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Abstract

This paper examines the role of competition in the US generic drug market. Long considered

one of the rare bargains of the US healthcare system, the generic drug market experienced a

series of unprecedented price spikes over the past decade, which have been linked to the collu-

sive conduct of manufacturers in the so-called “largest corporate cartel in US history.” Using

unsealed records of the ring’s activity, I examine how collusion—in combination with other con-

temporaneous features of the market—affected upstream drug prices. I design a model of retail

drug procurement, wherein generic manufacturers submit bids to supply national pharmacies

with their drugs, and estimate this model using an estimator which accepts highly aggregated

data of firms’ winning bids. In doing so, I recover novel estimates of manufacturers’ costs.

Counterfactuals indicate that the collusive ring generated over $12 billion in surplus for itself

over 18 months and, moreover, that the unprecedented backlog of generic drug applications

at the Food and Drug Administration in this period exacerbated the situation. I conclude by

discussing the effects of recently proposed pro-competitive policies in view of my findings.
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1 Introduction

The role of competition in the generic drug market has attracted considerable attention in recent

years. Long considered one of the rare bargains in the US healthcare system, generic drugs have been

widely accepted by US consumers. Over 90% of pharmaceutical drug prescriptions filled in 2017

were for generic formulations, up from just 10% in the 1980s (Aitken and Kleinrock, 2019; Berndt

and Aitken, 2011). With widespread adoption has come massive cost savings, to the tune of more

than $293 billion annually, in large part due to robust competition among generic manufacturers

in the market.1

However, conventional wisdom regarding the competitiveness of the generic market is now

being challenged. Over the past decade, the market has started to show signs of distress, beginning

in 2009 with recurring drug shortages and continuing in 2013 with a series of unexpected price

increases for hundreds of generic drugs (Berndt et al., 2018). For instance, the price of a 30-

day prescription of clomipramine hydrochloride 50 mg capsules—a tricyclic antidepressant used

for obsessive compulsive disorder—went from $0.34 per capsule to $8.43 in just the first quarter

of 2013 (GAO, 2016). These phenomena have drawn considerable attention from the public and

researchers alike in hopes of identifying the root causes of the market dysfunction.

In this paper, I study the role that competition plays in the generic drug market when it is

functioning well and and when it is not. I develop and estimate a model of the retail pharmacy

procurement process, wherein generic manufacturers submit bids to supply national pharmacies

with their drugs, and estimate the model using both public and private data from the Centers for

Medicare and Medicaid Services (CMS), the Food and Drug Administration (FDA), and a large

private health insurance provider. I supplement these data with qualitative data from interviews I

conducted with generic drug executives.2

In a world where generic manufacturers’ costs are a closely guarded secret, my model allows

me to estimate them directly. Indeed, one contribution of the paper is to show how manufacturers’

costs vary across different drugs and retail pharmacies. Another is methodological: a modification

of the estimator of Laffont et al. (1995) (henceforth, LOV) permits the use of highly aggregated bid

data—the average winning bid in the market—in the auction estimation routine. This modification

may be applicable in many other empirical auction settings, where the winning bid is trade secret

and unavailable to researchers. A third contribution is in identifying and quantifying the mechanism

by which competition lowers prices in equilibrium in this market. In doing so, I shows that entry

is not a panacea for high upstream prices, as there is a marked decline in the marginal effect of

competition on prices beyond the third entrant. That said, the usefulness of my structural approach

is most apparent in subsequent counterfactual analyses, where I use the recovered distributions of

manufacturers’ costs to analyze how recent “anti-competitive” developments in the generic market

1These savings refer to the difference in price between a branded and generic version of a drug. Note that this
statistic is from 2018, as it is the most recent year for which this estimate is available.

2I held a series of anonymous informational interviews with executives at five different generic manufacturers
during the spring of 2018. These interviews helped me to capture the most important features of the procurement
process and manufacturer costs in my model.
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affected upstream prices.

There were two concurrent issues at hand in the US generic market in the early 2010s: in-

sufficient entry into generic markets and an active collusive ring of generic manufacturers who

formed the “largest corporate cartel in US history.”3 In the case of the former, an underfunded

and understaffed FDA was unable to keep pace with the flood of Abbreviated New Drug Applica-

tions (ANDAs)4 it received as several blockbuster branded drugs’ marketing exclusivity expired.5

Within months, a backlog of over 3,000 applications had accumulated, which meant that new entry

into generic markets was effectively at a standstill. In the case of the latter, a ring of 16 generic

firms, among the largest in terms of ANDA holdings, actively colluded in order to maintain supra

competitive prices while retaining their market share. They were wildly successful in their efforts,

insomuch as they were able to sustain massive price increases in over 200 drug markets for an

18-month period. In fact, it is likely that the ring would have carried on had it not been discovered

through the concerted efforts of the State of Connecticut to identify the source of the suspicious

price increases.6

In my two main counterfactual exercises, I use the estimated model to simulate the equilibrium

effects of (i) reducing the FDA’s application backlog by six months and (ii) removing the collusive

ring from the market. To do so, I construct counterfactual price series with which to evaluate the

ensuing changes in retail pharmacy spending. My results suggest that both the backlog and the

collusive scheme resulted in significantly higher upstream prices in the generic market; however, the

collusive ring was, by far, more damaging. I find that a six-month delay in the approval (and subse-

quent entry) of a new manufacturer cost pharmacies an average of $60 thousand per drug whereas

six months of collusive activity cost pharmacies an average of $2.5 million per drug. Indeed, for my

sample alone, I estimate the damages of the collusive ring during its 18-month existence to be $2.2

billion. However, considering that my data include only a subset of total generic drug purchases in

the US, a back-of-the-envelope estimate of the total market damage imposed by the ring is over $12

billion. Thus, while my findings provide support for the FDA’s recent efforts to facilitate entry into

the generic drug market, they also provide clarity of the stakes for identifying policies to manage

extraordinary manufacturer conduct.

Contribution to the literature. This paper contributes to two distinct literatures. The first

comprises analyses of the US prescription drug market. Many early studies are, in large part, mo-

tivated by understanding firms decision making in the time of initial generic entry, such as which

markets to enter or what prices to charge (Morton, 1999; Acemoglu and Linn, 2004; Saha et al.,

3This is a quote by William Tong, the Attorney General of Connecticut, who is currently in charge of the
pending lawsuits against the ring. The quote is from a November 2019 interview, which can be found here:
https://medicine.yale.edu/news-article/21752.

4A generic manufacturer must receive FDA approval of an ANDA before it can begin marketing a drug in the US.
5This period is often referred to as the first “patent cliff” in the generic drug market; a second patent cliff began

in late 2019.
6The non-public investigation commenced in July 2014; 48 states and US territories would eventually join the

investigation.
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2006; Grabowski and Vernon, 1992; Frank and Salkever, 1997). Newer studies look at how pharma-

ceutical firms react to major policy changes. These papers examine not only demand-side policies,

such as how branded drug prices fell in response to the introduction of Medicare Part D (Duggan

and Scott Morton, 2010), but also supply-side policies, such as how firms reacted to the FDA’s

new fee program as part of its Generic Drug User Fee Amendments (GDUFA) I and II initiatives

(Berndt et al., 2018).

While my paper speaks to some of the issues raised in these earlier papers, it contributes

more directly to a nascent strand of the literature on equilibrium pricing behavior in the generic

market (Dave et al., 2017; Conrad and Lutter, 2019). In practice, these papers tend to be more

descriptive, using claims data to document systematic differences between average invoice prices

and competition, as proxied by the number of manufacturers who appear in the data; however, there

are two notable exceptions. Reiffen and Ward (2002) estimate a system of simultaneous equations

to estimate the relationship between entry and profitability, and Olson and Wendling (2013) use

an instrumental variables strategy which exploits the 180-day marketing exclusivity period granted

to generic firms in order to estimate the causal effect of entry on prices.7

The approach I take in my paper—modeling the upstream market as a series of simultaneous

procurement auctions—breaks from the typical assumptions made about how generic firms compete

in generic markets. This modeling choice was deliberate. In the interviews I conducted with

generic manufacturers, they acknowledged and lamented the use of procurement systems in the

retail pharmacy industry, as many had discovered that, in the course of one day, they could lose

their biggest pharmacy contract. Incorporating this insight, I build a flexible, realistic framework

through which I am able to study not only the equilibrium relationship between competition and

prices but also two of the most significant developments in the generic market over the past decade.

To my knowledge, I am the first to examine the economic impact of the collusive ring’s activities in

the market, which may be unsurprising as many of the lawsuits against the ring are still pending

in court.

My paper also contributes to a vast literature on empirical auction estimation (see Athey and

Haile (2002) for a survey). As noted earlier, I follow LOV in using information on the winning

bids from auctions to back out a parametric distribution of firm costs; however, I depart from their

framework in order to accommodate the limited data available in my setting. Here, my innovation

is to show (via simulation) that having even an average of winning bids in the market is enough to

recover parametric distributions of firms’ costs.

In its treatment of the collusive ring, my paper also adds to the existing literature on collusive

behavior in an auction setting (see Hendricks and Porter (1989) for an early survey). While many

of these papers are focused on detection of collusion in auctions (Athey et al., 2011; Bajari and

Ye, 2003; Porter and Zona, 1993, 1999), I follow Asker (2010) in my focus on the quantification of

damages. Our two studies also make use of similar data on the inner workings of our respective

7These challenges are termed “Paragraph IV” ANDAs. This provision of exclusivity was provided under the the
Hatch Waxman Act of 1984, which regulates FDA approval requirements for generic drugs, in order to protect against
questionable patents filed by branded drug manufacturers.
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collusive rings.

The paper proceeds as follows. Section 2 introduces the data used in the analysis; Section 3

introduces a model of generic drug procurement at retail pharmacies. Section 4 discusses how I

bring the model to the data, discussing my estimation strategy in great detail. In Section 5 and

Section 6, I present my main results and context and estimates for my counterfactuals, respectively.

Section 7 discusses the policy implications of this work and concludes.

2 Data

In the project, I use five distinct data sets. The first three yield inputs for the main auction

estimation; the remaining two provide institutional details for the counterfactuals. In what follows,

I describe how each dataset is used in the analysis. Additional details on the data construction

process are available in Appendix Section B.

2.1 Auction Data

Winning Bids. Information on the winning bids are from the National Average Drug Acquisition

Cost (NADAC) survey administered by the Centers for Medicare and Medicaid Services (CMS).

These data report the weekly national average acquisition cost for each outpatient drug covered by

Medicaid beginning in October 2012.8 Each month, CMS contacts a random sample of 500-600 retail

pharmacies—both independent and chain pharmacies—and requests the invoice data associated

with their previous month’s drug purchases.9 After processing and quality assurance checks, the

price data are grouped by active ingredient, strength, dosage form, and route of administration

and then a simple average is calculated for each group. Importantly, there is only one reported

price per generic drug, so price observations from different manufacturers’ versions of a particular

product are averaged together.

Given this sampling strategy, the reported price is effectively a weighted average of pharmacy

chain prices, where the weights correspond to the sampling probabilities of each pharmacy chain. I

convert these price series data into average winning bid data by identifying distinct periods corre-

sponding to a cluster of auctions for a particular drug, where a cluster refers to a group of auctions

held at different pharmacies in the same time period. Most often, these periods begin with the entry

(or exit) of a new (old) firm, consistent with what I was told in interviews with manufacturers. I

define the average winning bid price for a particular cluster of auctions as the average NADAC over

that period, excluding the first three months of the price series.10 I show this process graphically

for two representative auction clusters in Appendix Figure B.3.

8CMS began publishing NADAC “draft” files in October 2012, in order for the public to review and to comment
on the survey design. The first official file was published in December 2013.

9Although the survey is administered on a monthly basis, the price data are updated each week to reflect any
intra-month price changes which are reported by pharmacies directly to CMS via its NADAC help desk.

