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Abstract

A finite number of vertically differentiated firms simultaneously compete for and screen

a continuum of agents with private information about their ability or their willingness to

pay for quality. Firms compete through menus of wage-effort or transfer-quality pairs. In

equilibrium, higher firms serve higher segments of types. In each segment, the allocation is

distorted downward from the efficient level on types below a threshold, but upwards above.

The equilibrium approaches the competitive limit as the number of firms grows large. The

welfare effects of private information may be reversed from the monopoly setting. While payoffs

in this game are neither quasi-concave nor continuous, we show that if firms are sufficiently

differentiated, then any strategy profile that satisfies a simple set of necessary conditions is an

equilibrium, and we show that an equilibrium exists.
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1 Introduction

Screening is an important feature of labor and product markets, and is a pervasive topic in

economic theory and applied work. Indeed, the principal-agent model with adverse selection

developed in Mussa and Rosen (1978) and Maskin and Riley (1984)–where a monopolist screens

a consumer who has private information about his valuation by providing different quantities or

qualities of a good at different prices–is a workhorse in the economics of information. At the

other extreme is the competitive screening model of Rothschild and Stiglitz (1976) and variations

thereof–where identical insurance companies screen consumers who differ in and have private

information about their riskiness.

Many markets with screening do not fall at these extremes. Instead, a small number of

heterogeneous firms both screen their own customers and compete for them in the first place.

Examples abound in health care, labor, and product markets. For example, luxury handbag

manufacturer Saint Laurent must screen among its customers. That is, as it chooses the quality

and price of any given handbag in its line-up, it must consider the effects of these choices on the

sales of its other handbags. But, unlike a monopolist, these choices by Saint Laurent also affect

how successfully they compete with Hermès above them and Coach below. Indeed, almost all

consumer-packaged-goods firms sell multiple products at different quality and price points, but

do so in an environment with heterogeneous competitors. Similarly, firms that compete for talent

often face the problem of screening their workers into appropriate roles, but also face competition

with vertically differentiated rivals.

Although there are some notable attempts in the literature (see the review below), the lack

of a standard workhorse for this case has hindered progress. This is true both for theoretical

work–where oligopolistic screening is not well understood–and for recent empirical work–which

estimates models of insurance and product markets with an oligopolistic structure but where

informational frictions and screening take a restrictive or reduced form.

This paper is an attempt to fill this gap. We develop a natural extension of the Mussa and

Rosen (1978) and Maskin and Riley (1984) principal-agent paradigm to an oligopolistic setup with

a finite set of vertically differentiated firms and a continuum of agents with private information.

For definiteness, we cast the analysis as a labor market, where workers have private information

about their ability, but the model can be reinterpreted as a product market where customers have

private information about their willingness to pay for quality or quantity (with exclusive dealing).

We provide necessary conditions that equilibria must satisfy and then show that, under some

economically interpretable assumptions, these conditions are sufficient, a result that also allows

us to prove equilibrium existence. We shed light on the properties of the competitive limit of the

model as the number of firms grows large, and study the welfare effects of asymmetric information.

In the model, firms differ in the technology by which they transform a worker’s effort into rev-
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enue. Consistent with vertical differentiation, these technologies are ordered by a single-crossing

property, so firms with higher index have a higher marginal revenue for effort.1 The technology of

each firm is additive over all the workers hired (no peer effects). On the other side of the market

there is a continuum of workers with quasilinear preferences who differ in their marginal disutility

of effort. Ability is a worker’s private information, and can take on a continuum of values.

Competition is modelled as the following two-stage game. In stage one, firms simultaneously

post menus of contracts, where a menu consists of wage-effort pairs, or, equivalently, utility-effort

pairs, one for each type, and where these menus can be restricted to be incentive compatible. Thus,

by assumption, we rule out contracts that, for example, condition on the offers of other firms. This

is not without loss of generality, but both adds tractability and seems the economically reasonable

assumption in most settings.2 In stage two, each worker chooses the firm and the contract from

its menu that suits him best, resolving ties across firms equiprobably. By folding the workers’

sequentially rational behavior into the model, we analyze the problem as a simultaneous game

among the firms and then study the properties of its pure strategy Nash equilibria. A challenge

we face is that this game has an infinite dimensional strategy space and discontinuous payoffs.

We first derive a set of properties that any equilibrium exhibits. Several of these necessary

conditions are closely related to ones that Jullien (2000) derives in the case of single principal who

faces a type-dependent participation constraint, where in our setting, this constraint is determined

by the most attractive contract the worker of any given ability faces from an alternative employer.

We provide alternative proofs for these conditions because some details of our setting are different

(in particular at ties) and because we think there is value in elementary proofs that avoid optimal

control tools. We will discuss this connection in detail below.

Since our model has private values–the type of a worker enters the firm’s profit only through

the contract chosen by the worker–we show that in equilibrium firms make positive profit on each

worker they hire. Any equilibrium also satisfies no poaching : if a firm does not hire a type, then

imitating the menu offered by the incumbent to that type yields negative profit to the imitating

firm. An implication is that the worker is matched to the firm that most efficiently uses the effort

level he exerts. This does not imply that the equilibrium match is efficient: more total surplus

may be generated if the worker were matched to a different firm at a different effort level.

Since our model embeds a nontrivial matching problem between firms and workers, an impor-

tant task is to study equilibrium sorting patterns. We show that any equilibrium entails positive

sorting : firms with a higher index hire intervals of workers with higher types. For each firm, there

is a region of types that are hired exclusively by that firm. If firms are not very differentiated,

1A model with both vertical and horizontal differentiation would also be of great interest, but is beyond the
scope of this paper.

2For more on general mechanisms, see Epstein and Peters (1999) and Martimort and Stole (2002). In particular
by Corollary 1 in Martimort and Stole (2002), there is no further loss of generality in assuming the firms simply
post menus as they do here. See also the “Extended Example” in Martimort and Stole (2002), Section 5.
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then adjacent firms may also tie on an interval of types at the boundary between successive firms.

If they do so, then they offer a pooling contract to those types and competition drives profits on

those types to zero.

Equilibrium sorting highlights the dual role that menus play in our model: they are used to

screen internally the types of the workers hired, and they also serve to attract the right pool of

types for the firm. Positive sorting is straightforward in the complete information version of our

model due to the supermodularity assumptions and the absence of peer effects within firms. It is

more subtle under incomplete information due to the incentive compatibility constraints.

Positive sorting proves fundamental in the analysis of the properties of equilibrium menus

and distortions. Since firms hire intervals of types, we can focus on each firm solving for the

optimal endpoints of the interval hired, and the optimal menu given those endpoints, subject to

the endogenous type-dependent participation constraints induced by the menus offered by the

other firms. On the interval of types for which any given firm is the uniquely best choice in

equilibrium, the menu offered by the firm satisfies internal optimality–the effort level of each

type is pinned down by a condition that generalizes the standard trade off between efficiency

and information rents. This generalization reflects both that the firm serves only a segment of

the market and that it is in general competing with firms both below and above them in the

marketplace, and so faces more than one binding participation constraint. In addition, each firm

must satisfy optimal boundary conditions that determine the endpoints of the relevant interval of

types. These conditions reflect the trade off that changing the effort given to a boundary type

alters the profits earned on that type, and also attracts or loses some marginal types.

The internal optimality and optimal boundary conditions yield a clear-cut pattern of equi-

librium distortions. The highest firm distorts effort downwards for all types. This reflects the

standard intuition that lowering the effort of any given type employed flattens the surplus function

and hence lowers the information rents of higher types. In turn, the lowest firm distorts effort

upwards for all types. This follows because for the lowest firm, the outside option (of working for

someone else) binds only for the highest type of worker hired. Raising the effort level of any given

type thus steepens the surplus function, which lowers the information rents of all lower types.

Consider next a middle firm. Here, the key is that, holding fixed the utility of the lowest

and highest worker the firm employs–the two types on which the participation constraint will

turn out to bind–the firm can lower the information rents of workers in the middle of the interval

employed by simultaneously lowering the effort of low types employed and raising the effort of high

types employed. Doing so effectively makes surplus more convex, and, holding fixed the utility at

the endpoints, this lowers the information rents of middle types. Hence, the firm distorts effort

downwards on workers below a threshold, and upwards for those above.

In an interesting precedent dating to 1849, Dupuit (1962) observes that a rail company provides

roofless carriages in third class to “frighten the rich.” As confirmed by the extensive literature on
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screening, the low quality third-class car helps to sell second class seats at a higher price. But

Dupuit goes further. The first-class passenger receives a “superfluous” level of quality. In the

standard model, this is not so: all quality distortions are downward. But, in our model, if the

rail firm is a middle firm that competes for its richest customers against, for example, a private

carriage, then the high type served does indeed receive an inefficiently high level of service. From

their point of view, the extra quality is nearly worth the extra cost, and so the extra cost can

be largely reflected in the price. But, the superfluous extra quality–with the extra price implied–

reduces the temptation for the second-class passenger to ride first, and this also helps to reduce

the information rents of the second-class passenger.

Another implication of the analysis is that, when firms are sufficiently differentiated, there are

effort gaps at the boundaries between adjacent firms. This is testable: in our setting, we should

observe better firms having strictly more productive workers. Similarly, we should observe that

products of certain intermediate qualities are simply not offered in some markets.

Next, we study the behavior of our oligopoly model as the number of firms grows large and the

vertical differentiation between successive firms becomes small. We show that each firm’s profit

is bounded above by a constant that goes to zero, as in the competitive limit. In turn, the utility

that each type receives in equilibrium converges to the surplus in the efficient match and effort

level, again as in the competitive limit.

We finish our examination of the implications of necessity by comparing the outcome of the

oligopoly market with and without asymmetric information. In a monopoly, it is unambiguous

that full information hurts the worker by destroying information rents, and helps the firm, which

gains back the information rents, and further can now induce efficient effort. Here, we have

a surprising reversal, driven by the new force that under full information a firm can now add a

wage-utility pair designed to poach the workers of another firm without worrying about potentially

attracting their own existing workers. This competitive force dominates at least for types where

the second most efficient firm for the type is nearly as efficient as the first, and thus full information

helps the worker and hurts the firm.

We then turn to the analysis of sufficient conditions for an equilibrium and to the question

of equilibrium existence. We show that if firms are differentiated enough–a condition we call

stacking–then first, any strategy profile that satisfies positive assortative matching plus the inter-

nal optimality and optimal boundaries conditions is (essentially) an equilibrium; and, second, an

equilibrium exists. We view these results as a central contribution of the paper, since first, they

are the most challenging technical problems that one must tackle in this setting, second, they are

fundamental for economic applications of our model, and third, they are novel in the literature.

The technical challenges in these results derive from the fact that this is a game whose payoff

functions are neither continuous nor quasi-concave in the strategy profile. The failure of continuity

comes from standard tie-breaking considerations: A firm that is offering a little less surplus than
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its competitors never wins, while one that offers a little more does so always. The failure of

quasi-concavity comes from the phenomenon that two strategies for a given player may earn the

same payoff, but hire different sets of workers. Because of this, a convex combination of these two

strategies will typically hire a different set of workers than either of the two, and so have payoff

that does not relate to either of them in a tractable fashion.

The property that payoffs are not quasi-concave in the strategy chosen makes the fact that

our necessary conditions are also sufficient both surprising and non-trivial. In addition, the

lack of quasi-concavity also makes convexity of each player’s best responses non-obvious, which

complicates the use of off-the-shelf existence results.

The first step of our attack is to restrict attention to menus that yield non-negative profits

on all types, and for which the induced effort levels are within certain bounds that our necessary

conditions suggest are reasonable. We show that under stacking, if other firms choose menus

with these two properties, then each firm will best respond with menus that also satisfy them.

More importantly, stacking then implies that the resulting strategy profile has positive sorting

and that the optimal boundary conditions imply that no poaching holds as well, which deals with

inframarginal types.

The second step is to effectively reduce the problem of finding a best response to two dimen-

sions. We show that under the stated properties, each firm can restrict attention to choosing the

upper and lower boundaries of the interval of types hired, with the rest of the menu pinned down

by internal optimality. Using stacking, we show that payoffs are continuous in this parameteriza-

tion. A direct implication is that the set of best responses is nonempty for each firm.

Even viewed as a two-dimensional optimization problem, we still face significant technical

challenges. Our third key step is an exercise in topography. Fix the behavior of a firm’s opponents,

and consider a landscape given by the payoff to the firm, where the choice of the bottom endpoint

is a choice from west to east, while the choice of the top endpoint is a choice from south to north.

This landscape has valleys, and indeed, local minima. But, when the other firms play strategies

from the previously defined set, we show that the firm has available positive profit strategies. So,

consider the “islands” where the payoff is positive. These islands have terrain that is kinked,

because the participation constraint–given by the utility offered to each type by the toughest

competitor of the firm–has kinks at each type where the relevant opponent changes. Nor need

payoffs be quasi-concave even on a given island.

We show first that on such islands, any place where the first order conditions are satisfied

is also a local maximum, so that any local minima are underwater. Next, fix any position from

south to north (a choice of the top endpoint) such that there is some land at that latitude. We

show that this defines a single interval of latitudes.

Fix some such latitude, and consider moving west to east. We show that there is a single

interval where one is above water, and that payoffs are strictly quasi-concave as one moves from
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west to east in this interval. Hence there is a unique highest point at each latitude. But then, there

is a single island, and there is a unique path running from the south the north end of the island

with the property that each point along the path is the highest point at that latitude. Finally, we

show that payoffs are strictly quasi-concave as one moves northward along this ridge. It follows

that the island has a unique peak, and that any point that satisfies the first-order conditions–the

optimal boundary conditions–along with the positive profit condition, is in fact that maximum.3

Our sufficiency result follows from these steps. Under stacking, if a strategy profile satisfies

positive sorting, internal optimality, and the optimal boundary conditions, then it pins down

uniquely the interval of types hired by each firm and the optimal effort function. The endpoints

of this interval are a local maximum in the reparameterized problem by the optimal boundary

condition. But then, since the reparameterized problem has a unique optimum, each player is

in fact best-responding. And outside the interval of types hired by each firm, one can easily

modify the menu to comply with the bounds on effort and positive profits assumed, completing

the construction of an equilibrium strategy profile.

It remains to show that an equilibrium exists. To this end, we further restrict attention to

a class of strategies that also satisfies a natural bound on the slope of the effort function offered

by each firm, and a natural lower bound on the utility that is offered. We show that if other

firms use strategies that satisfy these conditions, then each firm has a best response with the

same properties. This class of strategies is sufficiently well-behaved to permit the application of a

standard fixed point theorem, delivering existence. In particular, because we have shown that for

any given behavior of its opponents, the firm has a unique optimal interval served, and because

internal optimality ties down what is happening on that interval, any two best responses will

differ only in inessential ways, and the set of such best responses will be convex.

The next section reviews the literature. Section 3 describes the model. Section 4 derives the

necessary conditions and their implications. Section 5 studies quantity discounts, the competitive

limit, and the welfare effects of asymmetric information. Section 6 focuses on sufficiency and

existence, presenting the main results and describing the main steps of the proofs. Section 7

concludes. Appendices A and B contain all omitted proofs as well as subsidiary lemmas.

2 Related Literature

The paper is clearly related to the huge literature on principal-agent models with adverse selection,

as in Mussa and Rosen (1978), and Maskin and Riley (1984), and the host of papers that build on

them (see Laffont and Martimort (2002) for a survey). It is more related to the small literature on

3The reader may wonder why we did not simply establish that the relevant function is strictly concave at any
critical point. First, our function fails this property–there can be local minima “under water.” Second, in R2 this
property is not enough. For example (see Chamberland (2015), pp. 106–108), f(x, y) = −(x2− 1)2− (x2y−x− 1)2

has only two critical points, one at (−1, 0) and one at (1, 2), where both are strict local (indeed global) maxima.
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oligopoly and price discrimination under adverse selection, nicely surveyed by Stole (2007). The

most relevant related papers are Champsaur and Rochet (1989), Spulber (1989), Stole (1995), and

Biglaiser and Mezzetti (1993). Finally, since competition makes each agent’s reservation utility

endogenous and type-dependent, the paper is related to the general analysis of the principal-agent

problem with adverse selection and type-dependent reservation utility in Jullien (2000).

