions used in Models II and III. Based on Bayes factors,

increasing the number of terms beyond three provides little improvement. Hence, we

employ three terms in our expansion. Figs. 2a and 2b summarize the log of the pre-

dictive Bayes Factors against Models I and II and in favor of Model III. Panel 2a (2b)

compares the models by omitting utilities (time periods). Clearly Model III is superior

based on Bayes factors.

Table 2 reports Bayes factors for different specifications of the productivity equation

(30) relative to the linear model, which we employ as model 2 in (38). Throughout the

paper, we employ the third-order specification, since it clearly dominates with a Bayes

factor of 12.55.18

Figs. 3a and 3b present posteriors of the optimal directions of inputs and outputs

for Model III. The mean directions for capital, labor, and residential generation are

negative, with posterior means of about -.4, -.65, and -.7, respectively. The mean di-

18Doraszelski, U. and J. Jaumandreu (2013) avoid assuming that all prices are exogenous by omitting
subsets of moments involving either lagged wage or lagged price of materials. We have not dropped
subsets of moments involving prices since we are assuming that all inputs and outputs are potentially
endogenous and we need all prices as instruments. To consider whether lagged prices are better in-
struments than current period prices, we employ one-period lagged prices for Model III in place of
current-year prices. The third-order specification of the productivity equation with current year prices
is still superior, in this case with a Bayes factor of 15.66.
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rection for energy is positive, with a posterior mean of about .4. Further, the mean

direction for the other good and bad outputs are positive. The largest of these is for

industrial/commercial output with a mean of about .35. The positive mean direction

for energy and the negative mean direction for residential generation are the opposite

signs of what is normally assumed. However, since energy is an input substitute and

industrial/commercial generation is an output substitute, their signs are reasonable. In

addition, the positive directions for industrial/commercial output, NOx, and SO2 emis-

sions are consistent with the assumption that the bads are weakly disposable relative

to industrial/commercial output. Model misspecification would occur if one arbitrarily

assigns directions for bad outputs and all inputs of -1 and directions for good outputs of

+1 or requires that industrial/commercial output and the bad outputs have directions

with opposite signs.

Given estimated optimal-PM directions for measuring distances from the frontier, in

Fig. 4 we present the posterior density of TE for models I-III. Models I and II indicate

mean TE of about .75 and .65, respectively. With Model III, TE is about .85.

Fig. 5 provides for Model III the posterior percentage price distortions (relative

to actual prices) for good inputs and good outputs. The posterior means are small

and negative for all good inputs. From equation (49) the negative price distortions for

inputs indicate that their shadow prices are less than their actual prices. Specifically, the

average shadow price of capital is less than its market price due to super-normal rates

of return allowed in many rate-of-return regulated regimes, which dominate our sample.

This result is consistent with those of other studies of electric utilities referenced above.

From equation (50), somewhat larger positive mean price distortions for good outputs

imply that their shadow prices are slightly greater than their actual prices.

Fig. 6 shows for Model III the posterior percent price distortions (relative to latent

prices) for bad outputs, computed using (52). Mean price distortions are small and

positive for both bad outputs, indicating that shadow prices of the bad outputs exceed

their market prices.

In Fig. 7, for Models I-III we provide the posterior densities of AE computed from

equation (61) for all inputs and outputs. Mean AE for Models I-III is about .85, .66,

and .64, respectively.

In Fig. 8 we provide for Model III the posteriors of the percent changes in the usage

of inputs and outputs if firms were required to produce at profit-maximizing levels based
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on actual (market) prices rather than profit-maximizing levels based on shadow prices.

We use the methodology described in section 3.3 above. The computed percent change

for a given input or output is a function of marginal rates of transformation and price

changes of all other inputs and outputs, through the solution of a system of equations.

Thus, the percent changes in usage are not linearly related to individual price distortions.

The mean posterior changes in usage are -.04 and -.07 for capital and labor, respectively,

and .05 for energy. The mean posterior changes for good and bad outputs range from

.02 to .04. All of these distortions are relatively small.

Fig. 9 provides posterior densities for RTS, PC, TC, and EC for Model III. The

posterior mean of RTS is about .94, indicating slightly decreasing returns to scale. The

posterior mean of EC is slightly negative and its posterior distribution is somewhat less

disperse than are those of PC and TC. The posterior mean of TC is slightly greater than

.01 and the posterior mean of PC is slightly less than .01.

Table 3 indicates the range in 10,000 priors used for posterior sensitivity analysis.

Fig. 10 reports the resulting posteriors for inputs and outputs for Model III. We focus on

changes in the posteriors of inputs and outputs relative to the baseline prior. To minimize

computational costs of this posterior comparison for each of the 10,000 different priors,

we use Sampling-Importance-Resampling (SIR) following Smith and Gelfand (1992) and

Rubin (1987). Given a set of posterior draws
{
β(s), s = 1, ..., S

}
for a model with a given

baseline prior, say po (β), approximate draws from the same model with an alternative

prior p (β) can be obtained using the SIR algorithm. This attaches weights, Υs =
p(β(s))
po(β(s))

, to the original draws and resampling is used with these normalized weights

avoiding the reuse of MCMC19. All sensitivities are quite small.

Fig. 11 reports the sensitivity of changes in posterior means for structural parameters

of Models I-III to 10,000 different priors. Since the use of SIR does not require new

MCMC computations, it is particularly suited to large-scale prior sensitivity analysis

as in our case. The 10,000 different priors are generated from the baseline prior of

each parameter or block using the hyperparameters of these priors. If the vector of

hyperparameters is collectively denoted by δ ∈ R∆ new priors are generated using δ∗ =

δ + κ where κ is uniformly distributed in [−B1, B2]
∆.