10I experimented with other lead in times. The results were robust to this decision.
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Pharmacy Weights. Information on the sampling weights used in the NADAC calculation are

from the National Plan and Provider Enumeration System (NPPES), the same registry used by

CMS to draw its monthly sample. This database includes detailed information, including name,

address, parent company, and taxonomy, for each retail pharmacy by its National Provider Iden-

tifier (NPI). I use historical extracts of the NPPES database on the Wayback Machine to identify

(1) the entry and exit dates of each retail pharmacy location and (2) the chain to which the

pharmacy belongs.11 I define the monthly sampling weight of a pharmacy chain as its share of

pharmacy locations in that month, where only pharmacies with active NPPES records are included

in the calculation. As shown in Appendix Figure B.5, these shares are extremely stable over time.12

Auction Characteristics. Information on the characteristics of each drug product are from

the National Drug Code (NDC) database maintained by the FDA. This database includes detailed

information on each approved drug product at the granularity of the NDC. Given that records

are removed from the database as soon as a drug is withdrawn from the market, I use an internal

FDA version of the NDC database, which includes even deactivated drug records.13 From these

data, I extract all relevant features to use in the estimation to control for auction heterogeneity. In

particular, I include the form (e.g., capsule), delivery mechanism (e.g., orally dissolving), strength

(e.g., 5 mg), and active ingredient (e.g., atorvastatin), which I use to look up the drug’s Anatomical

Therapeutic Chemical (ATC) classification. The data also include the drug’s labeler and ANDA—I

use these variables to exclude any drugs marketed by repackaging firms.14

Auction Volume and Identity of Winning Bidder. Information on the volume of each drug

product at pharmacies are estimated directly from a national sample of claims data from a large

private health insurance provider. The claims include both small and large employer-sponsored

health plans as well as public insurance plans on behalf of state exchanges, Medicaid, and Medi-

care Advantage. Enrollees in these plans are geographically diverse, as the insurer has significant

market share in all 50 states. The breadth of these claims is critical, insomuch as they serve as a

quasi-census of the drugs on each pharmacy chain’s shelves. In particular, for each date, I iden-

tify which manufacturer’s products are being dispensed at which particular pharmacy chain; this

reveals which firm won that pharmacy’s procurement auction.

While comprehensive, these data do have the limitation that they represent only a subset of

all retail pharmacy purchases. To the extent that the insurer’s consumers’ pharmacy demand is

not systematically different from that of other US consumers, my use of a subset of the popula-

11Independent pharmacies are aggregated into a single purchasing group, approximating a large wholesaler.
12That said, I do observe a jump in CVS’s market share in the wake of its acquisition of Target’s pharmacy business.

See here: https://corporate.target.com/article/2015/12/cvs-target-acquisition-complete.
13These data contain information on all drugs which appeared in the FDA NDC Files before November 2017, the

month in which I was sent the extract.
14I exclude these products from the analysis because they are distributed through non-retail channels, i.e., at

physician offices or facilities. Typically, a repackaging firm will purchase a drug directly from a manufacturer and
then repackage the drug into unit doses, i.e., 500 pill bottle to 500 individually packaged bar-coded, non-reusable
containers.
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tion should not introduce bias into the estimation.15 That said, using a subset of retail pharmacy

purchases, however large, does make estimating market-level quantities (e.g., damages) more com-

plicated, insomuch as it is unclear which benchmark is appropriate to use for scaling up results. In

Section 6.4, I describe and apply one such benchmark, which is based on the share of the population

who appear in the claims data. In total, the claims data comprise the drug purchases of over 320

million individuals, where each claim includes the NDC, date of purchase, and NPI of the rendering

provider (i.e., the pharmacy where the prescription was picked up).

Summary statistics. For the purposes of the analysis, a drug is defined as a unique combi-

nation of molecule-dosage form-strength (e.g., atorvastatin 25 mg tablet). Although this product

definition is more granular than that used in other contemporaneous studies of the generic drug

market (see, for example, Berndt et al. (2017)), it is the one which is most applicable to the retail

pharmacy procurement setting.16

Notably, the drugs in my sample do not represent the universe of generic drugs, as I apply several

restrictions in the process of constructing the final data set. Most importantly, I include only oral

solid drugs, i.e., pills. This choice was deliberate. Oral solid drugs share a common production

process and so—as will be shown in Section 3—it is more natural to assume that manufacturers’

costs can be captured in one parametric expression (see Sacher and Khinast (2016) for a survey).17

Moreover, these drugs are the ones most commonly dispensed in a retail pharmacy setting, as they

are shelf-stable.18 From the drugs that remain, I exclude all branded generic products, as they are,

by definition, produced by a single firm and thus are procured by pharmacies in a different manner

(see, for example, Shrank et al. (2009); Kesselheim et al. (2016)).

The main estimation sample comprises 593 generic drugs, which correspond to 4,515 unique

auction clusters. Summary statistics for these drugs are presented in Table 1. In total, the average

drug in the sample has an annual volume of 9.6 million units and annual sales $2.365 million, yielding

an average price per pill—the price metric I will use throughout the rest of the paper—of just over

50 cents. None of these drugs are novel molecules. The branded drugs which these generics replace

were brought to market nearly two decades ago. Given that most branded exclusivity periods last

around six to eight years, this implies that most of these generic drugs have been around for well

15One potential source of systematic differences in pharmacy demand are preferred pharmacy networks, where the
insurer requires enrollees to pay more for their drugs if they choose to buy them at pharmacies outside of the preferred
network. Starc and Swanson (2018) show that plans with these networks do have “steering ability,” insomuch as they
are successful in directing consumers to chains within the network. Nevertheless, despite widespread adoption in
Medicare Part D plans, these types of networks were not adopted by this insurer until late into the sample period. I
discuss a robustness check of this assumption in the results section.

16As part of the interviews with manufacturers, I reviewed the bid request forms from two of the largest phar-
macy chains. These forms requested bids at the level of molecule-dosage form-strength. Consistent with this fact,
manufacturers noted that they often did not win a pharmacy’s business for all strengths of a drug, even though they
submitted bids for all strengths.

17Inhalants, opthalmic, and topical drugs, in contrast, tend to be produced by firms who specialize in only those
dosage forms.

18Injectable and infusible drugs are often purchased and used in outpatient and facility settings and require special
storage procedures, such as refrigeration.
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over a decade. Around three-quarters of the drugs are available in capsule form, and about one-fifth

have some sort of specialized delivery mechanism. Often, a drug’s active ingredient is available in

multiple forms—some 4.6 on average, such as a multiple delivery mechanisms (e.g., extended release

and immediate release) or, more commonly, multiple strengths (e.g., 10 mg and 45 mg). Recall

that I will treat each of these as separate products.

Table 1: Summary Statistics

Variable Mean

Annual Volume (mil.) 9.632
Average Sales (mil.) 2.365
Years Since Initial Branded Entry (as of 2016) 19.099

Average Price per Pill 0.518
Capsule 0.261
Complex 0.125
Delivery Mechanism 0.207
Extended Release 0.157
Orally Dissolving Tablet 0.024
Delayed Release 0.020
Other 0.007
Unique Forms 4.460
Average N Bidders 4.737

Appearances 1.548
Entry: Post 2010 0.766

During Collusion 0.317
After Collusion 0.578

N 593

Notes: The above table provides summary statistics for the drug products which com-
prise my main estimation sample. Data on drug volume come from a private insurer’s
pharmacy claims data, and generic manufacturer entry from FDA Orange Book files.
Capsule-Other and Entry are indicators.

Table 2 shows a breakdown by the one-digit World Health Organization’s (WHO) Anatomic

Therapeutic Classification (ATC). Perhaps unsurprisingly, the largest classes are drugs treating

ailments within the cardiovascular system (e.g., statins) and nervous system (e.g., antidepressants),

both in terms of sales volume and revenue. Of note, there is one major ATC missing in the sample,

which is dermatologicals. This is likely due to the fact that they are mostly offered as topical

preparations, and so I deliberately omit them from my sample.
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Table 2: Sample breakdown by ATC-1

Percentage Q-Weight $-Weight

A: Alimentary tract and metabolism 6.4 8.4 6.3
B: Blood and blood forming organs 0.8 0.0 0.2
C: Cardiovascular system 24.8 35.5 20.5
G: Genito-urinary system and sex hormones 2.4 0.2 0.4
H: Systemic hormonal preparations 0.8 0.5 1.1
J: Antiinfectives for systemic use 5.7 2.5 5.7
L: Antineoplastic and immunomodulating agents 0.8 0.7 0.9
M: Musculo-skeletal system 2.9 1.8 2.0
Multiple ATC 15.0 15.1 11.9
N: Nervous system 36.3 34.3 49.2
R: Respiratory system 2.4 0.8 1.0
V: Other 1.7 0.1 0.9

Total 100 100 100

Notes: The above table provides the breakdown by the World Health Organization’s (WHO) Level-1 Anatomic
Therapeutic Classification (ATC) for the drug products which comprise my main estimation sample. Each
number represents the share of drugs which fall into that class, where Percentage refers to the product share,
Q-Weight refers to the volume share, and $-Weight refers to the average annual revenue share (in $2013).

Market characteristics in the bottom panel of Table 1 suggest that, despite their age, there is

still churn in these markets. In particular, over 75% of the markets have at least one firm enter since

2010, of which 41% experienced entry during the height of the collusive ring’s activity. I will study

the effects of these entrants on the market in Section 6. Interviews with pharmaceutical executives

suggested that entry is typically what triggers a new round of procurement auctions at pharmacies.

This explains why, for each product, I observe, on average, 1.55 unique auction clusters, i.e., a set

of auctions held at each pharmacy chain at approximately the same time.

Figure 1 presents the distribution of the number of bidders in each auction, conditional on

there being an auction. Recall that no auction is held if there is only a single manufacturer.19

The modal number of bidders in any auction is two; although, there is significant variation across

products. Indeed, the average market has 4.7 manufacturers. This is consistent with the findings of

Berndt et al. (2017), who estimated the number of manufacturers in orally formulated molecules at

around five using national sales data from IQVIA, the industry’s gold standard resource for tracking

pharmaceutical sales. Importantly, they also find that markets for orally formulated products tend

to be more competitive than those of other drug formulations, insomuch as the majority have

at least two active manufacturers. Given my sample comprises only orally formulated products,

the market dynamics which arise in markets with monopolist suppliers, while important, will not

feature in my analysis.

19There is a monopolist supplier in approximately one-quarter of markets with oral formulations.
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Figure 1: Number of bidders present across auctions
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Notes: The above figure shows the distribution of the number of manufacturers bidding
in each auction comprising my main estimation sample. Data are constructed using a
private insurer’s pharmacy claims data and FDA Orange Book files.

An outstanding issue is how to identify competitive and collusive markets. As will be discussed

in Section 3, my model captures equilibrium bidding behavior consistent with non-collusive conduct

and the estimation adopts this same conduct assumption. In the following section, I discuss the

data which allow me to differentiate between the two types of markets.

2.2 Counterfactual Data

Collusive Ring Information on the activities of the collusive ring are from the now unsealed in-

dictments filed by States Attorneys in 2016, 2018, and 2019 against the collusive firms and the

participating executives, as well as follow-up lawsuits by several national pharmacy chains and in-

surers in the subsequent years.20 These reports are incredibly detailed, as they were compiled using

not only information from thousands of documents produced by generic firms and an industry-wide

phone call database with millions of phone calls among collusive ring members but also the testi-

mony of unnamed participating members. In short, the evidence amounts to what the FTC has

previously called “smoking gun” evidence implicating the firms. Most relevant for my purposes,

the report names the firms accused of being participants in the collusive ring as well as the drugs

where there was documented collusive activity. I use these lists of firms and drugs to flag markets

as collusive.21 Later on, in Section 6, I will use the reports’ discussions of how the collusive ring

was originally formed, as its origins are important in justifying the validity of the damages coun-

terfactual.
20Humana, UnitedHealthcare, Kroger, Albertsons, and H.E.B. all have pending lawsuits against the ring.
21I experimented with various definitions of a collusive market, from the exact product named in the report (e.g.,

amitriptyline tablets) to all products falling under the umbrella of a named ingredient (e.g., amitriptyline). In
practice, there were only a handful of drugs where the product was available in both tablet and capsule formulations,
so it did not appreciably affect any results.
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Application (Filing) Dates Information on the application dates of generic firms are from Feld-

man et al. (2017). As part of their study, the authors develop a methodology to identify the initial

application date of a generic drug and use it on the universe of generic drugs which was approved

by the FDA between 2006 and 2015.22 Although the FDA publishes approval dates for every drug

it approves on its website, it does not publish the corresponding application dates, i.e., the date

in which a generic firm files its initial paperwork. These data are crucial for the counterfactual

simulations, insomuch as they allow me to examine the extent to which each drug in my sample

was affected by the FDA’s application backlog.

3 Model

In this section, I introduce a model of the retail drug procurement process, wherein generic man-

ufacturers submit bids to retail pharmacies in order to supply them with a particular drug. The

model adapts the LOV model with an important distinction: I allow for correlation in firm costs

within clusters of auctions. In the end, the main question to be answered by the model is how

firms’ costs of goods delivered vary according to observable characteristics of the auctioned drug

contracts.

3.1 Set-up

A single and indivisible drug supply contract a is auctioned off by a pharmacy.23,24 The pharmacy

collects all bids bia from firms i ∈ {1, 2, . . . , Ia} simultaneously and ultimately awards the contract to

the firm who submits the lowest bid bwa , where Ia represents the total number of bidders participating

in auction a.

I assume that bidder i’s cost in auction a is drawn from an auction-specific distribution Fa(·) and

are private information.25 I further assume that each firm knows the number of firms participating

in the auction; however, they do not know the exact realizations of those firms’ costs—only that they

are being drawn from the same distribution Fa(·). This is consistent with my application, wherein

the FDA publishes an official notice whenever a new firm receives approval to begin marketing a

drug whilst pharmacies hold secretive auctions for their business.