Champsaur and Rochet (1989) analyze a two-stage game where two identical firms choose

intervals of qualities they can produce, and then in the second stage offer price schedules to

consumers. The two-stage nature of their model gives scope for the firms to cede parts of the

market before price competition takes place, giving very different underlying economics.

Spulber (1989), working in a Salop (1979) circular model of horizontal differentiation, con-

siders screening on quantities. The relationship between his analysis and ours is not that close.

In particular, his surplus schedule has the same structure as in monopoly, with the intercept

determined by the level of competition.

Closer to our paper is Stole (1995), who analyzes an oligopoly setting with screening in which

a continuum of customers differ along both a vertical and a horizontal dimension, but only one

of them is allowed to be private information, so as to keep the analysis one-dimensional. When

the horizontal differentiation parameter is private information, then the model is an extension of

Spulber (1989), and so again not that close to ours. The more interesting case for our purposes is

when the vertical dimension is private information while the horizontal one is common knowledge,

and where the firms can tailor their offerings to the horizontal type of the agent. In this case,

and under symmetric marginal costs, when there are two firms the market partitions into two

intervals with each firm serving all vertical types of those customers closest to it. Competition

leads the distant firm to offer the product at marginal cost (which is assumed constant across

quality levels), and the optimal menu makes customers up to a threshold type indifferent between

buying from either firm, while above that type the menu is as in the monopoly screening case.

With multiple firms located in a circle, the paper shows how entry reduces distortions in quality.

The critical aspect of Stole’s analysis is that the cost of providing quality is the same across

firms. Because of this, if a customer is closer to Firm 1 than to Firm 2, it is efficient (and the

equilibrium outcome) for Firm 1 to serve the customer regardless of the customer’s vertical type.

But then, the close-by firm faces a standard monopoly screening problem with the outside option

of the customer determined by the best offer the more distant firm can make without losing money.

In contrast, our model has no horizontal type. But, in our product market interpretation, the

cost to providing incremental quality differs across firms. It is presumably relatively expensive for

Ferrari to produce a basic economy vehicle, and prohibitively expensive for Hyundai to produce

a purebred performance automobile. Hence, it is not clear a priori to which firm the customer

should be assigned. Indeed, how customers are matched to firms is at the heart of our analysis.

Biglaiser and Mezzetti (1993) analyze a model with adverse selection and “false moral hazard”
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between two heterogeneous principals who differ in their cost of production, and one agent with

a continuum of possible types. In equilibrium, the principal with lower marginal cost serves an

interval of types higher than a threshold, the other principal dominates the low-type segment of

the market, and both offer the same pooling contract for intermediate types, driving profits to zero

on that segment. Except for the false moral hazard, this is a special case of our setup, for which

we provide a complete equilibrium analysis. Biglaiser and Mezzetti (1993) assume that ties are

broken in favor of the firm that gains the most from that type. This tames payoff discontinuities

at ties in a crucial way, but is less economically natural than equiprobable tie-breaking.

Another important reference is Jullien (2000). He provides a sophisticated analysis of optimal

menus in a principal-agent model with exogenously given type-dependent reservation utility, and

shows that both upward and downward distortions can emerge.4 Holding fixed the behavior of the

other firms, the problem facing each of our firms is similar to the one in Jullien (2000), with the

key difference being that he assumes that if the firm offers the worker surplus equal to his outside

option, then the agent accepts, while in the oligopoly setting, ties are broken equiprobably. This

makes some difference at a technical level. Existence of a best-response is no longer guaranteed,

and it becomes harder to analyze the problem using standard control techniques. Because of

this, we have to work harder than Jullien (2000) to prove, for example, that any optimal contract

implements actions that are continuous over the range of types employed.

Because of the similarity of the underlying problems, those of our necessary conditions that

derive solely from the implications of best-responses on a firm-by-firm basis are the same as those

in Jullien (2000). In particular, our positive profit, internal optimality, and optimal boundary

conditions each has a close relative in Jullien. In turn, those of our necessary conditions which

are derived from the interplay of the incentives of one firm and another are novel. And since

our model with competition endogenizes the agents’ type-dependent reservation utility, we can

provide more clear-cut predictions of the pattern of distortions that must arise in any equilibrium.

In his Theorem 4, Jullien (2000) shows that under one of two conditions (which our model

satisfies) his necessary conditions are also sufficient with full participation, while in Section 4, he

describes how to extend his model to also handle cases where full participation is not optimal. It

is tempting to conclude that, suitably modified, Jullien’s analysis also implies that our necessary

conditions are sufficient for optimality in our setting where each firm hires only some of the

workers. However, as that paper recognizes (p.17, second paragraph), one must be extremely

careful in applying the sufficiency part of Theorem 4 and the ideas of Section 4 at the same time.

To see the issue, the idea of Section 4 in Jullien (2000) is to add an artificial technology that

mimics the action and surplus that the agent gets at his outside option (in our setting, the agent’s

favorite offering from the other firms) but does so at zero profit for the firm. The firm’s profits

are then the maximum of those associated with the original production function and the artificial

4This generalizes the main insight in Maggi and Rodriguez-Clare (1995).
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technology. With this modified production function, the principal is willing to hire all workers,

and so, Jullien argues, we can solve the full participation problem per his original analysis, and

then simply drop workers in the (zero profit) regions where the modification was relevant.

The problem is that the heart of the proof of sufficiency in Theorem 4 (in either variation) is

that the benefit to the firm from effort is concave. But, because the modified profit function in

Section 4 of Jullien (2000) involves a maximum of two functions, it will typically have an upward

kink where it transitions from one function to the other. Hence, the modified production function

is not concave, and Jullien’s analysis does not apply. One major contribution of our paper is to

provide a proof of sufficiency that allows for the fact that with competition, each firm will have

less than full participation. This construction is also at the heart of our existence proof.5

Since our model embeds a nontrivial matching problem between firms and sets of workers,

the paper relates to the literature on many-to-one matching problems with transfers, as in the

seminal papers of Crawford and Knoer (1981) and Kelso and Crawford (1982), who provide con-

ditions under which a competitive equilibrium exists without private information. A recent paper

that sheds light on sorting in matching models with “large” firms (and complete information) is

Eeckhout and Kircher (2018). Our model can be thought of as a matching setting under one-sided

incomplete information, where firms that differ in their technology compete in a noncooperative

fashion for sets of workers with private information about their disutility of effort.6

Finally, there is a large literature on competitive markets with adverse selection in the tradition

of Rothschild and Stiglitz (1976), including some recent contributions that feature imperfect

competition driven by search frictions, as in Guerrieri, Shimer, and Wright (2010) and Lester,

Shourideh, Venkateswaran, and Zetlin-Jones (2018). Our setup differs in two fundamental ways

from that literature: first, we have a small number of heterogeneous firms or principals, and

thus there is oligopolistic competition and a nontrivial sorting problem; and second, unlike the

insurance problem ours is a model with private values. A tighter connection between our approach

and this literature must await the extension of our analysis to common values.

3 The Model and Equilibrium

There is a unit measure of agents (workers) and there are N principals (firms). Agents differ in

a parameter θ ∈ [θ, θ] with cumulative distribution function (cdf) H with strictly positive and C1

5Our results thus also prove sufficiency for a class of type-dependent reservation utilty models not covered by
Jullien’s analyis. In essence, one needs the slope of the type-dependent reservation utility to satisfy a “steep or
shallow” condition similar to our stacking condition. This is natural in our setting if firms are sufficiently vertically
differentiated, and may be natural in others.

6Another example in the literature with positive sorting under incomplete information can be found in Liu,
Mailath, Postlewaite, and Samuelson (2014).
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density h.7 We assume H and 1−H are strictly log-concave.8

Each worker exerts effort a ≥ 0 at cost c(a, θ) = (1−θ)a.9 If type θ exerts effort a and obtains

wage w, then his utility is w − c(a, θ). For simplicity, we assume that the worker has no outside

option beyond choosing among the offers of the various firms. To zero in on competition under

adverse selection, we assume that effort is observable, thus ruling out moral hazard issues.

If firm n pays wage w to a worker who exerts effort a, then the firm’s payoff is Bn(a) − w,

where Bn is C2 and strictly concave in a. We assume that higher indexed firms put higher value

on incremental effort, so that Bn
a > Bn−1

a for all n, or, equivalently, Bn is supermodular in (a, n).

Firms do not have capacity constraints and their technology is additively separable across workers.

Firms simultaneously offer menus of contracts, where Firm n’s menu is a pair of functions

(αn, wn), where αn(θ) is the action required of a worker who chooses Firm n and announces type

θ, and wn(θ) is his wage. Contracts are exclusive: each worker can work for only one firm. As

mentioned in the introduction, we rule out contracts that depend on other firms’ offers.

Let vn be the surplus function for a worker who takes the contract of firm n, given by vn(θ) =

wn(θ) − c(αn(θ), θ). It is without loss that firms offer incentive compatible menus. Thus, a

menu can equally well be described as (αn, vn), where, as is standard, incentive compatibility

is equivalent to requiring that the action schedule αn is increasing and that vn (θ) = vn (θ) +∫ θ
θ α

n (τ) dτ for all θ (so in particular, vn is convex). We will do so henceforth. Let player n’s

strategy set, Sn, be the set of such pairs sn = (αn, vn). The joint strategy space is S = S1×· · ·×SN

with typical element s. Let s−n ∈ ×n′ 6=nSn
′

be a typical strategy profile for players other than n.

The principal’s profit on an agent of type θ who takes action a and is given utility v0 is

πn(θ, a, v0) = Bn(a)− c(a, θ)− v0. (1)

For any menu (α, v), we write πn(θ, α, v) as shorthand for πn(θ, α(θ), v(θ)).

After observing the posted menus, workers sort themselves to the most advantageous firm.

Formally, for any n, for any s−n ∈ S−n, define the scalar-valued function v−n given by

v−n (θ) = max
n′ 6=n

vn
′
(θ)

as the most surplus offered by any of n’s competitors. As the maximum of convex functions, v−n

is convex. Let a−n be the associated scalar-valued action function, so that a−n is an increasing

7We use increasing and decreasing in the weak sense of nondecreasing and nonincreasing, adding ‘strictly’ when
needed, and similarly with positive and negative, and concave and convex. Also, for any function f and argument
x of f , we write (f)x for the total derivative of f with respect to x. We use the symbol =s to indicate that the
objects on either side have strictly the same sign. We follow the hierarchy Lemma, Proposition, Theorem. Finally,
wherever it is clear which firm we are talking about, we suppress the n superscript.

8As is standard, our model is equivalent to one with a single worker drawn from H.
9It natural in this interpretation to assume

[
θ, θ̄

]
⊆ [0, 1], but this plays no formal role. The functional form for

the cost function adds tractibility and we believe does not subtract significantly from the economics of the situation.
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function and almost everywhere equal to v−nθ . From the point of view of n, (a−n, v−n) summarizes

all the relevant information about the strategy profile of his opponents. Define ϕn (θ, s) as the

probability that n hires θ given s ∈ S. We assume that ties are broken equiprobably,10 so that

ϕn (θ, s) =


0 vn (θ) < v−n (θ)
1

#{n′∈{1,...,N}|vn′ (θ)=v−n(θ)} vn(θ) = v−n (θ)

1 vn (θ) > v−n (θ)

.

Define

Πn (s) =

∫
πn (θ, αn, vn)ϕn (θ, s)h (θ) dθ

as the profits to firm n given strategy profile s. The form of Πn reflects our assumptions that there

are no capacity constraints and the technology is additively separable across workers. Because the

optimal behavior of the workers is already embedded in ϕ (given our tie-breaking assumption),

we can view the game as simply one among the firms, with strategy set Sn and payoff function

Πn for each n. Let BRn(s) = arg maxsn∈Sn Πn(sn, s−n). Strategy profile s is a Nash equilibrium

(in pure strategies) of (Sn,Πn)Nn=1 if for each n, sn ∈ BRn(s).

Define αn∗ (θ) = arg maxa(B
n(a) − c(a, θ)) as the efficient action when θ and n are matched,

and let vn∗ (θ) = Bn(αn∗ (θ)) − c(αn∗ (θ), θ) be the most surplus n can offer type θ without losing

money. Define v∗(θ) = maxn∈{1,...N} v
n
∗ (θ) as the most surplus that any firm can offer type θ, and

let v−n∗ (θ) = maxn′ 6=n v
n′
∗ (θ) be the most surplus that any firm other than n can offer θ. We will

assume that for all n there exists θn∗ such that

vn∗ (θn∗ ) > v−n∗ (θn∗ ). (2)

That is, there is some type θn∗ such that n is the unique firm that can create maximal surplus for

type θn∗ . Because Bn − c is strictly supermodular in (a, θ), the sets over which each firm is the

unique maximizer of vn∗ (θ) will be intervals ordered by the names of the firms, and so in particular,

we can take θ1
∗ = θ, and θN∗ = θ̄. As will be seen, the existence of θn∗ for all n will imply that each

firm in equilibrium employs a positive measure of workers and earn strictly positive profits.

3.1 Interpretation as a Product Market

To reinterpret our model as one of product quality, assume that each customer has demand for a

single unit, and that the value of consuming a unit of a product of quality a is −c(a, θ) = (θ−1)a,

where we take θ > 1, and where since −caθ = 1, higher θ types put higher marginal value on

quality. The production cost of quality a to firm n is −Bn(a), so that higher indexed firms have

10Equiprobably tie-breaking seems to us economically natural and it is also tractable. Examination of the proofs
of Corollary 3 and Proposition 4 in the Appendix, however, reveals that the details of tie-breaking are inessential
as long as ϕn is strictly positive wherever vn (θ) = v−n (θ).
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lower incremental cost of providing quality.11 A reinterpretation in terms of quantity provision

under exclusive dealing is also straightforward.

4 Necessity

In this section, we present a set of necessary conditions for a Nash equilibrium in pure strategies.

For convenience, we will state the main theorem of this section before defining the various terms

involved. Then, we define each of the terms, and, for each necessary condition, show why it must

hold, and flesh out its economic implications. All proofs are in Appendix A.

Theorem 1 (Necessity) Every pure strategy Nash equilibrium with no extraneous offers satis-

fies positive profits on each worker hired, no poaching, positive sorting, internal optimality, and

optimal boundaries.

4.1 Positive Profits on Each Worker Hired (PP )

The positive profits condition (PP ) is satisfied if for each n, the probability that n hires a worker

on whom he strictly loses money is 0. We prove–and use several times in what follows–the stronger

statement that for any s = (sn, s−n) (equilibrium or not), sn can be transformed to a strategy

that is equivalent to sn anywhere sn earns positive profits, but eliminates any situation where sn

loses money. To see the intuition, let P be the set of types on which sn makes money. Eliminate

all action-wage offerings for workers not in P . Workers in P have fewer deviations available, and

so truthful reporting remains incentive compatible for them. Workers not in P who go to another

firm save the firm money. Finally, workers not in P who now accept the same contract as some

worker in P are now profitable because, using private values, the firm is indifferent about the

identity of the worker conditional on his accepting a given offer.

One key implication of PP is that each firm earns strictly positive profits in equilibrium: since

other firms do not lose money, a firm that offers the menu (αn∗ , v
n
∗ − ε) for ε sufficiently small will

win at a minimum near θn∗ and earn strictly positive profits on any workers hired. See Corollary

3. Another key implication is that there is no cross-subsidization: losing money on some types

does not enhance the profits earned on others.

4.2 No Poaching (NP )

The no poaching condition (NP ) holds if for all θ such that ϕn(θ, s) < 1, πn(θ, a−n, v−n) ≤ 0.

That is, if θ is not always hired by Firm n, then imitating θ’s equilibrium contract with the firm

that hires θ is unprofitable. Intuitively, if there is an interval of workers where n is not winning

always, but can make money by imitating the incumbent, then Firm n can offer those workers a

11Note that we did not restrict Bn to be increasing.
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deal that replicates that of the incumbent plus some ε in surplus without affecting the behavior of

any type on whom it is currently offering uniquely the best deal. As such, NP is about stealing

the inframarginal workers of another firm.

