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Computing the nondominated set of a multiple objective mathematical program has long been a topic in multiple criteria
decision making. In this paper, motivated by the desire to extend Markowitz portfolio selection to an additional linear
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of a tri-criterion program that is all linear except for the fact that one of its objectives is to minimize a convex quadratic
function. With the nondominated set of the resulting quad-lin-lin program being a surface composed of curved platelets,
a multiparametric algorithm is devised for computing the platelets so that they can be graphed precisely. In this way, graphs
of the tri-criterion nondominated surface can be displayed so that, as in traditional portfolio selection, a most preferred
portfolio can be selected while in full view of all other contenders for optimality. Finally, by giving an example for socially
responsible investors, we demonstrate that our algorithm can outperform standard portfolio strategies for multicriterial
decision makers.
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1. Introduction

Computing the nondominated set in multiple objective
mathematical programming has long been a topic in mul-
tiple criteria decision making. It is a broad topic, with
coverage including, as discussed in Miettinen (1999) and
Ehrgott (2005), bi-criterion, multiple objective linear, mul-
tiple objective integer, and multiple objective combinatorial
problems. Because of varying difficulties across the prob-
lem types, computing the nondominated set, or at least
characterizing it, has been studied in many ways (for
instance, Zionts 1977, Benson 1979, Steuer 1986, Korho-
nen and Wallenius 1988, Armand and Malivert 1991, Ben-

maximization or minimization form), it separates out from
the set of all criterion vectors only those that could poten-
tially be optimal (Steuer 1986).

We have been attracted to the task of computing the non-
dominated set of a tri-criterion program with a quadratic
objective because of our interest in extending classical
Markowitz portfolio selection (as set out in Markowitz 1952,
1956 and 2000), which involves only mean and variance,
to mean, variance and one additional linear criterion. Can-
didates for the additional linear criterion could be anything
listed in Ehrgott et al. (2004), liquidity as in Lo et al. (2003),
growth in sales as suggested by Ziemba (2006), sustainabil-
ity as Dorfleitner and Utz (2012) propose, and so forth.
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son and Sun 2000, Sayin 2003, Ehrgott et al. 2012, and
many others). In this paper we demonstrate a procedure
for computing the nondominated set of a tri-criterion pro-
gram that is all linear except that one of its objectives is
to minimize a convex quadratic function. In any multicri-
terion program, the nondominated set is important because
under a value function that is coordinate-wise increasing or
decreasing (depending upon whether the objectives are in

Let us now review classical (or standard) Markowitz
portfolio selection to be clear on what exactly is to be
extended. Markowitz begins by solving for the nondomi-
nated set (nondominated frontier) of the following program,
given in bi-criterion format as
min{z}(x) =x"2x} variance,
max{z,(x) =p'x}  expected return, (1)
st. xe§,
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in which 3 is an n x n covariance matrix, p is a vec-
tor of individual security expected returns, X is a portfo-
lio specifying the proportions of capital to be invested in
the different securities, and S’ is defined by linear con-
straints. In many finance textbooks, p and 3 are simply
the sample-based mean and variance of past asset returns.
Notice, however, that model (1) is general enough to also
include various extensions that aim to improve the perfor-
mance of the standard sample-based mean-variance model.
This typically is done by deriving more robust estimators
for p and 3 that reduce estimation error, or by constraining
the set of feasible portfolios S’ (see DeMiguel et al. 2009
for a review of such extensions).

With the objectives as stated, a criterion vector
(z}(X), z5(X)) is nondominated if and only if there does
not exist any other portfolio x € §" that has a greater
expected return with the same or less variance, or less vari-
ance with the same or greater expected return. Because of
the quad-lin nature of the problem, the nondominated set
here is a connected collection of curved arcs, each coming
from a different parabola. Although usually presented in
the form of a dotted representation, if necessary the non-
dominated frontier can be computed in closed-form' via
Markowitz’s critical line method or by variations of the
method studied by Stein et al. (2008) and Niedermayer and
Niedermayer (2010).

The rest of Markowitz’s approach is to display before the
decision maker the nondominated frontier and then, while
in full sight of the frontier, ask the decision maker to select
from its graph a most preferred solution (which by defini-
tion is optimal). This has two important benefits. One is that
it enables the process to be individualized. Different deci-
sion makers can choose different most preferred solutions.
The other is that in portfolio selection, it is not always pos-
sible to recognize an optimal solution in the absolute. Here,
one generally backs into a final solution only after being
able to see that all other candidates are less satisfactory.
Thus, by being able to see the entire nondominated frontier,
the approach is compelling in that it puts a decision maker
in an excellent position from which to grasp the expanse of
the problem at hand and develop, by turning down all the
other candidates for optimality visually before him or her,
an enhanced confidence in the solution ultimately selected.

As surveyed in Steuer and Na (2003), there has been a
long string of articles proposing methods for solving port-
folio selection problems with additional criteria. Unfortu-
nately, they have not had great impact. In our assessment,
this is because they have almost all been, in the termi-
nology of Hwang and Masud (1979), a priori methods
as opposed to a posteriori methods. In a priori methods,
decision-maker preferences are incorporated into an opti-
mization problem that is then solved to produce the portfo-
lio recommended by the model. The difficulties with these
methods are that (a) they require information about an opti-
mal solution that is unlikely to be possessed so early in
the game and (b) they produce only single solutions, thus

keeping in the dark much of what else might lie in the non-
dominated set. Consequently, it is hard for such methods to
engender the confidence needed in portfolio selection for
the acceptance of any solution as optimal, and that is their
weakness.

Methods in the a posteriori category, on the other hand,
specialize in generating the whole nondominated set and
then communicating the nondominated set to the deci-
sion maker for the selection of a most preferred solution.
One never has to worry that portions of the nondominated
set might have been missed. This enables one to come
away from a problem with high confidence in the solution
selected, as it is right before the decision maker that all else
has been turned down as inferior. Also, by being able to see
the whole nondominated set, it provides good opportunities
to appreciate more about the problem itself. This exactly
describes Markowitz’s approach and why it has been so
successful.

Therefore, the key when extending Markowitz portfolio
selection is to do so in a full a posteriori fashion. However,
when extending Markowitz portfolio selection to include
an additional linear criterion, the nondominated frontier
becomes a nondominated surface, and this surface is not
easy to compute. Because Markowitz’s critical line method
does not scale to additional criteria, a new algorithm is
developed for the purpose. Fortunately, though, when the
number of objectives is three, graphical representations of
the nondominated set are still possible.

The remainder of the paper is as follows. Section 2 spec-
ifies the tri-criterion problem statement. In §3 we establish
reduced Karush-Kuhn-Tucker conditions for the multipara-
metric quadratic programming algorithm that is developed,
and in §4 we describe the pivoting procedure by which
the algorithm generates a mathematical specification of the
nondominated surface. Section 5 illustrates on a small prob-
lem the construction of a nondominated surface from its
mathematical specification. Section 6 highlights the prac-
tical importance of the tri-criterion portfolio selection for
respective investors in general and our algorithm in partic-
ular. Along with two final graphs, we conclude with §7 by
reporting our experience on the computing of the nondom-
inated surfaces of problems of varying sizes up to almost
500 securities.