Let Fa(·) represent the distribution of cost of goods delivered. This distribution is assumed

to be absolutely continuous with respect to the Lebesgue measure and has a density f(·) and a

support given by C ⊂ [0,+∞). Under the assumption that firms are risk neutral, the symmetric

22I refer the reader to the original paper for additional details.
23In reality, some large pharmacy chains will contract with multiple firms simultaneously for the same product.

This multi-winner auction ensures that they have a backup supplier—a so-called “secondary supplier”—in cases of
shortage or contamination. I exclude these auctions in my empirical analysis.

24The structure of the contract varies a lot in practice. At larger chains, the entire volume is not delivered at once,
but rather divided over a pre-specified time frame. Smaller pharmacies, in contrast, often use “estimated quantity
tenders” through which they place orders as needed. I will return to this point in Section 5.

25Note that I will formalize the exact timing of the cost draw in Section 3.2.
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Bayesian Nash equilibrium of the preceding model yields a bidding function for firm i of:

bia = e(ci, Ia, Fa) = ci +
1

(1− Fa(ci))Ia−1

∫ ci

0
(1− Fa(x))Ia−1dx (1)

(see Maskin and Riley (1984)). Put into words, the equilibrium bid of firm i is an increasing function

of its private cost ci and a decreasing function of the total number of bidders Ia participating in the

auction. The latter is what drives the cost savings associated with additional entry. Of particular

note in equation (1) is the strict monotonicity of the equilibrium bidding function with respect to

ci. This strict monotonicity implies that the winner of the auction is, in fact, the firm with the

lowest cost. In other words, I have:

bwa = e(c(1)a, Ia, Fa) (2)

where the winning bid, bwa , in auction a is itself a function of c(1)a, i.e., the minimum cost draw

across the Ia bidders present in the auction.

What is unique in my setting relative to a typical first price auction is the lack of a reservation

bid. That is, pharmacies must accept whichever price arises in the auction, even if that implies that

they make losses on the drug in the short term.26 Incorporating this feature in the setup implies

that the expected revenue from the auction is simply the expected winning bid.27

3.2 Application

Correlation in firm costs. Most empirical auction models assume independence in firms costs

along two dimensions: within and across auctions. In the former, it is assumed that firms draw

their costs independently of one another; in the latter, it is assumed that firms draw their costs

independently of the costs they drew in previous auctions. In my setting, the latter assumption is

too strong, as firms’ costs are likely to be correlated across auctions which occur in the same time

period, reflecting their current production capabilities.

In light of this, I allow for correlation in firms’ costs within clusters of auctions, where a cluster

refers to a set of auctions which are for the same product, in the same period, but at different

pharmacies.28 In practice, I assume that firms face two cost shocks per auction. The first, a so-

called “idiosyncratic” shock, is drawn by a bidder once per auction, and it serves as the typical i.i.d.

shock that is present in most empirical auction settings. The second, a so-called “cluster” shock, is

atypical. This shock is drawn once per cluster of auctions by each bidder. As will be discussed in

Section 4.4, the cluster shock is what permits correlation in firms’ costs across auctions, so that—all

else equal—there is a higher likelihood of one firm winning multiple auctions within a given cluster

26This is, in fact, an increasingly common occurence in the retail pharmacy setting. See,
for example, https://www.npr.org/sections/health-shots/2015/10/22/450600567/how-generic-drugs-can-cost-small-
pharmacies-big-bucks.

27See equation 6 in LOV.
28Imagine, for example, the set of auctions for tramodol 50 mg tablets in March 2012 at CVS, Walgreen’s, and

RiteAid.
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of auctions.

The fact that a firm’s cluster shock applies across multiple auctions raises an important issue

regarding how information on auction outcomes is used by bidders. In other words, with a persis-

tent cost shock, it is possible that firms will use a more complicated dynamic equilibrium bidding

strategy, which makes use of information from previous auctions (Jofre-Bonet and Pesendorfer,

2000, 2003). That said, in my setting, these concerns are not relevant, as there is no opportunity

for information leakage across auctions within a cluster. During the interviews, generic executives

emphasized that the auctions often happen in quick succession and, furthermore, that information

about the winning firm and its particular winning bid is not released. This lack of information leak-

age, coupled with the distributional assumptions made on these two shocks in my application (see

Section 4), imply that the optimal equilibrium bidding strategy remains unchanged from equation 1.

Cost distribution. There is considerable heterogeneity among drug contracts. As discussed

in Section 2.1, the drugs vary significantly in their characteristics, which implies a certain degree

of variation in the auctioned contracts. There is also inherent heterogeneity due to the fact that

these contracts are offered by different pharmacies, with distinct customers and corporate policies.

In grouping together auctions for the estimation, it is important to control for this heterogeneity. I

adopt a parametric cost distribution, which controls for all characteristics I observe of the auctioned

drug contracts. In particular, firm i’s costs for auction a are drawn from Fa(·):

Fa(·) = F (·|za, θ) (3)

where θ is an unknown parameter vector in Rk and za is a vector of variables affecting firms’

costs through the distribution of private values. I assume that the vector za is fully observed and,

moreover, that the number of bidders Ia is known.

4 Estimation

In this section, I describe how I will estimate the structural model outlined in Section 3.

4.1 Distributional Assumptions on Cost Shocks

As noted in the previous discussion in Section 3.2, I adopt a parametric assumption on the distribu-

tion of manufacturer cost of goods delivered. Specifically, I assume that these costs are log-normally

distributed and, further, that the mean of the logarithm of costs is a linear function of a set of

observable exogenous variables:

E log ca = µa = θ1 + θ2unitsa + θ3units
2
a + θ4capsulea + θ5complexitya + θ6deliverya + γa +ωa

(4)
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where units (units2) refer to the annual volume (volume-squared) of the contract, capsule is an

indicator for a capsule formulation (i.e., versus tablet), complexity is an indicator for a complex

formulation (e.g., involving complex active ingredients or formulations), and delivery is an indicator

for a special delivery mechanism (e.g., extended release).29 Note that γa are fixed effects which

correspond to the World Health Organization’s (WHO) Anatomical Therapeutic Chemical (ATC)

classification system, and ω are pharmacy fixed effects (N=6).30

Most of these controls, excluding ω, are included in order to capture the inherent heterogeneity

in the production costs associated with the contract of the drugs being auctioned. I allow for returns

to scale in production by controlling non-linearly for the volume of the auctioned contract. In one

of the only comprehensive studies on generic drug manufacturing costs, Hill et al. (2018) find that

complex drugs and drugs with modified delivery mechanisms are more expensive to produce. That

said, in my interviews with generic drug executives, they emphasized that active pharmaceutical

ingredients (API) are their “first-order” cost driver. This motivates the inclusion of the ATC1 fixed

effects in the baseline specification and ATC2 fixed effects in my preferred specification, where I

re-estimate the model separately for each ATC1 category.31

While the other variables can be interpreted as shifting manufacturers’ cost of goods delivered

from a production standpoint, the pharmacy fixed effects serve a different purpose: they control for

systematic differences in the competitive environment, albeit in a “black-box” manner. Note that

these fixed effects comprise any pharmacy-specific features which influence firms’ effective costs.

For example, qualitative reports suggest that some pharmacy chains may provide more favorable

contract terms, including prompt delivery bonuses, more flexible renegotiation terms, or volume

discounts (Hill et al., 2018). These types of manufacturer-friendly policies may prompt submission

of lower bids on the margin, as manufacturers expect to benefit from these policies for the duration

of the contract.

As noted in Section 3.2, I impose the correlated cost structure by assuming that firms draw

two cost shocks. Next, I add the relevant structure for these shocks. Whereas the idiosyncractic

shock is drawn once per auction by each bidder from N (0, σ2
id), the cluster shock is drawn once

per cluster k of auctions by each bidder from N (0, σ2
cl).

32 Given that the mean of the logarithm of

cost is shared by all firms, the realizations of the sum of the two cost shocks are what determine

the winner of an auction. In particular, the winner of auction a is the bidder who has the lowest

total cost shock s(1)a, or:

s(1)a = min
i∈Ia

σcluik + σiduia (5)

where both uik and uia are independent draws for bidder i in auction a, belonging to auction cluster

29I follow Gupta et al. (2018) in my definition of a “complex” drug.
30I mask the identities of the pharmacy chains in the estimation. The six categories are Chain 1-4 (national

pharmacy chains), Independent (agglomeration of independent pharmacies), and Wholesaler.
31In Section 5.2, I re-estimate the baseline specification separately for each of the five largest ATC1 categories

in my sample: A, C, G, J, and N. This allows me to include more granular fixed effects. For example, instead of
ATC1 = C for all “Cardiovascular system” drugs, I can separately control for ATC2 = C01 (“Cardiac therapy”), C02
(“Antihypertensives”), . . . C10 (“Lipid modifying agents”).

32Note that the id and cl are used to differentiate between the “idiosyncratic” and “cluster” variances, respectively.
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k, from N (0, 1).33 Because each cost draw is an independent normally distributed random variable,

their sum is also normally distributed, and their variance is given by the sum of their respective

variances. That is, the total cost draw is distributed N (0, σ), where σ = σ2
cl + σ2

id. With these

parametric assumptions and equation 2, I define the expectation of the winning bid in auction a

as:

E[bwa ] = exp (µa)

(∫
R
· · ·
∫
R

exp(σu(2))φ(u1) . . . φ(uIa)du1 . . . duIa

)
(6)

where µa = z′aθ, while {u1, . . . , uIa} represent the Ia bidders cost draws from a standard normal

distribution with density φ(·), and u(2) is the second-order statistic of these Ia draws.

Before discussing how I use the data to estimate the structural model, notice that there are

two sets of parameters to be estimated: the parameters of the mean cost and the parameters

representing the variances of the two cost shocks. Under my maintained assumptions that (i)

costs are log-normally distributed, (ii) the expression for mean cost is given by equation 4, and

(iii) the cluster and idiosyncratic cost shock distributions are distributed N (0, σ2
id) and N (0, σ2

cl),

respectively, I have 24 parameters, in total, to estimate. Each parameter is listed in Table 3.

Table 3: Parameters to be estimated

Parameters # Description

Main estimation

θ1 1 Constant
θ2 1 Annual volume (100k)
θ3 1 Squared annual volume (100k)
θ4 1 Capsule
θ5 1 Complexity
θ6 1 Delivery mechanism
γ 11 ATC-1 fixed effects
ω 5 Pharmacy fixed effects
σ2
id 1 Variance of idiosyncratic cost distribution
σ2
cl 1 Variance of cluster cost distribution

Drug-class specific estimations (N=5)

ωA 3
ωC 8
ωG 3
ωJ 2
ωN 6

ATC-2 fixed effects

Notes: The above table displays the 24 parameters in the main estimation, as well as 22
additional fixed effects to be estimated in the drug-class specific estimations (see Section
5.2). ATC-1 and ATC-2 fixed effects comprise the World Health Organization’s (WHO)
Level-1 and 2 Anatomic Therapeutic Classification (ATC), where the latter include only
a subset of ATC-1 categories: {A, C, G, J, and N}.

Recall that the result that the expected winning bid is equal to the expected second order

33I use this notation to be consistent with the estimation.
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statistic assumes competitive bidding behavior. Thus, I will estimate these parameters on the subset

of auctions which were not flagged as being collusive in any of the indictments. The estimation

itself has two steps: first, I estimate the ratio of the two variances determining the cost shock

distributions. Then, using this ratio, I estimate the parameters of the mean cost expression as well

as the variance of the total cost shock distribution. I obtain bootstrapped estimates of standard

errors by resampling auction clusters, redrawing firms’ standard normal cost shocks, and then

reestimating the cost parameters. I now discuss the details of each estimation step, beginning with

the estimation of the mean and variance of log costs.

4.2 Estimation of the Mean and Variance of Log Costs

The estimation strategy for the mean and variance of costs draws from LOV but introduces a novel

feature: the ability to use highly aggregated data. I do this out of practical necessity. Whereas

their estimator was based on an objective function with the winning bid, my estimator is based on

an average of the winning bids across auctions within a cluster, as that is what can be observed in

the NADAC data. This difference, while subtle, is important, insomuch as there are many settings

where even the winning bid from an auction is unavailable. In my setting, for instance, the winning

bid is a trade secret of the pharmacy.

Relying on the revenue equivalence theorem, LOV make use of the first moment of the win-

ing bid in forming their NLLS estimator given its mapping to the seller’s expected revenue in

the auction (see equation 6). I do the same here using the average winning bid. In particular,

let E
[∑

j∈γ(a) αjb
w
j

]
≡ m

(
(Xj)j∈γ(a) , (Ij)j∈γ(a) ; θ, α(a)

)
denote the conditional expectation of∑

i∈γ(a) αib
w
i which is a convex combination of the winning bids in auctions j ∈ γ(a) with the

exogenous and observable weights αj . Here, γ(a) refers to the cluster of auctions to which auction

a belongs. For ease of notation, I will denote such a cluster by k going forward. Because I do not

have a closed form solution for m(·), I will simulate it, denote this simulator by Xk(θ). Substituting

the simulator into the usual NLLS objective function yields:

Q∗S,K =
1

K

K∑
k=1

(
b̄k −Xk(θ)

)2
(7)

where bk is the average winning bid from the data, that is bk =
∑

a∈k αab
w
a .