Under NP , each firm offers a deal at least as good as could the second most capable firm at the

action chosen. This bound is strongest when firms have similar capabilities (when πn and πn+1

are similar). The emphasis is important: a firm might profitably outcompete n on type θ with

another action, but at the cost of attracting some of its existing workers in a detrimental way.

4.3 Positive Sorting (PS)

To define our positive sorting condition, we need a little notation for what will happen if two

firms tie. For n ∈ {1, . . . , N − 1}, let ân be the unique solution to Bn(a) = Bn+1(a). Let

v̂n (·) = Bn(ân) − c(ân, ·). That is, ân is the unique action where firms n and n + 1 derive the

same benefit, and (ân, v̂n (θ)) earns zero profit on type θ for firms n and n+ 1 given action ân.

Say that positive sorting (PS) holds for strategy profile s if four things are true: First, for

each firm n, there is a single non-empty interval (θnl , θ
n
h) of workers where ϕn(θ, s) = 1, so that

workers in this interval are always hired by firm n. Second, these intervals are ordered, in that

θnh ≤ θ
n+1
l for all n. Third, θ1

l = θ, and θNh = θ̄. Finally, if θnh < θn+1
l , then firms n and n+ 1 are

offering the same contract (ân, v̂n (θ)) to each θ in
(
θnh , θ

n+1
l

)
, so that each firm is winning half

the time (ϕn = ϕn+1 = 1/2) and profits are zero on these workers.

An implication of the definition is that vn(θnl ) = v−n(θnl ) and vn(θnh) = v−n(θnh), where “=”

is relaxed to “≥” at θ1
l = θ and θNh = θ̄.

Proposition 1 Any pure strategy equilibrium with no extraneous offers has PS.

To see the intuition for PS, fix θ′ > θ. By incentive compatibility, θ′ is taking an action at

least as high as θ in equilibrium. But, Bn (a) is strictly supermodular in n and a. Hence, if n

sometimes hires θ′ and n′ > n sometimes hires θ, then, by PP and NP , either n will want to

always hire θ, or n′ will want to always hire θ′, a contradiction. The only exception is if both

firms are indifferent about hiring both θ and θ′, and this can only happen if actions are constant

and equal to ân on the tied interval, and profits are dissipated.

Say that s has strictly positive sorting (SPS) if θnh = θn+1
l for all n ∈ {1, . . . , N − 1}, so that

there are no regions of ties. Under SPS, there will often be gaps in the effort level induced (or

set of products offered) as one moves from one firm to the next. Indeed, a gap seems the generic

outcome, as vn must cross vn+1 from below at θnh , and only for carefully chosen parameters will

this crossing be tangential. Figure 1 shows a typical example with SPS and three firms.
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Figure 1: An example with three firms and strict positive sorting. Firm 2 hires workers
between θ2

l and θ2
h, with Firm 1 hiring lower workers, and Firm 3 higher workers.

4.3.1 No Extraneous Offers

Without some refinement, one can have equilibria in which firm n wins almost always on (θnl , θ
n
h),

but at some zero measure set of points in (θnl , θ
n
h), ϕn (θ) = 1/2, since vn (θ) is equal, for example,

to vn+1 (θ). While these offers by n + 1 may lose money when accepted, they do not hurt Firm

n + 1, since they have measure zero. Similarly, there may be discontinuities in αn+1 outside of

the region where n+ 1 wins that create complicated incentives for other firms.

For technical and aesthetic reasons, we wish to rule out these difficulties. In Lemma 5 we

show that any best response for n must be continuous on
(
θn−1
h , θn+1

l

)
, the region over which n

ever wins. We will consider equilibria in which each αn is continuous everywhere, and in which

αn+1 − αn > 0 outside of [θn−1
h , θn+1

l ], a condition we will term no extraneous offers (NEO).

Condition NEO will hold, for example, if each n offers the same action to types above θn+1
l that

it offers to θn+1
l and the same action to types below θn−1

h that it offers to θn−1
h .12

4.4 Internal Optimality (IO)

Consider the situation of Firm 2 in Figure 1. Assume first that v2 reflects a situation where the

effort level is everywhere efficient. How can Firm 2 improve its profits? One way might be to

change the boundaries of the interval I =
[
θ2
l , θ

2
h

]
of types hired, a topic we will turn to in the

next section. But, even holding fixed I, Firm 2 would like to reduce the information rents of types

12It is an open question whether there are interesting settings in which this refinement rules out existence.
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Figure 2: Efficient and Equilibrium Effort Schedules. Effort is distorted upward for Firm
1, downward for Firm 3, and first downward and then upward for Firm 2.

in the middle of I. It can do this by making v2 flatter for some range of types on the bottom

“half” of I, while making v2 steeper on the top “half.” This makes v2 more convex, pushing it

downward in the middle of I. Note that in so doing, the firm is distorting effort downward from

the efficient level on the lower part of I, but it is distorting effort upwards on the upper part of I.

Consider instead Firm 3. As drawn, Firm 3 faces a binding utility constraint only on the lowest

type it hires. To lower the utility of other types, it lowers the slope of v3, which it accomplishes

by distorting effort downward for all types except the highest, just as a monopolist would in the

standard screening problem (Mussa and Rosen (1978),Maskin and Riley (1984)). For the lowest

firm, the situation is the reverse–the utility constraint that binds is that of the highest type hired.

The way to lower utility on types below this type is to make v1 steeper. That is, Firm 1 distorts

actions upwards on all types except its lowest.

In Figure 2 we illustrate these distortions in effort. The dotted curves represent the efficient

effort schedules, αn∗ , for the three firms, where given our assumptions, efficient effort is higher

(at each type) for higher firms. The solid line labeled α1 is the portion of Firm 1’s equilibrium

effort schedule that is accepted in equilibrium. It begins at the efficient effort level α1
∗(θ) and then

lies strictly above α1
∗, reflecting the upward distortion of effort (or quality). Similarly, Firm 3’s

equilibrium effort schedule is distorted everywhere downward. Finally, α2 single-crosses α2
∗ from

below at θ2
0, so that equilibrium effort is distorted downward for types below θ2

0 and upwards

for types above. In this example, no firm asks for an effort level between α1(θ2
l ) and α2(θ2

l ), or
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between α2(θ2
h) and α3(θ2

h). These gaps are typical in the case of SPS.

To see the pattern of effort distortions, we need a definition. Fix n, and define γn by

πna (θ, γn(θ, κ), v) =
κ−H(θ)

h(θ)
. (3)

Note that γn is strictly decreasing in κ. Strategy profile s satisfies internally optimality (IO) if

for each n, there is κn ∈ [(H(θnl ), H(θnh)], where κ1 = 0 and κN = 1.13

For expositional convenience, we assume that (3) has an interior solution. One way to do

ensure this is to assume that lima→0B
n
a (a) = ∞, and lima→∞B

n
a (a) = −∞. Another is to

assume that lima→0B
n
a (a) =∞, lima→∞B

n
a (a) = 0, and

(
1− θ̄

)
h
(
θ̄
)
> 1.14

To see at intuitive level that IO gives the right pattern of distortions note first that for firm

N , (3) reduces to the standard equation (Mussa and Rosen (1978),Maskin and Riley (1984)) for

a monopolist screening an agent of unknown type, an intuition we will generalize below.

Consider an interior firm n. We have argued intuitively above that the firm will first distort

downwards and then upwards. Let θ0 be the dividing point between these regions, so that at

θ0, the action is efficient. Now, consider any θ ∈ [θl, θ0]. Ignore for a moment the monotonicity

constraint on actions, and consider raising effort a little at θ, but simultaneously lowering it at

θ0 by the same amount. This leaves the utility at θl and θh unaffected, and so the same types

are hired as before. Changing the effort level of type θ directly changes the payoff to the firm

at rate πa (θ, α, v)h (θ). Since the effort of type θ0 was efficient, changing type θ0’s effort a little

has no direct impact on the firm’s payoff. Finally, the utility of all types between θ and θ0 is

raised at rate−caθ = 1, for cost H (θ0) − H (θ). At an optimal profile, this perturbation must

have zero impact, and so, setting benefit equal to cost and dividing by h (θ), we have that the

optimal action at θ must satisfy

πa (θ, α, v) =
H (θ0)−H (θ)

h (θ)
,

which is (3) with κ = H (θ0). The argument when θ > θ0 is very similar.

Let us now see how to do this at a more formal level. Fix boundary points θl and θh, and let

P(θl, θh) be the optimization problem given by

13By Lemma 6 in Section 8.4, log-concavity of H and 1 − H imply that (κ − H(·))/h(·) is decreasing for all
κ ∈ [0, 1], and so, since πaθ = 1 > 0, γn(·, κ) is indeed strictly increasing under IO.

14Since ca = 1− θ, we have Ba (γn (θ, κ)) = ((κ−H (θ))/h (θ)) + 1− θ which is minimized at θ = θ̄ and κ = 0,
which is positive if

(
1− θ̄

)
h
(
θ̄
)
> 1. Hence, since Ba has range (0,∞), (3) has an interior solution.
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max
(α,v)

∫ θh

θl

π(θ, α, v)h(θ)dθ (4)

s.t. v(θl) ≥ v−n(θl) (5)

v(θh) ≥ v−n(θh), and (6)

v (θ) = v (θ) +

∫ θ

θ
α (τ) dτ for all θ. (7)

This is a relaxation of the problem actually faced by the firm, since we drop monotonicity of α,

ignore the value of v except at θl and θh, and check relaxed versions of the constraint at θl and θh.

We will deal with the optimal choice of θl and θh in the next section. Note that in P(θl, θh), the

objective function is concave (since π (θ, ·, ·) is concave), and the set of feasible (α, v) is convex.

Define

z(θl, θh, κ) = v−n(θh)− v−n(θl)−
∫ θh

θl

γ(θ, κ)dθ.

That is, z(θl, θh, κ) is the difference between the “rise” in v−n between θl and θh and the rise in

v implied by γ (·, κ) on the same interval. Note that z(θl, θh, ·) is increasing, because γ falls in κ.

As suggested by the intuition above, the solution will be of the γ form. We will use z to define

the optimal κ (z will also be very useful later in the paper). If both (5) and (6) bind, then κ is

tied down by z(θl, θh, κ) = 0. Imagine that z(θl, θh, H (θh)) < 0. It will turn out that in this case,

it is optimal in the relaxed problem to set κ to equal H (θh), with (5) binding, and (6) slack. This

is in fact what occurs for Firm N , for whom H (θh) = 1, and for whom only (5) binds. Similarly,

if z(θl, θh, H (θl)) > 0, then it will turn out to be optimal to set κ equal to H (θl), with (5) slack

and (6) binding, as indeed occurs for Firm 1, for whom H (θl) = 0.

Given this intuition, define κ̃ (θl, θh) as the element of [H(θl), H(θh)] that makes z(θl, θh, ·)
as close as possible to zero. That is, define κ̃(θl, θh) as H(θl) if z(θl, θh, H(θl)) > 0, as H(θh) if

z(θl, θh, H(θh)) < 0, and as the solution to z(θl, θh, κ) = 0 otherwise.

We then have the following solution to the relaxed problem.

Lemma 1 (Relaxed Problem) Problem P(θl, θh) has a solution s̃(θl, θh) = (α̃, ṽ). On [θl, θh],

(α̃, ṽ) is unique and has α̃ = γ(·, κ̃(θl, θh)).15 If κ̃(θl, θh) > H(θl) then ṽ(θl) = v−n(θl), and if

κ̃(θl, θh) < H(θh) then ṽ(θh) = v−n(θh).

To see the intuition, start from the case where (6) is slack. Raise effort a little at any given

θ in (θl, θh). This gains πa(θ, α, v) on h(θ) workers, but raises the surplus of the H(θh) − H(θ)

workers above θ. For this not to be profitable, we must have πa(θ, α, v)h(θ)− (H(θh)−H(θ)) = 0,

or equivalently, α̃ = γ(·, H(θh)). Similarly, if (5) is slack, then κ = H(θl).

15Since we have imposed continuity on action schedules, there is no difference between two action schedules
agreeing “everywhere” and “almost everywhere.”

17



It cannot be that both (5) and (6) are slack, since then a reduction of v by a constant is

profitable. So, we are left with the case where both (5) and (6) bind at the optimum. Then, as

argued above, the solution must be of the form given by (3), where κ is tied down uniquely by

(5) and (6). Note that it cannot be that κ > H(θh), since then it is better to lower κ to H(θh),

making (6) slack, and similarly it cannot be that κ < H(θl) since then it is better to raise κ

to H(θl), making (5) slack. In particular, these are the solutions to the further relaxed problem

where one of the constraints need not be an equality.

To prove that optimal solution in the original problem is also of this form, assume that (α, v)

does not agree with (α̃, ṽ) on (θl, θh). We begin by perturbing (α, v) linearly in the direction of

(α̃, ṽ), but modify the perturbation to keep payoffs greater than v−n on (θl, θh), so that the firm

continues to hire those workers. Doing this while maintaining monotonicity of α may mean hiring

some workers outside of (θl, θh). Using PP , we next purge any unprofitable workers. We show

that with these two modifications, the initial impact of this perturbation is at least as profitable

as simply moving in the direction of (α̃, ṽ). But, since (α̃, ṽ) is the unique solution to P(θl, θh),

and since the objective function in P(θl, θh) is concave, moving in this direction raises profits, a

contradiction. We will show in the next section that for n /∈ {1, N}, κ is interior in equilibrium.

An economic implication of IO is that there is complete sorting of workers–or, alternatively,

a complete product line–within the interval of types served by each firm. This of course depends

on the absence of a fixed cost per menu item.

4.5 Optimal Boundaries (OB)

Strategy profile s satisfies the optimal boundary condition (OB) if

πn(θnl , α
n, vn)− πna (θnl , α

n, vn)(αn(θnl )− a−n(θnl )) = 0, and (8)

πn(θnh , α
n, vn) + πna (θnh , α

n, vn)(a−n(θnh)− αn(θnh)) = 0, (9)

where (8) is discarded for Firm 1, and (9) for Firm N .

Each equation balances the direct profit on the boundary worker and a term which is the

product of (i) the marginal profit of requiring a higher action of the boundary worker and (ii)

the difference in action between firm n and the adjacent firm at the boundary type. By PS and

NEO, these differences are positive. In contrast to NP , which is about stealing potentially distant

workers, OB reflects that small changes in the set of workers employed must not be profitable.

To see the intuition for OB, fix n and increase the effort of types near θh a little. This has

direct benefit πa(θh, α, v)h(θh). But, as v(θh) is raised, θh is increased at rate 1/(a−n(θh)−α(θh))

and so the profit on the new workers hired is π(θh, α, v)h(θh)/(a−n(θh)−α(θh)). Cancelling h(θh)

and rearranging yields (9). The derivation of (8) is similar, noting that to lower θl and gain extra

workers, one reduces effort on types near θl, holding fixed the surplus of higher types.
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The definition of OB discards (8) for n = 1 and (9) for n = N , rather than replacing them

with inequalities. The reason is that given the above discussion, IO implies that, holding fixed

θh, Firm 1 is better off with κ = 1 and θ = θ than with any higher θl. Hence, checking optimality

of θh for Firm 1 is enough, and similarly it is enough to check the optimality of θl for N .

We will use our next simple lemma repeatedly. The slope of profit with respect to θ has the

sign of πaαθ, and if the action profile is of the γ form, then profits are strictly single-peaked.

Lemma 2 For any (α, v) ∈ Sn,

(π (θ, α, v))θ = πa (θ, α, v)αθ (θ) , (10)

and if α = γ (·, H (θ0)) on [θl, θh], with θ0 ∈ [θl, θh] then π (·, α, v) is strictly single-peaked on

[θl, θh], with peak at θ0.

To see the proof of (10) note that by (1)

πθ (θ, α, v) = −cθ(α(θ), θ) = α(θ) = vθ(θ) = −πv (θ, α, v) vθ(θ),

and so only the effect through a remains. If α = γ (·, H (θ0)) on [θl, θh], then from (3) first αθ > 0,

and second πa(θ, α, v) has strictly the same sign as θ0−θ. Hence, π is strictly single-peaked at θ0.

With OB and Lemma 2 in hand, let us see that κ is interior for n /∈ {1, N}. Assume κ = H(θh).