2. Problem Statement

To extend Markowitz portfolio selection to the tri-criterion
case, let us now put ourselves in the shoes of an investor
wishing to minimize return variance, maximize expected
return, and maximize or minimize one additional objective.
This yields the following formulation:

min{z (x) = x"2x},
max{z;(x) = p'x},
max or min{z;(x)},
st. xed§'.
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The difficulty here is that the nondominated set is no longer
a frontier but is better thought of as a surface. Whereas,
as mentioned earlier, the nondominated frontier is a con-
nected collection of curved arcs, with each coming from a
different parabola, the nondominated surface is a connected
collection of curved platelets, with each coming from the
surface of a different paraboloid. The contribution of the
algorithm of this paper is that it provides an exact way
to compute all of these platelets. The method developed
here is based upon multiparametric quadratic programming,
and it is able to compute all of a problem’s nondominated
curved platelets in a single run.

Although portfolio selection theory is mostly developed
around the variance criterion, investors usually think in
terms of standard deviation because the units (percent
return) are the same as with expected return. Therefore we
also consider the (equivalent) model

min{,/z} (x) = vx"2x},

max{ Z4(x) = w'x}, )
max or min{z;(x)},
st. xe§'.

In this paper, we will assume that S’ is defined by the
following linear system:

Ax=a,
A,x<a,,
x 24,

X < o.

Because security holdings (long and short) are generally
subject to limits, lower £ = [¢,,...,¢,]” and upper ® =

> n
[w,...,®,]" bounds on the x; investment proportions
are thus included in the above. Furthermore, for assuring
full investment, it is assumed that the equality constraints
A/ x = a, contain

Zn:xi =1. )
i=1

As for the third objective, let us proceed under the follow-
ing specification:

max{z;(x) = (¢’)"x}.

After setting Q =3 and ¢*> = ., the objective functions are
min{x"Qx}, max{(c?)"x}, max{(c*)"x}.

Substituting X — x — £ to avoid having to carry the x > ¢
constraints explicitly in the model, we obtain

min{z} (x) = X7 Qx + (¢) x + i, .

max{z;(x) = ()X + K, }, ®)

max{z;(x) = (¢’)"x + 3},

st. Dx=d (6)
Ax<a @)
x<pB ®)
x>0, ©)

where

@ (eHT = 227Q, k, = €7QL, k, = ()€ and
Ky = (¢*)7¢; and

(b) D=A,d=a,—AL, A=A, ,a=a,— A, L and
B=w-—-1¢
The constraints (6)—(9) are now used to define S. Obvi-
ously, replacing the objectives z’ by z =2z — k does not
change the solution set in decision space. This allows
us, for A,,A; > 0, to apply the weighting vector A =
[=1,X,,A;]" and obtain the following multiparametric
optimization problem:

max{—x"Qx + (—¢' + A,e? + A,¢*) x}, (P,)

s.t. xeS.

The usefulness of (P,) is this. Consider the set of all
objective vectors z' resulting from the optimization of
(P)) for all A =[—1, A,, A5]% Ay, Ay > 0. From Geoffrion
(1968), when x7 3x is strictly concave, this set is precisely
the sought-after nondominated set of (5)—(9). For example,
if 3 is positive definite, this result holds. However, there
is a caveat with (P,) when % is only positive semidefinite.
It is that there could be, although we believe the likeli-
hood very small, weakly nondominated z’-vectors that are
not nondominated among those that optimize (P,). A fea-
sible Z is weakly nondominated if and only if there does
not exist another feasible z such that z < z, and a feasible z
is nondominated if and only if there does not exist another
feasible z such that zZ < z, Z # z. With weakly nondomi-
nated objective vectors being for the most part relatively
harmless, we believe that this is a minor point, but without
studies known to us on the issue, users are probably best
advised to keep the caveat in mind when working with the
surfaces in this paper.

3. Reduced Karush-Kuhn-Tucker
Conditions

To compute all objective vectors z' resulting from the opti-
mization of (P,), we apply the Karush-Kuhn-Tucker Con-
ditions (KKTC) to (P,) and obtain

2Qx+D'v+ATw —Lu* +Luf =—c!' +A,c? + A8,
Dx=d,

Ax+1,y=a,
B—x20,x>0,w>0,u">0u>0,y>0,

v unrestricted,

B-x)"vf =0, (10)

x'u'=0, y'w=0,

where I, € R™" is the identity matrix, and (10) constitutes
the complementarity conditions. Then it is known from
Eaves (1971) that

(a) x € R" solves (P,) if and only if there are y, w’, u*,
uf and y such that the KKTC are valid;
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(b) the KKTC are solvable if and only if there is a com-
plementary basic solution to the KKTC, i.e., a basic solu-
tion such that for each pair of complementary variables x;
and u;, Y and uf, B; — x; and u?, at most one is basic.

Because there is a solution to (P,) in each A,, A,
instance, it is sufficient to compute a complementary basic
solution of the KKTC for each A,, A; > 0. The proce-
dure employed herein pivots from one complementary basic
solution to another by exchanging a single basic variable.
Hence, it follows that for each variable x;, four possible
situations may arise in an exchange:

(1.1) x; basic, u} or B; — x; allowed to enter basis.

(1.2) u basic, x; allowed to enter basis.

(1.3) B, — x, basic, u” or x, allowed to enter basis.

(1.4) uf; basic, B; — x; allowed to enter basis.

Exchanging x; by ; — x; or vice versa will be called
substitution of i. Now by means of I C {1, ..., n} denote
the substituted variables and set

_ {x,., TR {u TR
X = i = .
B —x, ies T WP, ies
Then the above cases of (1.1-1.4) can be mimicked by

(2.1) x; basic and i € 3, u} allowed to enter basis or
substitution of i,

(2.2) uf basic and i €Y, &; allowed to enter basis,

(2.3) x; basic and i € J, u} allowed to enter basis or
substitution of i, and

(2.4) uf basic and i € 3, x; allowed to enter basis.

The advantage here is that by following these pivoting
rules, it is possible to omit the variables 3, — x; and xiﬁ
from the KKTC, and handle the constraints X < 3 implic-
itly. Then by setting

I’ =diag(ey,...,&,)

withg;,=1forigJand g;=—1forie3, (11)
we have the following conditions, which will be called the
reduced KKTC.
2Qx + D v+ ATw —Lu' = —c' + A% + Ay¢?,
Dx =d, (12)
Ax+1,y=a,
i>07uy>07y>0’ﬁx>0’
v unrestricted,

— . y .
xu; =0, i=1,...,n, yjuj_O, j=1,....,m.