The unbiased simulator of the average winning bid, Xk(θ), is a modified version of the simulator

in LOV. In my setting, because I do not observe the winning bid, my simulator must account for

the aggregation of the data. Thus, whereas their simulator Xa(θ) simulates the expected winning

bid in auction a, my simulator Xk(θ) =
∑

j∈k αjXj(θ), simulates the expected average winning bid

in auction cluster k, where the average is calculated using the observable αs. I refer the reader to

Appendix Section A.2 for details of the construction of the simulator.

The remaining issue is how to account for the inconsistency of the estimator due to the use

of a simulator for m(·). Recall that minimizing the objective function given in equation 7 yields

an inconsistent estimator for any fixed S as L goes to infinity, where S refers to the number of
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simulated observations used in constructing the simulator. Following the proof in Appendix A of

LOV, I derive the appropriate correction term for my modified estimator, taking into account the

correlation among costs within a cluster. Subtracting this correction term from equation 7 yields

my modified simulated NLLS objective function:

1

S(S − 1)

1

K

K∑
k=1

(∑
a∈k

α2
a

∑
S

(
Xsa(θ)− X̄a(θ)

)2)
+

1

S(S − 1)

1

K

K∑
k=1

2
∑

m.n∈k,

∑
m 6=n

αmαn
(
Xsm(θ)− X̄m(θ)

) (
Xsn(θ)− X̄n(θ)

) (8)

where S is the number of simulations, αa is the pharmacy a’s weight in the weighted average bid

calculation, k is the particular cluster of auctions used in the average calculation, and K is the

total number of auction clusters.

To investigate whether I am able to recover the structural parameters using the proposed esti-

mation method, I conduct a detailed Monte Carlo study. The results of this exercise are presented

in Appendix Section A.2.3. Summarizing, I find that the estimation works well, insomuch as I am

able to estimate unbiasedly not only each parameter in the expression for mean log cost but also

the variance in the cost. I also find that the variance of the estimated parameters in the Monte

Carlo study is typically lower for my modified estimator than for the original LOV estimator for

sample sizes approximating my own.34 This may be due to the fact that each average winning bid

observation comprises multiple winning bid observations but, as an average, is less noisy.35

4.3 Estimation of the Two Cost Shock Variances

The previous estimation approach allows us to identify the variance of the total cost shock; however,

I also want to be able to estimate its component variances, i.e., for the cluster and idiosyncratic cost

shock distributions. To do so, I estimate the ratio of the cluster to idiosyncratic shock variances

via a simulated method of moments (SMM) estimator based on the moments listed in Table 4.

The first set of moments match the expected maximum number of auctions won among the

bidders present in the cluster; the second set match the expected number of auctions won among

the bidders present in the cluster. Notice that the number of bidders present in the auction

generates variation in both sets of moments. Bidders in auctions with more (fewer) bidders have

lower (higher) expected and expected maximum number of auction wins within the cluster. Put

differently, it is far more likely for a single firm to win multiple auctions in an auction cluster when

it is competing against fewer firms. Given this predictable variation, I condition each moment on

the number of bidders in the cluster Ik, for Ik = 2, . . . , 12. Importantly, in my setting, the same

34As I discuss in Appendix Section A.2.3, the comparison I make here is between the LOV estimator which
treats each observation in the Monte Carlo as a winning bid observation whereas the modified estimator treats each
observation as an average winning bid observation.

35I leave this as a future proof.
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firms compete in every auction within a cluster, or Ia = Ik∀a ∈ k. Therefore, in total, I use 22

moments to identify the ratio of variances.

Table 4: Moments used in SMM estimation

Moments # Description

maxi∈Ik
(∑

a∈k 1i,a
)
−maxi∈Ik

(∑
a∈k 1̂i,a

)
11 Maximum Auctions Won

1(Ik = n) 1
Ik

∑Ik
i=1

∑
a∈k 1i,a − 1(Ik = n) 1

Ik

∑Ik
i=1

∑
a∈k 1̂i,a 11 Expected Auctions Won

Notes: The above table displays the 22 moments used to estimate the ratio of the variance parameters σ2
cl and σ2

id

in the SMM estimation. The term 1i,a is shorthand for the indicator function 1(Bidder i won auction a), where 1i,a
are data and 1̂i,a denote model predictions. The data used in the estimation are compiled using claims data from a
private insurer.

In practice, this estimation precedes the estimation of the mean and variance of log cost dis-

cussed in Section 4.2. This is due to the fact that I can impose the estimated ratio directly into the

other estimation routine using the assumed relationship between the component variances and the

variance of the total shock. Recall that σ2 = σ2
id + σ2

cl. A complete description of the estimation

algorithm appears in Appendix Section A.2.

4.4 Identification

Given the two-part estimation routine, a separate identification argument applies for each half of

the estimation. Identification of each of the parameters in the expression for mean log cost is

standard. In particular, it is driven by variation in the characteristics of the auctions themselves.

Identification of the variance of the log cost distribution is more complicated, as it requires

variation in the number of bidders across auctions (and clusters). Without this variation, one

cannot separately identify the variance from the constant within the mean log cost expression, as

was the case in LOV. For example, take two auctions which are observably similar, except for the

number of bidders present. In this scenario, the magnitude of the difference in the expected winning

bids in the two auctions pins down the magnitude of the variance. As that difference increases, my

estimate of the variance of the distribution grows.

The ratio of the variances of the cluster and idiosyncratic shock distributions are identified

through the empirical probability distribution of the number of auctions won by each bidder within

an auction cluster. Intuitively, if there were no cluster shock, then each firm would be equally

likely to win each auction within the cluster. Introducing a cluster shock introduces a wedge in the

distribution, insomuch as the firm with the smallest cluster shock (i.e., in absolute terms) is more

likely, a priori, to win each auction within the cluster.
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Figure 2: Simulated distribution of auction wins within an auction cluster
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Notes: The above graph shows four empirical probability distributions of the number of auction
wins within an auction cluster, conditional on winning at least one auction. Each distribution is
generated by simulating my model 10,000 times for a fixed variance ratio (labeled Ratio above each
tile). In each case, the auction cluster comprises six auctions, and each auction has six bidders.

Figure 2 depicts four empirical probability distributions from 10,000 simulations of my model

using a fixed variance ratio,36 where I condition on a bidder having at least one win.37 Each

distribution pertains to auction clusters with six bidders, and—as in my application—clusters of

six auctions.

Note that, in the upper-left panel, the ratio is zero, so there is only an idiosyncratic cost shock,

and each bidder is equally likely to win each auction. As expected, the modal number of wins is

one. As the magnitude of the ratio of the cluster to idiosyncratic shock variance grows, so too does

the probability of multiple wins within an cluster cluster. Indeed, at a certain point (represented

here by a ratio of 30 in the bottom-right panel), the cluster shock becomes so dominant that one

firm is disproportionately likely to win every auction within the auction cluster. Note that the

identification power from these moments is from the two extremes of the distribution, where the

relationship is strictly monotonic. That said, my selected moments also make use of intermediate

wins for additional power.

36The simulation proceeds as follows: I normalize the variance of the idiosyncratic shock distribution to be equal
to 1, then I scale the variance of the cluster shock distribution by the ratio. Next, I independently draw one cluster
shock and six idiosyncratic shocks per bidder per auction cluster from their respective distributions. For each auction
cluster, I determine the winner of each auction within the cluster, and then I count up the number of auctions won
by each bidder within the cluster. This represents one iteration of the simulation. I repeat this process 10,000 times.

37This is why the total area under each histogram varies across the four panels. If I were to include the “no win”
category, then the area would be the same under all.
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5 Results

5.1 Baseline estimates

Baseline estimation results are presented in Table 5. Given the assumption of log-normal costs,

each coefficient can be interpreted as the change in log costs associated with a one-unit increase

in the characteristic. For ease of exposition, I exponentiate each coefficient in the discussion that

follows.

Table 5: Main estimation results

Cost per Pill

Constant 0.55∗∗∗

(0.12)
Annual volume (100,000s) −0.28∗

(0.11)
Annual volume, squared 0.0005

(0.0014)
Capsule 0.28∗∗∗

(0.08)
Complexity 0.13

(0.10)
Delivery mechanism 0.53∗∗∗

(0.13)
Wholesaler 0.06

(0.08)
Independent 0.21∗∗∗

(0.07)
Chain 1 0.04

(0.09)
Chain 2 0.08

(0.11)
Chain 3 0.05

(0.10)
σid 0.14∗

(0.07)
σcl 0.13∗

(0.07)

ATC-1 FE YES

N 4515

* p < 0.1, ** p < 0.05, ***p < 0.01

Notes: The above table summarizes estimates of the 24 pa-
rameters from Table 3 corresponding to the main estima-
tion. Standard errors, shown in parentheses, are computed
using 5,000 bootstrap samples of auction clusters. Fixed
effects for ATC-1 drug classes (n=11) are suppressed.

The negative coefficient on units suggests that there are returns to scale in drug production. In

particular, an increase of 100 thousand units in annual volume is associated with 24% lower costs.

Consistent with the previously cited qualitative evidence on drug production, I find that drugs

available as capsules and drugs with more sophisticated (or, non-standard) delivery mechanisms

are also associated with higher manufacturer costs. The latter effect is particularly large, increasing

costs by almost 70% relative to a standard delivery mechanism (i.e., immediate release).
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Turning to the pharmacy fixed effects, I find largely insignificant effects, as the estimates are

noisy. The estimated cost of supplying a drug contract at an independent pharmacy is highest,

i.e., roughly 25% higher than the cost of supplying a contract at Chain 4, the omitted category. I

show this graphically in Figure 3. Recall that the monotonicity of the equilibrium bidding function

implies these higher costs translate into higher bids, so independent pharmacies end up paying more

for their generic drugs. Such a finding is supported by recent reports of independent pharmacies

failing to cover their ingredient costs and their rising levels of bankruptcy (Lieberman and Ginsburg,

2018; NPCA, 2019).

As noted in Section 4.1, there are several explanations for why manufacturers’ costs of goods de-

livered are higher at independent pharmacies. Another explanation worth highlighting here relates

to how independent pharmacies structure their procurement contracts, with respect to the timing

of drug delivery. In short, they use “estimated quantity tenders,” whereby they request deliveries

from manufacturers as soon as their inventory of a particular product dwindles. Thus, it could be

that the higher estimated costs could reflect manufacturers’ distaste for the “lumpy” demand of

independent pharmacies. If facing unpredictable demand makes it difficult for manufacturers to

allocate their production capacities across products optimally, then they may require a higher price

per pill, as compensation for the hassle.38

Figure 3: Simulated manufacturer cost distributions across pharmacy chains
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Notes: The above graph shows the simulated distributions of manufacturer costs resulting from sim-
ulating my model 10,000 times for a fixed drug contract at each pharmacy (i.e., all non-pharmacy
characteristics of the contract (i.e., volume and drug characteristics) remain the same in each simu-
lation. The estimates I use for the simulation are shown in Table 5, where I use the base categories
of all indicator variables and an annual volume of 100,000 units as the fixed contract.

38Standard pharmacy operating procedure is to keep generic drug inventory as low as possible, in order to allow
for a large inventory of branded drugs. Note these types of inventory concerns are likely much less pressing for a
large national pharmacy chain like CVS or Walgreens, as they operate at such high volumes to require their own
wholesaling operations.
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Relatedly, another important source of heterogeneity in estimated costs across pharmacies is

due to systematic differences in the volume of drugs the chains purchase. Figure 4 shows this cost

heterogeneity for the four national pharmacy chains and wholesaler.39 Note that manufacturer

costs for supplying Chain III are systematically lower than for any other pharmacy because it is

the largest purchaser of generic drugs.

Turning to the estimated variances of the cluster and idiosyncratic cost distributions, I see that

the two are very similar in magnitude. Per my earlier simulations (see Figure 2), this suggests

that there is significant cost persistence across auctions within a cluster, especially as most auction

clusters in my sample have fewer bidders than in my simulations.40 I interpret this persistence as

reflecting a short-term comparative production advantage, such as a temporary reduction in input

costs from an upstream API supplier.

At this point, it is important to emphasize the implicit assumption being made in the baseline

model: cost heterogeneity across drug molecules is captured by the level of mean log cost. More

precisely, the ATC1 fixed effects included in the mean log cost expression given by equation 4

fully control for any cost differences across drugs with different active ingredients. That said, it

is possible that the broadly defined ATC1 therapeutic category controls fail to account for the

meaningful cost heterogeneity which exists across molecules and, moreover, do not capture any

cost complementarities due to interactions between ingredients and other auction characteristics.

