SO, NOW WHAT? ANALYZING CATA DATA USING GENERALIZED LINEAR MODELS

Miles A. Zachary West Virginia University

ANALYZING CATA DATA

- Most CATA software produces data in the form of counts
 - i.e., number of words related to a given construct or dimension
 - Easily exported as a spreadsheet
- Count data is discrete, not continuous
 - Continuous data can take any value between two points
 - Discrete data is more restrictive (e.g., counts are non-negative)
- Discrete data present several challenges to traditional analyses
 - Violate assumptions (i.e., normality and homoscedasticity)
 - Often biases standard error estimates and test statistics
 - Predicted values can be out of range or result in strange interpretations

GENERALIZED LINEAR MODELING

Generalized linear models are a general class of statistical models
that include a number of common special cases

GENERALIZED LINEAR MODELING

- GLMs have three (3) basic components
 - 1. Linear Predictor (η) the linear combination of explanatory variables (e.g., X₁, X₂,...X_n)
 - 2. Family Distribution (y \sim) the probability distribution that theoretically produces the dependent variable
 - Any exponential distribution can be specified
 - E.g., normal (Gaussian), Bernoulli, Poisson, negative binomial, gamma, etc.
 - 3. Link Function $(g(\cdot))$ relates the mean of the distribution to the linear predictor; linearizes the relationship between the DV and IVs
 - E.g., identity, logit/probit, log, complementary log-log, power, etc.
 - The canonical link is the natural link function of a given distribution

GENERALIZED LINEAR MODELING

Model	Family Distribution Component	Linear Predictor Component	Link Function (Canonical)	
Linear Regression	Normal (Gaussian)	Continuous	Identity	
Logistic Regression	Binomial	Mixed	Logit	
Loglinear Regression	Poisson	Categorical	Log	
Poisson Regression	Poisson	Mixed	Log	
Negative Binomial Regression	Negative Binomial	Mixed	Generalized Log	

GENERALIZED LINEAR MODELING: AN EXAMPLE

- RQ: How is retained earnings related to exploration rhetoric in shareholder letters?
 - Firms likely use exploration rhetoric to justify higher RE
 - "We're just one kid in a garage with a good idea away from going out of business" Bill Gates (when questioned about RE policy)
- Sample: Shareholder letters for S&P 500 firms from 2005-2011
 - Shareholder letters are a common means through which firms communicate with shareholders
- CATA: Shareholder letters were content-analyzed using CATScanner 1.0
 - Exploration rhetoric measured using Uotila and colleagues (2009) measure
 - Exported as .csv file then imported into Stata 13

GENERALIZED LINEAR MODELING: AN EXAMPLE

CASE 1: CROSS-SECTIONAL STUDY WITH COUNT DV

 Test relationship between RE and exploration rhetoric using simple OLS and Poisson regression

 $E(Y_{Exp}) = \eta = \beta_0 + \beta_1 X_{Size} + \beta_2 X_{Age} + \beta_3 X_{HT} + \beta_4 X_{RE} + \varepsilon$ Where, Y ~ Normal

 $\ln[E(Y_{Exp})] = \eta = \beta_0 + \beta_1 X_{Size} + \beta_2 X_{Age} + \beta_3 X_{HT} + \beta_4 X_{RE} + \varepsilon$ Where, Y ~ Poisson

CASE 1: CROSS-SECTIONAL STUDY WITH COUNT DV

Source	SS	df	MS	Number of obs =
				F(4, 199) =
Model	224.907938	4	56.2269844	Prob > F =
Residual	5743.38128	199	28.8612125	R-squared =
				Adj R-squared =
Total	5968.28922	203	29.4004395	Root MSE =

explore	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
size	-5.28e-06	5.68e-06	-0.93	0.354	0000165	5.92e-06
age	.0062887	.0092117	0.68	0.496	0118764	.0244538
hightech	1.407856	.7691013	1.83	0.069	1087779	2.924491
z re	.1226746	.0782502	1.57	0.119	0316315	.2769806
_cons	4.785301	.7404076	6.46	0.000	3.325249	6.245352

CASE 1: CROSS-SECTIONAL STUDY WITH COUNT DV

Poisson regression	Number of obs	=	204
	LR chi2(4)	=	40.19
	Prob > chi2	=	0.0000
Log likelihood = -753.46525	Pseudo R2	=	0.0260

explore	IRR	Std. Err.	z	P> z	[95% Conf.	Interval]
size	. 9999989	4.99e-07	-2.22	0.026	.9999979	. 9999999
age	1.001169	.0007355	1.59	0.112	.9997284	1.002612
hightech	1.292262	.0785241	4.22	0.000	1.147169	1.455706
z_re	1.019222	.0054934	3.53	0.000	1.008512	1.030046
_cons	4.748374	.2904699	25.47	0.000	4.211868	5.353219

