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a b s t r a c t 

This paper describes an approach for markedly reducing the time required to obtain all efficient extreme 

points of a multiple objective linear program (MOLP) with three objectives. The approach is particularly 

useful when working with such MOLPs possessing large numbers of efficient extreme points. By subdivid- 

ing the criterion cone into sub-cones, the paper shows how the task of computing all efficient extreme 

points can be broken down into parts so that the parts can be solved concurrently, thus allowing all 

efficient extreme points to be computed in much reduced elapsed time. The paper investigates several 

schemes for conducting this task and reports on a volume of computational experience. 
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. Introduction 

In this paper, we describe a solution-time reduction idea for

se with multiple objective linear programming problems (MOLPs).

he approach is designed to be useful for analysts and decision

akers simply wishing to save time or who may be working un-

er a time-budget, but wish to be thorough in exploring candidate

olutions in large problems. While the approach described here can

e applied to MOLPs with more objectives, we have restricted our-

elves to the study of MOLPs with three objectives to fully develop

he idea and explore its issues at this level. Thus, the material

ere should provide a strong foundation for extending the study

o MOLPs with greater numbers of objectives. 

Just as linear programming plays a key role in single crite-

ion optimization, multiple objective linear programming plays a

imilar role in multiple criteria optimization, an on-going area in

ultiple criteria decision making ( Wallenius et al., 2008 ). In ad-

ition to providing foundational support to multiple criteria op-

imization (as done in Antunes, Alves, & Climaco, 2016 ), multiple

bjective linear programming has a history of being applicable

o complex problems in a range of areas from water resources

o manpower planning to energy planning and even radiotherapy

 Ehrgott & Shao, 2008 ) when all relationships are linear. 

Many methods have been proposed for solving multiple criteria

roblems. According to Hwang and Masud (1979) , the methods can

e grouped into three categories based upon when preference in-
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ormation is elicited from the decision maker. These categories are

1) a priori , (2) progressive articulation of preferences, and (3) a

osteriori . In an a priori method, preference information is elicited

t the very beginning and then an optimization problem is formed

ith the aim of solving it directly for a “final” solution. A final so-

ution is either an optimal solution or a solution close enough to

eing optimal to terminate the decision process. In a progressive

rticulation of preferences method, phases of computation are in-

erleaved with phases of input from the decision maker in a pro-

ess of sampling from the set of all contenders for optimality (de-

ned shortly). In such methods, a search for a final solution is car-

ied out in a progressively more concentrated fashion. Methods in

his category are also known as interactive procedures. A liability

f methods from categories (1) and (2) is the fear that important

reas of potentially optimal solutions will get missed using them. 

In an a posteriori method, or sometimes called a generating

ethod, a highly representative set of the set of all candidates for

ptimality (or in the best case, the complete set of such points) is

rst computed. Once obtained, some strategy for searching through

he set is applied until a final solution is obtained. The appeal of

his category of methods is that no regions of the set of all can-

idates for optimality will be missed. However, this thoroughness

ften comes at a high cost. In other than small problems, it is typi-

ally not possible to compute the highly representative sets desired

ithin a reasonable amount of time. The method described in this

aper is proposed with the goal of reducing this time obstacle in

ultiple objective linear programming. 

Thus, this paper fits into the literature within the a posteri-

ri category as a new way to go about generating highly repre-

entative sets of the candidate sets mentioned above for problem

https://doi.org/10.1016/j.ejor.2019.02.042
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1 To reinforce this point, suppose we are faced with a problem of optimizing a 

linear function over the efficient set of an MOLP such as studied by Benson (1991) ; 

Ecker and Song (1994) , and Yamamoto (2002) . In this case, an algorithm for com- 

puting all efficient extreme points would be more relevant to the problem than an 

algorithm that is only able to compute all nondominated vertices. 
sizes that up until now have been out of reach in multiple objec-

tive linear programming. One possible downside to the new ap-

proach is that, in the short run, the sets generated may be too

highly representative. That is, they may result in sets that may in-

undate users with more points than they may feel they currently

have a use for. Nevertheless, being the results of basic research,

users will probably soon find ways to use the information given

that such sets can now be generated in much reduced time. In fact,

one immediate use of the volume of information generated could

be in a NAUTILUS-type method such as described in Miettinen, Es-

kelainen, Ruiz, and Luque (2010) , Miettinen, Podkopaev, Ruiz, and

Luque (2015) when the problem to be solved is a multiple objec-

tive linear programming problem. In this way, a time-budget can

be met, or preparation time can at least be conserved, while re-

taining the benefits of thoroughness provided by an a posteriori

method. 

To get started on the paper, we now define an MOLP in general.

In roster-form, an MOLP can be written as 

max { c 1 x = z 1 } 
. . . (1)

max { c k x = z k } 
s.t. x ∈ S = { x ∈ R 

n | Ax ≤ b , b ∈ R 

m , x ≥ 0 } 
or, alternately, in vector-maximum form, as 

max { Cx = z | x ∈ S} 
where C is a k × n matrix whose rows are the c i gradients of the

k objectives, z ∈ R 

k is a criterion vector, and S ⊂ R 

n is the feasible

region in decision space. In the three-objective version of (1) that

we address for application of the solution time reduction idea of

this paper, k of course becomes 3, and we further assume that S is

bounded and that all three of the resultant MOLP’s c i gradients of

the objectives are linearly independent. We will sometimes refer to

the three-objective resultant MOLP as the “original” MOLP because

it is the MOLP from which we start in this paper. 

Let Z ⊂ R 

k be the feasible region in criterion space (sometimes

called outcome space) where z ∈ Z iff there exists an x ∈ S such

that z = Cx . In criterion space, a z̄ ∈ Z is nondominated iff there

does not exist a z ∈ Z such that z̄ ≤ z and z̄ � = z . In decision space,

an x̄ ∈ S is efficient iff z = C ̄x is nondominated. We are interested in

efficient points because they are contenders for optimality in multi-

ple objective programming whereas inefficient points are not. 

The solution of an MOLP is often characterized by the enumer-

ation of all efficient extreme points of S and many algorithms have

been proposed for this purpose. Algorithms for computing all ef-

ficient extreme points can be viewed as decision space procedures

as they pivot among extreme points of S until all efficient extreme

points of S are found. Algorithms in this category include those by

Evans and Steuer (1973) , Zeleny (1974) , Isermann (1977) , Ecker and

Kouada (1978) , and Armand and Malivert (1991) . 

In contrast to the enumeration of all efficient extreme points,

the solution of an MOLP is sometimes characterized by the enu-

meration of all nondominated vertices of Z . Algorithms in this class

are viewed as outcome space procedures as they mostly strive to

pivot among vertices of Z until all nondominated vertices of Z are

found. Algorithms that can compute all nondominated vertices in-

clude those by Benson and Sun (20 0 0) , Benson and Sun (2002) ,

Shao and Ehrgott (2008) , Ehrgott, Löhne, and Shao (2012) , Rudloff,

Ulus, and Vanderbei (2017) , and Löhne and Weissing (2017) . 

The only time there is a difference between the output of the

two categories of algorithms is when collapsing occurs in which

case the output of an algorithm that computes all efficient extreme

points subsumes that of an algorithm that only targets the compu-

tation of all nondominated vertices. Collapsing, as studied by Dauer
1987, 1993) , occurs when two or more efficient extreme points

ap into the same nondominated vertex of Z or when there exists

n efficient extreme point that maps into a criterion vector that is

ot a vertex of Z . Unfortunately, little is known about the frequency

f collapsing and even less is known about how to detect from the

utside whether a given MOLP possesses collapsing on the inside.

s computing all efficient extreme points is a more general task

han computing all nondominated vertices 1 , the research of this

aper is carried out using an algorithm that computes all efficient

xtreme points. However, we are inclined to believe that the re-

ults of this paper may have applicability to the other category of

lgorithms, but that is not a part of this research. 

Needless to say, the drawback of any algorithm for computing

ll efficient extreme points is the time to compute them. Thus, the

oal of the paper is to alleviate this issue. 

The approach described herein involves working with criterion

ones defined as follows. 

efinition 1. Consider any MOLP. The criterion of the MOLP is the

onvex cone generated by the gradients of the MOLP’s objective

unctions. 