While fully interacting all characteristics with the ingredient fixed effects is impractical given

the size of the sample, I can estimate the model separately for the five largest therapeutic categories.

I present these results in the following subsection.

39I omit the independent pharmacies from this figure, as the independent pharmacy demand in my application
represents the composite demand of many independent pharmacies.

40Recall that the effect of the ratio on the number of auction wins within an auction cluster is decreasing in the
number of bidders in the auction cluster.
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Figure 4: Simulated manufacturer cost distributions across pharmacy chains,
with varying contract size
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Notes: The above graph shows the simulated distributions of manufacturer costs resulting from
simulating my model 10,000 times for a specific drug contract at each pharmacy. For each contract,
I scale the volume such that it reflects that pharmacy’s share of the total volume in the market; all
drug characteristics of the contract remain unchanged. The estimates I use for the simulation are
shown in Table 5, where I use the base categories of all indicator variables and an annual volume
of 100,000 units as the base contract, corresponding to Chain 3.

5.2 Heterogeneity

I estimate my model on the five largest therapeutic categories in the data: (A) Alimentary tract and

metabolism, (C) Cardiovascular system, (G) Genito-urinary system and sex hormones, (J) Anti-

infectives for systemic use, and (N) Nervous system. Note that because I run the model separately

by ATC1 classification I are able to include a limited set of ATC2 fixed effects for each sub sample.41

For example, in the nervous system drug estimation, I control for anesthetics (N01), analgesics

(N02), antiepileptics (N03), anti-Parkinsons (N04), psycholeptics (N05), psychoanaleptics (N06),

and other nervous system drugs (N07) with fixed effects. I refer the reader to Appendix Table A.1

for the full set of estimates.

Many of the findings from the baseline specification remain true in the drug-class specific models,

although the estimates are even noisier due to the use of a smaller sample. In particular, across the

five classes of drugs, there is still evidence of returns to scale in production; although, all coefficients

are smaller in magnitude. Increasing the annual sales volume is estimated to decrease costs by 15-

20% (down from 25%). Moreover, complex molecules and capsules remain associated with higher

estimated costs, as do contracts for independent pharmacies, particularly among nervous system

drugs.

Perhaps most striking among these results, however, are the stark differences in mean costs,

41I include any ATC-2 category with at least 20 member drugs.
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both across and within therapeutic class, as well as in the variance of costs, as captured by the

estimated variances of the two cost shock distributions. To provide some intuition, Figure 5 shows

the estimated cost distributions for the two largest classes of drugs—nervous and cardiovascular

systems—as well as the three most common sub-classes of each.42 Consistent with manufacturers’

claims, the active ingredient is shown to generate significant cost heterogeneity. Cardiovascular

drugs are, on average, cheaper than nervous system drugs; however, among cardiovascular drugs,

beta blockers and ACE inhibitors are cheaper to produce than statins.43

Figure 5: Simulated manufacturer cost distributions across nervous system and car-
diovascular drugs
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Notes: The above graph shows the simulated distributions of manufacturer costs resulting from
simulating my model 10,000 times for specific sub-classes of nervous system (ATC-1=N)—epileptic,
analgesics, and antidepressants—and cardiovascular drugs (ATC-1=C)—beta blockers, ACE in-
hibitors, and statins. For each contract, I use the base categories of all indicator variables (except
those corresponding to the drug class) and an annual volume of 100,000 units. Because I overlay
the sets of distributions in a single graph, the y-axis is scaled for each set of distributions. The
estimates I use for the simulation are shown in Appendix Table A.1.

Figure 5 also shows that there is significantly more variation in cardiovascular drug costs than

there is among nervous system drugs. This is important, insofar as what it implies regarding the

gains to entry in these markets. Recall that there are higher potential returns to entry where there

is more variation in the underlying cost distribution. Given that the expected winning bid is equal

to the expected second lowest cost, the expected difference in the winning bid upon entry grows as

the variation in costs grows. I explore this idea further in Section 6.1.

42For the purpose of generating these distributions, I assume an annual sales volume of 100,000 units and the most
basic pill form, i.e., a non-complex tablet with an immediate release formulation. I further assume that the auction
contract which is being auctioned is at Chain 4.

43The patterns illustrated here are largely consistent with the limited available research on generic drug production
costs (see, e.g., Hill et al. (2018)).
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5.3 Model fit and robustness

To evaluate the goodness-of-fit of my estimated model, I calculate an R2 statistic based on my

objective function. Let R2 = 1 − Q∗S,K(θ̂)/V̂ar(bk), where bk =
∑

a∈k αab
w
a . On average, in the

baseline model, I explain approximately 34% of the variation in the average winning bid across

auctions despite a parsimonious set of controls for the active pharmaceutical ingredient. I can also

calculate thisR2 statistic for the set of drug-class specific models, which include more granular active

ingredient controls. As expected, the model fit improves significantly. In particular, estimated R2’s

are between 60-70%.

I can also examine how the model performs out of sample. So far, I have assumed that firms’

cost draws are independent across auction clusters, and so different auction clusters for the same

drug are treated as separate observations in the estimation. If my model is well specified, then I

ought to be able to recover the expected change in the average weighted winning bid upon entry of

an additional firm given the characteristics of the markets pre- and post-entry. Because I observe

markets where there is entry in the data, a natural test of the model is to compare the predicted

and realized change in price. Figure 6 presents the empirical probability distributions among

cardiovascular system drugs.44 Overall, the predicted pattern of prices is similar to the realized

pattern; although, I note that the model does not capture the long tail of price changes in the data.

To the extent that some of these extreme changes reflect idiosyncratic market features which are

not captured in the model—like a temporary drug shortage, such a result is to be expected.45

Figure 6: Simulated density of percent change in price after entry

-.4 -.3 -.2 -.1 0

Data Estimates

Price change after entry

Notes: Each line presents the density corresponding to the percent change in price after the entry
of a new firm into a market (N=90). The figure includes only drugs belonging to the class of
Cardiovascular drugs (ATC-1=C). I plot the realized changes (Data) in blue and simulated changes
(Estimates) in red. A value of -0.1 refers to a 10% reduction in price relative to the pre-entry price.
The estimates I use for the simulation are shown in Appendix Table A.1.

44This is the drug class with the largest number of available entry observations (N=90).
45Cardiovascular drug shortages comprise a disproportionate share of total drug shortages. In fact, between 2001-

2014, there have been over 180 shortages involving cardiovascular drugs (Reed et al., 2016; GAO, 2014).
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Estimating the model outlined in Section 4 required making several assumptions. Here, I discuss

the sensitivity of the results to these assumptions. As suggested by Figure 1, most auctions involve

between two and six bidders; however, I use auctions with up to 12 bidders in the estimation. It is

possible that bidders in the most competitive markets may temporarily withdraw from the market

if they are unsuccessful in winning a supply contract such that the effective Ia in these markets

is smaller than reported, implying that my model is misspecified in these markets. To test this,

I re-estimate the model on the subset of auctions with six or fewer bidders. The estimates are

qualitatively similar using this subset of data; although, estimates of the cost shock variances are

somewhat larger.

Recall that in the analysis, the insurance claims data serve as a quasi-census of the pharmacy

demand for different drugs. To the extent that the pharmacy demand of these insured patients is

not systematically different from other consumers, my use of a sub-sample of the prescription drug

population should not introduce bias in the estimation—the drug volume drug at each pharmacy

is simply a fixed share of the total volume. In 2017, many of the sample plans removed CVS from

their preferred pharmacy networks, leading to a differential drop in traffic at CVS, which violates

my assumption. Thus, I re-estimate the model on the subset of auctions which occur before 2017.

Although estimates are noisier due to the reduced sample size, the results are quite similar.

Finally, at the crux of the estimation is the assumption that the behavior of firms is consistent

with my specified model, i.e., that bidders are using the equilibrium bidding strategy given by

(1). This motivates my use of the markets which are not named explicitly in any of the recent

indictments against firms in the collusive ring. That said, while the indictments provide a full list

of the drug molecules affected by the collusive activity, they do not always specify the formulation

or delivery mechanism. Out of an abundance of caution, I re-estimate the model, excluding all

drugs with active ingredients mentioned in the indictments. Again, while the estimates are noisier,

they are qualitatively unchanged.

6 Counterfactuals

Is there heterogeneity in the benefits of entry across markets? How costly was the application

backlog at the FDA? What was the magnitude of damages from the collusive ring’s activity in the

market? In this section, I use the estimates from the structural model presented in Section 5 to

address each of these questions in turn.

6.1 Distributional effects of entry

Encouraging entry has become one of the major policy objectives of the FDA. In the wake of

the shortages in 2009 and the price spikes in 2013-2015, FDA Commissioner Dr. Scott Gottlieb

spearheaded efforts to spur competition in the generic drug market. In 2017, the FDA announced

its Drug Competition Action Plan (DCAP) to “remove barriers to generic drug development and

market entry in an effort to spur competition so that consumers can get access to the medicines
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they need at affordable prices.” Indeed, one of the first initiatives under DCAP was the creation

of the List of Off-Patent, Off-Exclusivity Drugs without an Approved Generic, a list maintained by

the FDA in order to alert generic drug manufacturers to markets with insufficient competitors.46

That said, all entry may not be equal, in terms of its effect on market prices. Given the striking

cost heterogeneity across markets, it follows that there could be equally heterogeneous benefits to

entry. To evaluate this premise, I estimate the change in the upstream price associated with the

entry of one additional firm in each of the markets in my sample. Note that this counterfactual

assumes that this marginal firm is not any different a priori from the other firms present in the

market. In particular, in the context of the model, its costs of goods delivered are being drawn

from the same distribution and its equilibrium bidding function is no different from that of the

other firms.

Simulations confirm that entry is associated with lower per pill prices; however, the magnitude

of the effect is quite varied. While the addition of a firm to the market is associated with an 8.5%

drop on average in upstream prices, the inter-quartile range of effects is 4.3-16.7%.

As shown in Table 6, the largest gains to entry are found in the markets with the fewest bidders.

In particular, adding a third bidder in the average market with two bidders is associated with over

$300 thousand dollars in cost savings annually. There is a steep decline in savings as the number of

bidders in the market before entry increases. For example, adding an eleventh bidder in a market

of 10 yields just $13 thousand dollars in cost savings annually.

Table 6: Annual cost savings from an additional entrant

N of Bidders Mean Median 25th 75th

2 304.8 149.0 48.4 427.2
3 131.0 82.8 31.2 202.2
4 79.0 59.6 17.4 119.0
5 68.0 52.8 14.9 90.7
6 43.7 39.5 11 69.7
7 25.2 16.6 2.5 39.2
8 25.7 26.3 7.8 39.2
9 18.5 13.0 1.2 29.3
10 13.4 8.2 0.3 15.8

Notes: The above table shows the estimated cost savings from an additional
entrant into the market, where each row includes all markets of that pre-
entry market size. Each estimate is in thousands of $2013. The column titles
25th and 75th correspond to the 25th and 75th percentiles of the distribution,
respectively. The estimates I use for the simulation are shown in Appendix
Table A.1.

Note, however, that these aggregate statistics may mask important heterogeneity, insomuch

as the composition of drugs within markets of different sizes may themselves be very different.

46The list is available online here: https://www.fda.gov/drugs/abbreviated-new-drug-application-anda/list-patent-
exclusivity-drugs-without-approved-generic.
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Suppose, for instance, that the drugs with the highest returns to entry were also the drugs with

the fewest manufacturers because they had very high fixed costs of entry. While in the data, I do

not observe every possible market outcome with respect to entry; with the model, I can.

Figure 7 shows the percentage change in price from the marginal entrant given Ia = {2, . . . , 10}
initial firms in the market, where I repeat the exercise for each ATC1 class.47 As before, I see

that the largest returns to entry are from the third bidder48 and decline for each subsequent

entrant; however, there are stark differences across ATC1 classes. In particular, alimentary tract

and metabolism (A) and cardiovascular system (C) drugs have considerably higher returns to entry

for all marginal entrants, but especially for early entrants. In the context of the model, this pattern

is a direct result of the higher underlying variances in costs for firms manufacturing drugs in these

two classes.

Figure 7: Percent change in price after entry, by ATC-1
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Notes: Each line depicts the average simulated percentage change in price as the market
size changes (due to entry) for the subset of drugs within a particular WHO Level-1 ATC
group. The groups include A = Alimentary tract and metabolism, C=Cardiovascular
system, G=Genito-urinary system and sex hormones, J=Antiinfectives for systemic use,
and N=Nervous system. The estimates I use for the simulation are shown in Appendix
Table A.1.

The preceding counterfactual shows how the estimated model can be used to simulate the effect

of entry on upstream prices, where there may not have been entry. Here, I extend this exercise

in order to look at the effect of entry on upstream prices, where entry was realized, albeit with a

significant delay.