Also, to finish accounting for the substituted variables, for
all i € I multiply column i of the above system by —1 and
subtract column i times [3; from the system’s right-hand
side. In this way, we are able to combine u? and u*® into
one vector u* € R”". This is possible because when x; is
in X, ufg is unnecessary; and when B; — x; is in X, u} is

unnecessary.

4. Parametric Pivoting Procedure

This procedure solves the reduced KKTC for all A,,

A; > 0, thus finding all optimal solutions of (P,). Because

any basis requires M = n+ [+ m variables, all complemen-

tary basic solutions contain the unrestricted variables v.
We introduce the notation

2Q DT AT - 0 —c!
K=|D 0 0 0 0|, b=| d |,
A 0 0 0 I, a

c2 c3
b’=|0 |, b’=]|0 |,
0 0

where I’ is from (11) and w = [X, v,w’, ", y]”. Denot-
ing the columns of a complementary basis of K by B, the
reduced KKTC equations can be written as

Bw; =b' +b’*A, +b’A;,
or equivalently, because B is invertible,
Wy =[Xp, v, up, 05, y;]” =B7'b' +B7'b*A, + B 'b’A;.

Now let us identify the region in nonnegative A,, A,
space, say A°, that enables an arbitrary w, to remain a
complementary basis. Delete the components correspond-
ing to the variables v in the vectors B~'b* ¢ R"++" k=1,
2, 3, and denote the new right-hand vectors by r* € R"+™,
k=1, 2, 3. Also, define the vectors x° and A%, k =
2, 3, by

0 ig{iy, . siyls
i=i;and i ¢,

1 ._. . o~
Bi—rj =i and i €3,

0 ig{i....iy)

0,k . . .

AT =1rf i=i;and i €Y,
—rf i=i;andied.

Then the vector
x=x"4+A%2), + A%\, (13)

solves (P,) for all A,,A; > 0, as long as [Xg,uy, ),
¥z]T = 0 and each component of X is less than or equal to
its upper bound. That is,

)\2 209
A} 207
[Xp w05, ¥ =1+ 120, + 134, >0, (14)

X=r+r’+riA<B, i=1,...,n

System (14) defines a polyhedron in the space of the non-
negative A,, A; values. In parametric programming, the
polyhedron is called a stability set (Bank et al. 1983).
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Also, because many of the inequalities in (14) are often
redundant, we will call the minimal set of inequalities that
defines a stability set its “set of binding constraints.” The
significance of a stability set is that as long as the A,, A,
are in the stability set, formula (13) yields solutions of (P,)
without a complementary basis change.

At this point, let us demonstrate the idea of a stability set
on an example of five stocks with only the full investment
and nonnegativity constraints of (4) and (9). The historical
covariance matrix of market appreciation Q, mean market
appreciation ¢?, and mean dividend yield ¢* are?

[ 8.50E-3 0.99E-3 1.58E-3 1.29E-3 0.69E-3
0.99E-3 6.22E-3 0.92E-3 1.34E-3 2.24E-3
1.58E-3 0.92E-3 6.36E-3 —0.98E-3 2.28E-3 |,
1.29E-3 1.34E-3 —0.98E-3 18.36E-3 0.74E-3
| 0.69E-3 2.24E-3 2.28E-3 0.74E-3 8.80E-3

[ 3.32E-3 1.92E-3
7.97E-3 1.44E-3
0.82E-3 |, | 4.29E-3

~3.99E-3 2.15E-3
| 2.74E-3 2.03E-3

One set of variables that forms a complementary basis is
X5 Xy, X3, X4, Xs, U (X; = x; because for all i there are
no upper bounds). The stability set defined by (14) for this
basis, for which the binding constraints are A, >0, A; >0,
x, 20 and x5 >0, is given in Figure 1.

A stability set A is adjacent to another stability set if
they share a common one-dimensional facet. This definition
is comprehensive, because it is seen in Theorem 1 that there
cannot be a A having only part of a facet in common with
an adjacent stability set. The binding constraints of a sta-
bility set (except for the unnecessary A, > 0, A; > 0), and
their complementary basis pivots are set out in Theorem 1.

THEOREM 1. The stability sets adjacent to another stability
set A° are determined by applying the following rules to
the complementary basis of the reduced KKTC from (12)
for A°.

Binding

constraint Pivot and/or substitution

A 20 (No adjacent stability set)

x; =20 Exchange x; and u}

u; =0 Exchange u? and x;, if i € I substitute i

y; =0 Exchange y; and u’
u; >0 Exchange u and y,
X; < B; Substitute i, exchange X; and u;}

PrROOF OF THEOREM 1. Let N > 0 denote a parameter vec-
tor on the relative interior of a one-dimensional facet of A°,
that is, A also belongs to a one-dimensional facet of an
adjacent stability set A'.

Assume that w; is the basic variable of the reduced
KKTC corresponding to the binding constraint. With w;

Figure 1. Stability set for the indicated complementary
basis of the five-stock example with A, on

the horizontal axis and A; on the vertical.

A3

/\2
02 04 06 038

leaving the basis, all other basic variables are included in
the complementary basis of A'. Therefore, the only vari-
able to be exchanged for w; is its complementary vari-
able, for example, x; is exchanged by u] or y, > 0 by
uly >0, and vice versa. Now assume that x; < 3;, respec-
tively B, —x; >0, is the binding constraint. After substi-
tuting i, this constraint is equivalent to x; > 0, and by the
same argument as above, x; has to be exchanged by ;.

It remains to be explained why an i € J is to be substi-
tuted when an i leaves the basis. While mathematically
unnecessary, this condition assures that all basic variables
x; are in fact equal to x;. Note that substituting a basic
variable does not alter the stability set. It simply creates
a different representation of the set. Without this rule, the
algorithm might accumulate many representations of a sta-
bility set, thus slowing down the procedure. O

In Bank et al. (1983) it is stated that a linear program is
to be solved for each constraint of (14) to determine if it is
binding or not. This means that at least 2n + m linear pro-
grams would have to be solved. However, a more efficient
way is to compute all vertices of the stability set. Because
the number of vertices is bounded by the number of con-
straints, one might be fearful that as many as 2n + m + 2
might have to be computed. However, in all our computa-
tional tests (as seen in the rightmost column of Table 4),
the number of vertices has been much smaller. The vertices
are easily determined by “walking around the polyhedron,”
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that is, by starting at a vertex and, for example, executing
clockwise pivots (reversing with counter-clockwise pivots
if the stability set is unbounded).

Routine for Computing Binding Constraints

Step 0: Define a set BC = &. Assume a basic represen-
tation 19 of (14) for a vertex of A°. Let i, j be the nonbasic
variables. Add {i, I)} (if i > 2) and {j, I} (if j > 2) to BC.

Any i > 2 or j > 2 designates a binding constraint of
interest (note that indices 1 and 2 pertain to the first two
constraints of (14), and their binding constraints are not
recorded in BC).

Continue with Step 1, argument /3.