That is, the criterion cone of an MOLP is the set of all non-

egative linear combinations of the MOLP’s objective function gra-

ients. In general, the smaller the criterion cone, the smaller the

umber of extreme points efficient with respect to it ( Steuer,

986 ). With this in mind, we pursue a strategy for computing all

fficient extreme points that has three phases. First, we subdivide

he criterion cone of the original MOLP into sub-cones. Second, we

olve MOLPs associated with the different sub-cones for all of their

espective efficient extreme points. Third, we take the union of all

f the efficient extreme points computed to obtain the set of all

fficient extreme points of the original MOLP. 

Because of the way the sub-cones are created, no sub-cone

OLP is dependent upon the output of any other sub-cone MOLP.

hus they are all independent of one another in the sense that all

ub-cone MOLPs can be solved concurrently. This allows wall-clock

ime for computing all efficient extreme points of an MOLP to be

arkedly reduced. 

At this point, it might normally be appropriate to mention more

bout other research along the same lines as in this paper and

ompare the strategy and results of this paper with other exist-

ng methods. However, this is difficult because we are unaware of

ny work by other researchers along the lines of this paper regard-

ng the task of computing all efficient extreme points of an MOLP.

 possible reason for the absence of such research is that much of

ultiple objective linear programming is a straightforward exten-

ion of single-objective linear programming: the simplex method

ecomes a multiple objective simplex method, the reduced cost

ow becomes a reduced cost matrix, alternative optima become ef-

cient points, and so forth. But nowhere in single-objective linear

rogramming is the objective function structure subdivided into

arts to save time for solving the whole problem, so the idea is

ot one that obviously crops up when transiting to multiple objec-

ive linear programming. 

As for the papers referenced earlier, despite some of their ti-

les, their focus is on single-run algorithms, that is, once they start

hey don’t stop until all efficient extreme points (or nondominated

ertices) are enumerated. This is in contrast to this paper which

reaks the objective function structure of an MOLP into parts so
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Fig. 1. ( Left ): Criterion cone of a three-objective MOLP. ( Right ): Decomposition of the criterion cone into two subset-cones and a cut-cone. 
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a  
s to allow the parts to be solved concurrently, which is a lot

ifferent. 

The paper is organized as follows. In Section 2 we illustrate the

ubdivision of a criterion cone into sub-cones and suggest differ-

nt schemes for doing this. In Section 3 , we outline the operation

f the code used for computing all of the efficient extreme points

omputed in this paper. In Section 4 , we discuss how it is in-

vitable that some efficient extreme points will be computed more

han once when subdividing an MOLP. In Section 5 , we describe

he random problem generator used to generate the MOLPs of our

xperiments. In Section 6 , we discuss a given scheme/problem-size

xperiment and the nature of the trials within it. In Section 7 ,

e cross-compare the results of the different scheme experiments

onducted, and in Section 8 , we conclude the paper with remarks

bout future directions. 

. Subdividing the criterion cone 

Consider an instance of the three-objective MOLPs of interest in

his paper and let its criterion cone (the cone generated by its c i 

radients) be portrayed as in Fig. 1 Left . Note that the cone is both

olyhedral and of 3 dimensions as a consequence of the MOLP’s

hree c i being linearly independent. Also we note that the triangle

onnecting the head points of the three c i gradients is the cross

ection of the criterion cone upon which lie the head points of all

f what we call composite gradients, that is, vectors λT C that are

onvex combinations of the problem’s c i . 

One way of subdividing the criterion cone of Fig. 1 Left into

wo of what are called “subset-cones,” and a consequent number

f “cut-cones,” is shown in Fig. 1 Right . In the illustration, though,

here is only one cut-cone as a result of there being only two

ubset-cones. Employing composite gradient d 

1 
for the purpose,

ne subset-cone is generated by c 2 , c 3 and d 

1 
and the other is

enerated by c 1 , c 2 and d 

1 
. This leaves in between the cut-cone

enerated by c 2 and d 

1 
for a total of three “sub-cones.” With this

he case, the three terms of sub-cone , subset-cone , and cut-cone as

sed in this paper are defined as follows. 

efinition 2. Consider the criterion cone of a k = 3 MOLP all of

hose (three) c i are linearly independent. Then any cone that is a

ubset of the criterion cone is a sub-cone. 
efinition 3. Consider a criterion cone as above. In the process of

ubdividing a criterion cone, any 3-dimensional sub-cone that re-

ults is called a subset-cone. 

efinition 4. Consider a criterion cone as above. In the process of

ubdividing a criterion cone, any 2-dimensional sub-cone that re-

ults is called a cut-cone. 

Note that in the case of Fig. 1 and others to come, the relative

nteriors of all subset-cones and cut-cones are collectively exhaus-

ive and mutually exclusive with regard to the relative interior of

he original criterion cone. That is, their relative interiors form a

artition of the relative interior of the original criterion cone. In

his way, by subdividing a criterion cone into subset-cones and

ut-cones, we can obtain the set of all efficient extreme points in a

ay that can reduce overall solution time. In the current case, in-

tead of solving one MOLP with the full criterion cone of Fig. 1 Left

o obtain all efficient extreme points, we have the option of solving

he two subset-cone MOLP s and the one cut-cone MOLP 

max { c 2 x } max { c 1 x } max { c 2 x } 
max { c 3 x } max { c 2 x } max { d 

1 
x } 

ax { d 

1 
x } max { d 

1 
x } s.t. x ∈ S 

s.t. x ∈ S s.t. x ∈ S 

or all of their respective efficient extreme points where the cut-

one MOLP is the one on the right. Then, by taking the union of

he three resulting sets, we have the set of all efficient extreme

oints of the full MOLP. This follows from Theorem 1 . 

heorem 1. Consider an MOLP subdivided into sub-cones such that

he relative interiors of all subset-cones and cut-cones form a parti-

ion of the relative interior of the MOLP’s original criterion cone. Then

y computing all efficient extreme points of all sub-cone MOLPs, all

fficient extreme points of the original MOLP are obtained. 

roof. Let C be the criterion matrix of the original MOLP, and as-

ume that ˆ x ∈ S is an efficient extreme point of this MOLP. This

eans that there exists a ˆ λ > 0 such that ˆ x is a maximizing solu-

ion of max { ̂ λT Cx | x ∈ S} , which in turn means that ˆ x is a maxi-

izing solution of max { βT 
x | x ∈ S} for some β pointing into the

riterion cone generated by C ( Steuer, 1986 ). 

Assume that ˆ x is not generated as an efficient extreme point of

ny sub-cone MOLP. This means there exists no δ pointing into the
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c2
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Fig. 2. Cross-section triangle of a criterion cone in the form of an equilateral 

triangle. 
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relative interior of a sub-cone such that ˆ x is a maximizing solution

of max { δT 
x | x ∈ S} . But since the union of the relative interiors of

all sub-cones is the relative interior of the criterion cone generated

by C , this is impossible, thus proving the theorem. �

However, in all but the remotest of cases, it appears that we

can obtain all efficient extreme points by just solving a prob-

lem’s subset-cone MOLPs. Hence we will only talk about solving

all subset-cone MOLPs to compute all efficient extreme points of

an MOLP until we have a chance to discuss more about cut-cone

MOLPs later in the paper. 

With time savings being achieved by solving sub-cone MOLPs

concurrently, criterion cones may be divided into subset-cones

in different ways depending on how composite gradients are

employed. Various schemes can be developed that use a single

composite gradient in different ways or by employing additional

composite gradients. The question then arises as to which schemes

might have an edge over others at achieving time savings. In solv-

ing the subset-cone MOLPs of the different schemes concurrently,

the paper is able to focus on features that play a role in the way

different schemes can be effective in reducing elapsed time to

compute all efficient extreme points. 

As for different schemes for subdividing the criterion cone,

Climaco and Antunes (1989) show that a MOLP with any number

of objectives can be transformed into a problem with one objective

formed by a strictly positive weighted sum of the original prob-

lem’s objectives. Further, they show that there is a one-to-one cor-

respondence between vectors pointing into the criterion cone and

points in � where 

� = { λ ∈ R 

k | λi ≥ 0 , 

k ∑ 

i =1 

λi = 1 } . 