Then by Lemma 2, π(·, α, v) is strictly increasing on (θl, θh). But, π(θl, α, v) ≥ 0 and hence

π(θh, α, v) > 0. But, since κ = H(θh), we also have πa(θh, α, v) = 0, and so (9) is violated.

Essentially, if κ = H(θh), then increasing effort on types near θh has second-order efficiency costs

but gains some extra workers on whom profits are strictly positive. Similarly, κ > H(θl).

Recall that θ0, the point at which H (θ0) = κ, is equal to θ for n = 1, is in (θl, θh) for

n ∈ {2, . . . , N − 1}, and is equal to θ̄ for n = N . The fact that profits are strictly single-peaked at

θ0 has some intuition: For intermediate firms, customers in the middle of the participation range

find neither of the alternative firms very attractive, and so are the easiest to extract rents from.

Similarly, for the end firms, it is the extreme types from whom it is easiest to extract rents.

One key implication of Lemma 2 is that in equilibrium, profits π are strictly positive everywhere

on the region (θl, θh) where the firm is uniquely active. This follows since by PP, π is positive at

θl and θh, and since α is of the γ form on [θl, θh], and so π is strictly single-peaked on [θl, θh].

How about profits on the boundary types θl and θh? We have argued that if there is a region

of overlap between the two firms, then profits on these types are driven to zero. Consider the case

depicted in Figure 1, where the surplus functions cross strictly, and so the implemented action

jumps at the boundary. As argued, this is the normal case under SPS, and is always the case

when firms are sufficiently differentiated (see Section 6.1). But then, since we have already argued

that θ0 > θl for n ≥ 2, the term πa(θl, α, v)(α(θl)− a−n(θl)) in (8) will be strictly positive. Thus,
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π(θl, α, v) must be strictly positive, and similarly for π (θh, α, v). Even though firms compete for

the boundary customer, the Bertrand logic does not imply zero profits, since the difference in

their production technologies implies that neither firm can profitably imitate the other.

5 Other Implications of Necessity

5.1 Discounts and (Non-)Implementation by Linear Contracts

Fix n, and let the tariff T paid by the firm to the worker associated with action a be implicitly

defined by T (α(θ)) = v(θ) + c(α(θ), θ). Then,

Ta(α(θ))αθ(θ) = vθ(θ) + ca(α(θ), θ)αθ(θ)− α(θ) = ca(α(θ), θ)αθ(θ) = (1− θ)αθ(θ)

and hence, Ta(α(θ)) = 1 − θ. But then, Taa(α(θ)) = −1/αθ (θ), and so T is strictly concave in

a. It follows first that there are ‘quantity discounts’: the wage per unit of effort decreases in the

amount of effort, and hence higher types obtain a lower wage per unit of effort. Further, since T

is strictly concave, it cannot be implemented using a menu of its tangents, that is, using linear

contracts (see Laffont and Martimort (2002), Section 9.5).

Similarly, in the product interpretation of the model the amount paid by the consumer to

the firm is T̃ (α(θ)) = −v(θ) − c(α(θ), θ), which, arguing as before, is strictly convex, and hence

once again cannot be implemented by a menu of linear contracts. It can also be shown that T̃ /a

increases in a, and therefore there are quantity premia.

5.2 The Competitive Limit

We now explore the behavior of our economy asN grows. Let d1 = maxa,n(Bn(a)−maxn′ 6=nB
n′(a)).

When d1 is small, then for any firm n and action a, there is another firm for whom Bn′(a) is nearly

as large as Bn(a). Also, for each firm n, define (anl , a
n
h) as the interval of actions over which firm

n is the most efficient, i.e., over which Bn(a) > maxn′ 6=nB
n′ (a), and define d2 = maxn(anh − anl )

as the longest such interval. Each of d1 and d2 is a measure of how far apart the firms are.

Example 1 Let B(a, τ) = a − (a − τ)2 and for each n ∈ {1, . . . , N} let Bn(a) = B(a, n/N).

Then, d1 = 1/N2 and d2 = 1/N .

In this example, as N grows large, d1 and d2 both converge to 0, and do so quickly. In general,

d1 and d2 will be small in economies with many firms that are “spread out,” and will converge to

zero quickly if they are spread “evenly.”16

16For an example where convergence fails, start from a two-firm example, and then create N − 1 copies of Firm
1 while retaining a single copy of Firm 2. For an example with slow convergence spread b

√
Nc firms out evenly as

in Example 1, and make the remainder copies of Firm 1.
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Our main result of this section is that as d1 → 0 and d2 → 0, the payoff to both firms

and workers converges to the competitive limit. Let δ = maxa,n,θ(caa(a, θ) − Bn
aa(a)) bound the

absolute value of Bn
aa − caa.

Theorem 2 (Limit Efficiency) Let s be an equilibrium. Fix θ, and let n be the firm that serves

θ. Then

0 ≤ πn(θ, αn, vn) ≤ Bn(αn(θ))−max
n′

Bn′(αn(θ)) ≤ d1, (11)

and

v∗(θ)− vn(θ) ≤ d1 +
1

2
d2

2δ. (12)

In Example 1, πn(θ, αn, vn) ≤ 1/N2, and v∗(θ)− vn(θ) ≤ (1 + 1
2δ)/N

2, and so convergence is

fast.

The first inequality in (11) follows directly from PP . The second inequality follows from NP :

if Firm n is earning above this bound, then by definition of d1, there is some other firm that can

profitably imitate them. By (11), conditional on the effort level asked of θ, the match between the

firm and the agent is efficient. Note, however, that the firm to whom one is matched in equilibrium

may not be the firm that is optimal conditional on efficient effort. That is, arg maxn′ B
n′(αn

′
∗ (θ))−

c(αn
′
∗ (θ), θ) need not equal n. There are thus three sources that pull the surplus of the agent down

from the competitive equilibrium level. First, effort will typically be distorted from αn∗ (θ). Second,

the worker may be mismatched. Third, the firm to whom the worker is matched earns rents.

To see the intuition for (12), note that if n̂ is the firm that serves θ efficiently, then θ can

imitate some type θ̂ that n̂ does serve in equilibrium, say at effort level â, and, using (11), earn

within d1 of the surplus generated by that match. But, using (11), â and αn̂∗ (θ) must both be

actions where n̂ is the most efficient firm. Thus, â and αn̂∗ (θ) are at most d2 apart, and so the

difference in the match surplus generated by these actions is correspondingly small, indeed of

order d2
2, since αn̂∗ (θ) maximizes match surplus.

5.3 Who Does Asymmetric Information Help or Hurt?

Consider the version of our model where one removes the workers’ private information. Under

monopoly the effect of this removal is clear: the firm is better off, since it can undo any inefficiency,

raising total surplus, and then extract all the surplus as information rents disappear. The workers,

who now earn no rents, are clearly worse off.

In the oligopoly case, there is a third effect. With asymmetric information, worker θ might be

hired by firm n, even though some other firm n′ could, by an appropriate choice of wage and effort,

both attract and earn profits on θ. What holds n′ back is that such an offer might also attract

some of n′’s existing workers at lower profits. Without asymmetric information, there is no such
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cross-type constraint, making it easier to compete for a worker currently hired by a competitor.

Hence, while θ no longer receives information rents, his outside option may have increased.

To examine this issue, note first that equilibrium with perfect information in the oligopoly

case suffers from the classic discontinuity-at-ties problem. To sidestep this, assume that when

the worker faces two offers giving him the same surplus, he chooses the firm that earns more

surplus in hiring him. Also, to avoid unnatural equilibria, assume that no firm makes an offer

that they would lose money on if accepted. Then, competition at each type is Bertand between

differentiated firms, and so in equilibrium each worker will be hired by the firm that can use him

best, effort will be efficient, and surplus will equal the surplus that the second most efficient firm

for that type can provide. Since the allocation is efficient, positive sorting holds.

Theorem 3 (Welfare) Let θ̂ be on the boundary between the regions of types efficiently hired by

two consecutive firms. Then, for all θ in some interval containing θ̂, θ is strictly worse off, and

the firm hiring θ strictly better off, under asymmetric information than under full information.

The proof is simple. Since θ̂ can be efficiently hired by two firms, the Bertrand logic implies

that in the full-information equilibrium, θ̂ earns the efficient surplus, and the firms earn zero. In

the asymmetric information case, we have already proven that firms earn strictly positive profits,

and so, since total surplus is at most the efficient surplus, the surplus of the worker must be

strictly lower than in the full-information equilibrium. The argument is completed by noting that

profits and surplus are continuous in type.

That is, contrary to the case of a monopoly firm, it is workers who are harmed by asymmetric

information, and firms who are helped, at least over ranges of types near points where two firms

can offer the efficient surplus. We do not have clear results or intuition for how the two forces–one

in favor of more competition and the other against–balance outside of these ranges.

6 Existence and Sufficiency

To complete the analysis, we now turn to sufficiency and existence. We will provide a set of

conditions for a strategy profile s to be an equilibrium, and for an equilibrium to exist.

6.1 Stacking and Strict Regularity

The possibility of ties at the boundaries between players substantially complicates things. So, we

begin by imposing some simplifying structure on the problem.

Definition 1 Stacking is satisfied if for all n < N , γn+1(·, 1) > γn(·, 0).
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Under stacking, when each κ is restricted to lie in [0, 1], the action schedule for player n + 1

always lies strictly above that of player n. Stacking holds if firms are sufficiently differentiated.17

Stacking simplifies our analysis since in any strategy profile that will be relevant to us, the

surplus functions of adjacent players will cross strictly, precluding ties. Furthermore, because the

crossings are strict, a small change in the strategy of one player will change the set of types hired

in a continuous fashion, getting rid of a key discontinuity.18 We will henceforth impose stacking.

6.2 The Main Results

We will state the main results first, and then, in the next several subsections, discuss how to prove

them. The relevant proofs are in Appendix B.

Fix n and s−n. We first need a definition of what it means for two strategies for n to differ only

in inessential ways given s−n. Say that sn = (αn, vn) and ŝn = (α̂n, v̂n) are essentially equivalent

if ϕ(·, (sn, s−n)) = ϕ(·, (ŝn, s−n)), and if anywhere that ϕ(·, (sn, s−n)) > 0, we have αn = α̂n and

vn = v̂n. That is, sn and ŝn agree anywhere that is relevant given s−n. Two strategy profiles are

essentially equivalent if they are essentially equivalent for each n.

Theorem 4 (Sufficiency) Assume stacking. Then any strategy profile satisfying PS, IO, and

OB is essentially equivalent to a Nash equilibrium.

This is non-trivial, because Πn(·, s−n) is not quasi-concave: if we fix s−n, sn, and ŝn, then, a

convex combination of sn and ŝn will typically win a set of types different from either sn or ŝn,

and so it unclear how its profits will relate to those of either sn or ŝn.19 But then satisfying the

first-order conditions need not imply optimality.

Theorem 5 (Existence) Assume stacking. Then, a Nash equilibrium exists.

Existence is not trivial since Π is not continuous on S. For example, let N = 2 and v2 = v1 +ε.

Then ϕ2(·, s) = 0 for all ε < 0, while ϕ2(·, s) = 1 for all ε > 0. Further, since Π is not quasi-

concave, the set of best-responses may be non-convex.

6.3 The Reformulation

Let us reformulate the problem of finding a best response. Fix n and s−n. Strategy sn is dominant

on (τl, τh) if (τl, τh) is a maximal interval such that vn > v−n. Say that sn is single dominant

17For example, if θ is uniform on [0, 1/3], and if Bn (a) = ζn + βn log a, then it can be verified that stacking will
hold as long as βn+1/βn > 2.

18If firms are not very differentiated, then equilibria must involve intervals of ties. To see this, consider N = 2,
and assume that γ2(·, 1) < γ1(·, 0). Then, there must be an interval over which the firms are tied (with associated
action equal to â1), since if θ2l = θ1h, then α1(θ1h) = γ1(θ1h, 0) > γ2(θ1h, 1) = α2(θ1h), contradicting PS.

19Note that for a given θ, π is strictly concave in sn.
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on (τl, τh) if in addition vn < v−n for θ /∈ [τl, τh]. That is, Firm n wins with probability one on

(τl, τh), and probability zero outside of [τl, τh].

The first key step is to show that if the other firms are doing something “reasonable,” then

the firm can optimize over single-dominant strategies that are of the γ form, with κ ∈ [0, 1]. To

formalize “reasonable” note first that while the convex combination of two γ strategies each with

κ ∈ [0, 1] need not be a γ strategy, it will always satisfy the following condition.

C1 αn is continuous, with αn(θ) ∈ [γn(θ, 1), γn(θ, 0)] for all θ.

Given Proposition 3 in the Appendix, it is also innocuous to assume that firms never offer a

surplus above vn∗ , the most surplus they can offer without losing money.

C2 vn ≤ vn∗ .

By C2 and (2) it follows that n, in any best response to s−n, earns strictly positive profits.

Consider any s−n that satisfies C1. Then, by stacking, all actions by competitors below n are

below γn(·, 1), and all actions by competitors above n are above γn(·, 0). Hence, there is θx ∈ [θ, θ̄]

such that a−n < γn(·, 1) for θ < θx, and a−n > γn(·, 0) for θ > θx. In Figure 1, and from the

perspective of Firm 2, θx is the point at which v1 and v3 cross.

Lemma 3 Assume stacking, let s satisfy C1, and assume that n sometimes wins. Then, sn is

single dominant on some non-empty interval including θx, and if sn satisfies OB, it satisfies NP

as well.

That sn is single dominant on some non-empty interval including θx follows since by C1 and

stacking, vn can only cross v−n twice, once below θx and once above, and these crossing are strict.

The second result follows since a−n is above the efficient level for n to the right of θh, and

hence by (10), the profits to poaching are decreasing. And, we show that near θh, (9) implies that

n prefers to gain an extra worker by moving θh than by poaching. The proof is similar for θ < θl.

Corollary 1 Under stacking, any equilibrium has SPS.

This follows immediately since we have already shown that in any equilibrium, all players

sometimes win, and that their strategies are of the γ form with κ ∈ [0, 1], and hence satisfy C1.

6.4 Relating the Original and the Relaxed Problem

Our goal is to move the analysis of n’s problem from the original infinite-dimensional problem

of choosing an entire action schedule and associated surplus function to a more tractable two-

dimensional problem. Effectively, each firm just optimizes over the endpoints of the region over
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which it is winning, knowing that for any given endpoints, the action schedule will be of the

γ (·, κ) form with κ and surplus tied down by the endpoint utilities.

To formalize this, recall from Section 4.4 that s̃(θl, θh) is the solution to the relaxed problem

P(θl, θh), where the action profile is γ(·, κ̃(θl, θh)), with κ̃(θl, θh) ∈ [H (θl) , H (θh)]. Let r(θl, θh)

be the resulting value of P(θl, θh). We wish to relate the maximization of r to the maximization of

Πn, the profits to Firm n in the original problem. This is accomplished in the next three claims.

The first claim establishes that r has a maximum (θl, θh), and that for any maximum of r,

the associated solution to the relaxed problem is feasible in the original game, hires the interval

of types (θl, θh), and has the same payoff as r.

Lemma 4 Assume stacking. Fix n, and let s−n satisfy C1 and C2. Then r has a maximum, and

at any maximum (θl, θh) of r,

(i) s̃(θl, θh) ∈ S,

(ii) if θl > θ, then ṽ(θl) = v−n(θl) and if θh < θ̄, then ṽ(θh) = v−n(θh), and

(iii) s̃(θl, θh) is single dominant on (θl, θh) with Π(s̃(θl, θh), s−n) = r(θl, θh).

A maximum exists since r is continuous on a compact set. Part (i) follows since κ̃(θl, θh) ∈
[0, 1], so that γ(·, κ̃) is increasing. The key to the proof of (ii) is to show that if for example

ṽ(θh) > v−n(θh), then rθh(θl, θh) > 0, which, since (θl, θh) is optimal, implies θh = θ̄. Part (iii)

follows immediately from (ii).

The next claim is that for any strategy the firm might contemplate in the original game, there

is a pair (θl, θh) such that r (θl, θh) is at least as big as the payoff to that strategy.

Proposition 2 Assume stacking. Fix n and s−n satisfying C1 and C2. Then, for each ŝ there

is (θl, θh) with Π(ŝ, s−n) ≤ r(θl, θh).