Step k (argument I,): Execute a pivot for I, to yield the
next vertex (clockwise direction, unless in reverse).

(1) If there is no next vertex (i.e., stability set is
unbounded) and this is the first time, restart Step 1 but
reverse to go in counter-clockwise direction. If this is the
second time there is no next vertex, STOP. Else denote the
next vertex by J, with i, k the nonbasic variables.

(2) If still going in clockwise direction and J, =1,
STOP.

(3) Add {k, J,} (if k > 2) to BC and continue with
Step k +1 for J,.

The routine yields a set BC containing the binding con-
straints of A°. Let A' be an adjacent stability set. Because
the same procedure will be used on A!, it is convenient
to start with a known vertex for A'. This is done using
Theorem 2.

THEOREM 2. Let N° be a vertex of A° with a basis 1)
of (14), j, € 1) corresponding to w; =0. Let A" be an
adjacent stability set with basis I} of the reduced KKTC,
defined by

Iy =\ H U i),

i.e, basic variable w; is exchanged by w; . Considering
(14) for A', let j, correspond to w;, =0 and

1)1 = (I;)\{]l}) U{j}

Then N° is a vertex of A' with basis 1.

PrOOF OF THEOREM 2. Let A € A! be a vector such that the
rows in (14) (for A') with indices I} are equalities. That is,
the components of the solution vector w of the reduced
KKTC corresponding to I, vanish, in particular w;, = 0.
Hence, A € A° and the rows in (14) (for A°) with indices
I}) are equalities. Because these rows are a basic represen-
tation of A°, we obtain A = A°. In summary, A° is uniquely
determined by I} and therefore is a vertex of A!. O

Now we are able to compute all stability sets with the
following parametric programming procedure.

Routine for Computing All Stability Sets

Step 0: Define sets SB = & (stability set bases),
ASB =@ (adjacent stability set bases). Add a triple
[14,34,1,] to ASB, where I, is a basis of the reduced
KKTC for an initial stability set, 3, denotes the substituted
variables, and I, is a basis of (14) for one of the stability
set’s vertices.

For example, the triple 1,3, I,] corresponding to the
origin in Figure 1 with 1, 2 the nonbasic variables of (14)
is obtainable by solving (P,) for Ay = A; =0 with the two-
phase method of quadratic programming (Wolfe 1959).

Continue with Step 1.

Step k: Move a triple [1,, 3, I,] from ASB to SB. Start-
ing from I, with the routine for computing binding con-
straints, enumerate all the {i, 1)}, ..., {i,,I}} entries in
BC for the associated stability set. For each entry, com-
pute the adjacent stability set’s complementary basis I [, and
substituted variables J, as per Theorem 1. If [I,,3,] is
not already represented in SB or ASB, compute vertex basis
I, according to Theorem 2, and add [/,, S, 1,] to ASB.

If ASB =@, STOP, else continue with Step k + 1.

Figure 2 shows the dissection of parameter space into
stability sets for the five-stock example. For each stability
set AY, we define

8,:= rank(A?2, A4?).

In this way, (13) represents a 8,-dimensional manifold in
decision space. In the figure, a stability set is depicted
gray if its 8, =2, light gray if its 6, = 1, and white if its
6,=0.

q

Figure 2. The 12 stability sets of the five-stock exam-

ple indicated by gray, light gray, and white.

Note. The stability set of Figure 1 is the stability set at the bottom left
corner.
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5. Composing the Nondominated Surface

Having computed the stability sets, it remains to obtain the
image of each stability set A? in criterion space. This is
done by using each stability set’s equation (13) x = x? +
A%2), + A?3); along with

xTQx + (e)Tx + «,
() 'x+x,
(©) X+,

Z(x) =

to construct the nondominated set. For convenience in car-
rying out this task, we define for each stability set

o -Araa @rrea]
(A79)QA"?  (A13)7QAr |

il — (2Qx? +c¢")T A2
T 2Qx?+c)TAL3 |°

g [@yran)

k! =(x")"Qx’ + (¢")'x! +k,,

kP =(c))'xI4+k; j=2,3.
Then for each A € A?, we have

) = NTQIN+ (et ) A+ k1,
ZZ(N) = (") N+ k"2,
ZZ(N) = (e )N+ k73,

By discretizing the stability sets and applying these
functions, the nondominated surface can be plotted. For
example, from a particular point of view, we have the non-
dominated surface of the five-stock example in Figure 3.
The shading on the surface oscillates to show the loci of
different constant values of dividend yield.

Because the feasible region S is bounded, the non-
dominated surface must be bounded, too. Therefore it is
sufficient to plot only the bounded stability sets as the
criterion functions are constant along half-rays contained
in an unbounded stability set.

Now we are better able to explain the shades of gray
in Figure 2. Depending on the dimensionality §,, one can
verify that the function z?(N\) depicts a paraboloidic platelet
(6, =2), a parabolic line (§, = 1), or a point (5, = 0) in
criterion space. For example, the seven gray sets of Figure 2
yield the platelets (one of which is too small to be seen)
that comprise the surface in Figure 3; the three light gray
sets map onto the short top left, long top right, and short
lower right edges of the surface, respectively; and the white
sets map onto the topmost and the bottom rightmost points
on the surface, respectively.

To search for one’s most preferred solution on the non-
dominated surface, it is useful to view the nondominated
surface from different angles. One particularly useful way

Nondominated surface of the five-stock
example from an arbitrary point of view.

Figure 3.

Ret (%)
0.75

0.60

0.45

Div (%)

to look at the nondominated surface is to view its projec-
tion onto the plane of the first two objectives as in Figure 4.
In this way, the northwest boundary of the projection is
the mean-variance nondominated frontier of the first two
objectives.

Also in Figure 4, we can see why the nondominated
frontier of a traditional mean-variance problem is piecewise
parabolic. It is because it is taken from the silhouette of
the nondominated surface’s paraboloidic platelets. With the
oscillations (wavelength of 0.025% in this instance) show-
ing how the nondominated surface comes at us, we can
see how high dividend yields, in this example, are achiev-
able only at significant expense to both expected return and
variance.

Utilizing additional rotations and, perhaps, a “cube” as
in Figure 5 to visualize the criterion values of any point
in question, we now have a substantial capability with
which to search the nondominated set in tri-criterion port-

Figure 4. Projection of nondominated surface of the
five-stock example onto the mean-variance
plane.
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Use of a “cube” to visualize the coordinates
of a point on the nondominated surface of the
five-stock example.

Figure 5.

Ret (%)
0.75

0.60

0.45

0.30

0.15

04 " Div (%)

folio selection before having to decide on a most preferred
selection.