CASE 2: PANEL STUDY WITH COUNT DV

- Test relationship between RE and exploration rhetoric using simple panel linear regression and generalized estimating equations
 - Compensates for autocorrelation in longitudinal data

 $E(Y_{Exp}) = \eta = \beta_0 + \beta_1 X_{Size} + \beta_2 X_{Age} + \beta_3 X_{HT} + \beta_4 X_{RE} + \varepsilon$ Where, Y ~ Normal

 $\ln[E(Y_{Exp})] = \eta = \beta_0 + \beta_1 X_{Size} + \beta_2 X_{Age} + \beta_3 X_{HT} + \beta_4 X_{RE} + \varepsilon$ Where, Y ~ Poisson

CASE 2: PANEL STUDY WITH COUNT DV

Random-effects GLS regression	Number of obs	=	1204
Group variable: id	Number of groups	=	207
R-sq: within = 0.0000	Obs per group: min	1 =	1
between = 0.0414	avo	1 =	5.8
overall = 0.0338	max	(=	7
	Wald chi2(4)	=	9.60
<pre>corr(u_i, X) = 0 (assumed)</pre>	Prob > chi2	=	0.0476

explore	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
size	2.06e-07	2.82e-06	0.07	0.942	-5.31e-06	5.73e-06
age	.0086418	.0065193	1.33	0.185	0041359	.0214194
hightech	1.493096	.573825	2.60	0.009	.3684194	2.617772
z_re	.0242243	.0353619	0.69	0.493	0450838	.0935325
_cons	4.396266	.5416948	8.12	0.000	3.334563	5.457968
sigma_u	3.6253216					
sigma_e	3.877597					
rho	.46641433	(fraction	of varia	nce due t	o u_i)	

CASE 2: PANEL STUDY WITH COUNT DV

GEE population-averaged model		Number of obs	=	1115
Group and time vars:	id year	Number of groups	; =	182
Link:	log	Obs per group: m	in =	2
Family:	Poisson	a	vg =	6.1
Correlation:	AR(1)	n	ax =	7
		Wald chi2(4)	=	88.61
Scale parameter:	1	Prob > chi2	=	0.0000

explore	IRR	Std. Err.	z	P> z	[95% Conf.	Interval]
size	. 9999997	2.17e-07	-1.18	0.239	. 9999993	1
age	1.001268	.0004534	2.80	0.005	1.00038	1.002157
hightech	1.32367	.0526632	7.05	0.000	1.224374	1.431019
z re	1.009486	.0022934	4.16	0.000	1.005001	1.013991
_cons	4.670786	.1817241	39.62	0.000	4.327855	5.040891

CASE 3: RCM STUDY WITH COUNT DV

- Test relationship between RE and exploration rhetoric using a linear RCM model and a generalized linear mixed model
 - Estimating fixed effects and random intercept and slope effects for RE by firm

 $E(Y_{Exp}) = \eta = \beta_0 + \beta_1 X_{Size} + \beta_2 X_{Age} + \beta_3 X_{HT} + \beta_4 X_{RE} + \varepsilon$ $\beta_0 = \gamma_{ID} + u_{ID}$ $\beta_4 = \gamma_{ID} + u_{ID}$ Where, Y ~ Normal $\ln[E(Y_{Exp})] = \eta = \beta_0 + \beta_1 X_{Size} + \beta_2 X_{Age} + \beta_3 X_{HT} + \beta_4 X_{RE} + \varepsilon$

 $\beta_0 = \gamma_{ID} + u_{ID}$ $\beta_4 = \gamma_{ID} + u_{ID}$ Where, Y ~ Poisson

CASE 3: RCM STUDY WITH COUNT DV

		Wald ch	ni2(4) =	10.01
Log likelihood =	-3523.256	Prob >	chi2 =	0.0402

explore	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
size	-5.61e-08	2.80e-06	-0.02	0.984	-5.54e-06	5.43e-06
age	.0077793	.0066405	1.17	0.241	0052359	.0207944
hightech	1.456369	.5865977	2.48	0.013	.3066585	2.606079
z_re	.0776071	.0577411	1.34	0.179	0355635	.1907776
_cons	4.525331	.5598816	8.08	0.000	3.427983	5.622679