Before we discuss the proof, we note that Lemma 4 and Proposition 2 between them justify

the desired reparameterization:

Corollary 2 Assume stacking. Fix n and s−n satisfying C1 and C2. Then, ŝ is a maximum of

Π(·, s−n) if and only if ŝ = s̃(θl, θh), where (θl, θh) maximizes r.

The corollary follows since by Proposition 2, for any strategy ŝ Firm n is considering, there is

(θl, θh) for which r (θl, θh) is as big as the payoff to ŝ. But, by Lemma 4, the strategy associated

with r (θl, θh) is feasible and generates payoff r (θl, θh)

The proof of Proposition 2 uses two lemmas. Lemma 8 shows that there is an interval [m,m]

of types such that n makes money imitating his opponent if and only if θ ∈ [m,m], and where

θx ∈ [m,m]. This follows from (10) since by C1 and stacking, a−n is first strictly below n’s

efficient action level and then strictly above, and so profits to imitation are single-peaked at θx.
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Using Proposition 3, assume that ŝ = (α, v) never loses money, and is dominant on some

interval (τl, τh). Then Lemma 9 shows that (τl, τh) and [m,m] overlap. For intuition, assume that

τl ≥ m̄. Then, we show that since the firm loses money with a−n and v−n, it a fortiori loses

money with menu items that implement an even more inefficiently high action and offer even more

surplus. To see this in more detail, note that by the definition of dominance v(τl) = v−n(τl), but

v(τ) > v−n(τ) just to the right of τl, and so, for some τ ′ just to the right of τl, v is steeper than

v−n, and hence α (τ ′) > a−n (τ ′). Since m̄ ≥ θx, we have that a−n (τ ′) is already inefficiently high

for n, and so since α (τ ′) > a−n (τ ′), Firm n must be losing money at τ ′, a contradiction to the

assumption that ŝ never loses money.

Armed with these two lemmas, let us see that any ŝ is dominated by some strategy that is

single-dominant, proving Proposition 2. To do so, let m∗ ≥ m capture any region of dominance of

v that contains m, and let m∗ ≤ m similarly capture any region of dominance of v that contains m.

Relative to ŝ, the firm strictly benefits by removing any worker outside of [m∗,m∗], and by adding

any worker in (m,m) that it does not already hire with probability one, since the profits from

imitation are strictly positive. But, s̃(m∗,m∗) accomplishes exactly this, and does so optimally in

the relaxed problem, and hence its associated payoff r(m∗,m∗) is at least as high as Π(sn, s−n).

6.5 Unique Best Responses

In this section, we discuss the building-blocks we will use to prove sufficiency and existence. We

will begin by showing that r is sufficiently well-behaved that it has a unique maximum for any

given s−n satisfying C1 and C2, and that any critical point of r is that maximum.

We face three challenges. First, v−n has a kink point at each θ where the relevant opponent

changes, and hence so does r. Second, r can have troughs and so single-peakedness fails, compli-

cating a proof of uniqueness. Finally, because our choice set is two dimensional, it is not obvious

that single-peakedness alone is enough (recall footnote 3)

Recall that at θx, a−n transitions from being driven by opponents with index below n to

opponents above n. We begin by showing any optimum of r is in the rectangle R = [θ, θx]× [θx, θ̄]

illustrated in Figure 3. The proof is in Lemma 13, and relies heavily on Lemma 4.

Note that by C1, each kink point of v−n is a point at which one transitions from one opponent

to the next, and hence there are at most N − 1 such points. In Figure 3, K = {k1, k2}. Let

R̃ = [ιl, ιh] × [ι′l, ι
′
h] be a maximal rectangle with the property that the opponent on (ιl, ιh)

is constant, the opponent on (ι′l, ι
′
h) is constant, and ιh ≤ ι′l. Using C1, v−n is continuously

differentiable on R̃, with kinks in r constrained to the boundaries between rectangles.

Recall that z (θl, θh, κ) = v−n (θh) − v−n (θl) −
∫ θh
θl
γ (τ, κ) dτ , where since γκ < 0, we have

zκ > 0. Note also that on R,

zθl = −a−n(θl) + γ(θl, κ) > 0, (13)
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Figure 3: The rectangle R. The area between LS and LN is Θ. There are kink points in v−n at
k1, k2, and θx. On the four areas delineated by the dotted lines, v−n is continuously differentiable.
The thick line is the path described by λ. Where the path runs along LS , we have rθl ≤ 0 and
rθh > 0, and so ψ is increasing. The path never runs along LN , where rθl < 0.

since θl ≤ θx, and so by C1 and stacking, a−n(θl) < γ(θl, κ). Similarly, zθh > 0.

Let the locus LN be defined by z(θl, θh, H(θl)) = 0, and the locus LS be defined by z(θl, θh, H(θh)) =

0. These are the north and south boundaries of the set

Θ = {(θl, θh) ∈ R|z(θl, θh, κ̃ (θl, θh)) = 0}.

Assume first that LS hits the western boundary of R, let θT ≤ θ̄ be the latitude at which LN

hits the boundary of R, and let A be the (possibly empty) segment of the western boundary of R

above θT . Using Proposition 1 and 4, we show that any maximum of r occurs either in Θ, with

both the utility constraints (5) and (6) binding, or in A, with (5), at θ, slack.

Next we show (Lemma 12) that, on any given R̃∩Θ, if rθl = 0 then r is locally strictly concave

in θl. Similarly, if rθh = 0, r is locally strictly concave in θh, and anywhere that rθl = rθh = 0, r

is locally strictly concave in (θl, θh). Some intuition comes from (29), where we show that after

some cancellations, rθhθh has the same sign as

πaa (θh, γ (θh, κ̃) , ṽ) (γ (θh, κ̃))θh
(
a−n (θh)− γ (θh, κ̃)

)
+ πa (θh, γ (θh, κ̃) , ṽ) a−nθ (θh) ,
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both terms of which are negative at an optimum. The first term reflects that as θh increases, effort

is distorted further above the efficient level, while the second term reflects that as the action of

the opponent gets steeper, the rate at which the firm must distort effort to move θh increases.

The proof from here follows the topographical intuition from the introduction. For each θh,

let Θ(θh) be the interval of θl such that (θl, θh) ∈ Θ∪A, so that for θ′h > θT , Θ(θ′h) = {θ}. Define

ψ(θh) = maxθl∈Θ(θh) r(θl, θh), so that we begin by maximizing r moving east-west. Let D be the

set of θh such that ψ > 0. Fix θh ∈ D with θh < θT . In Lemma 16 we show that r(·, θh) is strictly

single-peaked where it is positive and has a unique maximum λ(θh). One implication of this is

that any local minima are under water. The proof rests on Lemma 12, but accounts for the fact

that our terrain is kinked at the boundaries where an opponent changes.

The locus (λ (·) , ·) is the path described in the introduction. We show (Lemma 17) that λ is

continuous, and hence so is ψ. We also show (Lemma 18) that D is an interval. We show that

the path never runs along LN , because at any point on LN , profits are strictly decreasing in θl.

The path may run along LS , but we show that where λ is on LS , ψ is strictly increasing, where

the intuition is that on LS , the firm is better off to strictly increase θh, and is also benefited by

the fact that LS is less binding as θh increases.

So, consider any θ̂h such that λ(θ̂h) is in the interior of Θ(θ̂h). We show (Lemma 20) that the

left and right derivatives of ψ at θ̂h and the left and right partial derivatives of r with respect

to θh at (λ(θ̂h), θ̂h) agree. Given that λ(θh) maximizes r(·, θh), this follows from the Envelope

Theorem. The proof again deals with kinks in v−n at either θh or λ(θh).

Using Lemma 18 and Lemma 20, we show (Lemma 21) that ψ is strictly single-peaked–and

thus has a unique maximum–on the interval D, which is to say, as one walks northward along the

path. This uses the concavity properties already established for r, with the usual complexities at

kink points. Finally, we show (Lemma 22) that if θ∗h is the unique maximizer of ψ, then (λ(θ∗h), θ∗h)

is the unique maximizer of r.

Assume that instead of hitting R’s western boundary, LS instead hits R’s northern boundary

at (θ̃T , θ̄). Then, we can argue as before that any optimum of r occurs either in Θ, with both

constraints binding, or on the segment of the northern boundary of R with θl ≤ θ̃T with the

constraint at θ̄ slack. We can thus perform the same analysis as above, but exchange the roles of

θl and θh, so that one defines λ̃(θl) by first maximizing along north-south slices where θl is held

constant, and then walks eastward along the path defined by λ̃.

6.6 Sufficiency

Let us now discuss sufficiency. Fix ŝ satisfying PS, IO, and OB. We wish to show that there is

a strategy profile s that is essentially equivalent to ŝ and is a Nash equilibrium. The key is that

PS, IO and OB imply that, for each n, ŝn corresponds to a critical point of r. By the previous

section (and in particular, by Lemma 22), (θl, θh) uniquely maximizes r. But then, by Corollary
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2, sn is a best-response to s−n.

The first step is to modify each ŝn outside of [θl, θh] so as to satisfy C1 and C2 there as well, so

that the results of the previous section apply. We do this while maintaining continuity of actions,

and hence, OB is unaffected. Let s be the strategy profile constructed in this way. Consider first

n /∈ {1, N}. Since n earns positive profits, and since by IO, the associated κ is in (H(θl), H(θh)),

Lemma 16 applies and r(·, θh) is single-peaked where it is positive. But then, since rθl(θl, θh) = 0

by OB, we must have θl = λ(θh), and so, rθh(λ(θh), θh) = ψθh(θh) = 0 by Lemma 20. Thus by

Lemma 21 θh = θ∗h, and so sn is a best response to s−n. The argument for n = 1 and N is similar.

6.7 Existence

Let us turn to existence. Recall that in general, Π can be discontinuous, and that there is no

reason to believe that the set of best responses is convex. Our plan is to restrict the strategy

space so that continuity and convexity of best-responses hold, and to show that the equilibrium

of the restricted game is an equilibrium of the original game.

To begin, we need a convex and compact set of strategies. Let η be a bound on both the slope

and value of any γ strategy with κ in [0, 1]. Impose (C3) that action profiles have slope bounded

by η. Choose β small enough that if surplus at θ̄ is strictly less than β, then (9) is guaranteed

to fail, and impose (C4) that the surplus function gives surplus at least β at θ̄. Let SnR be the

subset of Sn such that C1–C4 hold, with SR and S−nR defined in the usual way.

We first show (Lemma 23) that if other firms choose from S−nR , then Firm n has a best response

in SnR. The idea is that every best response is a γ strategy where it is single-dominant, and that η

and β were chosen to not bind for such strategies, so that C3 and C4 are non-binding. Satisfying

C1 and C2 involves inessential modification of the strategy outside of [θl, θh].

Given Lemma 23, it is enough to show that (SnR,Π
n)Nn=1 has an equilibrium. We first establish

that SnR, and hence SR, is a Banach space with a norm yielding continuous payoffs. The key to

continuity is that C1, C2, and stacking imply that vn and vn+1 strictly single cross, and hence

boundaries move continuously as strategies vary. Compactness and convexity follow since the

relevant action profiles are equicontinuous by C3, and since C1–C4 can be phrased as a collection

of weak inequalities. Since payoffs are continuous on SR, BRnR has a closed and non-empty valued

graph. Finally, to show that BRnR(s−n) is convex, observe that for any s−n, Section 6.5 implies

that any two best responses are essentially equivalent–they hire the same set of workers and give

the same surplus to those workers. But then, their convex combination is essentially equivalent

to either of them, and so is also a best response. We thus have all the conditions to apply the

Kakutani-Fan-Glicksberg Theorem, and hence a Nash equilibrium exists.
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7 Conclusion

We analyze an oligopoly market with heterogeneous vertically-differentiated firms and workers

with privately known ability. The model is a natural extension to an oligopolistic setting of the

ubiquitous principal-agent problem in Mussa and Rosen (1978) and Maskin and Riley (1984).

Firms post menus to both screen workers and attract the right pool of applicants. Our analysis

uncovers several insights regarding sorting, distortions, and gaps in productivity across firms. We

examine the model’s competitive limit. Contrary to the monopoly model, asymmetric information

can help firms and hurt workers. Finally, we show that under enough firm heterogeneity a simple

set of conditions is sufficient for a strategy profile to be an equilibrium, and an equilibrium exists.

There are many extensions of our analysis that are worth pursuing, some for completeness and

some more drastic. First is to allow for more general disutility of effort. We conjecture that this

will primarily present technical complications. Second is to extend the existence and sufficiency

results to the case where firms are less vertically differentiated, so that stacking does not hold.

Our existing proof relied hard on stacking to establish continuity. Third is to extend the model

to allow both horizontal and vertical differentiation. Fourth, a pressing but challenging extension

is to allow for common values and risk-averse workers, so as to apply the framework to insurance

markets. Finally, it would be of great interest to incorporate moral hazard in a nontrivial way.

8 Appendix A: Proofs for Sections 4–5

8.1 Proof of PP

We begin with a preliminary result. It shows that there is zero probability that a firm hires a

worker on whom it strictly loses money, and that among each firm’s best responses is always a

menu in which every offer, whether accepted with positive probability or not, is profitable.

Proposition 3 Fix n, s−n, and sn = (α, v). Let P ≡ {θ|π (θ, α, v) ≥ 0}. Then, there is (α̂, v̂)

with π(·, α̂, v̂) ≥ 0 that agrees on P with (α, v). If (α, v) is a best response to s−n, then π(θ, α, v) ≥
0 for almost all θ where ϕ > 0.

Proof The idea is simply to remove all menu items for which θ is not in P . Let us first show that

P can be taken to be closed. Formally, fix n, and let G(θ, v) be the subdifferential to v at θ. Since

v is convex, G is singleton-valued almost everywhere, and every selection from G is increasing.

Thus, since G is compact-valued, it is wlog to assume that α(θ) ∈ arg maxa∈G(θ,v) π(θ, a, v) for all

θ. But then, since G is upper hemicontinuous in θ, π(·, α, v) is upper semicontinuous (Aliprantis

and Border (2006), Lemma 17.30, p. 569), and so P ≡ {θ|π(θ, α, v) ≥ 0} is a closed subset of[
θ, θ̄
]
, and hence compact.
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Now let’s build the menu that results when menu items with θ not in P are removed. For

each θ′ ∈ [θ, θ̄], let vL(·, θ′) be the line given by vL(θ, θ′) = v(θ′) + (θ − θ′)α(θ′) for all θ ∈ [θ, θ̄].

Note that vL(θ, θ) = v(θ), that since v is convex, vL(·, θ′) lies below v for each θ′, and that along

vL(·, θ′), the profits to the firm are constant. If P is empty, set (α, v) = (α∗, v∗), and we are done.

If P is non-empty, define v̂(θ) = maxθ′∈P vL(θ, θ′). Then, v̂, which is the maximum of a set of

lines, is convex, with v̂ = v on P (using that vL (θ, θ) = v(θ)) and v̂ ≤ v (since each vL(·, θ′) lies

below v). Let α̂ be a selection from G(·, v̂), where we can take α̂ = α on P , and where at any

θ /∈ P , we can take α̂(θ) = α(θ′) for some θ′ ∈ arg maxθ′∈P vL(θ, θ′). Then by using (α̂, v̂), the

firm implements the same action on P at the same profit as before (the types in P have no new

deviations available), and the firm earns positive profits on any other worker, since that worker

either leaves or, if hired, is now imitating a worker in P .

Note finally that if (α, v) is a best response to s−n, and π(θ, α, v) < 0 for some positive measure

set of θ where ϕ > 0, then (α̂, v̂) gives strictly higher profits than (α, v), a contradiction. �

Corollary 3 Each firm earns strictly positive profits in equilibrium.

Proof By assumption there is θn∗ such that vn∗ (θn∗ ) > v−n∗ (θn∗ ), and so, by continuity, vn∗ (θ) >

v−n∗ (θ) for all θ in some interval I around θn∗ . Assume that on a positive measure set of I, v−n(θ) ≥
vn∗ (θ). Then, since vn∗ (θ) > v−n∗ (θ) on I, either some firm other than n is winning with positive

probability and is losing money, or n is winning having offered surplus vn(θ) > v−n(θ) ≥ vn∗ (θ).