47Recall that the structure of my parametric costs implies that all drugs within the class share the same path when
defined as a percentage change, i.e., the mean cost cancels out.

48My model does not generate predictions for monopolist markets; therefore, the first entrant I can model is the
third.
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6.2 Effect of the FDA application backlog

Beginning in 2011 and 2012, many blockbuster drug markets opened to generic firms, as branded

firms lost their marketing exclusivity status as their patents expired. In the midst of this so-called

“patent cliff” expiration, the FDA became overwhelmed with processing generic drug applications.

Understaffed, the agency could not process as many applications as they were receiving, and so

a backlog of applications grew.49 To address this question, I turn to the issue of the FDA appli-

cation backlog. This backlog was extremely troubling not only to the FDA but also to generic

manufacturers, as it meant that they were indefinitely blocked from marketing any new products.

Indeed, by October 2012, the FDA had over 3,000 applications that were pending review, resulting

in approval wait times of over 30 months.50

In order to determine the effect of the backlog on upstream prices, I use my model to simulate

prices in a world where the backlog was less severe. To do so, I use the estimates presented in

Section 5 and market characteristics to simulate a counterfactual price series, in which each firm’s

entry is sped up by a fixed amount of time. The difference in the simulated prices is weighted by

the total volume (in units) in the market during the time interval, in order to approximate the

total cost of delaying entry. In what follows, I present results corresponding to a scenario, in which

the backlog was shortened by six months.51

Figure 8 shows the predicted cost savings from reducing the application review time by six

months for the 341 unique products which experienced entry between December 2012 and Jan-

uary 2016.52 The average cost savings across markets is $60 thousand dollars, which represents

approximately 10-15% of the total revenue in these markets over the same six-month time horizon.

49There were other contributing factors to the backlog growing, including the proliferation of pay-for-delay schemes
(Bokhari, 2013) and Citizen Petitions (Feldman et al., 2017).

50Previously, wait times were approximately 8-12 months, so the lag induced by the backlog was significant.
51It is difficult to approximate what “fully” eliminating the backlog would entail in this scenario, as there is

a natural ebb and flow of approval wait times at the FDA corresponding to periods of low and high application
rates, and indeed, this period was a time of historically high application rates. I choose six months in order to be
conservative; however, preliminary estimates of longer wait times do not change the qualitative findings.

52I use this date range because the FDA officially cleared its backlog in January 2016.
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Figure 8: Distribution of cost savings from 6-month improvement in FDA
backlog
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Notes: The above figure shows the distribution of simulated cost savings in millions
($2013) from a six-month reduction in the FDA’s application backlog. The estimates I
use for the simulation are shown in Appendix Table A.1.

While these effects are economically significant, they represent modest losses in light of the

results in Section 6.1. Evidence to why this is the case is shown in Figure 9. In particular, over

75% of the entrants stuck in the application backlog were would-be fifth, sixth, etc. entrants into

their respective markets.53 Once again, my simulations show that the markets with the highest

counterfactual cost savings are those awaiting the third entrant, where the average expected cost

savings per six-month reduction in the backlog reach nearly $200 thousand per entrant.

As a final note, before moving to an estimation of the collusive damages, it is important to

highlight the necessity of the model in the preceding counterfactuals. One could argue that similar

conclusions could be reached by looking at the price change which was realized upon entry in the

data. Obviously, as in the first counterfactual, this is not always possible, as not all markets do

realize all levels of entry. In the second counterfactual, however, this argument does not hold.

However, in that setting, the value of the model, relative to reduced-form methods—say, an event

study—is that it allows me to consider scenarios which are increasingly out-of-sample. For example,

it is possible that the equilibrium price which pertains when the backlogged entrant enters in two

years late is considerably different than the equilibrium price one and one half years late to the

extent that the characteristics of the markets (beyond Ia) are different. Traditional reduced-form

methods will not be able to account for such a change.

53In its report on the backlog, Pew Charitable Trusts (2019) calls these late entrants “subsequent generics.”
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Figure 9: Breakdown of markets affected by FDA backlog, by entrant

3 4 5+

Notes: The above pie chart shows the distribution of entrants whose entry was delayed by
the backlog, according to the order in which they would eventually enter their respective
markets. That is, a value of three implies that the firm was the third entrant into the
market. All entrants beyond the fifth are grouped into the 5+ category. Moreover,
entrants who would have been the second generic firm to enter the market are excluded
from the figure. Data on entry are from the FDA’s Orange Book files.

6.3 Collusion

6.3.1 Background

Throughout the paper so far, I have assumed the competitive conduct of manufacturers. As dis-

cussed in the introduction, however, this was often not the case in many generic markets in the

early 2010s. As William Tong, the Attorney General in charge of the pending lawsuits, said in a

November 2019 interview, the generic market was home to the “largest US corporate cartel in this

period.”54

The series of indictments filed by States Attorneys General shed light on the collusive activities

of the ring. Central to their scheme was the mutual understanding of “fair share,” whereby each

firm in the ring was entitled to a certain share of the retail pharmacy market for a particular drug.55

The ring codified its fair share principle in an Excel spreadsheet: a firm’s share of the market was

a simple function of the number of participants in the market and the order in which that firm had

entered—all else equal, earlier entrants were entitled to larger shares of the market; although, all

firms were made to cede market share upon the entry of new entrants to the ring.56

This market allocation scheme provided the ring the structure it needed in order to accom-

plish its primary goal—raising prices without eroding market share. Nevertheless, raising prices

required considerable coordination on behalf of the ring members. They were in near constant

54The original interview can be found here: https://medicine.yale.edu/news-article/21752.
55By share, I refer to the share of total volume sold of a particular drug in the retail pharmacy market. Given the

nature of the generic drug supply chain (shown in Appendix Figure A.1, a firm’s market share is a function of which
pharmacy contracts it holds and the volume demanded by those pharmacies.

56See Appendix Section B.1 for a reproduction of the table included in the May 2019 indictment.
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communication in order to avoid raising any flags among the pharmacy chains. Given the existing

procurement system, avoiding suspicion required falsifying bids and, in several instances, selectively

refusing to bid, with them falsely claiming supply chain issues. In the end, over 200 drugs—162 oral

solid dosage drugs—were affected by the collusive behavior of these firms.57 Notably, the collusive

scheme spanned every therapeutic category.58

6.3.2 Damages from the Collusive Ring

While explicitly modeling the collusive rings’ conduct is beyond the scope of this paper, it is possible

to use the previously estimated competitive model to estimate the damages associated with the

ring’s activity. To do so, I use the estimates presented in Section 5 and the characteristics of each

collusive market, including the true number of bidders present, to re-simulate each auction. This

procedure allows me to estimate a counterfactual average winning bid for each market. Comparing

the average winning bid in the data and this counterfactual average winning bid then yields a

damage estimate due to the presence of the collusive ring.59

The validity of this damage calculation relies on two strong assumptions: first, that the collusive

markets are not different a priori from the non-collusive (i.e., competitive) markets in unobservable

ways and, second, that the collusion itself did not induce changes ex post in the collusive markets

beyond the equilibrium price.60 I next provide evidence to demonstrate that both assumptions are

reasonable.

A key feature of the indictments is their careful accounting of the formation of the ring. Early

emails exchanged among ring members suggest that the markets which were involved in the scheme

were selected specifically on the basis of the number of “quality competitors” present.61 That

said, the term “quality competitor” was simply an alias for a member of the ring. This strategy

of targeting markets where the only firms present were ring members follows naturally from the

procurement structure. For example, if the ring tried to raise prices collectively in the presence of

a non-ring firm, then the non-ring firm possibly could underbid them and increase its own market

share. I will discuss this idea more in Section 7.

In addition to this qualitative evidence, it is possible to look at other characteristics of these

collusive markets, which I do not use in the estimation, but might indicate some inherent differences

between the collusive and competitive markets. Table 7 presents the results of this exercise. There is

only one statistically significant difference between markets with competitive conduct and without:

the price of the products themselves. Of course, this increased revenue in collusive markets was a

direct result of the ring’s actions.

57See Appendix Section B.2 for a full list of all drugs which were identified in at least one indictment as being
affected by the collusive scheme.

58Although dermatological drugs are omitted from my analysis, they were also affected by the ring’s operation.
Indeed, there was an indictment filed in June 2020 which covered solely that therapeutic class.

59Note that although I label this difference as “damages,” I make no a priori assumptions about the sign of the
effect.

60Note that I can control for any observable differences between the collusive and competitive markets directly.
61See page 162 of the May 10, 2019 complaint.
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Table 7: Characteristics of competitive and collusive drug markets

Full Sample Competitive Collusive P(T>t)

Annual Volume (mil.) 9.573 9.632 9.459 0.906
Average Annual Sales ($mil) 2.915 2.365 3.985 0.002
Age of Market 22.384 22.392 22.364 0.981
Entrants, Post-2010 0.774 0.766 0.790 0.405

During Collusive 0.304 0.317 0.279 0.237
After Collusive 0.592 0.578 0.620 0.234

# Bidders 4.599 4.737 4.331 0.043

Notes: The above table provides summary statistics for the drug products which comprise the full,
competitive, and collusive estimation samples. Data on drug volume come from a private insurer’s
pharmacy claims data, drug characteristics from the FDA National Drug Code (NDC) files, and
generic manufacturer entry from FDA Orange Book files. Entrants are indicators, where During
Collusive refers to the 18-month period between July 2013-January 2019 when the collusive ring
was at the height of its activity.

The second concern—whether or not the collusive conduct induced a structural change in those

particular markets—is most relevant for entry and demand. The former relates back to the earlier

literature which found that manufacturers were more likely to enter markets where revenues are

currently high (Morton, 1999; Acemoglu and Linn, 2004). As a result of the astronomical price

increases in the markets, revenues were historically high, and so one might expect that there was

additional entry in these markets spurred by the rising revenues, i.e., more than would have occurred

without the price increases.

Application data suggests this was not the case. Figure 10 shows the distribution of application

dates for firms who entered in this period; all precede the creation of the collusive ring. In effect,

due to the backlog, firms who may have wanted to take advantage of the increased revenues in

collusive markets were unable to do so. I discuss the implications of this finding in the next section.
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Figure 10: Average wait times among entrants into collusive markets, 2012-2015
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Notes: The above figure shows a selection of quantiles from the wait time distribution for drugs
which are approved on a particular month. Wait time, here, is defined as the number of months
between a manufacturer’s filing of ANDA paperwork and the subsequent approval of the ANDA by
the FDA, including any revisions. Data on wait times are from Feldman et al. (2017).

The other concern is that the price increases which occurred in collusive markets may have

affected the underlying demand for those drugs. There is a long literature in economics estimating

the price sensitivity of consumers for health care services, perhaps most famously in the RAND

Health Insurance Experiment (Manning et al., 1987).62 While most estimates suggest pharmaceuti-

cal demand is relatively inelastic, a recent paper by Yeung et al. (2018) finds large dispersion within

elasticity estimates for pharmaceuticals using drug-specific price variation. That said, the extent

to which upstream price changes are passed through to consumers with drug insurance is unclear,

especially in the short run. One potential mechanism is through coinsurance in the pharmacy plan

benefit, whereby an individual is responsible for a fixed percentage of the underlying cost of the

drug. While the use of coinsurance in lower tiers of a drug plan’s formulary used to be rare, it is

becoming increasingly more common. A recent Kaiser Family Foundation study found that 14-21%

of employer-based plans used coinsurance on the lowest tier of their formularies (Claxton et al.,

2019).

In light of the uncertainty, I examine the relationship between six-month price and demand

changes for both collusive and competitive drugs. Figure 11 shows that the results of this exercise.

Notably, I observe no systematic evidence of a reduction in demand following large increases in

prices, even among the subset of collusive markets with price increases of over 4000%. In fact, for

many of these outliers, demand actually increased.

62See Zweifel and Manning (2000) for an overview.
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Figure 11: Percentage change in price versus percentage change
in volume over 6-months, 2012-2015

Notes: The above figure shows the percentage change in volume versus the
percentage chain in price over a six month period for both collusive (dark-
blue) and competitive (light-blue) drug markets in 2012-2015. Data used in
this graph are constructed from a private insurer’s pharmacy claims data.

At this point, I have shown evidence to suggest that the collusive markets were not endogenously

selected by the collusive ring and, further, that the collusive ring’s behavior did not change the

nature of those markets in a manner which would affect my model’s predictions. With that, I

present the damage counterfactuals.

Figure 12 presents the distribution of total annual damages for all collusive drug markets,

and Table 8 provides a breakdown of total damages by ATC1. Notably, the predicted damages

are nearly always positive (i.e., collusion rarely resulted in lower than the expected competitive

price); although, there is significant variation, conditional on being positive. Whereas some markets

incurred tens of millions of dollars worth of damage, others were barely affected. In the average

(median) market, though, the ring’s activities resulted in damages of approximately $5 million ($2

million) dollars.