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
id: Independent				
<pre>var(z_re)</pre>	.0484966	.0385793	.0101994	.2305935
<pre>var(_cons)</pre>	13.12277	1.663861	10.23528	16.82484
var(Residual)	14.75399	.6779342	13.48333	16.14438
LR test vs. linear regression:	chi2(2) = 415.30	Prob > chi	.2 = 0.0000

CASE 3: RCM STUDY WITH COUNT DV

Integration method: mvaghermite				Integration points = 7			
Log likelihood	i = -3307.718	3		Wald chi Prob > c	12(4) = chi2 =	21.02 0.0003	
explore	exp(b)	Std. Err.	z	P> z	[95% Conf.	Interval]	
size	1	3.73e-07	0.29	0.773	.9999994	1.000001	
age	1.001571	.0013784	1.14	0.254	.9988729	1.004276	
hightech	1.555708	.1921759	3.58	0.000	1.22118	1.981877	
z_re	1.042278	.016899	2.55	0.011	1.009678	1.075932	
_cons	3.418806	.4101445	10.25	0.000	2.702453	4.325045	
id							
<pre>var(z_re)</pre>	.0125007	.0040901			.0065831	.0237376	
var(_cons)	.5948619	.0755231			.4638189	.7629286	
LR test vs. Po	bisson regress	sion:	chi2(2) =	2568.50	Prob > chi	2 = 0.0000	

CASE 4: RCM GROWTH STUDY WITH COUNT DV

- Examine exploration rhetoric over time using a linear RCM model and a generalized linear mixed model
 - Estimating fixed effects and random intercept and slope effects for time by firm

 $E(Y_{Exp}) = \eta = \beta_0 + \beta_1 X_{Time} + \varepsilon$ $\beta_0 = \gamma_{ID} + u_{ID}$ $\beta_1 = \gamma_{ID} + u_{ID}$ Where, $Y \sim Normal$ $\ln[E(Y_{Exp})] = \eta = \beta_0 + \beta_1 X_{Time} + \varepsilon$ $\beta_0 = \gamma_{ID} + u_{ID}$ $\beta_1 = \gamma_{ID} + u_{ID}$ Where, $Y \sim Poisson$

CASE 4: RCM GROWTH STUDY WITH COUNT DV

				Wald chi	2(1) =	13.99
Log likelihood	1 = -8230.6332			Prob > c	hi2 =	0.0002
explore	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
time	.2381061	.0636484	3.74	0.000	.1133575	.3628546
_cons	5.088703	.2779249	18.31	0.000	4.543981	5.633426
Random-effec	ts Parameters	Estim	ate Sto	i. Err.	[95% Conf.	Interval]
id: Independer	it					
	<pre>var(time)</pre>	. 4854	223 .09	89551	.3255362	.7238361
	var(_cons)	22.35	206 2.0)52176	18.67099	26.75886
	var(Residual)	24.59	095 .80	017026	23.06879	26.21355
LR test vs. li	inear regressio	on: ci	hi2(2) =	1103.78	Prob > chi	2 = 0.0000

CASE 4: RCM GROWTH STUDY WITH COUNT DV

Mixed-effects	Poisson regre	ession		Number o	of obs =	2553
Group variable	:	id		Number o	of groups =	540
				Obs per	group: min =	1
					avg =	4.7
					max =	7
Integration method: mvaghermite				Integration points =		
				Wald chi	i2(1) =	85.52
Log likelihood	= -7366.7782	2		Prob > 0	chi2 =	0.0000
explore	exp(b)	Std. Err.	z	P> z	[95% Conf.	Interval]
time	1.041566	.0045869	9.25	0.000	1.032615	1.050596
_cons	3.598381	.1458448	31.59	0.000	3.32359	3.895893
id						
var(_cons)	.6956614	.0501614			.603978	.8012624
LR test vs. Po	isson regress	sion: chibai	r2(01) =	8799.51	Prob>=chibar	2 = 0.0000

R test VS. Poisson regression: chipar2(01) = 8799.51 Prob>=chipar2 = 0.0

Notice – no random slopes....

W.

CONCLUSIONS

- Generalized linear models offer several advantages
 - Data are analyzed in their correct form
 - Unbiased standard errors and p-values
 - Easier and more direct interpretation of model coefficients
- But, GLIMs should be approached with caution and patience
 - Model estimates are sensitive to specification errors
 - Can be tedious to estimate all parameters
 - Iterative method of solving the likelihood equation (e.g., Newton-Raphson algorithm)
 - Particularly random effects with more complicated error structures
 - Convergence difficult when:
 - Low variance
 - Model is underidentified