Here � is the set of weighting vectors forming the composite gra-

dients mentioned earlier in the section. While this result holds for

any number of objectives k , in the case of 3 objectives this al-

lows us to visually represent the cross-section triangle of a crite-

rion cone in the form of an equilateral triangle as in Fig. 2 . 

In Fig. 3 , in equilateral triangular form, we have the set of

schemes that we investigate for subdividing a criterion cone in

this paper. Note that the way the criterion cone is subdivided

in Fig. 1 Right corresponds to the subdivided equilateral triangle

found as the leftmost item in the top row of Fig. 3 . As noted in

Fig. 3 , this way of subdividing a criterion cone is designated as

Scheme 21. We use a two-digit number to identify each scheme.

The first digit specifies the number of parts into which the crite-

rion cone is subdivided. The second digit represents the manner

in which a cone is subdivided. Note the respective commonalities

among Schemes 21, 31 and 41 and Schemes 22, 32 and 42. In ad-

dition, each scheme is labeled with its edge-length calculation, but

these calculations are not used until later in the paper as they are

related to cut-cones. 
Let us now consider Scheme 22. Using a horizontal line instead

f a vertical line, this is another way of subdividing a criterion cone

nto two subset-cones. Employing composite gradients d 

2 
and d 

3 

o carry out the scheme, the subset-cone MOLPs of this scheme

re 

max { c 2 x } max { c 1 x } 
ax { d 

2 
x } max { c 3 x } 

ax { d 

3 
x } max { d 

2 
x } 

s.t. x ∈ S max { d 

3 
x } 

s.t. x ∈ S 

For the two parts of the Scheme 22 equilateral triangle to be of

he same area, the λ of d 

2 
is (0 , 1 −

√ 

1 / 2 , 
√ 

1 / 2 ) and the λ of d 

3 

s ( 
√ 

1 / 2 , 1 −
√ 

1 / 2 , 0) where 
√ 

1 / 2 is the .7071 in the triangle. 

The number of objectives of a subset-cone MOLP is given by

he number of corner points of the area of the equilateral triangle

t is to represent. As for the objective functions themselves, they

re given by the gradients and composite gradients that form the

orner points of the area of the equilateral triangle being modeled.

or Scheme 22, we observe that one of its subset-cone MOLPs has

hree objectives and the other has four. 

Looking at the second row of Fig. 3 , we see three schemes for

reaking a criterion cone into three parts. For Scheme 31, all three

ubset-cone MOLPs have three objectives each involving c 2 , c 3 and

 

1 
; c 2 , d 

1 
and d 

2 
; and c 1 , c 2 and d 

2 
; respectively. For Scheme 32,

he λ of d 

3 
is (0 , 1 −

√ 

1 / 3 , 
√ 

1 / 3 ) where 
√ 

1 / 3 is the .5774 in

he triangle, and the λ of d 

5 
is (0 , 1 −

√ 

2 / 3 , 
√ 

2 / 3 ) where 
√ 

2 / 3

s the .8165 in the triangle. In this scheme, only the subset-cone

OLP of the top part has three objectives while the other two have

our objectives each. Scheme 33 is another scheme for subdividing

 criterion cone into three parts. Like Scheme 31, all three subset-

one MOLPs of this scheme have three objectives each. 

The third row of Fig. 3 shows schemes for subdividing a cri-

erion cone into four parts. Just as Scheme 41 is a continuation

f the manner of Schemes 21 and 31, Scheme 42 is a contin-

ation of Schemes 22 and 32. In this scheme the λ for d 

4 
is

(0 , 1 −
√ 

1 / 4 , 
√ 

1 / 4 ) where 
√ 

1 / 4 is the .50 0 0 in the triangle, and

he λ for d 

8 
is (0 , 1 −

√ 

3 / 4 , 
√ 

3 / 4 ) where 
√ 

3 / 4 is the .8660 in the

riangle. Scheme 44 is of a different pattern and has all four of its

ubset-cone MOLPs with three objectives each. 

With regard to the edge-length quantities specified below the

cheme numbers, they represent the total length of the straight

ines in the interior of the triangles where the unit of measure is

he edge length of the equilateral triangle. For instance, the total

ength of the three straight lines in the triangle of Scheme 41 is

 9014 + . 8660 + . 9014 = 2 . 6688 . We call the straight lines cuts be-

ause they are used to “cut” the triangles into parts. Cuts are dis-

ussed in more detail in Section 4 . 

All of the schemes of Fig. 3 are used in the computational tests

onducted later in the paper. 

. Code used 

In this section we provide an overview of the code, Steuer

2017) , that is used for computing all of the efficient extreme

oints in all of the MOLPs of this paper. Note that ADBASE is a

eneral solver in the sense that it can solve for all efficient extreme

oints of any MOLP regardless of whether all objective function

radients are linearly independent or not. To help in our discus-

ions. ADBASE derives its operation from the definitions and results

f items (1) through (10) below. 

1) Associated with a basic feasible solution, let B be an m × m sub-

matrix of the basic columns of [ A , I ] m ×(n + m ) and let N be the
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Fig. 3. Schemes for subdividing the criterion cone. For consistency, when subdividing an equilateral triangle into parts, we always do it so the parts are of equal area (this 

being equivalent to subdividing the cross-section triangle of a criterion cone into parts of equal size). ( Top row ): Schemes for subdividing the (equilateral) triangle into two 

parts. ( Middle row ): Schemes for subdividing into three parts. ( Bottom row ): Schemes for subdividing into four parts. 
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m × n submatrix of nonbasic columns. In the multiple objective

simplex tableau for B , 

x N x B 

B −1 N I B −1 b x B 

W B 0 C B B 
−1 b z 

which we will also call the master problem tableau, W B is the

k × n reduced cost matrix where W B = C N − C B B 

−1 N ; C N and C B 

are the nonbasic and basic partitions of [ C , 0 ] k ×(n + m ) ; and k is

the number of objectives. 

2) B is an efficient basis iff for some λ∈ rel �, λT W B ≤ 0 T where

rel refers to relative interior. 

3) If B is an efficient basis, then the x ∈ S associated with B is an

efficient extreme point. 
4) It suffices to obtain an initial efficient basis, and hence an initial

efficient extreme point, by solving the weighted-sums LP 

max { λT Cx | x ∈ S} 
for some λ∈ rel �. 

5) If x ∈ S is an efficient extreme point, x has at least one efficient

basis. 

6) Let B be an efficient basis. Then x j is an efficient nonbasic vari-

able iff the subproblem LP 

max { e T v } 
s.t. W B y + w 

j δ + Iv = 0 

0 ≤ y ∈ R 

n 

0 ≤ δ ∈ R 

0 ≤ v ∈ R 

k 

has a maximizing objective function value of zero where w 

j is

the j th column of W and e is a vector of ones. 
B 
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7) Let x j be an efficient nonbasic variable. Then any feasible pivot

from the x j column (including any with negative pivot ele-

ments) is an efficient pivot . 

8) Let B be an efficient basis. If basis ˆ B is obtainable from B by

means of an efficient pivot, ˆ B is an efficient basis and is said to

be adjacent to B . 

9) Let W B be the reduced cost matrix of an efficient basis B . By

solving the subproblem LP of (6) once for each w 

j column of

W B and then determining all resulting efficient pivots, knowl-

edge about which variables are basic in all efficient bases that

are adjacent to B is obtained. 

0) If, for a given efficient basis all of item (9) is carried out, the

extreme point of the basis is noted in a list, and the efficient

basis is now said to have been processed . 

Whereas the master problem tableaus of (1) involve m con-

straint rows, the tableaus of the subproblem LPs of (6) have only

as many constraint rows as there are rows to the criterion matrix

sent to it. 

To manage which efficient bases have been processed, and

which efficient bases are known to exist via efficient pivots but

have not yet been processed, two coded lists are maintained. 

LISTB contains the codes of all known efficient bases 

LISTX contains the codes of the efficient extreme points 

associated with the processed entries in LISTB 

As for the codes in the lists, if the set of indices of the basic

variables of a given efficient basis is {7, 5, 1, 3}, the code of this

basis is 2 7 + 2 5 + 2 1 + 2 3 = 170 and it would go in LISTB. If for this

basis the set of indices of all nonzero basic variables is {7, 1, 3}, the

code of the efficient extreme point of this basis is 2 7 + 2 1 + 2 3 =
138 and it would go in LISTX. A code is decoded by successively

dividing by 2 and noting which remainders equal 1. 