The total estimated cost of the collusive ring’s activities is $1.4 billion dollars annually. Con-

sidering the ring was active for a period of 19 months, this suggests—for the patients in my sample

alone—the total damage may have reached nearly $2.2 billion.

Importantly, this counterfactual assumes that the damages ceased as soon as the collusive ring

was discovered. In reality, many of the markets where high prices were established as a result of

coordination among the ring members still face elevated prices today. This suggests these estimates

are likely a lower bound, even for the subsample of the population I consider.
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Figure 12: Estimated annual damages across collusive drug mar-
kets, 2012-2015
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Notes: The above figure shows the distribution of simulated damages from
the removal of the collusive ring from the market. The estimates I use for
the simulation are shown in Appendix Table 5.

Table 8: Breakdown of estimated total annual damages by ATC-1

ATC1 Total Damages ($mil) SE

A: Alimentary tract and metabolism 45.0 4.5
B: Blood and blood forming organs 5.8 3.8
C: Cardiovascular system 139.2 13.9
G: Genito-urinary system and sex hormones 88.9 5.2
H: Systemic hormonal preparations 6.9 2.2
J: Antiinfectives for systemic use 67.2 4.2
L: Antineoplastic and immunomodulating agents 46.1 1.0
M: Musculo-skeletal system 48.3 3.1
Multiple ATC 395.2 14.3
N: Nervous system 430.0 21.4
R: Respiratory system 26.5 0.6
V: Other 76.5 1.7

Total 1375.5

Notes: The above figure shows the distribution of simulated damages from the removal of the col-
lusive ring across markets according to the World Health Organization’s (WHO) Level-1 Anatomic
Therapeutic Classification (ATC). All dollar estimates are in million ($2013). Standard errors are
estimated with via bootstrap (N=5000). The estimates I use for the simulation are shown in Ap-
pendix Table 5.

6.4 Benchmarking results

As discussed in Section 2, using one insurer’s pharmacy claims data to estimate the model will

eventually require the use of an external benchmark in order to scale estimates to the market level.

However, in this setting, the choice of benchmark is made more difficult by the fact that many
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possible options are not readily available. For instance, one promising benchmark would use the

share of each pharmacy’s prescriptions which are filled by the insurer’s enrollees; however, the total

number of prescriptions filled at each pharmacy is unavailable. Alternatively, one could use the

share of each drug’s annual volume which are filled by the insurer’s enrollees; however, again, the

total volume of each drug is unavailable.

Given this dilemma, I use the following benchmark: the share of the insurer’s patients in the

US population. This measure has its own benefits and flaws. On the one hand, it is something that

I can easily calculate and is tractable. On the other hand, it assumes away any heterogeneity in the

prescription share across drugs. Given Medicare, it seems unlikely that the age distribution in my

data matches that of the US population at large. That said, with the exception of any drugs which

are used disproportionately by the elderly, I expect that the benchmark is otherwise acceptable.63

At the height of the collusive scheme—2013 and 2014, the insurer’s population share was ap-

proximately 17%. Therefore, a back-of-the-envelope conversion from my data to the population at

large involves multiplying each estimate by 5.8. This benchmark implies: (i) the market-level cost

of delaying entry by six months for an average drug was $60, 000× 5.8, or $352 thousand and (ii)

the market-level damages imposed by the collusive ring were $2.2m× 5.8, or roughly $12.9 billion.

7 Discussion and conclusion

Perhaps unsurprisingly, the volatility of prices in the generic market between 2012-2015 resulted

in a robust response by policymakers. After the price spikes began, congressional hearings were

held and investigations were launched in order to identify the underlying causes. These efforts were

fruitful, insomuch as they eventually led to the discovery of the collusive ring. However, they also

led to the development of new policies and legislation aimed at preventing what had just occurred

from happening again. My findings provide a lens through which to evaluate their potential efficacy.

The FDA took a particularly active role in these efforts, working with Congress to implement

the GDUFA programs in 2012 and 2017 (Berndt and Aitken, 2011). The GDUFA program collects

over $300 million annually from generic manufacturers to help, among other things, increase staffing

at the FDA drug approval office such that it is more difficult for a new backlog to form. My results

in Section 6.2 provide context for whether such a level of spending is appropriate. In short, the

answer depends on the composition of the FDA’s application caseload: if, like during the backlog,

the majority of pending applications are for late entrants, then this amount is surely too high. If

the caseload comprises mainly second or third entrants, then it is surely too little.

Relatedly, in 2017, the FDA announced the FDA Reauthorization Act (FDARA), which estab-

lished a priority review process for firms who were submitting generic drug applications for markets

with fewer than three active manufacturers. This is likely to be an effective policy in light of my

results from Section 6.1 because there are still large gains to be had from a third market participant.

That said, in many of the collusive markets, this policy would not have had any effect, as there

63For this subset of drugs, my market-level damage estimate is likely too small.
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were more than three firms present—these firms just happened to be colluding.

One could imagine an alternative policy for such a scenario, whereby the FDA grants similar

priority review to firms who enter markets where the price has increased at an above-average rate

without reasonable cause (e.g., shortage). In cases where there were no domestic firms available,

the FDA could consider importing drugs from abroad under a mutual recognition program.64 This

type of policy relates back to the literature on collusion detection in auctions, where there are stark

predictions for how prices ought to adjust upon entry of a non-collusive firm to a market with a

“non-inclusive” collusive ring.65 The indictments seem to suggest that, indeed, this particular ring

did not accept new members, and so encouraging entry into these markets might have helped offset

some of the damages I estimated in Section 6.3, insomuch as these marginal competitive entrants

may have exerted downward pressure on price. This is surely a fruitful area for future research.

Policymakers in Washington, D.C., reacted to the price spikes in a different manner, advocating

for greater price transparency in drug markets, be it through “name and shame” policies or the

development of a public price index.66 In light of my results, it is unlikely that any name-and-shame

policy will have its intended effect, both because there is so little brand awareness for generic firms

and, beyond that, because there is so little responsiveness of demand to price to begin with.

Similarly, if the ultimate goal is to prevent another collusive ring from forming in the generic (or,

branded) market, price transparency efforts may have the unintended consequence of facilitating

collusion: this relates back to the “observability problem” of Stigler (1964). Indeed, providing

near-immediate drug price information at the pharmacy level might allow for easier detection of

cheating within the ring.67 That said, given the high concentration within the pharmacy sector,

one could make the argument that the average price CMS currently reports in its NADAC survey

is already too revealing in this respect.

To the extent that a system can be established which is “auto-correcting,” it may be easier to

avoid further disruptions to the market going forward. The reactionary entry policies mentioned

above are one such solution; another involves increasing the elasticity of consumers to price changes.

In some cases, the increase in generic prices were so significant that it actually would have been

cheaper for patients to receive the branded version of the drug. Nevertheless, switching patients

over was not always an option, as some generic drugs had no branded alternative. In such instances,

other formulary management methods might be applicable, including mandatory substitution. This

is another important area for future research.

Taken together, my results support many of the FDA’s current “pro-competitive” policies,

particularly those aimed at reducing barriers to entry. Nevertheless, contrary to certain rhetoric in

Washington, D.C., my results do not support encouraging entry indiscriminately—entry beyond a

certain point does not generate significantly lower prices, and it may well be the case that the cost

64In these programs, the FDA would accept a firm’s imported drugs from abroad so long as the firm had met the
standards for efficacy and safety in their origin country. These “reciprocal” standards would be agreed upon by both
agencies in advance. See Bollyky and Kesselheim (2017) for an overview.

65A non-inclusive ring is simply a collusive group which does not permit other members to join.
66See here for an example: https://www.nytimes.com/2018/05/17/health/drug-prices-generics-fda.html
67What has been sugested is akin to the price posting system studied in Sorensen (2000).
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savings from these marginal entrants do not cover the estimated $1-5 million in fixed costs they

incur to enter the market (Berndt, 2002).

An alternative interpretation of my findings in this paper is that they support the notion that it

is possible to improve the health care system without implementing new policies but rather by more

effectively enforcing the policies we already have.68 After all, the FDA’s newest policies are being

implemented so that they can more effectively fulfill their decades-old charter. Under that view,

the question remains how to detect collusion and other misconduct by firms in the market—my

results suggest that, with respect to these conduct issues, the stakes are incredibly high.

68See Scott-Morton (2019) for examples in other health care settings.
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A Appendix

A.1 Supplemental tables and figures

Figure A.1: Simplified market structure of the US generic drug market

Notes: The above figure shows a simplified version of the US generic drug market. The focus of
my analysis is on the circled upstream section, whereby manufacturers (represented here by Mylan,
Aurobindo, and Teva) bid in drug procurement auctions hosted by pharmacies (represented here
by Walmart, Walgreens, . . . , AmerisourceBergen). The object that is being procured here is that
pharmacy’s business for a particular drug, say, atorvastatin 25 mg. tablets. Once the procurement
auction is held, the lowest bidder begins providing the corresponding pharmacy with that drug
(represented by the dotted arrows).
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Table A.1: Drug-class specific estimations

Cost per Pill

A C G J N

Constant 0.3149 0.1088∗∗∗ 0.0679 0.6513∗∗ 0.5829∗∗∗

(0.2082) (0.0413) (0.1539) (0.2673) (0.0999)
Annual Volume (100,000s) -0.1920 -0.1976∗∗∗ -0.2046 -0.1414 -0.1656∗

(0.1987) (0.0689) (0.3384) (0.3166) (0.0879)
Annual Volume Squared 0.0004 0.0004∗∗ -0.1634 -0.0116 -0.0023

(0.0007) (0.0002) (0.4412) (0.2507) (0.0158)
Capsule 0.1531 0.2326 0.3718 0.0725 0.3049∗∗∗

(0.1748) (0.1609) (0.3529) (0.1257) (0.1131)
Complexity 0.0336 0.2612∗∗∗ 0.0907 -0.0199 0.0390

(0.0681) (0.0907) (0.1906) (0.0160) (0.1095)
Delivery Mechanism 0.2000 0.2612 1.1468∗∗∗ 0.2467 0.7044∗∗∗

(0.3467) (0.1714) (0.2975) (0.2384) (0.1304)
Wholesaler 0.0494 0.0132 -0.0174 0.1063 0.0680

(0.0618) (0.0257) (0.1032) (0.1108) (0.0541)
Independent 0.1366 0.0545 -0.0724 0.2993 0.2431∗

(0.2152) (0.1522) (0.4220) (0.3394) (0.1394)
Chain 1 0.0233 0.0049 0.0251 0.0451 0.0487

(0.0760) (0.0300) (0.1145) (0.0902) (0.0400)
Chain 2 0.0437 0.0117 0.0879 0.0724 0.0932∗

(0.0884) (0.0344) (0.1829) (0.1165) (0.0558)
Chain 3 0.0234 0.0077 0.0275 0.0503 0.0536

(0.0649) (0.0324) (0.1010) (0.0985) (0.0416)
σid 0.5352∗ 0.4393∗∗∗ 0.2907∗∗ 0.2089 0.2228∗∗∗

(0.2733) (0.1208) (0.1286) (0.1889) (0.0778)
σcl 0.4060∗ 0.4674∗∗∗ 0.2751∗∗ 0.2382 0.1975∗∗∗

(0.2128) (0.1156) (0.1202) (0.2067) (0.0744)

ATC-2 FE YES YES YES YES YES

N 302 733 191 257 1266

* p < 0.1, ** p < 0.05, ***p < 0.01

Notes: The above table summarizes estimates of the 24 parameters from Table 3 corresponding to the drug-class
specific estimations. Each column represents a separate model which includes only the drugs listed in the column title
above. Each WHO Level-1 ATC group is defined as follows: A = Alimentary tract and metabolism, C=Cardiovascular
system, G=Genito-urinary system and sex hormones, J=Antiinfectives for systemic use, and N=Nervous system.
Fixed effects for ATC-2 drug classes (n=2 to 8) are suppressed. Standard errors, shown in parentheses, are computed
using 5,000 bootstrap samples of auction clusters.
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A.2 Supplemental information on the estimation routine

A.2.1 Construction of the NLLS Simulator

Preliminaries

For each auction a = 1, ..., A:

• Draw S independent samples of size Ia from a standard normal distribution. Denote these

sets of idiosyncratic cost shock draws us1a, us2a, ...usIaa.

For each auction cluster k = 1, ...,K

• Draw S independent samples of size Ia from a standard normal distribution. Denote these

sets of cluster cost shock draws us1k, us2k, ...usIak.

Note: These random cost draws are drawn before the estimation and are not functions of θ.

Construction of Xk(θ)

1. For each auction a = 1, ..., A:

• Form the simulator Xa(θ) of E(bwa ):

X̄a(θ) =
1

S

S∑
s=1

Xsa(θ) where Xsa(θ) = min
i∈Ia

µa + σiduik + σcluik (9)

given {Za, Ia}.