We set B1 = B2 = 10 for hyperparameters that can be defined over the real line

and B1 = 0.001, B2 = 10 for positive hyperparameters. Performing the same sensitivity

19The size of the resample is set to 20% of the number of available MCMC draws.
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analysis experiment when only the priors for the structural parameters are allowed to

change, the changes in posterior means are modest, suggesting that posterior MCMC is

quite robust.

After estimating the shadow PM model, we compute for Model III the posterior

means of relative shadow prices over time for bad outputs from equation (52). As re-

ported in Fig. 12, these prices all decline over time, consistent with historically declining

costs of pollution control. The relative prices of SO2 and NOx are consistent with esti-

mates of control costs from the Integrated Environmental Control Model (Rubin, 2009).

In order to compare the predictive accuracy of the shadow-CM and shadow-PM

models, we compute the marginal posterior of the predictive measures of R. For five

randomly chosen utilities, provided in Fig. 13, R values range from zero to .5. The mean

values range from approximately .01 to about .1, indicating that the shadow-PM model

is strongly preferred to the shadow-CM model.

Finally, in Figs. 14-15 and Table 4 we report for Model III the partial elasticities of

ω in (30) with respect to ωt−1,px,py, π, τ and t. When implementing (32)–(35) we do

not impose monotonicity of profits with respect to ω. However, we find that the required

monotonicity is satisfied for 99% of our observations.

Lagged ω is the most important variable affecting ω with a positive elasticity of .43.

Reducing pE is the second most important variable with an elasticity of -.41. Reductions

in pK and pL are more important than an increase in the prices of residential and

industrial production. Profits have a very small but positive effect on productivity. All

elasticities except for those of t and τ are significant at the .05 level using a two-tailed

test, indicating little affect of time itself or the aging of capital stock.

5 Conclusions

Using a Bayesian appproach, our contributions to the productivity literature are

fourfold. First, we estimate unique optimal-PM directions for each good input, each

good output, and all regulated bad outputs. Second, we allow the potential endogeneity

of all inputs and outputs. This entails identifying the DDF by assuming a data generating

process for the latent prices as instruments to replace missing prices for the regulated bad

outputs. Then we estimate the DDF jointly with the first-order price equations derived

from PM for good inputs, good outputs, and two controlled pollutants. The bad input,
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sulfur, and the uncontrolled pollutant, CO2, are identified using reduced-form equations.

We also estimate the corresponding CM model. Third, we avoid the typical assumption

that firms respond to actual prices by estimating firm-specific shadow prices. Fourth, we

generalize and provide an alternative to the approaches of OP (1996) and LP (2003). We

accomplish this by treating all input and output quantities as potentially endogenous

and deriving productivity as a function of lagged productivity, profits, vintage, time,

and the prices of good inputs and outputs. From this function, we compute TC, EC,

PC, and partial elasticities.

Using MCMC methods, we generate posterior densities for the parameters and latent

variables of our system using an unbalanced panel of 77 U.S. electric utilities for the years

1988-2005. Using Bayesian criteria, the shadow PM model is superior to the shadow CM

model in terms of predictive ability. Optimal directions subject to shadow PM differ

from their typically assumed values (-1 for all bad outputs and all inputs, and +1 for

good outputs). Estimated price distortions for the good inputs indicate that efficient

levels of usage are slightly lower for capital and labor but are moderately higher for

energy. Mean PC is slightly less than .01. The major factors augmenting productivity

are an increase in lagged productivity and a reduction in energy prices. Changes in

posterior means of the structural parameters and the directions are highly insensitive to

a wide range of different priors.
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Färe, R., Lundberg, A., 2005, Parametrizing the Shortage Function, working paper,
Department of Economics. & Agricultural and Resource Economics, Oregon State
University.

Federal Energy Regulatory Commission Form 1: Annual Report of Major Electric Util-
ities, 1988-2005.

Feng, G., Serletis, A., 2009, Efficiency and productivity of the US banking industry,
1998–2005: evidence from the Fourier cost function satisfying global regularity con-
ditions. Journal of Applied Econometrics, 24, 105-138.

Fowlie, M., 2010, Emissions Trading, Electricity Restructuring, and Investment in Pol-
lution Abatement. American Economic Review 100, 837-69.

Gallant A. R., 1982, Unbiased determination of production technology. Journal of
Econometrics 20(2): 285–323.

Geweke, J., 1992, Evaluating the Accuracy of Sampling-Based Approaches to the Cal-
culation of Posterior Moments. In: Bayesian Statistics 4 Bernardo, J.M., Berger,
J., Dawid, A.P., Smith, A.F.M.) (Eds.). Oxford: Oxford University Press, 169-193.

Girolami, M., Calderhead, B., 2011, Riemann manifold Langevin and Hamiltonian
Monte Carlo methods. Journal of the Royal Statistical Society B 73, 123-214.

Griliches, Z., Mairesse, J., 1998, Production functions: the search for identification. In:
Strom S., (Ed.) Econometrics and Economic Theory in the 20th century. Strøm, S.
ed., Cambridge University Press, pp. 169-203.

Grosskopf, S., 2003, Some Remarks on Productivity and its Decompositions. Journal
of Productivity Analysis 20, 459-474.
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6 Tables and Figures

Table 1: Identification Strategies for Models I-III

Model Strategy Variables with Identifying Equations

Model I Ignore Endogeneity none

Model II Add Reduced-Form Equations x̃S and ỹ

Model III Add Reduced-Form Equations x̃S, ỹCO2

Add Latent-Price Equations p̃SO2 , p̃NOx



Table 2. Bayes factors for different specifications of productivity equation

BF

linear 1.000

second-order 5.301

third-order 12.545

fourth-order 2.271

NN, G = 1 6.412

NN, G = 2 5.812

NN, G = 3 4.023

NN, G = 4 1.167

Fourier, unrestricted A 2.519

Notes: The linear model is obtained from (33) by setting A = 0, “NN” stands for “neural network” and the
specification is given by (32). The Fourier approximation is as in (34). The model “Fourier, unrestricted A”

corresponds to (34) with an unrestricted A matrix.