(Note that if n offers v−n(θ), then firms other than n win with positive probability since ties are

broken equiprobably.) Either case violates Proposition 3. But then, for ε sufficiently small but

positive, the strategy of offering all types surplus vn∗ (θ) − ε and action αn∗ (θ) earns at least ε on

a positive measure set of types. Hence, n must earn strictly positive profits in equilibrium. �

This proof used in an essential way that for each n, ϕn is strictly positive where vn = v−n. To

see this, assume that workers, if indifferent, sort themselves to a firm that makes the most money

on them. Then, a zero-profit equilibrium of the game is that each firm offers the same menu

(α∗, v∗), where (recall) v∗ is the most surplus any firm can offer without losing money, and where

α∗ is the associated efficient action for a relevant firm. Since workers sort efficiently, no firm loses

money, while given that other firms are offering v∗, no strictly profitable deviation exists.

8.2 Proof of NP

We now formalize and establish property NP . We show that in any optimal strategy, the firm

hires with probability 1 on the set of types, Z≥ which it sometimes hires and on whom it makes

strictly positive profits, and that the set of types Z< that it is does not hire but where it could

strictly profitably imitate its competitors is empty.
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Proposition 4 Let (αn, vn) be optimal given s−n, and define Z≥ = {θ|vn ≥ v−n and πn(θ, αn, vn) >

0} as the set of types where n wins at least sometimes, and makes strict profits, and Z< = {θ|vn <
v−n and πn(θ, a−n, v−n) > 0} as the set of types where n never wins, but could profitably imitate

the incumbent. Then,
∫
Z≥

(1− ϕ (θ, s))h(θ)dθ = 0, and Z< is empty

Proof Essentially, the firm can first imitate (a−n, v−n) anywhere that v−n > vn, then purge

any unprofitable menus items using Proposition 3, and then add ε, ensuring a hire wherever it is

profitable. Formally, let ṽ = max{vn, v−n} and let α̃ = αn where vn ≥ v−n and α̃ = a−n where

vn < v−n. Using Proposition 3, define a new menu (α̂, v̂) that agrees with (α̃, ṽ) anywhere that

πn(θ, α̃, ṽ) ≥ 0 and satisfies πn(θ, α̂, v̂) ≥ 0 for all θ. Note that v̂ ≥ v−n wherever πn(θ, αn, vn) ≥ 0.

Thus (regardless of the tie-breaking rule), the menu (α̂, v̂ + ε), ε > 0, earns at least∫
Z≥

πn(θ, α̂, v̂)h(θ)dθ+

∫
Z<

πn(θ, α̂, v̂)h(θ)dθ−ε =

∫
Z≥

πn(θ, αn, vn)h(θ)dθ+

∫
Z<

πn(θ, a−n, v−n)h(θ)dθ−ε.

Hence, since ε > 0 is arbitrary and (αn, vn) is optimal, we must have∫
Z≥

πn(θ, αn, vn)ϕn(θ, s)h(θ)dθ ≥
∫
Z≥

πn(θ, αn, vn)h(θ)dθ +

∫
Z<

πn(θ, a−n, v−n)h(θ)dθ,

and thus ∫
Z≥

πn(θ, αn, vn)(1− ϕn(θ, s))h(θ)dθ +

∫
Z<

πn(θ, a−n, v−n)h(θ)dθ ≤ 0,

which, given the definitions of Z≥ and Z<, only occurs if Z< is empty and
∫
Z≥

(1− ϕn)h = 0. �

8.3 Proof of PS

Let us first prove that any Nash equilibrium (with or without NEO) satisfies a condition slightly

weaker than PS. Say that s has quasi-positive sorting (QPS) if it satisfies the conditions for PS

except that each condition on ϕ is allowed to fail on a zero-measure subset.

Proposition 5 Every Nash equilibrium has QPS.

Proof Let n′ > n, let θn
′

inf be the infimum of the support of ϕn
′

and let θnsup be the supremum of

the support of ϕn. We will show that the only way that θn
′

inf < θnsup can hold is if n = n+ 1, and

the two firms are tied at zero profits on (θn
′

inf , θ
n
sup). The core of the proof is to exploit that Bn is

strictly super-modular in n and a.

Assume that θn
′

inf < θnsup. Conditional on ϕn
′
(θ, s) > 0, with probability one πn

′
(θ, αn

′
, vn

′
) ≥ 0

by Proposition 3 and πn(θ, αn
′
, vn

′
) ≤ 0 by Proposition 4. Hence, for any ε ∈ (0, (θnsup − θn

′
inf)/2)
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there is θ1 ∈ [θn
′

inf , θ
n′
inf + ε] where ϕn

′
(θ1) > 0 and

πn
′
(θ1, α

n′ , vn
′
) ≥ 0 ≥ πn(θ1, α

n′ , vn
′
), (14)

and similarly, there is θ2 ∈ [θnsup − ε, θnsup] where ϕn(θ2) > 0 and

πn(θ2, α
n, vn) ≥ 0 ≥ πn′(θ2, α

n, vn). (15)

By incentive compatibility, since θ2 > θ1 and since ϕn
′
(θ1) > 0 and ϕn (θ2) > 0, it must be that

αn(θ2) ≥ αn′(θ1). Adding (14) and (15) and cancelling common terms,

Bn′(αn
′
(θ1)) +Bn(αn(θ2)) ≥ Bn(αn

′
(θ1)) +Bn′(αn(θ2)).

Since Bn(a) is strictly supermodular, αn
′
(θ1) = αn(θ2) ≡ ã, and so, by incentive compatibility, and

since ε was arbitrary, αn
′
(θ) = αn(θ) = ã for all θ ∈ (θn

′
inf , θ

n
sup). From (14), Bn′(ã) ≥ Bn(ã), while

from (15), Bn′(ã) ≤ Bn(ã), and so Bn′(ã) = Bn(ã) ≡ b. But then, from (14), πn
′
(θ1, α

n′ , vn
′
) = 0,

and from (15), πn(θ2, α
n, vn) = 0. Finally, on (θn

′
inf , θ

n
sup), (π(θ, α, v))θ = πa(θ, α, v)αθ(θ) = 0,

using −cθ(α(θ), θ) = α(θ) = vθ(θ). Hence πn = πn
′

= 0 on (θn
′

inf , θ
n
sup).

Now let us show that n′ = n+ 1. Assume that n′ 6= n+ 1, and let n < n′′ < n′. Assume first

that Bn′′(ã) ≤ b = Bn(ã). Then since n′′ > n and Bn(a) is strictly supermodular, Bn′′(a) < Bn(a)

for all a < ã, and similarly, Bn′′(a) < Bn′(a) for all a > ã, contradicting that Bn′′ is somewhere

uniquely maximal. Thus Bn′′(ã) > b, and so πn
′′
(θ, ã, v−n) > 0 on (θn

′
inf , θ

n
sup), which contradicts

Proposition 4 since by definition of θn
′

inf and θnsup,
∫ θnsup
θn
′

inf

(1 − ϕn′′)h > 0. Thus, n′ = n + 1, and

ã = ân. Letting θnh = θn
′

inf and θn+1
l = θnsup, we have the claimed structure at ties.

Finally, it must be that θnl < θnh , since by Corollary 3, n earns strictly positive expected profit,

but on each type above θnh or below θnl either loses for sure or ties but earns 0. �

Corollary 4 Every Nash Equilibrium that satisfies NEO has PS.

Proof Assume that for some n′ > n, and for some θ̂ ∈ (θl, θh), vn
′

= vn. Then, since by NEO,

αn
′ ≥ αn, and hence vn

′
(θ) − vn(θ) is increasing, vn

′ ≥ vn everywhere on [θ̂, θh], contradicting

that n wins with probability one conditional on θ ∈ (θl, θh). �

Next, let us show that any best response must be continuous anywhere that it is “active.”

Lemma 5 Fix n, s−n, and ŝ = (α̂, v̂). If ŝ is a best-response, then α̂ must be continuous on any

open interval where vn ≥ v−n.

Proof Essentially, because π is strictly concave in a, any jump in α̂ creates an opportunity

for a strictly profitable perturbation. In particular, let θJ be a point on some open interval
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where vn ≥ v−n where α̂ jumps from a to ā. Raise α̂ by q on [θJ − ε, θJ) and lower it by q

on [θJ , θJ + ε] where for ε and q small enough, monotonicity is respected. This raises surplus

slightly on (θJ − ε, θJ + ε) (by an amount at most qε), but otherwise does not affect v. The

perturbed strategy hires with probability one on (θJ − ε, θJ + ε), and any new worker hired by

this perturbation is profitable, since by Proposition 3, ŝ loses money nowhere. We claim that

because π is strictly concave in a, this perturbation is strictly profitable for sufficiently small ε

and q, contradicting the optimality of ŝ.

To see this formally, let ŝ (q, ε) = (α (·, q, ε) , v (·, q, ε)) be the resultant menu, and note that

for θ ∈ [θJ − ε, θJ), αq (θ, q, ε) = 1, and vq (θ, q, ε) ≤ ε. Hence,

∂

∂q
π (θ, s (q, ε)) ≥ πa (θ, s (q, ε))− ε ≥ πa (θ, a+ q, v (q))− ε,

since π is concave in a. Similarly, for [θJ , θJ + ε]

∂

∂q
π (θ, s (q, ε)) ≥ −πa (θ, s (q, ε))− ε ≥ −πa (θ, ā− q, v (q))− ε.

Hence, recalling that =s means “has strictly the same sign as,”

∂

∂q
Π
(
ŝ (q, ε) , s−n

)
≥
∫ θJ

θJ−ε
(πa (θ, a+ q, v (q))− ε)h (θ) dθ +

∫ θJ+ε

θJ

(−πa (θ, a+ q, v (q))− ε)h (θ) dθ

= ε
[(
πa
(
θ′, a+ q, v (q)

)
− ε
)
h
(
θ′
)
−
(
πa
(
θ′′, a+ q, v (q)

)
− ε
)
h
(
θ′′
)]

=
s

(
πa
(
θ′, a+ q, v (q)

)
− ε
)
h
(
θ′
)
−
(
πa
(
θ′′, a+ q, v (q)

)
− ε
)
h
(
θ′′
)

∼= (πa (θJ , a+ q, v (q))− πa (θJ , a+ q, v (q)))h (θJ)

> 0

where the first equality uses the Mean Value Theorem for some θ′ ∈ [θJ−ε, θJ ] and θ′′ ∈ [θJ , θJ+ε],

where the approximation is arbitrarily good when ε is small, and where the last inequality holds

for q small. But then, for ε and q small, ∂
∂qΠ (ŝ (q, ε) , s−n) > 0, and we are done. �

8.4 Proof of IO

We begin with two preliminary lemmas. The first one is central in showing that strategies of the

γ form are monotone.
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Lemma 6 Let κ ∈ [0, 1]. Then,(
κ−H(θ)

h(θ)

)
θ

= −1− (κ−H(θ))h′(θ)

h2 (θ)
≤ 0. (16)

Proof Assume first that h′ (θ) ≤ 0. Then,

(κ−H(θ))h′(θ)

h2(θ)
≥ (1−H(θ))h′(θ)

h2(θ)
≥ −1,

since 1−H is log-concave. If h′(θ) > 0, then the result follows since H is log-concave. �

Our next lemma re-expresses profits of the firm in a useful and standard way.

Lemma 7 Fix n, and for any feasible α and v, define

M(θ, α, v) = B(α(θ))− c(α(θ), θ)− v(θl)− α(θ)
H(θh)−H(θ)

h(θ)
. (17)

Then, ∫ θh

θl

π(θ, α, v)h(θ)dθ =

∫ θh

θl

M(θ, α, v)h(θ)dθ. (18)

Proof Note first that for any α and v,∫ θh

θl

π(θ, α, v)h(θ)dθ =

∫ θh

θl

(
B(α(θ))− c(α(θ), θ)− v(θl)−

∫ θ

θl

α(τ)dτ

)
h(θ)dθ,

and that, integrating by parts,∫ θh

θl

(∫ θ

θl

α (τ) dτ

)
h(θ)dθ =

∫ θh

θl

α(θ)(H(θh)−H(θ))dθ.

Substituting and rearranging yields (18). �

We now prove Proposition 1, which derives the solution to the relaxed problem P(θl, θh).

Proof of Proposition 1 Existence is standard and uniqueness follows since the set of feasible

strategies is convex, and the objective function is strictly concave (since π (θ, a, v) is strictly

concave in a and linear in v for each θ). Fix (θl, θh), fix the optimum s̃ = (α̃, ṽ), and define

ξ(θ) = πa(θ, s̃)h(θ) +H(θ).

Step 1 Let us show that ξ is constant on (θl, θh) at some value κo and thus, rearranging, that

πa (θ, s̃) =
κo −H (θ)

h (θ)
.
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To see the idea, choose any two points θ′′ > θ′ in (θl, θh). We will consider perturbations

which subtract (or add) a small amount from the action schedule near θ′, and replace it near

θ′′. We can do this without worrying about monotonicity, since this is the relaxed problem. This

perturbation has cost πah near θ′, benefit πah near θ′′, and benefit H (θ′′) −H (θ′) because v is

lowered between θ′ and θ′′. But then, setting net benefit equal to zero, we have

−πa
(
θ′, s̃

)
h
(
θ′
)

+H
(
θ′′
)
−H

(
θ′
)

+ πa
(
θ′′, s̃

)
h
(
θ′′
)

= 0,

or, rearranging, ξ (θ′) = ξ (θ′′). Setting κo = ξ(θ) for any θ ∈ (θl, θh), we are done.

To formalize this, fix 0 < ε < 1
2 min {θ′′ − θ′, θ′ − θl, θh − θ′′}. Define α̂(·, y, ε) to be α̃− y/2ε

on [θ′ − ε, θ′ + ε], α̃+ y/2ε on [θ′′ − ε, θ′′ + ε], and α̃ elsewhere, and define

v̂(θ, y, ε) = ṽ(θl) +

∫ θ

θl

α̂(τ, y, ε)dτ ,

noting that v̂(θh, y, ε) = ṽ(θh), and so for each y, ŝ(y, ε) = (α̂(·, y, ε), v̂(·, y, ε)) is feasible in

P(θl, θh). Note that v̂y (θ, y, ε) = −1 on [θ′ + ε, θ′′ − ε], and v̂y (θ, y, ε) ∈ [−1, 0] on [θ′ − ε, θ′ + ε]

and [θ′′ − ε, θ′′ + ε].

Let profits of this perturbation as a function of y and ε be j(y, ε) =
∫ θh
θl
π(θ, ŝ(y, ε))h(θ)dθ.

Then, since πv = −1,

jy(y, ε) =

∫ θ′+ε

θ′−ε,
(−πa(θ, ŝ(y, ε))

1

2ε
− v̂y(θ, y, ε))h(θ)dθ +

∫ θ′′−ε

θ′+ε
h(θ)dθ

+

∫ θ′′+ε

θ′′−ε,
(πa(θ, ŝ(y, ε))

1

2ε
− v̂y(θ, y, ε))h(θ)dθ,

where between θ′ + ε and θ′′ − ε we use α̂y = 0 and v̂y = −1. Note that ŝ (0, ε) = (α̃, ṽ). Hence,

evaluating jy (y, ε) at y = 0, and using the Mean Value Theorem, there is τ ′ ∈ [θ′ − ε, θ′ + ε] and

τ ′′ ∈ [θ′′ − ε, θ′′ + ε] such that

jy(0, ε) = 2ε

(
−πa(τ ′, α̃, ṽ)

1

2ε
− v̂y(τ ′, 0, ε)

)
h(τ ′) +

(
H(θ′′ − ε)−H(θ′ + ε)

)
+2ε

(
πa(τ

′′, α̃, ṽ)
1

2ε
− v̂y(τ ′′, 0, ε)

)
h(τ ′′).