2. For each auction cluster k = 1, ...,K:

• Form the simulator Xk(θ) of E
[∑

a∈k αab
w
a

]
:

Xk(θ) =
∑
a∈k

αaXa(θ) (10)

where the exogenous weights αa are known.69

69That is, each αa corresponds to the market share of the pharmacy holding the auction and can be thought of as
data for the purposes of the estimation.
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A.2.2 Estimation Algorithm

Given an initial guess of (σ2
id, σ

2
cl) and a set of standard normal draws usia and usik drawn prior to

the estimation as described in Preliminaries in Appendix Section A.2:

• Algorithm 1

1. Select the parameter σcl
σid

which minimizes
∑K

k=1(g1, g2)′(g1, g2), where:

g1,n(Xk;
σcl
σid

) = max
i∈Ik

∑
a∈k

1(Bidder i won auction a)−max
i∈Ik

∑
a∈k

1̂(Bidder i won auction a)

g2,n(Xk;
σcl
σid

) = 1(Ik = n)
1

Ik

Ik∑
i=1

∑
a∈k

1(Bidder i won auction a))−

1(Ik = n)
1

Ik

Ik∑
i=1

∑
a∈k

1̂(Bidder i won auction a))

and g1 = [g1,2 g1,3 . . . g1,12] and g2 = [g2,2 g2,3 . . . g2,12]

Given the estimated ratio σ̂cl
σid

and initial guess of (θ, σ2):

• Algorithm 2

1. Form the NLLS simulator using the algorithm in Appendix Section A.2

2. Select the set of parameters (θ, σ2) which minimize the SNLLS objective function, im-

posing that σ2 = σ2
id + σ2

id ×
σ2
cl

σ2
id

where the objective function is given by:

Q∗S,K =
1

K

K∑
k=1

b̄k − ∑
j∈γ(k)

αjX̄j(θ)

2

− SimulationError (11)

and SimulationError is equal to:

1

S(S − 1)

1

K

K∑
k=1

(∑
a∈k

α2
a

∑
S

(
Xsa(θ)− X̄a(θ)

)2)
+

1

S(S − 1)

1

K

K∑
k=1

2
∑

m.n∈k,

∑
m6=n

αmαn
(
Xsm(θ)− X̄m(θ)

) (
Xsn(θ)− X̄n(θ)

) (12)

where

X̄a(θ) =
1

S

S∑
s=1

Xsa(θ) and Xsa(θ) = min
i∈Ia

µa + σ̃uiγ(a) + σuia (13)

42



A.2.3 Monte Carlo Simulation of Estimated Parameters

In this section, I present the results of the Monte Carlo study. In particular, I re-simulate the model

10, 000 times, with a sample of N = 3, 000 average winning bids in each simulation. As in the data,

each auction cluster comprises six auctions. I experimented with a wide range of parameter values;

however, I present the results from one such Monte Carlo exercise below for ease of exposition. The

qualitative findings are robust to the choice of parameter values. I generate log-normal costs, and

follow the procedure described in Section 4.

ci = eα+β1x1+β2x2+···+εi εi ∼ N
(
0, σ2

)
Concretely in the example shown below the parameter values are:

α = 2.7 β1 = 0.85 β2 = 0.25 . . .

Figure A.2: Monte Carlo Simulation of Estimated Parameters
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The graphs above represent the histogram of the mean subtracted estimated parameter values, when winning bids
are observable, in blue, and when only average winning bids are observable, in orange.

As can be seen in Figure A.2, the estimated parameters are centered around the true values

and approximately normally distributed.

α̂ = 2.7003 β̂1 = 0.8483 β̂2 = 0.2510 ...

(0.0243) (0.0235) (0.0054)

What I persistently observe is that estimating the parameter values by observing N average winning

bids, generates more efficient estimators of the parameter values compared to the case in which I

observe N winning bids. Below I present the estimates from a Monte Carlo study once more with

10, 000 simulations, however, instead of N = 3, 000 average winning bids, I now simply generate

43



N = 3, 000 actual winning bids. That is, the estimates below would result from a case in which the

winning bid would be observable.

α̃ = 2.6910 β̃1 = 0.8509 β̃2 = 0.2498 ...

(0.0284) (0.0289) (0.0068)

As can be seen, these estimated parameters have higher variances compared to the initial simulated

estimates. I suspect that what makes my estimation procedure more efficient is the following.

Although information is lost by observing averaged winning bids, instead of each winning bid

separately, these averaged winning bids still incorporate information from multiple winning bids.

Thus, a dataset of 3, 000 averaged winning bids, with each average calculated from 6 winning bids,

while not as informative as a dataset comprising 18, 000 winning bids, is still more informative than

a dataset comprising 3, 000 winning bids.

Next, I investigate the properties of the σcl
σid

estimator described in Section 4. To do so, I once

more re-simulate the model 5, 000 times, with a sample of N = 3, 000 average winning bids in each

simulation. As in the data, each auction cluster comprises six auctions. For exposition let σcl = 1.3

and σid = 1 leading to σcl
σid

= 1.3.

Figure A.3: Monte Carlo Simulation of Estimated Parameters
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The graphs above represent the histogram of the mean subtracted estimated
ˆ(
σcl
σid

)
value.

As can be seen in Figure A.3, the estimated ratio is centered around the true parameter value,

with an approximate normal distribution. The utilized estimation approach once more does a

rather good job in recovering the true parameter value. Concretely, the average estimated value of

the ration, as well as its standard deviation are

ˆ(
σcl
σid

)
= 1.3057

(0.0412)

Once again, experimenting with different parameter values produced comparable qualitative results.
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B Data Appendix

B.1 Additional information on the collusive ring

Figure B.1: “Fair-share” system used by collusive ring

Note: This is a chart used by one of the collusive firms in order to keep track of the agreed upon “fair share” market
allocation scheme. Each cell within the table represents the market share that a firm is entitled to assuming they are
the nth entrant (row) in a market with y competitors (column).

Source: Page 39 of the non-public version of the complaint filed in the US District Court for the District of Connecticut
on May 10, 2019. See here: Link
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B.2 List of collusive drug products in collusive sample

Acetazolamide Drospirenone and Ethinyl Estradiol Nabumetone

Acyclovir Enalapril Maleate Nadolol

Allopurinol Entecavir Naproxen Sodium

Amantadine HCL Eplerenone Niacin

Amiloride HCL/HCTZ Epitol Nimodipine

Amitriptyline Estazolam Nitrofurantoin

Amoxicillin/Clavulanate Estradiol Norethindrone Acetate

Amphetamine/Dextroamphetamine Estradiol and Norethindrone Acetate

Atenolol Chlorthalidone Ethinyl Estradiol and Levonorgestrel

Atropine Sulfate Ethosuximide Omega-3-Acid Ethyl Esters

Azithromycin Etodolac Omeprazole-Sodium bicarbonate

Baclofen Exemestane Ondansetron

Balsalazide Disodium Fenofibrate Oxaprozin

Benazepril HCTZ Fluconazole Oxybutynin Chloride

Bethanechol Chloride Fluoxetine HCL Oxycodone Acetaminophen

Bromocriptine Mesylate Flurbiprofen Oxycodone HCL

Budesonide Flutamide Paricalcitol

Bumetanide Fluvastatin Sodium Paromomycin

Buprenorphine Fosinopril HCTZ Penicillin VK

Buprenorphine Naloxone Gabapentin Pentoxifylline

Buspirone Hydrochloride Glimepiride Perphenazine

Cabergoline Glipizide-Metformin Phenytoin Sodium

Capecitabine Glyburide Pilocarpine HCL

Captopril Glyburide-Metformin Pioglitazone-Metformin

Carbamazepine Griseofulvin Piroxicam

Carisoprodol Haloperidol Potassium Chloride ER

Cefdinir Hydralazine Pravastatin

Cefprozil Hydrocodone Acetaminophen Prazosin HCL

Cefuroxime Axetil Hydroxyurea Prednisone

Celecoxib Hydroxyzine Pamoate Prochlorperazine

Chlorpromazine HCL Irbesartan Progesterone

Cimetidine Isoniazid Propranolol

Ciprofloxacin HCL Tablet Isosorbide Dinitrate Raloxifene HCL

Clarithromycin Isotretinoin Ranitidine HCL

Clemastine Fumarate Ketoprofen Silver Sulfadiazine

Clomipramine HCL Ketorolac Tromethamine Spironolactone HCTZ

Cyproheptadine HCL Labetalol HCL Sumatriptan

Desmopressin Acetate Lamivudine/Zidovudine Tamoxifen Citrate

Desogestrel and Ethinyl Estradiol [Kariva] Lamotrigine Temozolomide

Dexmethylphenidate HCL [Focalin] Leflunomide Timolol Maleate

Dextroamphetamine Sulfate (“Dex Sulfate”) Levothyroxine Tizanidine HCL

Diclofenac Potassium Loperamide HCL Theophylline

Dicloxacillin Sodium Medroxyprogesterone Tolmetin Sodium

Diflunisal Meprobamate Tolterodine Tartate

Digoxin Metformin (F) ER Topiramate

Diltiazem HCL Methadone HCL Trazodone

Diphenoxylate Atropine HCL Methimazole Triamterene HCTZ

Disopyramide Phosphate Methotrexate Sodium Trifluoperazine HCL

Disulfiram Methylphenidate Ursodiol

Divalproex Methylprednisolone Valganciclovir

Doxazosin Mesylate Modafinil Valsartan HCTZ

Doxycycline Moexipril HCL Verapamil

Doxycycline Hyclate Moexipril HCL HCTZ Warfarin Sodium

Doxycycline Monohydrate Montelukast
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Table B.1 continued from previous page

Acetazolamide Drospirenone and Ethinyl Estradiol Nabumetone

Notes: These drugs include all active ingredients which were mentioned in any of the federal indictments, as possibly
being involved in the collusive ring. Drugs which were exclusively available in non-solid dose formulations were
excluded. This yielded a total of 161 collusive drugs.
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B.3 NADAC Data

B.3.1 Example NADAC survey questionnaire

Figure B.2: NADAC survey questionnaire distributed to pharmacies

Note: This is the survey letter which is mailed to pharmacies who have been selected to participate in the monthly
NADAC survey. Often, the form is filled out at the corporate headquarters of the pharmacy. Source: CMS.
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B.3.2 Data construction

Figure B.3: Data generating process from auction to NADAC survey

1

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9

2 3 4 5 6

1 2 3 4 5

A new bidder enters

Bidders

Pharmacies

Bidders

Pharmacies

Auction
Cluster k

Auction
Cluster j

Observable
Average Winning Bid

Observable
Average Winning Bid

6

Notes: This figure shows how the average winning bid data are generated from the winning bid data at each pharmacy
chain. There are two auction clusters shown: the top (Auction Cluster k) represents a series of auctions with eight
bidders and the bottom (Auction Cluster j ) represents a series of auctions with nine bidders. Note that both auction
clusters are for the same drug product; however, the auctions held at each pharmacy across the two clusters are not
the same. In particular, the details of the auctioned contract (e.g., volume) and the manufacturers’ costs for fulfilling
each auctioned contract are not the same across the two clusters. The winning bids from each auction within each
cluster, denoted bwi for i ∈ {1, . . . 6}, are averaged using weights αi to yield estimates of the average winning bid in
each cluster: bk and bj . These are the objects I observe in the NADAC survey data.
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Other notes on the data construction process:

1. To convert the price series into a single winning bid, I divide the monthly NADAC price series

into distinct periods which are characterized by having the same number of active firms, i.e.,

where the auction participants are fixed, and then calculate an average market price during

that period.

2. In cases where there is entry of a new firm, I limit the price observations in the average

calculation to those occurring at least three months after the entering firm begins marketing

its products, in order to allow for the market price to stabilize. As shown in Appendix Figure

B.4, 90% of firms begin marketing their products within five months of FDA approval. In

the claims data, I find another lag between the marketing date and the date upon which an

entering firm’s products end up on the shelves at retail pharmacies. This is likely due to a

pharmacy needing to use up its existing inventory. This process varies by pharmacy chain

but typically occurs within three months.

Figure B.4: Distribution of the time from ANDA approval to
active marketing status
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Notes: The above figure shows the distribution of time elapsed between the
official FDA approval date of a generic firm’s drug application and the first
date that a unit of its product appears in the private insurer’s pharmacy
claims data. Data on ANDA approval dates are from the FDA’s Orange
Book files.
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Figure B.5: NADAC weights between 2012-2018, by pharmacy
chain
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Notes: The above figure shows the pharmacy weights which are derived from
NPPES data, in order to replicate the survey weights in CMS’S monthly
NADAC survey. Each share represents the “establishment share” of each
pharmacy outlet, or the number of physical locations of the pharmacy rela-
tive to all physical pharmacy locations. The shares serve as the α weights in
Section 4, although we mask the identities of the chains in the estimation.
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