Table 3. Baseline priors and range of variation for parameters
to generate the 10,000 priors for posterior sensitivity analysis

Parameter Equation Value Range of variation

γ|g Appendix (C.1.5) Semi-informative form fixed

c (27) 10−4 10−3 to 10−8

ḡ (39) -1 or +1 fixed

Σg (39) Wishart(ν,A) See note below

∆ Appendix (B.1) Wishart(ν,A) See note below

π Appendix (B.1) 103 varies from 10 to 105 10−2 varies from 10−4 to 1

σu Appendix (C.2.5.1)
Q

σ2
u
∼ χ2

ν , Q = 0.1, ν = 1 Q ∈
[
10−3, 100

]
, ν ∈ [0.01, 20]

F Appendix (B.2) 5 Chosen initially using BIC

Note: Wishart priors are of the form p (Σ) ∝ |Σ|(ν−m−1)/2 exp
(
trA−1Σ

)
where the

dimensionality of the matrix is m × m generically, and ν,A are prior parameters. We
set the parameter ν equal to 0.1 times the sample size and A−1 = 0.001I .



Table 4. Partial Elasticity of ωit with respect to px,py, π, τ, t

ωi,t−1 0.432
(0.081)

pE -0.414
(0.122)

pL -0.235
(0.092)

pK -0.167
(0.072)

pRES 0.045
(0.023)

pIND 0.071
(0.022)

πit 0.044
(0.011)

t 0.0014
(0.0013)

τit -0.157
(0.032)



Fig. 1: Movement from Interior Point to Profit-Maximizing Position
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Fig. 2: Log of Predictive Bayes Factors



Fig. 3: Posterior Densities for Directions



Fig. 4: Posterior Density for Technical Efficiency for Models I-III



Fig. 5: Posterior Densities for Price Distortions–
Good Inputs and Good Outputs



Fig. 6: Posterior Densities for Price Distortions–Bad Outputs



Fig. 7: Posterior Density for Allocative Efficiency for Models I-III



Fig. 8: Posterior Densities of Change in Inputs and Outputs



Fig. 9: Posterior Densities for RTS, PC, TC, and EC



Fig. 10: Posterior Densities for Sensitivity of Changes
in Inputs and Outputs to 10,000 Priors



Fig. 11: Posterior Densities for Sensitivity of Changes
in Structural Parameters to 10,000 Priors



Fig. 12: Posterior Means of Relative Prices
of Bad Outputs over Time from PM Model



Fig. 13: Posterior Density of Predictive Measure, R, for PM Model



Fig. 14: Partial Elasticities for ωit for the PM Model



Fig. 15: Partial Elasticities for ωit for the PM Model



Appendices

A.1: Monotonicity for Good Inputs

In what follows we supress the arguments (ω, τ, t) in equations (1) and (2) for T and−→
DT for the sake of simplicity.

For (x, x̃,y, ỹ) ∈ T ,x′ = x ⇒ (x′, x̃,y, ỹ) ∈ T . Let β∗ be the solution to (2).

Therefore, it is optimal and feasible in (2). Then

(x+ β∗gx, x̃+ β∗gx̃,y + β∗gy, ỹ + β∗gỹ) ∈ T .

Further, let

−→
DT (x

′, x̃,y, ỹ; g) = β′ = sup{β : (x′ + βgx, x̃+ βgx̃,y + βgy, ỹ + βgỹ) ∈ T }.
(A.1.1)

Assume that x′ = x. Then

(x′ + β∗gx, x̃+ β∗gx̃,y + β∗gy, ỹ + β∗gỹ) = (x+ β∗gx, x̃+ β∗gx̃,y + β∗gy, ỹ + β∗gỹ).

Since inputs are strongly disposable,

(x′ + β∗gx, x̃+ β∗gx̃,y + β∗gy, ỹ + β∗gỹ) ∈ T .

Hence β∗ is feasible in (A.1.1) although not necessarily optimal in (A.1.1). Thus,

β′ =
−→
DT (x

′, x̃,y, ỹ; g) = β∗ =
−→
DT (x, x̃,y, ỹ; g).

We conclude that

x′ = x ⇒ −→
DT (x

′, x̃,y, ỹ; g) = −→
DT (x, x̃,y, ỹ; g).

Now to convert this into a partial derivative, let x′ = x + h, where h > 0. Then

x′ = x implies that

−→
DT (x+ h, x̃,y, ỹ; g) = −→

DT (x, x̃,y, ỹ; g)

or

[
−→
DT (x+ h, x̃,y, ỹ; g)−

−→
DT (x, x̃,y, ỹ; g)]/h = 0.

Then, since

∂
−→
DT (x, x̃,y, ỹ; g)

∂xn
= lim

h→0

[
−→
DT (x+ h, x̃,y, ỹ; g)−

−→
DT (x, x̃,y, ỹ; g)]

h
,

n = 1, . . . , N,



we obtain

∂
−→
DT (x, x̃,y, ỹ; g)/∂xn = 0, n = 1, . . . , N. (A.1.2)

A.2: Monotonicity for Good Outputs

Assuming the strong disposability of good outputs in D6–S,

(x, x̃,y, ỹ) ∈ T ,y′ ≤ y ⇒ (x, x̃,y′, ỹ) ∈ T . (A.2.1)

In a similar manner with D5–S, assume that y′ 5 y and let β∗ =
−→
DT (x, x̃,y, ỹ; g) be

the solution to (2). Then

(x+ β∗gx, x̃+ β∗gx̃,y + β∗gy, ỹ + β∗gỹ) ∈ T .

Since outputs are strongly disposable, we have

(x+ β∗gx, x̃+ β∗gx̃,y
′ + β∗gy, ỹ + β∗gỹ ∈ T ).

Thus, −→
DT (x, x̃,y

′, ỹ; g) = β′ = −→
DT (x, x̃,y, ỹ; g) = β∗.