But then, since v̂y(τ
′, 0, ε) and v̂y(τ

′′, 0, ε) are bounded,

lim
ε→0

jy(0, ε) = −πa(θ′, α̃, ṽ)h(θ′) +H(θ′′)−H(θ′) + πa(θ
′′, α̃, ṽ)h(θ′′) = ξ(θ′′)− ξ(θ′),

and so, if ξ(θ′′)− ξ(θ′) 6= 0, then for ε sufficiently small, jy(0, ε) 6= 0, and the firm has a profitable

deviation, a contradiction.
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Step 2 Let us next show that if one fixes surplus to equal ṽ (θl) at θl, and then varies κ, ignoring

(6), then profits are single-peaked at κ = H (θh). Similarly, if one fixes surplus to equal ṽ (θh) at

θh, and then varies κ, ignoring (5), then profits are single-peaked at κ = H (θl).

To formalize this, let vl(θ, κ) = ṽ(θl) +
∫ θ
θl
γ(τ, κ)dτ , and let sl (κ) = (γ(·, κ), vl(·, κ)). Since

vl(θl, κ) = ṽ(θl) and so is independent of κ, it follows from (17) that on (θl, θh),

d

dκ
M(θ, sl(κ)) =

(
πa(θ, sl(κ))− H(θh)−H(θ)

h(θ)

)
γκ(θ, κ) (19)

=

(
κ−H(θh)

h(θ)

)
γκ(θ, κ) =

s
−(κ−H(θh)),

since γκ < 0. But then, letting Yl(κ) ≡
∫ θh
θl
π(θ, sl(κ))h(θ)dθ, by Lemma 7, dYl(κ)/dκ =

s
−(κ −

H(θh)), and so Yl(κ) is strictly single-peaked at κ = H(θh).

Similarly, if we define vh(θ, κ) = ṽ(θh)−
∫ θh
θ γ(τ, κ)dτ , then Yh(κ) ≡

∫ θh
θl
π(θ, γ(·, κ), vh(·, κ))h(θ)dθ

is strictly single-peaked in κ with maximum at κ = H(θl) where to show this, one integrates∫ θh

θl

π(θ, α, v)h(θ)dθ =

∫ θh

θl

(
B(α(θ))− c(α(θ), θ)− v(θh) +

∫ θh

θ
α(τ)dτ

)
h(θ)dθ

by parts to arrive at an analogue to M .

Step 3 Finally, let us use Step 2 to show that κo = κ̃ (θl, θh). Note that one of (5) and (6) must

bind, otherwise reducing ṽ by a small positive constant (holding fixed α̃) is profitable. Assume

that ṽ(θh) > v−n(θh). Then, sl(κ) is feasible for κ on a neighborhood of κo, and so, since Yl is

strictly single-peaked with maximum at H(θh) we must have κo = H(θh). Since ṽ(θl) = v−n(θl),

and since (α̃, ṽ) = (γ(·, κo), ṽ) is feasible, we have

ṽ(θh) = v−n(θl) +

∫ θh

θl

γ(τ,H(θh))dτ > v−n(θh),

and so z(θl, θh, H(θh)) < 0, and thus by definition of κ̃, we have κ̃(θl, θh) = H(θh) as well, so that

κo = κ̃(θl, θh). Similarly, if ṽ(θl) > v−n(θl) then, using Yh, we must have κo = H(θl) = κ̃(θl, θh).

Assume finally that (5) and (6) both bind. Then, by definition, z(θl, θh, κo) = 0. Assume

κo > H(θh). Then,

vl(θh, H(θh)) = ṽ(θl) +

∫ θh

θl

γ(τ,H(θh))dτ > ṽ(θl) +

∫ θ

θl

γ(τ, κo)dτ = ṽ(θh) = v−n(θh),

so that sl(H(θh)) is feasible, which contradicts the optimality of (α̃, ṽ) since Yl is uniquely max-

imized at H(θh), and Yl ignores (6). Hence κo ≤ H(θh). Similarly, κo ≥ H(θl), and thus

κo ∈ [H(θl), H(θh)], from which κo = κ̃(θl, θh), again by definition of κ̃. �
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We now prove that any optimum of the original problem has the form given by Proposition 1.

Proposition 6 Let s be Nash. Then, for each n, there is κn ∈ [H(θnl ), H(θnh)] such that αn =

γn(·, κn) on (θnl , θ
n
h), where κ1 = 0, and κN = 1.

Proof We will show that if (α, v) is not equal to (α̃, ṽ), the optimal solution to the relaxed problem,

then we can profitably perturb (α, v) in the direction of (α̃, ṽ).20 We need this perturbation to

respect monotonicity and the fact that workers both within and outside of (θl, θh) may be affected.

This proof would be substantially simpler if all crossings where transversal, but we know this will

fail when firms are not very differentiated.

Let š(δ) be given by α̌(·, δ) = (1− δ)α+ δα̃ and v̌(·, δ) = (1− δ)v + δṽ, so that š(0) = (α, v)

and š(1) = (α̃, ṽ). The problem with š is that when crossings are not transversal, š (δ) need not

hire all of (θl, θh) even for small δ. So, let v̄ = v−n/2 + v/2, so that v̄ > v−n on (θl, θh). Now, let

v̀(·, δ) = max (v̄, v̌(·, δ)), let ὰ(·, δ) be a subgradient to v̀(·, δ), and let s̀(δ) = (ὰ(·, δ), v̀(·, δ)). By

construction, s̀ always wins on (θl, θh), and may hire other workers as well. Also, since on (θl, θh),

v > v−n, s̀(0) = (α, v). Finally, let P (δ) be the set upon which s̀(δ) is profitable, and construct

ŝ(δ) = (α̂(·, δ), v̂(·, δ)) from s̀(δ) as in Proposition 3. We then have

Π(ŝ(δ), s−n) =

∫
π(θ, ŝ(δ))ϕ(θ, ŝ(δ), s−n)h(θ)dθ

≥
∫
P (δ)∩(θl,θh)

π(θ, ŝ(δ))ϕ(θ, ŝ(δ), s−n)h(θ)dθ

=

∫
P (δ)∩(θl,θh)

π(θ, s̀(δ))h(θ)dθ

≥
∫ θh

θl

π(θ, s̀(δ))h(θ)dθ.

The first inequality follows since π(·, ŝ(δ)) ≥ 0, the second equality since ŝ(δ) and s̀(δ) agree on

P (δ) and ϕ(·, s̀(δ)) = 1 on (θl, θh), and the second inequality since π(θ, s̀(δ)) ≤ 0 outside of P (δ).

It is thus enough to show that for δ sufficiently small,∫ θh

θl

π(θ, s̀(δ))h(θ)dθ >

∫ θh

θl

π(θ, α, v)h(θ)dθ,

since by PS, π(θ, α, v)ϕ(θ, s) = 0 outside of [θl, θh]. Because s̀(0) = (α, v), it is sufficient that

d

dδ

∫ θh

θl

π(θ, s̀(δ))h(θ)dθ

∣∣∣∣
δ=0

> 0.

20It is not important how (α̃, ṽ) is defined outside of (θl, θh) so long as monotonicity, continuity of actions, and
the integral condition hold.
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But,
d

dδ

∫ θh

θl

π(θ, s̀(δ))h(θ)dθ

∣∣∣∣
δ=0

=
d

dδ

∫ θh

θl

π(θ, š(δ))h(θ)dθ

∣∣∣∣
δ=0

,

since for each θ ∈ (θl, θh), v(θ) > v̄(θ), and so at δ = 0, (α̌(θ, δ))δ = (ὰ(θ, δ))δ and (v̌(θ, δ))δ =

(v̀(θ, δ))δ. And, since (α̃, ṽ) is the unique solution on (θl, θh) to the relaxed problem P(θl, θh),

and since š(0) = (α, v), and so is feasible in P(θl, θh),∫ θh

θl

π(θ, α̃, ṽ)h(θ)dθ =

∫ θh

θl

π(θ, š(1))h(θ)dθ

>

∫ θh

θl

π(θ, š(0))h(θ)dθ =

∫ θh

θl

π(θ, α, v)h(θ)dθ.

Now, š is linear in δ, and π (θ, ·, ·) is concave in the action and utility, and thus
∫ θh
θl
π(θ, š(δ))h(θ)dθ

is concave in δ. But then, by the previous strict inequality, it must be that, as desired,

d

dδ

∫ θh

θl

π(θ, š(δ))h(θ)dθ

∣∣∣∣
δ=0

> 0.

Finally, let us see that κ1 = 0, and κN = 1. Note first that for θ ≥ θNl , v−N = vN−1. Thus,

by definition vN
(
θNl
)

= vN−1
(
θNl
)
. But, by NEO, for all θ > θNl , we have αN − αN−1 > 0 and

thus vNθ > vN−1
θ . Thus, vN

(
θ̄
)
> vN−1

(
θ̄
)
, and hence z

(
θNl , θ̄, κ

N
)
< 0, which by definition of κ̃

can only hold if κN = H
(
θ̄
)

= 1. Similarly, κ1 = 0. �

8.5 Proof of OB

Proposition 7 Let s be Nash. Then, (8) and (9) hold.

Proof Fix n. We will prove (9), with (8) analogous. We will consider perturbations that add or

subtract workers in a continuous fashion immediately to the right or left of θh. We need to respect

monotonicity and the integral condition, and make sure that our perturbed menus continue to

hire an interval of workers (as opposed to a disconnected set thereof).21

If θn+1
l > θnh = θh, then (9) is automatic, since by Proposition 1 and the definition of PS,

π(θh, α, v) = 0 and α(θh) = αn+1(θh). So, assume θn+1
l = θh, and note that by Proposition 6, α

is strictly increasing to the left of θh, and a−n = αn+1 is strictly increasing to the right of θh.

Step 1 Let us first define a basic perturbation (α̂(·, y), v̂(·, y)) indexed by y. Fix n and 0 < ε <

21This proof would be much easier if all crossing were strictly transverse. Then, we could use γ(·, κ) and vary κ
holding fixed v(θl).
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θh − θl. For y positive or negative, define

α̂(θ, y) =

{
α(θ) if θ < θh − ε
max{α(θh − ε),min {α(θ) + y, α(θh)}} if θ ≥ θh − ε

.

That is, above θh − ε, change actions by y but censor them to be at or above α(θh − ε) and at or

below α (θh) . Leave actions alone below θh − ε. Note that monotonicity is preserved, and that α̂

is continuous at all (θ, y) where θ > θh − ε.
Define v̂(θ, y) = v(θl) +

∫ θ
θl
α̂(τ, y)dτ . Because α̂(τ, y) is bounded and for each y, differentiable

in y for almost all τ , with α̂y(τ, y) ∈ {0, 1} wherever it is defined, v̂ is continuously differentiable

in (θ, y) wherever θ > θh − ε, with v̂y (θh, 0) = ε > 0.

Step 2 Let us now use the basic perturbation to add or subtract workers near θh. Define ŷ(θ′)

implicitly by v̂(θ′, ŷ(θ′))− v−n(θ′) = 0. Then ŷ is well defined on an interval around θh, with

ŷθ′(θ
′) =

a−n(θ′)− α̂(θ′, ŷ(θ′))

v̂y(θ′, ŷ(θ′))
≥ 0. (20)

Further, when ŷ(θ′) > 0, then v̂(θ, ŷ(θ′)) > v−n(θ) for all θ ∈ (θl, θh], and hence any crossing of

zero by v̂(·, ŷ(θ′))− v−n(·) above θl occurs where θ > θh, and thus where

(v̂(θ, ŷ(θ′))− v−n(θ))θ = α̂(θ, ŷ(θ′))− a−n(θ) = α(θh)− a−n(θ) < 0,

since a−n(θ) > a−n(θh) ≥ α(θh). Thus, indeed θ′ is the unique crossing, and so ϕ = 1 for all

θ ∈ (θl, θ
′), and ϕ = 0 outside of [θl, θ

′]. Similarly, if ŷ(θ′) < 0, then any crossing of zero by

v̂(·, ŷ(θ′))− v−n(·) above θl occurs where θ < θh, and thus where α̂(θ, ŷ(θ′)) ≤ α(θ), and hence

(v̂(θ, ŷ(θ′))− v−n(θ))θ = α̂(θ, ŷ(θ′))− a−n(θ) ≤ α(θ)− a−n(θh) < 0,

by NEO, and so again ϕ = 1 for all θ ∈ (θl, θ
′), and ϕ = 0 outside of [θl, θ

′].

Step 3 Since this perturbation is feasible, it must be unprofitable. Let us show that this implies

(9). To do so, let j(θ′) be the profit from the perturbation. Then,

j(θ′) =

∫ θh−ε

θl

π(θ, α, v)h(θ)dθ +

∫ θ′

θh−ε
π(θ, α̂(·, ŷ(θ′)), v̂(·, ŷ(θ′))h(θ)dθ,

since for θ < θh − ε, α̂ = α and v̂ = v. Thus,

jθ′(θ
′) = π(θ′, α̂(·, ŷ(θ′)), v̂(·, ŷ(θ′))h(θ′)

+ŷθ(θ
′)

∫ θ′

θh−ε

(
πa(θ, α̂(·, ŷ(θ′)), v̂(·, ŷ(θ′))α̂y(θ, ŷ(θ′))− v̂y(θ, ŷ(θ′))

)
h(θ)dθ.
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To evaluate this at θ′ = θh, note that ŷ(θh) = 0, α̂(θ, 0) = α (θ), α̂ny (θ, 0) = 1 for θ ∈ (θh − ε, θh),

and zero outside of [θh − ε, θh] and that v̂(·, 0) = v, and so, using (20) and v̂y(θh, 0) = ε,

jθ′(θh) = π(θh, α, v)h(θh) +
a−n(θh)− α(θh)

ε

∫ θh

θh−ε
(πa(θ, α, v)− v̂y(θ, 0))h(θ)dθ

= π(θh, α, v)h(θh) +
(
a−n(θh)− α(θh)

)
(πa(τ, α, v)− v̂y(τ, 0))h(τ)

for some τ ∈ [θh − ε, θh] by the Mean Value Theorem, and where we note that v̂y(τ, 0) = τ −
(θh − ε) ∈ [0, ε]. But, for all ε > 0, this perturbation is feasible for all θ′ in a neighborhood of θh,

and so since (α, v) is optimal, we have jθ′(θh) = 0. Taking ε → 0, we have τ → θh, and hence,

canceling h (θh), we arrive at 0 = π(θh, α, v) + (a−n(θh)− α(θh))πa(θh, α, v). Thus (9) holds, and

we are done. �

8.6 Proofs for Section 5

Proof of Theorem 2 The first inequality in (11) follows from PP . Assume that πn(θ, αn, vn) >

Bn(αn(θ))−maxn′ B
n′(αn(θ)). Then,

vn(θ) = Bn(αn(θ))− c(αn(θ), θ)− πn(θ)

< Bn(αn(θ))− c(αn(θ), θ)− (Bn(αn(θ))−max
n′

Bn′(αn(θ)))

= max
n′

Bn′(αn(θ))− c(αn(θ), θ),

contradicting NP .

Let n̂ be the firm that serves θ in an efficient allocation, let θ̂ be any type that n̂ serves in

equilibrium, and let â = αn̂(θ̂). By (11), n̂ is the most efficient firm at action â. Hence, â ∈ [an̂l , a
n̂
h].

Similarly, since n̂ efficiently serves θ, we also have αn̂∗ (θ) ∈ [an̂l , a
n̂
h]. Thus,

∣∣â− αn̂∗ (θ)∣∣ ≤ d2.

Since θ can imitate θ̂, we have that

vn (θ) > vn̂(θ̂) + c(â, θ̂)− c (â, θ)

= Bn̂(â)− c(â, θ̂)− πn̂(θ̂) + c(â, θ̂)− c(â, θ)

= Bn̂(â)− πn̂(θ̂)− c(â, θ)

≥ Bn̂(â)− c(â, θ)− d1

= Bn̂(αn̂∗ (θ))− c(αn̂∗ (θ), θ)− d1 + (Bn̂(â)− c(â, θ)− (Bn̂(αn̂∗ (θ))− c(αn̂∗ (θ), θ)))

= v∗ (θ)− d1 + (Bn̂(â)− c(â, θ)− (Bn̂(αn̂∗ (θ))− c(αn̂∗ (θ), θ)))

≥ v∗ (θ)− d1 −
1

2
d2

2δ,

where the second inequality uses (11), and the third inequality follows from (Bn̂(αn̂∗ (θ))−c(αn̂∗ (θ), θ))a =
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0, the definition of δ, and
∣∣an̂∗ (θ)− â∣∣ < d2. Comparing the first and last terms gives the result.�

9 Appendix B: Proofs for Section 6

9.1 Proofs for Section 6.3

Remark 1 For this and the next three subsections, we assume stacking, and whenever we fix n

and s−n, we assume s−n satisfies C1 and C2.