In ADBASE, LISTB gets its start from item (2) above in which an

initial efficient basis is obtained. The code of this basis becomes

the first entry in LISTB. Bases in LISTB become processed as fol-

lows. All efficient bases adjacent to the efficient basis being pro-

cessed (current basis) are obtained via (9) . Each is checked to de-

termine if it is already in LISTB. Any that are not are added to the

bottom of LISTB. Once this is done for all bases adjacent to the

current basis, the (efficient) extreme point of the current basis is

coded and placed in LISTX. If the extreme point code is not already

in LISTX, the coordinates of the extreme point are outputted to a

file. After all of this has been completed, the efficient basis is de-

clared processed as in (10) , and the next basis in LISTB is selected

for processing, and so forth. 

In the beginning, LISTB grows rapidly, but eventually the pro-

cessing of unprocessed efficient bases catches up with the end of

the list. When this happens, all efficient extreme points have been

found and the outputted file now contains the set of all efficient

extreme points. Realizing the time that could be involved in check-

ing the code of every efficient basis adjacent to every efficient ba-

sis, the entries in LISTB are indexed in a binary tree structure to

reduce the time involved in carrying out all of the necessary LISTB

checks. 

Since the time complexity of doing a LISTB check in a binary

tree is O ( p ) where p is the number of nodes (efficient bases) in

the tree, it is fastest to do a given LISTB check when the tree is

small. Thus, if we were able to distribute the task so that all LISTB

checks could be correctly carried out over trees that are smaller

than otherwise would be the case, total LISTB check time can be

reduced. This is one of the things achieved when subdividing a cri-

terion cone and is pointed out again in Sections 6 and 7 . 
. Efficient extreme points computed more than once 

In the process of solving the subset-cone MOLPs of a scheme,

here will, however, be efficient extreme points that are computed

ore than once. The usual case, when an efficient extreme point is

omputed more than once, is that it is computed in duplicate. But

ometimes an efficient extreme point can be computed more than

hat. It depends upon the scheme and upon the unlikely event of a

pecial situation. Efficient extreme points that are computed more

han once lie along what is called in Section 2 a cut. With each

traight line in the triangle of a scheme being a cut, they are where

wo subdivisions share a common straight-line boundary. For in-

tance, in Scheme 21, the vertical line is a cut. In Scheme 32, the

wo horizontal lines are cuts, and in Scheme 33, the three line seg-

ents in the triangle are each cuts. Schemes 41, 42 and 44 all have

hree cuts each. 

To begin illustrating how cuts cause efficient extreme points to

e computed more than once, consider the 3 × 6 × 9 MOLP 

x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 

Obj 9 5 3 Max 

8 4 −2 9 Max 

1 3 −2 9 4 6 Max 

s.t. 6 4 1 1 3 5 6 4 8 ≤ 766 

−2 8 7 −3 ≤ 660 

5 1 5 1 ≤ 397 

1 8 7 6 ≤ 738 

2 5 6 ≤ 297 

−1 4 5 ≤ 344 

All vars ≥ 0 

This MOLP has 18 efficient bases and, as a consequence of the

act that none of the extreme points of the efficient bases is de-

enerate, the MOLP has 18 efficient extreme points. 

Inputting the MOLP to the Trimap capability housed within

he iMOLPe package of Climaco and Antunes (1989) and Alves,

ntunes, and Climaco (2015) , we obtain, after some editing, the

riangular representation of the MOLP in Fig. 4 Left . The whole tri-

ngle of course represents all convex combinations of the c i . Inside

he triangular representation we see regions numbered 1 to 18.

hey are the λT C gradient indifference regions, λ∈ �, for the differ-

nt efficient extreme points. That is, if λT C is a member of a given

egion, then among the optimal extreme points of the weighted-

ums LP 

ax { λT Cx | x ∈ S} 
ill be the efficient extreme point of that given region. 

For instance, any gradient from the interior of gradient indif-

erence region 9 causes the weighted-sum LP to generate efficient

xtreme point 9 as a unique optimal solution. And any gradient,

ay, from the relative interior of the leftmost boundary of region

 causes the weighted-sums LP to have both efficient extreme

oints 9 and 8 as optimal solutions. Let B 9 be the basis of extreme

oint 9 and B 8 be the basis of extreme point 8. With the λ’s of

oth gradients strictly positive, this then ties in to item (2) of AD-

ASE in that the λ of the first gradient satisfies only λT W B 9 
≤ 0 T 

hereas the λ of the second gradient satisfies both λT W B 9 
≤ 0 T 

nd λT W B 8 
≤ 0 T . 

Looking to Fig. 4 Right , the vertical line in the figure is there

o simulate the cut of Scheme 21. Here the subset-cone MOLP of

he left subdivision generates the 11 efficient extreme points of {1,

, 5, 6, 7, 8, 9, 11, 14, 15, 17}, and the subset-cone MOLP of the

ight subdivision generates the 12 efficient extreme points of {1,

, 3, 4, 5, 9, 10, 11, 12, 13, 16, 18}. The intersection of the two

ets is {1, 2, 5, 9, 11}. These are the efficient extreme points that

re computed in duplicate as they are among those computed by
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Fig. 4. ( Left ): Trimap produced representation of the 3 × 6 × 9 MOLP showing the gradient indifference regions of each of the MOLP’s 18 efficient extreme points. ( Right ): 

The cut of Scheme 21 superimposed upon the 18 gradient indifference regions. 
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Scheme 33 superimposed upon the problem’s 18 gradient indifference regions. 

 

D  

t  

3  

f  

t

m

g

D

A  

p  

h  

l  

d  

3

 

c  

s

ach subset-cone MOLP. As seen in Fig. 4 Right , these are the five

fficient extreme points that have the interiors (or more techni-

ally, relative interiors) of their gradient indifference regions inter-

ected by the cut. Note that in this problem, without having to

ompare the batches of extreme points generated by the subset-

one MOLPs, one could solve directly for the duplicates by solving

he cut-cone MOLP of 

max { c 2 x } 
max { d 

1 
x } 

s.t. x ∈ S 

Since here the number of efficient extreme points of the MOLP

s the sum of the numbers of efficient extreme points generated by

he subset-cone MOLPs less the number of efficient extreme points

enerated by the cut-cone MOLP, this gives rise to the idea of a

iscrepancy indicator in the form of 

 = W x −
∑ 

q 

P q x + 

∑ 

r 

C r x (1) 

here 

W x number of efficient extreme points of the MOLP 

P q x number of efficient extreme points generated by the 

subset-cone MOLP of the q th subdivision 

C r x number of efficient extreme points generated by the cut MOLP 

of the rth cut 

The usefulness of the discrepancy indicator of (1) in our exper-

ments is that it can function as a kind of “check digit” on the

fficient extreme points generated in a subdivision process. For

xample, consider its use on the 3 × 6 × 9 MOLP. With W x = 18 ,

 

le f t 
x = 11 , P 

right 
x = 12 and C 1 x = 5 , the discrepancy calculation is 

 = 18 − (11 + 12) + (5) = 0 

or all schemes in Fig. 3 other than Scheme 33, it is natural for

 to be zero. After the following discussion about Scheme 33, we

ill elaborate more on our use of the term “natural”. 

While not necessary for computation, we see two possible re-

ated uses of the discrepancy indicator. One is when an analyst

ishes to make one last minute check to make sure the num-

ers from the experiments are consistent with one another before

anding over solutions to a decision maker. The other is when the

ecision maker himself or herself may want to see the value of D

s a form of “insurance” that all possible potential solutions are

eing produced for examination. 
For Scheme 33, it is “natural” for it to have a discrepancy of

 = 1 . To see why, consider again the Trimap produced represen-

ation of the 3 × 6 × 9 MOLP, but this time with the cuts of Scheme

3 superimposed upon it as in Fig. 5 . Focusing on gradient indif-

erence region 5, note that all three subset-cone MOLPs generate

his efficient extreme point, and all three of the cut-cone MOLPs 

max { c 1 x } max { c 2 x } max { c 3 x } 
ax { d 

7 
x } max { d 

7 
x } max { d 

7 
x } 

s.t. x ∈ S s.t. x ∈ S s.t. x ∈ S 

enerate it as well. This then gives us for discrepancy 

 = 18 − (11 + 10 + 9) + (5 + 3 + 5) = 1 

 positive discrepancy is caused by too many efficient extreme

oints being generated by the cut-cone MOLPs. This will typically

appen whenever cuts meet at a point in the interior of the equi-

ateral triangle, such as d 

7 
. Thus, in contrast to the “natural” zero

iscrepancy of all of the other schemes, it is “natural” for Scheme

3 to have a discrepancy result of 1. 