We conclude that

y′ 5 y ⇒
−→
DT (x, x̃,y

′, ỹ; g) = −→
DT (x, x̃,y, ỹ; g)

or that (following the steps in D5 to obtain a partial derivative)

∂
−→
DT (x, x̃,y, ỹ; g)/∂ym ≤ 0,m = 1, . . . ,M. (A.2.2)

Note that D5–S and D6–S do not depend on the signs of the elements of g.

B: Reduced-Form Equations for Endogenous Bads

Suppose z̃ = [x̃′, ỹ′, ]′, which is a (J + L)× 1 vector, denotes these endogenous vari-

ables and W denotes the (J + L)×K matrix of K weakly exogenous or predetermined

variables in the model, including relative prices or their logs. Let π denote a K×1 vector

of coefficients, and η a (J + L)× 1 vector of error terms such that η ∼ NJ+L (0,∆):

z̃ = Wπ + η, (B.1)

where ∆ is to be estimated. Equation (B.1) can be used to complete the system of (29),

(49), and (50), providing equations in reduced form for the endogenous variables x̃ and

ỹ, for which price data are not available. Matrix W can be used so that (B.1) is, in fact,

a semi-parametric formulation, contrary to standard LIML, where a linear reduced form



is used. This treatment has been absent in most Bayesian treatments of LIML. Given a

basic set of weakly exogenous or predetermined variables, a Fourier expansion may be

used (which amounts to including in W trigonometric terms of properly transformed

variables in the data set) and the order of the expansion can be used to control the

flexibility of the approximation. We reiterate that for any χ ∈ ℜ an unknown univariate

function, ς : [−π, π] → ℜ can be approximated as follows:

ς (χ) ∼= αo +

F∑
f=1

αf cos (fz) +

2F∑
f=F+1

αf sin ((f − F )z) , (B.2)

where z = 2π (χ− χmin) / (χmax − χmin)− π, and F ∈ {1, 2, ...} denotes the order of the

approximation. For a multivariate expansion we take the sum of univariate expansions

(so as to economize somewhat on the number of parameters). For K variables in the

basic set, Fourier expansions of common order F imply that we have 2FK parameters

like αf (omitting, of course, the constant terms which are included separately in (B.2)).

If the variables in W are denoted by ϖ1, ϖ2, ..., ϖJ+L the idea is to use (B.2) and

define new variables:

ϖ̃
(1)
nf = cos (fzn) , ϖ̃

(2)
nf = sin (fϖn) , n = 1, ..., J + L, f = 1, ..., F, (B.3)

where zn = 2π (ϖn −ϖn,min) / (ϖn,max −ϖn,min) − π, n = 1, ..., J + L. Then we define

the new matrix:

W ∗ =
[
W , W̃

(1)
, W̃

(2)
]
, (B.4)

in obvious notation whose dimension is (J + L)×K ′ and K ′ = 1+(1+2F )K where the

first 1 stands for the intercept, followed by the K variables in the basic data set W , and

then followed by the 2FK trigonometric elements of the Fourier approximation. The

reduced form in (B.1) is then replaced by:

z̃ = W ∗π + ε. (B.5)

To control for the proliferation of parameters20 we use a special prior:

π1:K+1 ∼ NK+1

(
0, 103IK

)
, (B.6)

πK+2:2KF ∼ NK(2F−1)−1

(
0, 10−2 · IK (2F−1)

)
. (B.7)

The first K + 1 parameters (corresponding to the intercept and the K variables in the

basic set W ) have diffuse normal priors. The coefficients corresponding to the Fourier

terms are relatively tightly concentrated around zero to reflect the prior opinion that a

linear expansion is likely to be best. Of course, in light of the data, such prior beliefs

20With K=10 basic variables and an order F=5 we would end up with 100 trigonometric terms.



can be updated.

C: Bayesian Analysis

C.1: Priors and Posteriors

We use (29) to express the quadratic technology DDF as

0 = γ′zit +
1
2z

′
itΓzit + vit + ωit − uit, (C.1.1)

where γ = [γw, w = 1, ...,W ]′, Γ = [γww′ ], i = 1, ...,N , t = 1, ..., T , and we set ωit = 0.

To economize on notation we define γ =
[
γ′, vec (Γ)′

]′
, the structural parameters of the

system.

Combining (C.1.1) with equations (49), (50), and the reduced form equations in

(B.5), we have a simultaneous equations model whose Jacobian of transformation is the

following:

J (gi, ξit,γ) =

[
−γ − Γzit

π∗
it (gi, ξit)I Γ

]
(C.1.2)

where I = [1′N , −1′M ]′ and

π∗
it (gi, ξit) =

M∑
m=1

pm,itgm,i −
N∑

n=1

pn,itgn,i +

M∑
m=1

ξm,itgm,i −
N∑

n=1

ξn,itgn,i.

Since we have introduced optimization error terms vn and vm in (49) and (50),

the price distortions ξit will be viewed as nonlinear random effects in the system. For

stronger identification we assume that the vector of directions gi is time-invariant, which

is a reasonable assumption in our context.

In the system consisting of (C.1.1), (49), and (50), the prior for the standard noise

component is as follows:

Vit =
[
vit,v

′
N ′ ,v′

M

]′ ∼ NN ′+M+1 (0,Σ) , (C.1.3)

where vN ′ = [vn,it, n = 1, ..., N ′]′, vM = [vm,it,m = 1, ...,M ]′, and N ′ = N−1 (since one

input price equation is omitted). Here, vit = −
∑W

w=1 γwzw −
∑W

w=1

∑W
w′=1 γww′zwzw′ +

uit and similarly for vn,it and vm,it.
21

Due to the constraints in (27), it is difficult to place informative priors on both γ and

gi. One problem is that the directions are firm-specific but the structural parameters are

not, so these restrictions cannot hold exactly for each observation. The problem would,

of course, disappear under the assumption that all firms have the same direction vectors.