6. Empirical Application

In this section, we use the tri-criterion algorithm just pre-
sented in an empirical study. In the following, we call the
implementation of the tri-criterion algorithm of this paper
CIOS (custom investment objective solver). In the study,
for the third criterion, we refer to the topic of socially
responsible, or what we will interchangeably call sustain-
able, investing. Here, investors not only take into account
financial returns, but also returns to one’s utility resulting
from social responsibility. In particular, we show how port-
folios obtained using CIOS outperform benchmark 1/N
portfolios (portfolios with equal weights) with regard to
mean, variance, and sustainability. While this study focuses
on these three criteria, it illustrates the types of criteria for
which this paper can provide decision support.

Asset allocation in a socially responsible (SR) mutual
fund is typically conducted in a two-step approach. In the
first step, assets are screened for only those that meet
certain predefined standards regarding social responsibility
(see Renneboog et al. 2008). In the second step, the fund’s
manager allocates the fund’s wealth to the resulting secu-
rities. In our empirical investigation, we examine only the
second step, assuming the screening results of the first step
as given.

6.1. Data

Data for this study come from several sources. For the SR
mutual funds included in the study, we started with the
list of 65 funds from the U.S. Social Investment Forum
(SIF).> After trying to match the funds with holding data
from the Center for Research in Security Prices (CRSP)
US Mutual Fund Database over the period December 31,

2001 to February 27, 2010, we had to drop 14 of the funds
because of inadequate support. For the sustainability (social
responsibility) criterion, we use ESG-scores. A firm’s ESG-
score is a composite measure based upon the firm’s envi-
ronmental, social, and governance attributes (data types
ENVSCORE, SOCSCORE, and CGVSCORE) as obtained
from the Thomson Reuters Datastream ASSET4 database.
The mean of a firm’s three values on these attributes is
treated as the firm’s overall specific ESG-score. Follow-
ing practice in the socially responsible investment literature
(Guerard 1997, Derwall et al. 2005, Kempf and Osthoff
2007), the obtained ESG-scores are treated deterministi-
cally. Because of incomplete ESG data over the period of
the study, we had to drop additional funds. Namely, we
dropped all funds for which we could not obtain ESG-
scores on at least 70% of their portfolios. This caused us
to wind up with 29 SR funds, with the average coverage
of ESG-scores in these funds being 84%. Over the 29 SR
funds, we have a total of 419 different portfolio compo-
sitions relative to the sequence of monthly reporting dates
embraced by the study. These 419 different portfolios invest
in a total of 1,071 different securities, which constitute the
basis for our model.

For the financial data part of the study we use monthly
returns obtained from CRSP. For computing excess returns,
we use 90-day T-Bill rates (data type FRTBS3M) from
Datastream.

6.2. Empirical Methodology

Following a rolling window approach (see Swanson and
White 1997), we construct for each fund at each report-
ing date its tri-criterion model (2) using the preceding
120 months of data.* After computing the nondominated
surface of each model, we identify the portfolios that would
be selected by a tri-criterial (mean-variance-sustainability)
investor and then compute the one-month out-of-sample
returns of these portfolios. The returns are then compared
against two benchmarks, one being the 1/N portfolio and
the other being the actual portfolios of the funds.

In setting up the tri-criterion models, we use the mean
of the preceding 120 monthly financial returns® as the
estimator for the expected financial return vector p and
estimate the covariance matrix ¥ using pairwise Pearson
correlations.® For assets with fewer than 120 months of
previous data, we let the window start on the first avail-
able reporting date for the asset. For the third criterion ¢,
we use the latest ESG-scores available before the report-
ing date. Furthermore, to keep the analysis close to reality,
we impose a minimal and maximal investing rule.” That is,
for the calculation of the nondominated surface of each
model we stipulate lower and upper bounds on the weights
for investment in each asset. Actually, they are the lower
and upper bounds utilized by the funds on their different
assets over the course of the study. With the estimates for
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expected financial returns, financial covariances, and ESG-
scores, we apply CIOS to compute the nondominated sur-
face of each model. To obtain portfolios upon which to base
our comparisons, we assume investors with different risk
tolerances A, and A; with regard to financial returns and
ESG-scores, respectively. Specifically, we employ the four
different financial risk tolerances A, € {0, 1/3, 1,2} and the
four different risk tolerances with respect to the ESG-scores
A5 €{0,1/60, 1/20, 1/10}. Notice that the values of A; are
20 times smaller than the values of A,. This is motivated
by the fact that the ESG-scores, which range from 0 to
100%, are on average about 20 times greater than monthly
financial returns. The choices of A, and A5 yield a total of
16 combinations of the two risk tolerance parameters. After
extracting from the nondominated surfaces the portfolios
implied by the different risk tolerance parameter combina-
tions, we calculate the one-month out-of-sample financial
returns z5° and ESG-scores z5° for each of the 16 portfolios
of each model, as well as for the 1/N portfolio and actual
portfolios of the different funds.

Because DeMiguel et al. (2009) show that none of the
portfolio strategies considered in their paper was able to
statistically outperform the naive diversification 1/N port-
folio, we adopt the 1/N portfolio strategy as our benchmark
strategy. For comparing our tri-criterion strategies against
the benchmark 1/N strategy, we employ five familiar mea-
sures (the first two modified because of the sustainability
criterion), namely certainty-equivalent return, reward-to-
variability ratio, risk, Sharpe ratio, and turnover.

The value of the objective function of the optimization
problem (P,) reflects an assessment of an investment strat-
egy according to the preferences of our tri-criterial investor.
Following the logic in Tobin (1958) for mean-variance
analysis, it is easy to show that the value of the objec-
tive function is approximately the certainty equivalent of an
investor whose traditional quadratic utility function has an
additional linear term. In this way, we define the certainty-
equivalent (CEQ) return for our tri-criterial investor as

CEQ:=—07 + 1,25 + A25,

where A, and A, are the risk tolerance parameters discussed
earlier, z3° and 012 denote the mean and variance of the
out-of-sample excess financial returns, and z$* denotes the
mean of the out-of-sample ESG-scores. To test whether
the out-of-sample CEQs of two strategies i and j are sta-
tistically distinguishable, we apply one-sided tests with
hypotheses H,: CEQ; — CEQ; =0 and H,: CEQ; — CEQ;
> 0.8 The CEQ furnishes (approximately) the excess risk-
free rate of return an investor is willing to accept over an
uncertain payoff. Therefore, the higher CEQ the more supe-
rior the portfolio performance.

Our second performance measure extends the original
Sharpe (1966) ratio, as a reward-to-variability ratio (R/V),
to our third criterion. We take a broader view of “reward”
for a socially responsible investor. As the optimization

problem (P,) indicates, in addition to financial return, an
investor also gathers utility from a portfolio’s ESG-score.
Therefore, our term for reward is 7% = A,25° + A;z§° and
the ensuing ratio is

Applying the approach suggested by Jobson and Korkie
(1981b) and the correction of Memmel (2003) to test
whether the out-of-sample R/V's of two strategies i and j
are statistically distinguishable, we again apply one-sided
tests but with hypotheses Hy: (R/V); — (R/V); =0 and
H,: (R/V),—(R/V);>0.?