The reason we have been saying “natural” is that there can oc-

ur possible, but not common, special situations that can cause a

cheme’s discrepancy to differ from its “natural” value. 
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Fig. 6. ( Left ): A Scheme 21 D = 2 MOLP in decision space. ( Right ): The MOLP’s Trimap produced representation showing how gradient indifference regions 4 and 5 are each 

tangent to the vertical line cut of Scheme 21. The only reason “1” appears twice in Fig. 6 Right is because efficient extreme point x 1 is degenerate in this example. 
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Consider the following MOLP 

x 1 x 2 x 3 

Obj 1 Max 

1 Max 

1 Max 

s.t. 6 12 18 ≤ 120 

16 8 16 ≤ 128 

18 12 6 ≤ 120 

All vars ≥ 0 

whose graph in decision space and Trimap produced representa-

tion are in Fig. 6 . Imagine the vertical line cut of Scheme 21 super-

imposed upon the Trimap produced representation in Fig. 6 Right .

Since the left subset-cone MOLP generates efficient extreme points

{1, 2, 4, 6}, the right subset-cone MOLP generates {1, 3, 5, 6}, and

the cut-cone MOLP generates {1, 4, 5, 6}, we get for this example 

D = 6 − (4 + 4) + (4) = 2 

But D = 0 is the “natural” discrepancy for Scheme 21. The cause

of D = 2 is that, beyond the natural, we get an additional unit of

discrepancy for each gradient indifference region that is tangent

to a cut. Because gradient indifference regions 4 and 5 are each

tangent to the vertical cut, the discrepancy is two more than what

would be the natural figure. 

There is another special situation that is probably much more

rare than the one just described. It is when the gradient indif-

ference region of an efficient extreme point is just a singleton

point. An example of such an efficient extreme point is x 4 on

page 185 of Steuer (1986) . Not only is collapsing in an MOLP re-

quired for this to occur, but it is necessary for the collapsing to

possess an efficient extreme point whose gradient indifference re-

gion is a singleton point, and it is necessary for that singleton

point to lie exactly along the relative interior of a cut. It is only

if such an extraordinary sequence of events occurs that any cut-

cone MOLP must be solved to round out the computation of all ef-

ficient extreme points. This is why we have concluded for all prac-

tical purposes that the solving of any cut-cone MOLP can be effec-

tively skipped when solving for all efficient extreme points of an

MOLP. 

Since strong coincidences are required for either special situa-

tion to occur, while possible, it is not likely that we will encounter

many such situations in testing or practice. In fact, when more or
ewer units of discrepancy are encountered than natural, it is prob-

bly more likely for the cause to be round-off error rather than

he exact occurrence of a special situation. However, it is nice to

ave the discrepancy measure to flag non-natural discrepancies in

he results whatever their cause, just so that we are aware. Of

ourse, one could always solve all cut-cone MOLPs for peace of

ind. 

. Random problem generator 

To carry out our experiments, a large number of MOLPs with

arious numbers of constraints and variables are needed. Fortu-

ately, ADBASE is equipped with a random problem generator. To

onfigure the random problem generator, we specify the following

uantities: 

NUMB number of MOLPs to be generated 

k number of objectives 

m number of constraints 

n number of variables 

[ JLC , JUC ] interval from which nonzero integers are selected for 

the nonzero elements of C 

JCDEN percent nonzero density of C -matrix 

[ JLA , JUA ] interval from which nonzero integers are selected for 

the nonzero elements of A 

JADEN percent nonzero density of A -matrix 

[ JLB , JUB ] interval from which nonzero integers are selected for 

the computation of the elements of b 

While the A -matrix and b -vector are randomly generated as de-

cribed in Steuer and Piercy (2005) , the C -matrix is generated as

ollows. First, all of the elements of C are populated by randomly

electing uniformly from the nonzero integers contained in the in-

erval [JLC, JUC]. Then, the elements of C are randomly selected

nd converted to zeros, making sure no row or column becomes

ll zeros, until the percent nonzero density JCDEN is achieved. 

With the random problem generator, in all of the experiments

f this paper, the following parameters have been set as follows: 
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Table 1 

Average baseline (where baseline means solving without sub- 

dividing the criterion cone) results for the 20 MOLPs of each 

problem-size category. 

Problem size Eff ext pts Seconds Seconds/10 0 0 

3 × 40 × 60 1,467 0 .14 0.0954 

80 × 120 13,023 4 .48 0.3440 

120 × 180 43,372 33 .10 0.7632 

160 × 240 87,732 119 .95 1.3672 

200 × 300 162,193 358 .16 2.2082 

240 × 360 267,100 893 .00 3.3433 
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NUMB = 20 

[ JLC , JUC ] = [ −2 , 9] 

JCDEN = 75 

[ JLA , JUA ] = [ −8 , 8] 

JADEN = 50 

[ JLB , JUB ] = [50,100] 

Using these settings, the sample size for each of our exper-

ments was 20. Also, by setting [ JLC , JUC ] = [ −2 , 9] the criterion

ones of the MOLPs generated are not especially narrow. This al-

ows for healthy numbers of efficient extreme points to be seen in

he experiments. 

. The experiments 

In this section, we describe our experimental design and re-

ort on the results obtained from our experiments. The experi-

ents are designed to investigate the effectiveness of the eight

chemes of Fig. 3 . In the testing of each scheme, six problem sizes

re used. They are listed in the leftmost column of Table 1 . The

ight schemes and six problem sizes yield 48 scheme/problem-size

ombinations, with each combination being an experiment. 

As a first step in setting up the experiments, the ADBASE ran-

om problem generator, as parameterized in Section 5 , was em-

loyed to randomly generate and solve 20 MOLPs for each of the

ix problem sizes without subdividing the criterion cone. This was

one so each scheme could be tested using the same 20 problems

f each problem size. By not subdividing the criterion cone for

ny of the 120 MOLPs, this enables us to obtain individual base-

ine results for the 20 MOLPs of each problem size against which

ubdivision results can be compared. Average baseline information

bout the 20 MOLPs of each problem size is found in Table 1 . For

xample, in the 160 × 240 row, where 160 is m (number of con-

traints) and 240 is n (number of variables), the 20 randomly gen-

rated MOLPs of this problem size have on average 87,732 efficient

xtreme points each, and took on average, using ADBASE, 119.95

econds each to compute. 2 This comes to 1.3672 seconds per thou-

and efficient extreme points on average (119 . 95 / 87 , 732) . 

Commenting further on the entries in the seconds/10 0 0 col-

mn of Table 1 , they increase with the problem sizes in the table

or two reasons. One is because the master problem tableau of (1)

rows in size with m and n , so pivots in it take longer. The other

s that the subproblem LPs of (6) take longer to solve because W B 

akes on more columns since the number of master problem non-

asic variables increases with problem size. 

With regard to the six batches of 20 randomly gener-

ted MOLPs, the procedure for conducting each of the 48

cheme/problem-size experiments is as follows. That is, for a given

cheme/problem-size experiment: 

1. obtain the number of efficient extreme points and the base-

line time to solve for them for each of the 20 MOLPs of the

problem-size of the experiment; 

2. obtain the numbers of efficient extreme points generated by

the subset-cone MOLPs of the scheme and the times to solve

for them for each of the 20 MOLPs of the problem size of the

experiment; 

3. obtain the numbers of efficient extreme points generated by

the cut-cone MOLPs of the scheme and the times to solve for

them for each of the 20 MOLPs of the problem size of the

experiment; 
2 All computer times in this paper are in seconds using ADBASE on an HP desktop 

ith an i7-4790 processor. 

t  

o  

s  

l

4. tabulate the efficient extreme point and time results from

the above steps to discrepancy check and calculate summary

statistics. 