21This implies that the v’s are now considered as functions of the data and parameters to economize
on notation.



However, we feel that this assumption is too restrictive. To overcome the problem we

write our set of restrictions in the form

F (γ, gi) = A (γ) gi = ϑi, i = 1, ..., n, (C.1.4)

where F is a vector function in ℜM+L+N+J+1. Here, ϑi ∼ NM+L+N+J+1

(
a, c2I

)
where

the first element of a is −1 and the remaining elements are zero (see discussion below

(27)). The function F is nonlinear as it involves products of γ and gi.

The conditional prior distribution for γ given g is then:

p (γ|g) =
N∏
i=1

exp
[
− 1

2c2
g′iA (γ)′A (γ) gi

]
. (C.1.5)

Given our notation the joint posterior distribution (augmented by all latent variables)

can be written as follows:

p (γ,π, ξ, g,u,Σ,Ω,∆|Y ) ∝

|Σ|−
NT (N+M)

2 exp
(
−1

2

∑N
i=1

∑T
t=1 V

′
itΣ

−1Vit

)
|Ω|−

T (N ′+M)
2 exp

(
−1

2

∑N
i=1

∑T
t=1 ξ

′
itΩ

−1ξit

)
|∆|−

NT (J+L)
2 exp

[
−1

2

∑N
i=1

∑T
t=1 (z̃it −W∗

itπ)
′∆−1 (z̃it −W∗

itπ)
]

∏N
i=1

∏T
t=1 J (gi, ξit,γ) · p (u, ξ,Σ,Ω,∆,π) · p (γ|g) p(g),

(C.1.6)

where we set ωit = 0. Lines 2-4 of the joint posterior are the contributions to the

likelihood. On the last line, the second from the last term denotes the prior for the

one-sided error term u, the price distortions ξ, various covariance matrices of the model,

and the reduced-form parameters, π, all of which are assumed to be independent. The

last two terms denote the prior on the structural parameters γ and the directions gi,

which we denote collectively by g. The data is collectively denoted by Y . See Table 2

for the values of all priors and ranges of variation actually employed.

Combined with the rest of the posterior in (C.1.6), (C.1.5) acts as a ’penalty function’

whenever there is a deviation of F from its prescribed values in (27). The value of c is

chosen a priori.

For all covariance matrices (denoted generically by Φ) the prior has the inverted

Wishart form:

p (Φ|νΦ, AΦ) ∝ |Φ|−
νΦ+mΦ+1

2 exp
(
−1

2 tr[AΦΦ
−1]

)
(C.1.7)

where νΦ is the degrees of freedom, mΦ is the dimensionality of Φ, and where AΦ is a

positive definite matrix of coefficients that determine other features of the distribution,



including its location.

We can easily add bad inputs and bad outputs by including their equations, (51) and

(52). In this case, we must return to the beginning of this subsection and generalize J ,

π∗
it, Vit, and the joint posterior distribution to accommodate J bad inputs and L bad

outputs.

C.2: Markov Chain Monte Carlo Schemes

C.2.1: Drawing structural parameters γ

From (C.1.6) or the formulation in (20) and (29) along with (49), (50), and (B.5),

a complication arises from the presence of the γ parameters in the Jacobian in (C.1.2)

given all the other parameters. The problem is the same with parameters like gi and ξit
which also appear in the Jacobian.

Assuming that we have G equations in our system, equations (20) and (29) along

with (49) and (50) can be written in the general form:

Y = Xα(γ)+ V− u (C.2.1.1)

where Y and V are (NTG × 1) vectors denoting the data for left-hand-side variable in

(20) and (29) along with (49) and (50), conditional on all other parameters (particularly

parameters like gi and ξit), and the (NTG × 1) vector u = (u1,0NT (G−1))
′, where

u1 = [uit] is a (1 × NT ) vector of uit, i =, . . . ,N ; t = 1, . . . , T and 0NT (G−1) is a

(1 × NT (G − 1)) vector of zeroes. The notation α (γ) means that there are cross-

equation restrictions among the parameters γ arising from the symmetry conditions and

from (27). These appear in the DDF and in the first-order conditions. For example,

(49) and (50) are conditioned on gi and ξit in a standard SURE system. The matrix of

explanatory variables X, has NTG columns and number of rows equal to the number of

explanatory variables in all the equations. We write the system as


Y1

Y2

...

YG

 =


X1

X2

. . .

XG

α (γ) +


V1 − u1

V2

...

VG

 (C.2.1.2)

where Yg (g = 1, ..., G ) denotes the left-hand-side variable in the gth equation (G =

N +M ), X1 is the matrix of regressors in the distance function, and Xg is the matrix of

regressors in the remaining price equations (49) and (50). The coefficient vector α (γ)

is essentially α (γ) = Sγ where S is a selection matrix. The model can be written as



Y = Xγ + V−

[
u1

0NT (G−1)

]
(C.2.1.3)

if we redefine X properly. For example X1 contains regressors of the technology DDF,

and X2, ...,XG contain the corresponding elements given by the price equations in (49)

and (50), where the symmetry restrictions and (27) have been imposed.

Since E (VV′)=Σ⊗ INT it is easy to see that the conditional distribution of α is

α|Σ, ...,Y ∼ N

([
X′ (Σ−1 ⊗ I

)−1X
]−1 [

X′ (Σ−1 ⊗ I
)−1Y

]
,
[
X′ (Σ−1 ⊗ I

)−1X
])

(C.2.1.4)

apart from the Jacobian term. In this conditional posterior we also have to account

for the presence of α in the conditional prior in (C.1.5). The posterior conditional

distribution of Σ−1 is, however, in the Wishart family, so that

p
(
Σ−1|α, ...,Y

)
∝ |Σ−1|[νΣ+NT−(G+1)]/2 exp

(
−1

2 tr
[
AΣΣ

−1
])

. (C.2.1.5)

Turning attention to γ, it also appears in the Jacobian so its complete posterior is the

product of the normal density corresponding to (C.2.1.3) and the Jacobian terms in

(C.1.6).