Third, we compute the financial risk as the standard
deviation o, for all three strategies and induce statisti-
cal inference by applying the bootstrap test of Ledoit and
Wolf (2011). Again, we conduct one-sided tests but with
hypotheses Hy: (0,),—(0,);=0and H,: (0,); — (0,); <0,
i.e., in contrast to above, we test for lower standard
deviation.

Fourth, for informational purposes, we also state the
classical, strictly financial Sharpe (1994) ratios for each
strategy. To test for differences in the Sharpe ratios, we
apply the Ledoit and Wolf (2008) bootstrap test with
one-sided hypotheses Hy: (z5°/0,); — (z5°/0,); = 0 and
H,: (33/0.); — (33/0.), > 0.

Last, to assess the amount of trading required for each
strategy, we calculate the turnover for each of the 29 mutual
funds as the percentage of the wealth of the whole portfo-
lio that is traded on average between two reporting dates.
Formally, we define for each fund and each trading strategy

T—-1 N

Turnover := —— Z Z(|xj, 1 =X ) (15)

T— t=1 j=1

where T is the number of observations over the different
reporting periods, N is the number of assets in the fund,
X; + is the portfolio weighting on asset j at time 7 + 1
before rebalancing, and x; ,, is the portfolio weighting on
asset j at time 7+ 1 after rebalancing.

6.3. Results

With FUND defined to be the actual portfolios held by the
different SR funds on the different reporting dates, we now
compare the empirical performances of FUND and those
developed by CIOS (now called CIOS for short) to the
naive 1/N asset allocation strategy. In particular, we dis-
play the out-of-sample CEQs (Tables 1 and 2), the out-of-
sample R/V's (Tables 1 and 2), out-of-sample risk (Tables 1
and 2), out-of-sample Sharpe ratios (Tables 1 and 2), and
mean turnovers (Table 3). The strategies being evaluated
are listed in columns, while the rows correspond to the dif-
ferent preference parameter setups.

6.3.1. Certainty Equivalent and Reward-to-Vari-
ability. For Tables 1 and 2, we apply one-sided tests to
compare the CEQs and the R/V's of FUND and CIOS with
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the benchmark 1/N portfolio strategy.'® Column one con-
tains the risk tolerance parameter A, with respect to sustain-
ability and column two contains the classical risk tolerance
parameter A, with respect to financial returns. The results
are for the 16 different combinations of A; and A,.

Because they are given extrinsically, the portfolio com-
positions of FUND do not depend on the risk tolerances
A, and A;. However, the values of the CEQ and the
R/V do. Generally, varying A, while keeping A; fixed
implies a change in financial risk tolerance. Consequently,
the increase in FUND’s CEQs with increasing A, is due to
the definition of CEQ as the risk-free rate of reward that
an investor is willing to take instead of a stochastic excess
payoff. The cases of A; =0 imply that ESG-scores are not
taken into account in the investment decision. In particular,
an investor with (A5, A,) = (0, 0) considers the minimum-
variance portfolio as her optimal asset allocation as she
does not care about expected financial returns and ESG-
scores, and therefore has an R/V ratio of zero for every
portfolio policy. For all parameter setups besides A; =0,
the CEQs and R/Vs of FUND are significantly higher than
the CEQs and R/Vs of the 1/N benchmark strategy (all
p-values are less than or equal to 1%). Summarizing the
results for FUND, there is strong empirical evidence that
the performance of the professionally managed portfolios
outperforms the naive 1/N strategy.

Continuing, we discuss the results of the portfolio strate-
gies calculated as optimal solutions of CIOS. We run CIOS
for every SR mutual fund at every reporting date from
the CRSP database and compute the ESG-scores and the
means and variances of the out-of-sample excess returns
of each of the optimal solutions resulting from the 16 dif-
ferent risk tolerance combinations. Again, in the cases of
A; =0, both performance measures depict an investor with
only financial interests. Thus, in this setup, the CIOS port-
folios coincide with the standard Markowitz mean-variance
portfolios. As Table 1 indicates, the CIOS portfolios do not
outperform 1/N portfolios in these cases, irrespective of the
financial risk tolerance. This is in line with the bulk of stud-
ies, which show that Markowitz-like optimization performs
poorly out-of-sample (see Frost and Savarino 1986, 1988;
Jobson and Korkie 1980, 1981a; Jorion 1986; Michaud
1989; Best and Grauer 1991; Black and Litterman, 1992).

However, the results indicate that there are two differ-
ent groups of (A5, A,) combinations. On one hand, there
is no statistical evidence on either performance measure
that CIOS portfolios outperform the 1/N benchmark for
small A; and high A,, for example when A, € {0,0.017}.
On the other hand, with increasing A; (A5 € {0.05,0.10})
(and/or decreasing A,) there is empirical evidence that
CIOS portfolios outperform the naive 1/N strategy in
terms of CEQ and R/V. Considering the ratio of A;/A,,
we find strong empirical evidence that CIOS portfolios
outperform the naive 1/N portfolios for ratios greater than
or equal to 0.05, which corresponds to financial return being
weighted equally with ESG-score in the objective function.

The results demonstrate that the portfolios calculated by the
tri-criterion algorithm are more appropriate to the prefer-
ences of tri-criterial investors and outperform standard port-
folio strategies based on financial quantities only.

We now turn our attention to whether there is statis-
tical evidence that CIOS outperforms FUND. In short,
the findings, which are reported in Table 2, tend to con-
firm that there is. There is strong statistical evidence that
CIOS outperforms FUND in the cases of (A; =0.10, A, €
{0,0.333,1}), (A; = 0.05, A, € {0,0.333}), and (A; =
0.017, A, = 0) for both performance measures, respectively.
Thus we conclude that tri-criterion optimization does sig-
nificantly improve the performance of portfolio composi-
tions when our third criterion, in addition to financial return
and financial variance, is taken into account.

6.3.2. Risk and Sharpe Ratio. From a strictly finan-
cial point of view, investors are interested in the risk and
the Sharpe ratios of different investments. Considering risk,
it is obvious from Table 1 that the professionally man-
aged funds show significantly lower risk than the naive
1/N diversification. Also, most CIOS portfolios show sig-
nificantly lower risk. As Table 2 indicates, when comparing
the risk of the CIOS portfolios to the risk of the profession-
ally managed funds, there is no clear evidence that either
strategy yields lower risk.

Regarding the Sharpe ratio as performance measure, the
professionally managed funds again significantly outper-
form the naive 1/N diversification. In this case, how-
ever, the CIOS portfolios consistently exhibit lower Sharpe
ratios. This is because the Sharpe ratio considers only
financial aspects, i.e., mean and standard deviation of the
returns, whereas the CIOS portfolios are hand-tailored
to include a further objective besides these two finan-
cial quantities. Also, the cases of A; = 0 highlight, sim-
ilar to the reward-to-variability case, the poor out-of-
sample performance of classical standard Markowitz opti-
mization. Yet, while we stick to a parsimonious mean
and covariance estimation, we point out that our tri-
criterial model can also incorporate improved estimators as
those recently suggested by DeMiguel et al. (2012) and
Disatnik and Katz (2012).