With the sample size of each scheme/problem-size experiment

eing 20, the processing as above of each of the 20 MOLPs of an

xperiment is a trial . Thus, over the 48 experiments, there are 960

rials. Note that the number of subset-cone MOLP and cut-cone

OLP optimizations per trial is a function of the scheme being

ested. For instance, each trial of a Scheme 21 experiment involves

wo subset-cone MOLPs and one cut-cone MOLP, while each trial

f a Scheme 44 experiment involves four subset-cone MOLPs and

hree cut-cone MOLPs. 

In addition to D , W x , P 
q 
x and C r x , let us define the notation of 

W t time in seconds to solve the MOLP without subdividing the 

criterion cone 

P q t time in seconds to solve the q th subset-cone MOLP 

T x in percentage terms, the total number of efficient extreme 

points generated by the subset-cone MOLPs in excess of the 

efficient extreme points possessed by the MOLP of the trial. Let 

t x = 

∑ 

q P 
q 
x /W x . Then T x = t x × 100 

T t in percentage terms, the total time taken by the subset-cone 

MOLP process relative to the time taken to solve the MOLP of 

the trial when not subdividing the criterion cone. Let 

t t = 

∑ 

q P 
q 
t /W t . Then T t = t t × 100 

E x in percentage terms, the maximum percentage of the total 

number of efficient extreme points generated by any 

subset-cone MOLP, that is, E x = max q { P q x /W x } × 100 

E t in percentage terms, the elapsed time required to solve all 

subset-cone MOLPs concurrently relative to the time required 

to solve the MOLP of the trial without subdividing the criterion 

cone, that is, E t = max q { P q t /W t } × 100 . 

With this notation, we tabulate experimental results. For exam-

le, in Table 2 , we have the tabulation of the Scheme 21/120 × 180

roblem-size experiment and related statistics. Table 2 is one of 48

uch tabulations obtained from our experiments. 

Looking into the tabulation of Table 2 , let us consider the 5th

rial. The MOLP of this trial has 41,158 efficient extreme points and

ook a baseline time of 31.6 seconds to compute. The two subset-

one MOLPs generated 16,775 and 24,715 efficient extreme points

n 12.5 and 18.6 seconds, respectively. The cut-cone MOLP for this

rial generated 332 efficient extreme points as seen in column C 1 x .

hus, the discrepancy D for the problem of this trial is zero since

 = 41 , 158 − (16 , 775 + 24 , 715) + (332) = 0 , which is natural for

roblems of this scheme. 

With 332 efficient extreme points computed in duplicate by

he scheme, the entry in the T x column of the trial is 0.81%

332/41,158). This is the percentage of efficient extreme points that

ere computed in excess by the subset-cone MOLP process. From

 cumulative time point of view, it is seen that the sum of times

o conduct the two subset-cone MOLP optimizations is 31.1 sec-

nds (12.5 + 18.6). Comparing this cumulative time against the 31.6

econds required to compute all efficient extreme points in base-

ine, this is 1.6% less (0.5/31.6). This is reported as 98.4% in the T t 
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Table 2 

Tabulation and summary statistics for the Scheme 21/120 × 180 problem-size experiment. 

W x W t P 1 x P 1 t P 2 x P 2 t C 1 x D T x T t E x E t 

1 37,972 29.2 19,033 14.7 19,248 14.0 309 0 0.81 98.4 50.7 50.4 

2 41,855 31.7 18,396 13.9 23,749 17.8 290 0 0.69 99.9 56.7 56.2 

3 33,604 25.2 17,512 12.9 16,413 11.9 321 0 0.96 98.3 52.1 51.1 

4 37,818 29.3 20,395 15.6 17,692 13.7 269 0 0.71 100.1 53.9 53.2 

5 41,158 31.6 16,775 12.5 24,715 18.6 332 0 0.81 98.4 60.1 59.0 

6 33,604 25.2 17,512 12.9 16,413 11.9 321 0 0.96 98.3 52.1 51.1 

7 46,923 36.3 26,246 20.0 21,070 15.7 392 −1 0.84 98.2 55.9 55.1 

8 55,724 42.6 27,905 20.7 28,225 21.8 406 0 0.73 99.8 50.7 51.3 

� � � � � � � � � � � � �

19 42,884 31.8 22,643 17.8 18,955 13.6 359 0 0.84 98.8 56.6 56.0 

20 52,694 38.2 26,661 18.7 26,414 18.7 381 0 0.72 97.9 50.6 49.0 

Ave 43,372 33.1 22,643 17.0 21,069 15.7 340 0.79 98.6 54.7 53.6 

Min 0.69 97.0 50.6 49.0 

Max 0.96 100.1 60.1 59.0 

Table 3 

Summary statistics for the Scheme 21 experiments. As in Tables 4–6 that follow, n = 1 . 5 m . Also, the rows 

that span the full width of a table are called “average” rows as they are taken from values in the “Ave” rows 

of the tabulations as in Table 2 . 

Sch m W x W t S 1 10 0 0 S 2 10 0 0 S 3 10 0 0 S 4 10 0 0 T x T t E x E t 

21 40 1,467 0.14 .0952 .0947 – – 4.01 103.7 60.0 59.5 

Min 2.83 97.1 53.0 52.5 

Max 5.44 112.5 69.8 70.0 

80 13,023 4.48 .3359 .3341 – – 1.41 98.7 58.8 57.2 

Min 1.08 96.9 52.3 49.6 

Max 2.25 100.8 70.5 68.7 

120 43,372 33.10 .7474 .7451 – – 0.79 98.6 54.7 53.6 

Min 0.69 97.0 50.6 49.0 

Max 0.96 100.1 60.1 59.0 

160 87,732 119.95 1.3478 1.3461 – – 0.55 99.0 55.0 54.5 

Min 0.44 97.9 50.8 50.5 

Max 0.64 100.6 62.0 61.2 

200 162,193 35816 2.1862 2.1666 – – 0.41 99.0 54.9 54.2 

Min 0.34 96.6 50.3 49.8 

Max 0.48 100.2 61.6 61.2 

240 267,100 893.00 3.2847 3.2616 – – 0.32 98.5 54.0 53.2 

Min 0.25 93.3 50.3 46.9 

Max 0.39 100.2 61.4 60.4 
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column of Table 2 . Note that in all but one trial, the values in the

T t column are less than 100%. This means that even though extra

time is involved in computing the duplicates of column C 1 x , in 19 of

the 20 trials of this experiment this extra time is more than offset

by the savings accruing from spreading the LISTB checks out over

two trees rather than one. 

The last two columns of the tabulation provide E x and E t val-

ues. E x is the maximum percentage of the total number of efficient

extreme points generated by a subset-cone MOLP. For the 5th trial,

the second subset-cone MOLP generated the most efficient extreme

points. Thus, the E x value for this trial is 60.1% (24,715/41,158). E t 
is, in percentage terms, the time taken to solve all subset-cone

MOLPs of a scheme when solving them concurrently relative to

the baseline solution time of the MOLP. Since, for the 5th trial, the

second subset-cone MOLP took the longest time, E t for this trial

is 59.0% (18.6/31.6). This means that all efficient extreme points

of the MOLP of this trial can be computed in 18.6 seconds us-

ing Scheme 21 as opposed to 31.6 seconds for the baseline MOLP

with no subdivision of the criterion cone. This is a savings of 41.0%.

Despite the 41.0%, all of the other trials in the experiment saved

more. This results from the fact that this trial exhibits more imbal-

ance in terms of the number of efficient extreme points generated

by the subset-cone MOLPs (16,775 vs. 24,715) than is seen in any

of the other trials of the experiment. 

As for the D column in the tabulation, it contains all zeros ex-

cept for a −1 for trial 7, and a 1 and a 2 among the trials not
hown. Since the 1 and 2 discrepancies could well be the re-

ult of special situations such as discussed in Section 4 , that is,

radient indifference regions being numerically tangent to a cut,

hey are not bothersome to us because we can see how they can

appen. 