There are two solutions to this problem:

(a) We use (C.2.1.4) as a candidate generating function and then we use a Metropolis-

Hastings update to maintain the correct posterior conditional distribution.

(b) We compute the gradient and Hessian of the full conditional kernel posterior

distribution. Then we apply a Girolami-Calderhead (2011) (GC) update for γ, see

below.

A Metropolis-Hastings update for a block of parameters, say ϑ, when the proposal

is N
(
ϑ̂, V̂

)
whose density we denote by fN

(
ϑ; ϑ̂, V̂

)
is done as follows. Given that

the current MCMC draw is ϑo and the candidate vector from the proposal is ϑc, the

candidate is accepted with the Metropolis-Hastings probability

min

1,
p (ϑc|...,Y ) /fN

(
ϑc; ϑ̂, V̂

)
p (ϑo|...,Y ) /fN

(
ϑo; ϑ̂, V̂

)


The GC procedure is as follows. Suppose L (β) = log p (β|Σ,u,Λ,Y ) is used to

denote for simplicity the log posterior of any block of parameters β. Moreover, define

G (β) = est. cov ∂
∂β log p (Y |β,Σ,u,Λ)



the empirical counterpart of

Go (β) = −EY |β
∂2

∂β∂β′ log p (Y |β,Σ,u,Λ) .

The Langevin diffusion is given by the following stochastic differential equation:

dβ (t) = 1
2∇̃βL {β (t)} dt+ dB (t)

where

∇̃βL {β (t)} = −G−1 {β (t)} · ∇̃βL {β (t)}

is the so called “natural gradient” of the Riemann manifold generated by the log poste-

rior. The elements of the Brownian motion are

G−1 {β (t)} dBi (t) = |G {β (t)} |−1/2

Kβ∑
j=1

∂
∂β

[
G−1 {β (t)}ij |G {β (t)} |1/2

]
dt+

[√
G {β (t)}dB (t)

]
i

The discrete form of the stochastic differential equation provides a proposal as fol-

lows:

β̃i = βo
i +

ε2

2

{
G−1 (βo)∇βL (βo)

}
i
− ε2

∑Kβ

j=1

{
G−1 (βo) ∂G(βo)

∂βj
G−1 (βo)

}
ij
+

ε2

2

∑Kβ

j=1

{
G−1 (βo)

}
ij
tr

{
G−1 (βo) ∂G(βo)

∂βj

}
+

{
ε
√

G−1 (βo)ξo
}

i

=

µ (βo, ε)i +

{
ε

√
G−1 (βo)ξo

}
i

where βo is the current draw. The proposal density is

q
(
β̃|βo

)
= NKβ

(
β̃, ε2G−1 (βo)

)
and convergence to the invariant distribution is ensured by using the standard form

Metropolis-Hastings probability

min

1,
p
(
β̃|·,Y

)
q
(
βo|β̃

)
p (βo|·,Y ) q

(
β̃|βo

)


Again, we can easily generalize this subsection to handle bad inputs and bad outputs.

Simply return to the beginning of B.2.1 and include the appropriate price equations for

bad inputs and bad outputs, equations (51) and (52), and proceed to generalize the

notation.



C.2.2: Drawing Directions

The directions appear in the system in (49) and (50) along with the proposed priors

in (39), (C.1.5), and (C.1.6). Using pn,it and pm,it as the left-hand-side variables (which,

depending on the system we estimate, may be exogenous or endogenous) we can write

(49) and (50) as:[
pn
it

pm
it

]
=

[
− (pn

it + ξnit)
′ (pm

it + ξmit )
′

− (pn
it + ξnit)

′ − (pm
it + ξmit )

′

][
∂
−→
Dit
∂xn 0

0 ∂
−→
Dit

∂ym

][
gn
it

gm
it

]
−

[
ξnit
ξmit

]
+

[
vn,it

vm,it

]
(C.2.2.1)

or, in more compact notation,

pit + ξit = Qitgi + vit (C.2.2.2)

where Qit is the product of the first two matrices on the right-hand side and vit ∼
N (0,Σ∗), whereΣ∗ is the relevant submatrix ofΣ corresponding to vit from the stochas-

tic specification in (C.1.3). From (C.2.2.2), (39), (C.1.5), and (C.1.6) we can draw the

directions gi sequentially from the posterior conditional distribution

p (gi|...,Y ) ∝
exp

[
− 1

2c2
g′
iA (γ)′A (γ) gi

]
exp

[
−1

2

∑T
t=1 (pit + ξit −Qitgi)

′Σ−1
∗ (pit + ξit −Qitgi)

′
]

exp
[
−1

2 (gi − ḡi)
′Σ−1

g (gi−ḡi)
]∏T

t=1 J (gi, ξit,γ) ,

(C.2.2.3)

where J (gi, ξit,γ) is the relevant term of the Jacobian from (C.1.6). The first term

comes from (C.1.5) and the next to last term comes from (39).

The first three terms of the conditional posterior can be combined to construct a

normal distribution for each gi. The Jacobian term can be accommodated either (a)

using a Metropolis-Hastings update or (b) using a GC update. Completing the square

using the first three terms we obtain:

p (gi|...,Y ) ∝ exp
[
−1

2 (gi − ĝi)
′V−1 (gi − ĝi)

] T∏
t=1

J (gi, ξit,γ) (C.2.2.4)

where

ĝi =
[
1
c2
A (γ)′A (γ) +Q′Σ−1

∗ Q+Σ−1
g

]−1 (Q′Σ−1
∗ p∗

i +Σ−1
g ḡ

)
(C.2.2.5)

V =
[
1
c2
A (γ)′A (γ) +Q′Σ−1

∗ Q+Σ−1
g

]−1
(C.2.2.6)

where p∗
i = [pit + ξit, t = 1, ..., T ]′, Q = diag (Qi1, ...,QiT ) , and Qit has been defined



before.