6.3.3. Turnover. Notice that according to (15), turn-
over is defined individually for each mutual fund. However,
because turnover does not vary much among the mutual
funds, we display only the average of the 29 calculated
turnovers for each strategy as a function of (A5, A,) setup
in Table 3. For the 1/N strategy, we report only average
turnover. For all other strategies, we also put the respective
average turnover in relation to the average turnover of the
1/N strategy. Clearly, the turnover of the 1/N strategy and
FUND do not depend on the risk tolerances of the investor.
Hence, these strategies report the same turnovers in all rows
of Table 3.

The 1/N strategy generates a considerably higher aver-
age turnover than found in the recent literature. For exam-
ple, DeMiguel et al. (2009) report turnover rates between
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observations. This leads to an increase in turnover, as newly
available assets need to be purchased entirely (in a quantity
of 1/N times the fund’s total wealth) and obsolete assets
need to be sold entirely at each reporting date.

For the actual mutual fund compositions from the CRSP
database, we compute a turnover rate of 49.98%, which
is 1.3 times higher than the turnover of the 1/N strategy.
For CIOS portfolios, we compute turnover rates between
62.75% and 73.98%, which are 1.64 and 1.93 times
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Table 2.  Comparison of performance (CIOS vs. Fund).
CEQ Reward-to-variability Risk Sharpe ratio
Ay A, Fund CIOS Fund CIOS Fund CIOS Fund CIOS
0.000 0.000 —0.0042 —0.0033 0.0000 0.0000 0.0647 0.0570™ 0.0000 —0.0178
(0.19) (0.50) (0.00) (1.00)
0.333 —0.0025 —0.0051 0.0258 —0.0158 0.0647 0.0638 0.0258 —0.0474
- (0.98) (0.99) (0.30) (1.00)
@@ 1.000 0.0008 —0.0061 0.0773 —0.0165 0.0647 0.0703 0.0773 —0.0165
56 (1.00) (1.00) (1.00) (1.00)
% g 2.000 0.0058 —0.0057 0.1546 —0.0045 0.0647 0.0733 0.1546 —0.0023
85 (1.00) (1.00) (1.00) (1.00)
_“C’ = 0.017 0.000 0.0071 0.0101*** 0.1740 0.2303*** 0.0647 0.0586™** 0.1740 0.0227
=4 (0.00) (0.00) (0.01) (1.00)
e c 0.333 0.0087 0.0089 0.1997 0.2082 0.0647 0.0600*** 0.1997 —0.0120
>3 (0.44) (0.29) (0.00) (1.00)
o= 1.000 0.0121 0.0042 0.2513 0.1301 0.0647 0.0687 0.2513 —0.0254
5o (1.00) (1.00) (0.98) (1.00)
8= 2.000 0.0171 0.0034 0.3286 0.1189 0.0647 0.0725 0.3286 —0.0101
= (1.00) (1.00) (1.00) (1.00)
= % 0.050 0.000 0.0296 0.0376** 0.5219 0.6793*** 0.0647 0.0608* 0.5219 0.0345
N (0.00) (0.00) (0.05) (1.00)
8-'§ 0.333 0.0313 0.0378*** 0.5477 0.6858"** 0.0647 0.0605*** 0.5477 0.0205
8 ® (0.00) (0.00) (0.00) (1.00)
02 1.000 0.0346 0.0331 0.5992 0.5720 0.0647 0.0654 0.5992 —0.0045
=R (0.90) (0.92) (0.65) (1.00)
oo 2.000 0.0396 0.0270 0.6765 0.4512 0.0647 0.0709 0.6765 —0.0113
23 (1.00) (1.00) (1.00) (1.00)
a
-2 c 0.100 0.000 0.0634 0.0791*** 1.0438 1.3328*** 0.0647 0.0623 1.0438 0.0304
5.9 (0.00) (0.00) (0.14) (1.00)
T 9 0.333 0.0650 0.0797*** 1.0696 1.3469*** 0.0647 0.0620* 1.0696 0.0290
TE (0.00) (0.00) (0.07) (1.00)
© 8_ 1.000 0.0684 0.0778*** 1.1211 1.2977* 0.0647 0.0630 1.1211 0.0129
o5 (0.00) (0.00) (0.12) (1.00)
'% % 2.000 0.0734 0.0706 1.1984 1.1068 0.0647 0.0679 1.1984 0.0024
S o (0.99) (1.00) (0.96) (1.00)
=
'g g Notes. We display the CEQ and the reward-to-variability, risk, and Sharpe ratio for the asset-allocation strategies Fund and CIOS for 16 param-
eter setups in this table. Moreover, we outline the calculated p-values according to the one-sided test whether the performance measure of
o ©
= £ the CIOS strategy does not differ from the Fund strategy against that the performances measures outperform the Fund strategy.
S *, **, **denote significance at a 10%, 5%, and 1% level, respectively.
E -c
[<2X3]
28
s.£
Qo
= = 1.6% and 3.1%. This can be attributed to two things. First, higher than the 1/N strategy. Over all CIOS strategies,
) g DeMiguel et al. (2009) calculate monthly turnovers. Our the minimum-variance (A, = A; = 0) generates the lowest
55 turnovers are for the periods between CRSP reporting dates, turnover rate of 65.90%. However, there is no clear rela-
; £ which yields longer periods of typically 2-3 months, and tion between the turnover rate and risk aversions A, and A;.
sg up to 12 months for certain funds. Second, DeMiguel et al. Compared with the numbers reported in DeMiguel et al.
g 2 (2009) use the same fixed universe of available assets at all (2009), the increases associated with the CIOS strategies
|.z|_ S times. Our available assets are given by the mutual funds appear modest. This stems from the fact that we impose
=< holdings at each reporting date and therefore vary between

restricted lower and upper bound investment rules for each
asset, impeding massive long and short selling.

7. Computational Experience and
Concluding Remarks
Table 4 reports the solution results generated by CIOS for

certain funds from the previous section with different num-
bers of securities on an Intel Core 17-2600 (3.40 GHz)
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Table 3. Average portfolio turnover of all funds.
Turnover (%) Rel. turnover
Ay A, 1/N Fund  CIOS  Fund CIOS

0.000 0.000 38.36 49.98  65.90 1.30 1.72
0.333 3836 4998 73.44 1.30 1.91
1.000 3836 4998  63.50 1.30 1.66
2.000 3836 4998  69.50 1.30 1.81

0.017  0.000  38.36 4998  73.98 1.30 1.93
0.333 3836 4998  73.60 1.30 1.92
1.000  38.36  49.98  62.75 1.30 1.64
2.000 3836 4998  64.96 1.30 1.69

0.050 0.000 38.36 49.98  72.30 1.30 1.88
0.333 3836 4998 73.42 1.30 1.91
1.000 38.36 4998  63.18 1.30 1.65
2.000 3836 4998 64.04 1.30 1.67

0.100  0.000  38.36 49.98  67.70 1.30 1.76
0.333  38.36 4998  72.66 1.30 1.89
1.000 38.36 4998  71.79 1.30 1.87
2.000 3836 4998 7275 1.30 1.90

Notes. The column Turnover reports the average of the turnovers of
all funds for the 1/N strategy, the actual fund compositions accord-
ing to the CRSP database, and the 16 portfolios generated by our
tri-criterion algorithm. The column Rel. turnover puts these numbers
in relation to the turnover of the 1/N strategy.

machine. Again, only the full investment constraint (4) and
the lower and upper bound constraints listed in the table
have been used.