However, the −1 discrepancy is of some concern because it

eans that an efficient extreme point was missed, possibly be-

ause its gradient indifference region is a singleton point, but prob-

bly because its gradient indifference region is very small and be-

ause numerical conditions inside the code at the time the extreme

oint should have been calculated were such that the code did not

ee it. After all, with tens of thousands of gradient indifference

egions, the smallest can be very small. Given that only a small

umber of units of negative discrepancy appear over the rest of

he experiments, and since tuning is involved in any mathematical

rogramming algorithm, we are comfortable with the position that

ur code is running as well as can be expected for the tasks of this

aper. 

The last three rows of Table 2 present summary statistics for

he experiment in the form of averages for all columns except D as

ell as minimum and maximum values for the columns of T x , T t ,

 x and E t . Looking at the “Min” row in Table 2 , it is interesting to

ote that the minimum value of E t is 49.0%. This is from the 20th

rial. It results from the trial’s cumulative run time being 97.9% of

aseline and the fact that the subset-cone MOLPs are well balanced

26,661 vs. 26,414 efficient extreme points). With this causing the
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Table 4 

Summary statistics for the Scheme 22 experiments. 

Sch m W x W t S 1 10 0 0 S 2 10 0 0 S 3 10 0 0 S 4 10 0 0 T x T t E x E t 

22 40 1,467 0.14 .0996 .1193 – – 3.85 119.3 59.7 60.3 

Min 2.68 111.4 51.8 57.1 

Max 5.39 108.7 59.5 62.7 

80 13,023 4.48 .3405 .4047 – – 1.35 108.7 59.5 62.7 

Min 0.98 105.2 51.1 56.2 

Max 1.75 112.8 70.9 81.1 

120 43,372 33.10 .7595 .8874 – – 0.73 108.4 55.6 59.8 

Min 0.62 105.5 50.9 55.4 

Max 0.85 111.8 63.7 68.1 

160 87,732 119.95 1.3946 1.6136 – – 0.50 110.5 54.6 60.3 

Min 0.37 107.7 50.2 54.5 

Max 0.60 134.3 59.4 71.6 

200 162,193 358.16 2.1905 2.6139 – – 0.37 108.2 55.8 59.2 

Min 0.30 104.8 50.2 54.4 

Max 0.48 113.7 64.7 65.2 

240 267,100 893.00 3.3223 3.8817 – – 0.28 107.5 55.8 59.5 

Min 0.21 104.1 50.5 52.6 

Max 0.33 111.7 64.3 70.9 

Table 5 

Summary statistics for the Scheme 31 experiments. 

Sch m W x W t S 1 10 0 0 S 2 10 0 0 S 3 10 0 0 S 4 10 0 0 T x T t E x E t 

31 40 1,467 0.14 .1002 .0991 .1013 – 8.55 114.6 48.1 49.7 

Min 6.55 107.6 41.2 44.2 

Max 11.03 125.0 54.0 56.3 

80 13,023 4.48 .3238 .3308 .3274 – 2.78 97.8 44.5 42.7 

Min 2.30 95.3 37.3 35.0 

Max 4.13 99.3 51.0 50.4 

120 43,372 33.10 .7320 .7370 .7272 – 1.55 97.5 43.2 41.1 

Min 1.30 95.7 38.2 35.9 

Max 1.83 99.1 50.5 48.5 

160 87,732 119.95 1.3251 1.3376 1.3251 – 1.07 98.3 41.9 41.0 

Min 0.93 97.0 36.8 36.4 

Max 1.27 99.6 48.7 47.8 

200 162,193 358.16 2.1469 2.1851 2.1456 – 0.81 98.7 41.9 41.5 

Min 0.69 94.3 36.3 34.2 

Max 0.94 102.2 50.5 50.8 

240 267,100 893.00 3.2639 3.2914 3.3106 – 0.63 99.0 41.7 41.1 

Min 0.51 94.8 36.2 35.6 

Max 0.80 102.8 47.7 47.4 
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N  
.1% time savings to be split nearly 50/50, this is how the E t re-

ult of 49.0% is obtained. Looking at the “Max” row, no problem

ut of the 20 trials generated more than 0.96% of all efficient ex-

reme points in excess and no trial had an elapsed time savings

f less than 41% (a result of the 59.0% figure of trial 5 discussed

arlier). Moreover, in only one trial was the subdivision process, as

eflected in the T t column, not faster than solving the MOLP of the

rial without subdividing the criterion cone. 

. Discussion 

In this section, we study Tables 3–6 which report results from

he experiments conducted on Schemes 21, 22, 31 and 41, respec-

ively. Actually, these four tables suffice for all eight schemes as

hey do a very good job in bringing out all of the points to be

earned from the experiments of the paper. This is explained as

e go through the section. 

In the tables, columns W x and W t repeat baseline information

rom Table 1 about numbers of efficient extreme points and the

imes to compute them. This is done to facilitate comparisons with

he results reported on in the columns to the right. Note that in

he tables we make use of the additional notation of 

S q 
10 0 0 

time taken to solve the q th subset-cone MOLP measured in 

seconds per thousand efficient extreme points generated 
o report on results in seconds/10 0 0 efficient extreme points stem-

ing from the subset-cone MOLPs employed by the different

chemes. Let us now see what can be observed. 

1. A good beginning is to compare Scheme 21 with Scheme 22.

or this, consider Tables 3 and 4 . Note that while both of Scheme

1’s subset-cone MOLPs have three objectives, the second subset-

one MOLP of Scheme 22 has four. This makes a difference. While

he values in the S 1 10 0 0 column of Table 3 , S 2 10 0 0 column of Table 3 ,

nd S 1 
10 0 0 

of Table 4 are relatively the same, the values in the

 

2 
10 0 0 

column of Table 4 , the column of the four-objective subset-

one MOLPs, are noticeably different, being 17–20% larger than

heir counterparts over all cases. Thus, that much more work is

equired to generate an efficient extreme point in a four-objective

ubset-cone MOLP than in a three. This is logical because, for a

our-objective subset-cone MOLP, the subproblem LP in step (6) of

ection 3 has one more constraint. This causes the time results of

able 4 to fall behind those of Table 3 rendering Scheme 22 non-

ompetitive relative to Scheme 21. By the same token, Scheme 32

s noncompetitive relative to Scheme 31, and Scheme 42 is non-

ompetitive relative to Scheme 41. This is why tables for Schemes

2 and 42 are not shown. 

2. Once again consider the 49.0% E t result discussed at the

nd of the previous section. It shows up in the “Min” row of the

20 × 180 problem-size experiments of Table 3 just as it should.

ote, though, that there are three other figures in the 40’s in the
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Table 6 

Summary statistics for the Scheme 41 experiments. 

Sch m W x W t S 1 10 0 0 S 2 10 0 0 S 3 10 0 0 S 4 10 0 0 T x T t E x E t 

41 40 1,467 0.14 .1001 .0978 .0987 .0989 12.29 117.1 38.9 39.7 

Min 9.28 105.5 34.0 34.3 

Max 14.43 129.6 43.8 44.6 

80 13,023 4.48 .3149 .3247 .3237 .3181 4.21 97.3 36.2 34.1 

Min 3.42 95.4 29.4 28.9 

Max 6.56 99.6 42.8 39.9 

120 43,372 33.10 .7194 .7292 .7299 .7077 2.31 97.0 32.6 31.0 

Min 1.93 95.0 28.3 26.3 

Max 2.59 98.4 38.1 36.3 

160 87,732 119.95 1.3029 1.3187 1.3195 1.2962 1.60 97.4 33.1 32.0 

Min 1.38 96.2 27.7 26.6 

Max 1.81 98.5 38.4 37.8 

200 162,193 358.16 2.1237 2.1631 2.1435 2.1031 1.20 97.9 32.7 31.9 

Min 0.97 97.1 29.4 29.0 

Max 1.40 99.7 37.5 37.3 

240 267,100 893.00 3.2228 3.2554 3.2589 3.2026 0.93 97.8 32.5 31.6 

Min 0.81 95.6 28.8 27.1 

Max 1.10 100.1 36.9 35.8 

Table 7 

Relationships between the total cut length of a scheme and the percentage of extra efficient extreme 

points generated. 