The value c = 10−4 is fixed so that the technology DDF constraints hold “exactly”

(in a numerical sense). Trying lower values of c did not produce any differences in the

results that we have obtained.

Once again, we can easily include bad inputs and bad outputs. Return to the begin-

ning of this subsection, add (51) and (52), and generalize the notation.

C.2.3: Drawing Price Distortions

Drawing price distortions ξit follows essentially the same principles. Assuming that

we omit bad inputs and bad outputs, we write the system consisting of (49) and (50) in

the following form:

[
pn
it

pm
it

]
= π (pit, gi) ιN+M+

[
−g′

n,i g′
m,i

g′
n,i −g′

m,i

][
∂
−→
Dit
∂xn 0

0 ∂
−→
Dit

∂ym

][
ξnit
ξmit

]
−

[
ξnit
ξmit

]
+

[
vn
it

vm
it

]
(C.2.3.1)

or more compactly as

f it ≡ pit − π (pit, gi) ιN+M = Bitξit + vo,it (C.2.3.2)

where ιN+M is a (N + M × 1) unit vector and vo,it is the second bock of elements in

(C.1.3) that is vit =
[
vit,v

′
o,it

]
and its covariance is the lower (N +M)× (N +M) part

of Σ defined in (C.1.3), which we denote Σo. We define Bit as the product of the two

square matrices minus ιN+M . Given this notation from the joint posterior in (C.1.6) we

have:

p (ξit|...,Y ) ∝ exp

−1
2

∑
i,t

(f it −Bitξit)
′Σ−1

o (f it −Bitξit)− 1
2ξ

′
itΩ

−1ξit

J (gi, ξit,γ)

(C.2.3.3)

The terms in the exponential can be combined, using completion of squares, to

provide

p (ξ|...,Y ) ∝ exp

[
−1

2

(
ξ − ξ̂

)′
V−1

ξ

(
ξ − ξ̂

)]∏
i,t

J (gi, ξit,γ) (C.2.3.4)

where

ξ̂ =
[
B′ (Σ−1

o ⊗ I
)
B +Ω−1

]−1
B′ (Σ−1

o ⊗ I
)
f , and V ξ =

[
B′ (Σ−1

o ⊗ I
)
B +Ω−1

]−1
.

Fortunately, the vector of distortions can be drawn as a block from the above multi-

variate normal proposal but in order to maintain the correct posterior we have to account

for the Jacobian term. Again this can be done using (a) A Metropolis-Hastings update



or (b) a GC update.

Given a sample
{
ξ(s), s = 1, ..., S

}
from the posterior final estimates of price distor-

tions are computed as

ξ̂ = S−1
S∑

s=1

ξ(s). (C.2.3.5)

Assuming that one wishes to include bad inputs and bad outputs, generalize the

notation of this subsection in the same manner as for the previous subsections.

C.2.4: Drawing π and ∆

From the joint posterior we have:

p (π|...,Y ) ∝ exp

[
−1

2

N∑
i=1

T∑
t=1

(z̃it −W∗
itπ)

′∆−1 (z̃it −W∗
itπ)

]
(C.2.4.1)

which is in the form of a multivariate normal. The posterior conditional distribution of

∆ has the same form as the posterior conditional of Σ and Ω, that we have described

before. One important issue concerns the choice of Fourier terms (F is set to 5). In

preliminary experiments we chose F using the Schwarz information criterion. An al-

ternative approach would have been to consider the Bayes factors for different values

of F . Some preliminary investigation revealed that the choice based on the Bayesian

Information Criteria (BIC) was fairly robust.

Using the notation in (B.5) and (C.2.4.1) we have:

π|...,Y ∼ NK+1

(
π̂, V̂

)
(C.2.4.2)

where

π̂ =
[
W ′

∗
(
∆−1 ⊗ I

)
W ∗ + V −1

]−1 [
W ′

∗
(
∆−1 ⊗ I

)
z̃
]

(C.2.4.3)

and

V̂ =
[
W ′

∗
(
∆−1 ⊗ I

)
W ∗ + V −1

]−1
(C.2.4.4)

where V −1 is the prior covariance matrix of the reduced form parameters defined in

(C.2.4.1) and (B.7).

C.2.5: Drawing Technical Inefficiency

We draw {uit} following Tsionas (2006). A technical improvement on that proce-

dure is that we avoid conditionings of the form uit|ui,t−1, ui,t+1, . . . and we use another



application of GC where, however, the proposal is the same as in

uit|...,Y ∼ N +
(
mit, σ

2
∗
)

(C.2.5.1)

where mit = − σ11σ2
u

σ11+σ2
u
X ′

1,itγ, σ
2
∗ = σ11σ2

u
σ11+σ2

u
, X1,it denotes the right hand side variables of

the DDF, and σ11 denotes the scalar upper-left element of Σ. Drawing γ1, . . . , γ5 and γ0
in (31) is simple and involves only standard results for the normal linear model.

C.2.6 Drawing ωit

So far we proceeded under the standard assumption that ωit = 0, an assumption

that is often if not always used in stochastic frontier analysis and the analysis of dis-

tance functions. To generate productivity we take into account (30) with the following

modification in (C.1.6), the joint posterior distribution:

• redefine Vit =


vit,1 + ωit

vit,2
...

vit,N+M

 = V ∗
it + ωit1N+M , where V ∗

it is the old definition of

Vit without ω.

• multiply (C.1.6) by
∏n

i=1

∏T
t=1 p(ωit|ωi,t−1, p

∗
it, πit, τit, t)

• add ω to the first element of the last array of equations (C.2.1.2) and (C.2.1.3).