Let us look at the n =489 line in the table, which cor-
responds to the fund with the highest number of securi-
ties in our sample. The 54.73 seconds is “outer time,” the
time to read in problem data, run the algorithm, and com-
pute an initial graph of the nondominated surface, in this
instance Panel (a) in Figure 6. Follow-on graphs, such as in
Panel (b) in Figure 6, take almost negligible time. The next
four entries state that of the 17,387 stability sets, 15,966
would be gray if painted as in Figure 2, 1,019 would be
light gray, and 402 would be white. Although a stability set
can have any number of vertices (we’ve never seen more
than 10), in this problem the 17,387 stability sets have on

average 3.97 vertices per stability set. Noting that our tests
show similar numbers of vertices with the other problem
sizes, this validates the “walking around the polyhedron”
strategy adopted in §4 as opposed to solving a linear pro-
gram for each constraint of (14).

In Figure 6, the nondominated surface of the problem
with n =489 stocks is displayed in two ways: with the vari-
ance criterion expressed as itself in the first case and with
the variance criterion expressed in terms of standard devi-
ation in the second. Both panels are projections as in Fig-
ure 4. It is typical that the majority of the problem’s 15,966
platelets are very small and are located near the minimum-
variance portfolio. The financial interpretation is that many
different subsets of the asset universe can constitute a near-
minimum-variance portfolio while being nondominated for
financial returns and ESG-scores. Notice the steepness of
the nondominated surface in the minimum variance region.
This observation typically is less dramatic when the vari-
ance criterion is expressed in terms of standard deviation,
as in Panel (b) of Figure 6.

An advantage of the multiparametric approach is that all
the information needed to portray a nondominated surface
is obtained in one run. This is to be compared against cre-
ating a dispersion of points in nonnegative A,, A; space and
then solving (P,) for each one—a laborious approach that
would be difficult to recommend. This is because while
necessary only to sample over the 6, =2 and §, = 1
gray and light gray stability sets (as in Figure 2), A,, A; >
0 space is unbounded, and one would have no way of
knowing where these areas end and the white ones begin.
This would lead to large numbers of (P,) optimizations,
many of which would probably be wasted, while still
not able to achieve the precision of the approach of this
paper as depicted in the figures of this and the previous
section.

Thus, we have shown a full a posteriori generalization of
Markowitz portfolio selection to the tri-criterion situations
of formulations of (2) or (3). We have also demonstrated
the computational feasibility of our algorithm and how the
tri-criterion model can be of significance for investors.

Table 4. Computational details for certain funds with different numbers of securities.
CRSP fund info Bounds (%) Stability sets
n Port. no. Rep. date £ 1) CPU time (secs) 6,=0 o,=1 0,=2 Total Avg. num. vertices
50 1000954  2005-03-31 0.269  4.376 0.92 112 256 2,229 2,597 3.95
102 1000653  2005-09-30  0.003  3.217 6.78 292 768 6,934 7,994 3.97
204 1002107  2007-06-30  0.032  5.860 5.47 89 211 4,932 5,232 3.96
350 1001912 2007-09-30  0.014  3.827 27.10 454 1,163 13,041 14,658 3.97
489 1001912 2009-08-31 0.012  3.971 54.73 402 1,019 15,966 17,387 3.97

Notes. We display the number of securities n, the CRSP portfolio number and reporting date, the lower and upper bounds for each security,
the CPU times, the numbers of stability sets by the dimensionality of their criterion space images, and the average numbers of vertices per

stability set.
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Figure 6. Projection of the nondominated surface of the 489-security fund.

(a) Variance criterion expressed in terms of itself.

(b) Variance criterion expressed in terms of
standard deviation.
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Ret (%) Ret (%)
40+ 40
35+ 351
30+ 30 +
25+ 25+
204 20+
15+ 15+
LO T 10 T
05+ 05+
j j j j +— Var

0.003 0.006 0.009 0.012 0.015

Endnotes

1. That is, in the form of the parabolic functions that define each
of the curved arcs.

} } } — Std (%)

9. We determine the p-values by calculating the standard normal
distributed test statistic

=0 =
O-jzl - U'iZj

2. Data source: The constituents of the S&P 1500 SuperCom- RV = J5 an
posite Index used herein are VMC, WWY, GIS, TRW, and SLE ith

(stocks were randomly selected). Monthly returns of these con- wit

stituents from January 1993 to December 2002 were taken from 1 2 1o 5 oo, T2,

the Center for Research on Security Prices (CRSP) via http://wrds U= M <20-" 7 =20,0;0:,;+ 2% Y + 249%™ 0.0, Tij)
.wharton.upenn.edu. (18)

3. The list is available online at the US SIF website at http://ussif
.org/resources/mfpc/screening.cfm.
4. The window length of 120 months is in line with the recent
literature on mean-variance asset allocation, e.g., DeMiguel et al.
(2009), DeMiguel and Nogales (2009), Kirby and Ostdiek (2012).
5. By returns, we mean the excess returns (net of the 90-day
T-Bill rate).
6. If the estimated correlation matrix is not positive semidefinite,
we use the method of Qi and Sun (2006) to calculate the nearest
symmetric positive semidefinite correlation matrix. In fact, after
calculating these correlation matrices, they all turned out to be
actually positive definite.
7. Imposing these constraints also helps reduce sampling error,
see e.g., Jagannathan and Ma (2003), Frost and Savarino (1988).
8. Let z*, Z;?S, g, O; and o; j denote the calculated means,
variances, and covariances of the out-of-sample excess rewards
of two different strategies i and j over a sample of size M.
We evaluate the p-values of the differences using the asymptotic
properties of the test statistic f(¥) = (A,(Z5); + A3(23); — 0?) —
(M (Z8); + A3(23); — a7) for two different portfolio strategies
i and j and the estimators for means and variances pooled
in v =(1,(25); + A3(25);, M2(23); + A3(25Y) a7, O'jz) following
Greene (2002), who shows

v

VM) - F(v)) ~N(o, of’ 3_f> with

10. The index of the 1/N portfolio strategy in the notation of the
one-sided test hypotheses in §6.2 is “j.”
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