Scheme Total cut 

length 

Ave T x (ave percentage of excess efficient extreme points) 

40 × 60 80 × 120 120 × 180 160 × 240 200 × 300 240 × 360 

21 0.8660 4.0118 1.4143 0.7890 0.5467 0.4082 0.3150 

22 0.7071 3.8479 1.3519 0.7290 0.5049 0.3691 0.2775 

31 1.7638 8.5454 2.7769 1.5475 1.0672 0.8127 0.6261 

32 1.3939 7.4081 2.5900 1.3431 0.9483 0.6932 0.5405 

33 1.7320 7.7665 2.6923 1.4230 0.9951 0.7398 0.5768 

41 2.6688 12.2919 4.2116 2.3055 1.5955 1.2007 0.9349 

42 2.0731 10.7305 3.7796 1.9877 1.4085 1.0301 0.7947 

44 1.50 0 0 8.2328 2.9014 1.5204 1.0923 0.8066 0.6194 

Slope 0.2124 0.6141 1.1579 1.7154 2.2089 2.8677 

t -value 12.0694 9.8998 12.7855 10.0026 12.2476 13.6505 
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E t column of Table 3 , too. Thus, a time savings of over 50% is not a

totally unusual phenomenon even when an MOLP is broken down

into only two parts. 

3. In comparing the results of Scheme 33 against Scheme 31,

nothing new comes up other than for the fact that the Scheme

33 manner of subdividing a criterion cone has the disadvantage of

only being good for certain numbers of subset-cones when subdi-

viding. While three is possible, there is no way to use this man-

ner to subdivide a criterion cone into two parts, nor four or five,

as there is with the manner of Scheme 31. The next possibility

with Scheme 33 is only nine, which is outside the scope of this

paper. Hence, with there being no point, we do not show a table

for Scheme 33. For the same reasons we do not show a table for

Scheme 44 as its manner of subdividing, again, has the disadvan-

tage of being limited to only certain numbers of parts, with nine

being its next as well (when using three rows of triangles instead

of two). 

4. Over all of the experiments, in percentage terms, the cu-

mulative time taken to solve all subset-cone MOLPs of an MOLP

is typically less than when solving the MOLP without subdividing

the criterion cone. Other than for the 40 × 60 problem-size exper-

iments across all tables and for all of the Scheme 22 experiments

in Table 4 , this is evident by the extent to which the values are

below 100% in the T t columns in all but a few of the “Max” cases

in Tables 3, 5 and 6 . This is due to the spreading out of the LISTB

checks to the subset-cone MOLPs where the trees need not be as

large. 

5. Concerning efficient extreme points computed more than

once, there is a connection to total cut length. For example, we

see this when comparing the total cut lengths given in Fig. 3 for
chemes 21, 22, 31 and 41 with the figures given in the “average”

ows of the T x columns in Tables 3–6 , where T x is as defined ear-

ier. Putting these observations to statistical tests, we have Table 7 .

6. To illustrate the table, consider the 240×360 column with

espect to the Scheme 21, 22, 31 and 41 rows. For example, the

ntries 0.3150, 0.2775, 0.6261 and 0.9349 come from the rounded

gures of 0.32, 0.28, 0.63 and 0.93 in the bottommost “average”

ows of Tables 3–6 , respectively. Regressing the different problem-

ize columns onto total cut length, we have the very high t -values

n the bottom row of the table, indicating a very strong positive

elationship between the total cut length of a scheme and the per-

entage of extra efficient extreme points generated by the scheme.

hus, with increased cut lengths so strongly leading to the com-

utation of increased numbers of extra efficient extreme points, it

an be safely concluded that the shorter the total cut length of a

cheme, all other things equal, the more computationally efficient

he method. 

7. As for units of discrepancy, there were no units of unnatu-

al discrepancies in any of the 16 experiments involving problem

izes of 40 × 60 and 80 × 120. But in problems sizes 120 × 180 and

arger, units occasionally arose. As for units of negative unnatural

iscrepancy, using ADBASE they only appear to be about a once in

very quarter million efficient extreme points phenomenon. 

8. Overall, the manner of subdividing a criterion cone shown by

chemes 21, 31 and 41 is arguably the most efficient and versatile

f the manners studied in this paper. Considering only the MOLP

roblem sizes of 120 × 180 and larger with this manner of sub-

ividing a criterion cone, it is informative to form Table 8 . What

he first line of this table says is that of the 80 largest MOLPs

mployed in the experiments, none of the 80 experienced time
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Table 8 

Time savings guide covering the 80 largest MOLPs when using the man- 

ner of Schemes 21, 31 and 41 for subdividing the criterion cone. 

Worst time savings (%) Average time savings (%) 

2 parts 38.8 46.1 

3 parts 49.2 58.3 

4 parts 62.2 69.6 
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avings of less than 38.8% when the criterion cone was broken

own into two parts according to the manner of Scheme 21, with

he average time savings being 46.1% for this case. The 38.8 figure

s evidenced by scanning the bottom two-thirds of the E t column

f Table 3 and finding that 61.2 is the largest number in it. 

What the second line says is that of the 80 largest MOLPs em-

loyed in the experiments, none of them experienced time sav-

ngs of less than 49.2% when the criterion cone was broken down

nto three parts according to the manner of Scheme 31, with the

verage time savings for this case being 58.3%. The 49.2 figure is

videnced by scanning the bottom two-thirds of the E t column of

able 5 and finding that 50.8 is the largest number in it. 

What the third line says is that of the 80 largest MOLPs, none

f them experienced time savings of less than 62.2% when subdi-

iding the criterion cone into four parts according to Scheme 41,

ith the average time savings for this case being 69.6%. 

. Future directions 

By subdividing the criterion cone, this paper investigates how

he times required to compute all efficient extreme points of a

ultiple objective linear program can be substantially reduced. For

nstance, with Table 8 again as a guide, consider a 3 × 240 × 360

OLP. With such an MOLP, which would otherwise take on av-

rage about 893 seconds for the task, we can anticipate that it

ould take on average (a) about 481 seconds (.539 ∗893) should

he criterion cone be broken into two parts, (b) about 372 seconds

.417 ∗893) should the criterion cone be broken into three parts,

nd (c) about 271 seconds (.304 ∗893) should the criterion cone be

roken into four parts, resulting in elapsed time savings of 412, 521

nd 622 seconds on average, respectively. 

While the code used in the experiments of this paper was AD-

ASE, the code is immaterial as any code for computing all effi-

ient extreme points should experience the same percentage sav-

ngs. This is because no changes are made to the code. The only

hanges that are made are in how formulations sent to the code

re constructed. 

The strategy of the paper is designed to be especially useful in

ituations where one’s time-budget for computing all efficient ex-

reme points is not enough to compute them as normally (that is,

n a single run). Then by comparing the time that it would nor-

ally take to compute all efficient extreme points with Table 8 and

he time in one’s budget, one should then be able to develop a

ood idea about how many parts into which to break the criterion

one. 

As for future research along the lines of this paper, breaking

hree-objective MOLPs into many more parts, as well as MOLPs

ith four and five objectives need to be investigated. Also, the is-

ue of collapsing needs to be further explored as this affects the

egrees to which decision space algorithms and outcome space al-

orithms can be made interchangeable. Furthermore, although un-

roven at this point as there has not been enough time, there is

he prospect that this paper may well benefit certain algorithms in

he area of integer multiple objective linear programming. By this

e are referring to branch-and-cut algorithms such as developed

y Abbas and Chaabane (2006) and Chaabane, Brahmi, and Ram-

an (2012) where the goal is to optimize a linear function over the
nteger efficient set of an MOLP. In these algorithms, special con-

traints are added at each iteration to exclude non-optimal integer

fficient points from getting in the way of further progress. But

he cost of this, unless an optimal integer efficient point is found

arly, is a build-up of constraints that will eventually cause the

mplementation to become untenable. But by using the methods

escribed herein, it should be possible to break the integer MOLP

nto parts so as to avoid any serious constraint bottlenecks from

ccurring. As another possibility, consider the algorithm by Kirlik

nd Sayin (2014) for computing all nondominated criterion vectors

f a multiple objective integer programming problem. By utilizing

he techniques of the paper, it seems that it should be possible to

educe the wall-clock times of many of the run times reported in

hat paper. There may be other examples. 
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