This results from the assumption that the error term of ωit say εit,1 ∼ N(0, σ2
ω)

where the prior of σω is IG: 0.01
σ2
ω

∼ χ2
1.

To avoid needless technical detail we should notice the following: i) The alternative

specifications in (32) (a neural network approximation), (33) (a second-order approx-

imation), (34) (a Fourier approximation) and (35) (a full third-order approximation)

are complicated functions of ωi,t−1; ii) All these specifications depend on πit and p∗
it

which affect the generation of latent prices and also the directions, through (12)–(15).

Given (16) we can ignore the dependence of ϱit on directions and use ϱit as an observed

variable.

These observations raise two technical issues:

• a) How to generate ωit conditional on all other parameters and latent variables.

• b) What changes are required in the drawing of all other parameters and latent

variables conditional on ωit.

Regarding (b) we keep the draws obtained when ωit = 0, an assumption that should

not be too far from the truth. Then, the draws are SIR-reweighted using the appropri-

ate terms in (C.1.6). Overall, the acceptance rates are over 90%, indicating that such

approximations are accurate for practical purposes. Regarding (a), ωit does not appear



in any of the first-order conditions like (12)–(15) or the semi-informative priors on direc-

tions in (27). Therefore, the technical problem is somewhat standard, in that we have

to draw from a nonlinear dynamic latent variable model as in (30) and its variations

in (32), (33), (34), (35). The consensus in the literature is that Hessian-based approxi-

mations followed by standard MCMC are quite accurate. Therefore, we proceed using

another update through the GC procedure. All first- and second-order derivatives can

be computed analytically using (32)–(35). More importantly, the GC procedure draws

{ωit, t = 1, . . . , T} as a block for each i. Implementation is similar to drawing {uit} under
the specification in (31) although in (31) the model is linear and, therefore, considerably

simpler. For technical details see McCausland et al. (2011) and McCausland (2012).

In the implementation of GC we have used a variety of methods for computing first-

and second-order derivatives. We report below relative numerical efficiency (RNE) and

differences in final posterior means of ωit which we use for our statistical inferences on

productivity growth. From the results it turns out that: i) It is not essential but it is quite

helpful to provide analytical second-order derivatives. ii) AGDH (analytical gradient and

a diagonal approximate Hessian) does not work efficiently. iii) ACF and RNE behave

similarly irrespective of whether we use analytical or finite-difference approximations to

first- and second-order derivatives. Although we have not used it, we also report results

for a first-order approximation of f in (30).

The differences in posterior means when AGDH is used, an implementation that is

close to Metropolis- Hastings are large and make this technique rather unlikely to yield

reliable results in practice. Only for the linear specification of f in (30). the posterior

means are somewhat close; in all other models we observe huge differences.

C.2.7: Technical Details

The sequence of MCMC draws can be summarized as follows:

1. Draw γ using the procedures in B.2.1.

2. Draw directions gi using the technique in B.2.2, specifically (C.2.2.4).

3. Draw price distortions ξit using the technique in B.2.3, specifically (C.2.3.4).

4. Draw parameters π and ∆ using the method in B.2.4, specifically (C.2.4.1) and

(C.2.4.2).

5. Draw technical inefficiency uit using the method in section B.2.5.

6. Draw covariance matrices Σ and Ω using (C.1.6) and (C.1.7).

All Metropolis-Hastings updates use the covariance matrix of the (multivariate nor-

mal (MN)) proposal scaled by a constant h which is selected during the course of the

transient or burn-in phase to maintain an overall acceptance rate of 25% for all blocks



that need Metropolis-Hastings updates due to the complicated Jacobian term. This is

done for parameters γ, ξit, gi. For these blocks we compare the numerical performance

of the multivariate normal with that of the GC update. The results are summarized in

the following Table.

Table C1.

MN for γ GC for γ MN for ξ GC for ξ MN for g GC for g

ACF(50) γ 0.647 0.325 0.732 0.210 0.725 0.310

RNE 0.143 0.415 0.225 0.551 0.202 0.562

B 150,000 70,000 150,000 15,000 150,000 7,500

ACF(50) ξ 0.717 0.344 0.821 0.132 0.781 0.201

RNE 0.177 0.414 0.124 0.701 0.120 0.661

B 500, 000 15,000 400,000 7,500 750,000 9,500

ACF(50) g 0.892 0.332 0.774 0.151 0.816 0.127

RNE 0.079 0.415 0.137 0.715 0.085 0.664

B 550,000 25,000 450,000 35,000 500,000 15,000

Notes: MN stands for the multivariate normal and GC for the GC update. We discriminate between
MN and GC updates for each block individually (see first row). ACF(50) stands for the value of the
autocorrelation function at lag 50, RNE for Geweke’s (1992) relative numerical efficiency diagnostic
(which should be 1 if i.i.d. sampling from the posterior were feasible) and B denotes the number of
MCMC passes required for convergence for the particular block of parameters. In columns reported are
ACF(50), RNE, and B for each block of parameters. For each block all statistics reported are medians
across all individual elements involved in the block.

From the results it turns out that the numerical behavior of GC updates is impres-
sively better compared to Metropolis-Hastings updates from MN distributions. This
fact can be attributed to the substantial dependence of the shape of the posterior on
the Jacobian and, of course, its contribution to first- and second-order derivatives of the
log-posterior. Reporting of all final results was, therefore, based on the GC updates.
Although they converge fast we take a minimum length of the burn-in phase equal to
B=100,000 followed by another 500,000 MCMC passes which we use to monitor accep-
tance rates (which remained stable at 20-30%) and compute posterior statistics.

Monotonicity conditions for the technology DDF are checked for every iteration of
the MCMC scheme. Draws which result in more than 1% violations are rejected. The
average number of rejections per iterations ranged from 500 to 2,500 during the transient
phase and from 100 to 500 during the course of MCMC iterations that we finally keep
for convergence.