Proof of Lemma 3 That sn is single dominant on some non-empty interval including θx is

proven in the paragraph immediately following the statement of the Lemma. To see that OB

implies NP , note that by C1 and stacking, a−n > α∗ for all θ above θh, and hence, using (10), the

profits to poaching, π(·, a−n, v−n), are falling everywhere above θh. (Similarly, poaching profits

rise below θl.) It is thus enough to show that poaching just above θh does not make sense. This

follows from (9), since

0 = πa(θh, α, v)
(
a−n(θh)− α(θh)

)
+ π(θh, α, v)

> π(θh, a
−n(θh), v)− π(θh, α, v) + π(θh, α, v)

= π(θh, a
−n, v).

where the inequality follows since π is strictly concave in a. �

9.2 Proofs for Section 6.4

We begin with a simple corollary to Lemma 2 that we will use repeatedly.

Corollary 5 Assume that θl < θh and r (θl, θh) ≥ 0, and let s̃ (θl, θh) = (α̃, ṽ). If κ̃ (θl, θh) =

H (θh), then π (θh, α̃, ṽ) > 0, and if κ̃ (θl, θh) = H (θl), then π (θl, α̃, ṽ) > 0.

This follows immediately from Lemma 2. If κ̃ (θl, θh) = H (θh), and π (θh, α̃, ṽ) ≤ 0 then the

the integrand in the objective function (4) is strictly negative everywhere on (θl, θh), contradicting

r (θl, θh) ≥ 0, and similarly if κ̃ (θl, θh) = H (θl), and π (θl, α̃, ṽ) ≤ 0.

Proof of Lemma 4 Note that r is continuous, since κ̃ is continuous in (θl, θh), γ is continuous

in κ, ṽ is continuous in (θl, θh, κ), and the integral in (4) is continuous in its endpoints. Since the

set {θl, θh|θ ≤ θl ≤ θh ≤ θ̄} is compact, r has a maximum. Part (i) follows since κ̃ ∈ [0, 1] using

Lemma 6, and hence α̃ is monotone, and since ṽ (θ) = ṽ (θ) +
∫ θ
θ α̃dτ by construction. To see (ii),

consider any maximizer (θl, θh) of r at which ṽ(θh) > v−n(θh). Then, for all θ′h on a neighborhood

of θh, (a) κ̃(θl, θ
′
h) = H(θ′h), (b) κ̃ is differentiable in its second argument and surplus at θl remains
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fixed at v−n (θl), and (c) s̃(θl, θ
′
h) is feasible in P (θl, θh). But then, since s̃ (θl, θh) was optimal in

P (θl, θh), we have that
∫ θh
θl

(π(θ, s̃(θl, θh)))θhh(θ)dθ is well-defined and equal to 0. Hence,

rθh(θl, θh) =

(∫ θh

θl

π(θ, s̃(θl, θh))h(θ)dθ

)
θh

= π(θh, s̃(θl, θh))h(θ) +

∫ θh

θl

(π(θ, s̃(θl, θh)))θhh(θ)dθ

= π(θh, s̃(θl, θh))h(θ).

But, since κ̃(θl, θh) = H(θh), and since (θl, θh) is a maximum of r, and so r(θl, θh) > 0 by C2, we

have π(θh, s̃(θl, θh)) > 0 by Corollary 5, and thus rθh(θl, θh) > 0. Since (θl, θh) is optimal, it must

thus be that θh = θ̄. Similarly, if ṽ (θl) > v−n (θl), then θl = θ. But then, in all cases, s̃ (θl, θh)

is single dominant on (θl, θh), using stacking and C1. Part (iii) follows immediately, with the

equality of payoffs following as the relevant domains of integration agree. �

Lemma 8 There exist m and m with m ≤ θx ≤ m such that π(θ, a−n, v−n) is strictly positive

if θ ∈ (m,m), strictly negative and strictly increasing if θ < m, and strictly negative and strictly

decreasing if θ > m.

Proof By stacking and C1, for θ > θx,

a−n(θ) > γ(θ, 0) ≥ γ(θ,H(θ)) = α∗(θ),

and so πa(θ, a
−n, v−n) < 0. Hence, anywhere that a−n is differentiable, we have by (10) that

(π(θ, a−n, v−n))θ < 0. Further, at any point where a−n jumps, say from al to ah, we have,

since v−n is continuous, and since ah > al > α∗(θ) that π(θ, ah, v
−n) − π(θ, al, v

−n) < 0. Hence

π(·, a−n, v−n) is strictly decreasing on [θx, θ̄], and so single-crosses 0 from above at most once on

[θx, θ̄]. If such a crossing exists, define m as the crossing. If π(θ̄, a−n, v−n) > 0, take m = θ̄, and

if π(θx, a−n, v−n) < 0, take m̄ = θx. Construct m similarly. �

Lemma 9 Let (α, v) be any feasible menu for n with π(θ, α, v) ≥ 0 everywhere, and let v be

dominant on (τl, τh). Then, (τl, τh) ∩ [m,m] 6= ∅.

Proof Assume τl ≥ m ≥ θx. Then, v(τl) = v−n(τl) by definition of dominance and since v and

v−n are continuous. Since for all θ ∈ (τl, τh)

v(τl) +

∫ θ

τl

α(τ)dτ = v(θ) > v−n(θ) = v−n(τl) +

∫ θ

τl

a−n(τ)dτ

it follows that there is τ ∈ (τl, τh) where α(τ) > a−n(τ). But, since τ > m ≥ θx, and using C1, it
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follows that a−n(τ) > α∗(τ), and so

π(τ, α(τ), v(τ)) < π(τ, α−n(τ), v(τ)) < π(τ, α−n(τ), v−n(τ)) < 0,

a contradiction. Similarly, it cannot be that τh ≤ m. �

Proof of Proposition 2 Using Proposition 3, we can wlog assume that (α, v) loses money

nowhere. Recall that

Π(s) =

∫ θ̄

θ
π(θ, α, v)ϕ(θ, s)h(θ)dθ. (21)

Assume that v dominates v−n on an interval IH with θx ≤ IH ≤ m ≤ ĪH . In this case, define

m∗ = ĪH . If there is no such interval, define m∗ = m. Similarly, if v dominates v−n on an interval

IL with IL ≤ m ≤ ĪL ≤ θx, then define m∗ = IL, and if there is no such interval, define m∗ = m.

Consider first any positive lengthed interval J ⊆ [m∗, θ̄] on which v = v−n, and such that∫
J ϕ(θ, s)dθ > 0. Then, α = a−n on this interval, and so, since m∗ ≥ m, π(θ, α, v) < 0 for all

θ > m∗. Hence, excluding J from the domain of the integral in (21) increases the integral in (21).

By Lemma 9, there is no positive lengthed interval J = (J, J̄) with J ≥ m∗ or and J̄ < m∗

on which v is dominant. We thus have

Π(s) ≤
∫ m∗

m∗
π(θ, α, v)ϕ(θ, s)h(θ)dθ. (22)

Define v̂ = max(v, v−n), with associated α̂, where at all θ where v (θ) ≥ v−n (θ), we can

take α̂ = α, and at almost all θ where v (θ) ≤ v−n (θ), we can take α̂ = a−n (on any interval

where v (θ) = v−n (θ), α = a−n almost everywhere, and so there is a zero measure set where

the two definitions might be in conflict). But then, everywhere that ϕ (θ, s) is positive (and so

v (θ) ≥ v−n (θ)), we have π (θ, α̂, v̂) = π (θ, α, v), and so, from (22),

Π(s) ≤
∫ m̄∗

m∗
π (θ, α̂, v̂)ϕ (θ, s)h (θ) dθ.

Consider any θ ∈ (m∗,m∗) such that ϕ(θ, s) < 1. Then, v(θ) ≤ v−n(θ), and so v̂(θ) = v−n(θ),

and α̂(θ) = a−n(θ) almost everywhere. And, since by construction, ϕ is 1 on IH and IL (if these

sets exist), it follows that θ ∈ [m,m], and so π(θ, α̂, v̂) = π(θ, a−n, v−n) ≥ 0. We thus have

Π(s) ≤
∫ m∗

m∗
π(θ, α̂, v̂)h(θ)dθ.

But, v̂ ≥ v−n by construction, and so (5) and (6) are satisfied in P(m∗,m∗), while α̂ was chosen

to be a subgradient of the convex function max(v, v−n), and hence (7) holds as well. Thus, (α̂, v̂)

is feasible in the relaxed problem P(m∗, m̄∗), from which Π(s) ≤ r(m∗,m∗). �
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9.3 Proofs for Section 6.5

In this section, we establish that the firm has an essentially unique best response. We begin with

local properties of r and then use those properties to show that r has a unique maximum.

9.3.1 Local Properties of r

We first study the properties of r, including its strict local concavity properties. Write f+
x and

f−x for the right and left derivatives of f with respect to x.

Remark 2 Fix a maximal rectangle R̃ = [ιl, ιh]× [ι′l, ι
′
h] as defined in Section 6.5. On [ιl, ιh] and

[ι′l, ι
′
h], we can take α−n to be continuous by C1, and hence v−n to be continuously differentiable.

Lemma 10 Considered as a function on R̃, r is continuously differentiable, with

rθh(θl, θh) =
(
πa(θh, γ(θh, κ̃), ṽ)(a−n(θh)− γ(θh, κ̃)) + π(θh, γ(θh, κ̃), ṽ)

)
h(θh), (23)

and

rθl(θl, θh) =
(
πa (θl, γ(θl, κ̃), ṽ) (γ(θl, κ̃)− a−n(θl))− π(θl, γ(θl, κ̃), ṽ)

)
h(θl). (24)

Proof The right side of (23) has the same form as (9). As in the analysis of OB in Section

8.5, this is the value of increasing θh by increasing effort immediately to the left of θh, and, since

γ (·, κ̃ (θl, θh)) solves the relaxed problem, this perturbation is as good as anything. Alternatively,

differentiate r, and manipulate, using integration by parts and (19). The proof of (24) is similar.

On R̃, all the terms of rθh and rθl are continuous. Hence, r is continuously differentiable. �

As a coherence check, along the lower boundary of R̃,

r+
θh

(θl, θh) = lim
ε↓0

r(θl, θh + ε)− r(θl, θh)

ε
= lim

ε↓0
rθh(θl, θh + ε) =

(
r|R̃
)
θh

(θl, θh), (25)

where the second equality uses L’Hôpital’s rule and continuity of rθh on (ι′l, ι
′
h). Things are similar

on the other boundaries of R̃.

Recall that Θ is the subset of R on which z(θl, θh, κ̃(θl, θh)) = 0. Where there is no ambiguity,

we will write κ̃ for κ̃ (θl, θh).

Lemma 11 On R̃ ∩Θ, we have

(γ(θl, κ̃))θl > γκ(θl, κ̃)κ̃θl ≥ 0 and (γ(θh, κ̃))θh > γκ(θh, κ̃)κ̃θh ≥ 0,

with ∣∣∣∣∣ (γ(θl, κ̃))θl (γ(θl, κ̃))θh
(γ(θh, κ̃))θl (γ(θh, κ̃))θh

∣∣∣∣∣ > 0. (26)
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Proof Note that

(γ(θl, κ̃))θl = γθ(θl, κ̃) + γκ(θl, κ̃)κ̃θl > γκ(θl, κ̃)κ̃θl ,

since γθ > 0 using that κ̃ ∈ [0, 1]. But, since z(θl, θh, κ̃) = 0, we have κ̃θl = −zθl/zκ < 0 using

the discussion around (13). Intuitively, when θl is increased, v must become steeper, and this

is accomplished via higher actions and hence a lower κ. Thus γκ(θl, κ̃)κ̃θl > 0, since γκ < 0.

Similarly, κ̃θh < 0, and so (γ(θh, κ̃))θh > γκ(θh, κ̃)κ̃θh > 0.

To see (26), note that∣∣∣∣∣ (γ(θl, κ̃))θl (γ(θl, κ̃))θh
(γ(θh, κ̃))θl (γ(θh, κ̃))θh

∣∣∣∣∣ =

∣∣∣∣∣ γθ(θl, κ̃) + γκ(θl, κ̃)κ̃θl γκ(θl, κ̃)κ̃θh
γκ(θh, κ̃)κ̃θl γθ(θh, κ̃) + γκ(θh, κ̃)κ̃θh

∣∣∣∣∣
>

∣∣∣∣∣ γκ(θl, κ̃)κ̃θl γκ(θl, κ̃)κ̃θh
γκ(θh, κ̃)κ̃θl γκ(θh, κ̃)κ̃θh

∣∣∣∣∣ = 0,

since each of the four terms on the main diagonal in the second expression is strictly positive. �

Lemma 12 Consider r as a function on R̃ ∩ Θ. Then, rθlθh < 0. If rθh(θl, θh) = 0, then

rθhθh(θl, θh) < 0, if rθl(θl, θh) = 0, then rθlθl(θl, θh) < 0, and if rθl(θl, θh) = rθh(θl, θh) = 0, then r

is locally strictly concave at (θl, θh).

Proof From (23),

rθhθl(θl, θh)

h(θh)
= πaa(θh, γ(θh, κ̃), ṽ) (γ(θh, κ̃))θl

(
a−n(θh)− γ(θh, κ̃)

)
(27)

+πa(θh, γ(θh, κ̃), ṽ)(− (γ(θh, κ̃))θl)

+πa(θh, γ(θh, κ̃), ṽ) (γ(θh, κ̃))θl ,

= πaa(θh, γ(θh, κ̃), ṽ) (γ(θh, κ̃))θl
(
a−n(θh)− γ(θh, κ̃)

)
and similarly, from (24),

rθlθh(θl, θh)

h(θl)
= πaa(θl, γ(θl, κ̃), ṽ) (γn(θl, κ̃))θh

(
γ(θl, κ̃)− a−n(θl)

)
.22 (28)

To see that rθlθh < 0, start from (28), and note that πaa < 0, that (γn(θl, κ̃))θh > 0, and that

γ(θl, κ̃)− a−n(θl) > 0.

Note next that since z(θl, θh, κ̃) = 0, ṽ(θl) = v−n(θl) and ṽ(θh) = v−n(θh). Note that

πa(θh, γ(·, κ̃), ṽ) =s κ̃ − H (θh) ≤ 0,since κ̃ ∈ [H (θl) ,H (θh)]. Similarly, πa(θl, γ(·, κ̃), ṽ) ≥ 0.

22These two expressions must of course be equal, but it is convenient to express them in these two different ways.
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Assume that rθh(θl, θh) = 0. Then using (23),

rθhθh(θl, θh)

h(θh)
=

(
1 + πaa(θh, γ(θh, κ̃), ṽ) (γ(θh, κ̃))θh

) (
a−n(θh)− γ(θh, κ̃)

)
+πa(θh, γ(θh, κ̃), ṽ)(a−nθ (θh)− (γ(θh, κ̃))θh)

+γ(θh, κ̃) + πa(θh, γ(θh, κ̃), ṽ) (γ(θh, κ̃))θh − a
−n(θh)

where the term involving hθ disappears since rθh = 0, and where we use that ṽ(θh) = v−n(θh),

and hence (ṽ(θh))θh = (v−n(θh))θh = a−n(θh). Cancelling,

rθhθh(θl, θh)

h(θh)
= πaa(θh, γ(θh, κ̃), ṽ) (γ(θh, κ̃))θh

(
a−n(θh)− γ(θh, κ̃)

)
(29)

+πa(θh, γ(θh, κ̃), ṽ)a−nθ (θh)

≤ πaa(θh, γ(θh, κ̃), ṽ) (γ(θh, κ̃))θh
(
a−n(θh)− γ(θh, κ̃)

)
< 0,

where the first inequality uses that πa(θh, γ(θh, κ̃), ṽ) ≤ 0 and the second uses that πaa < 0, that

by Lemma 11, (γ(θh, κ̃))θh > 0, and that by stacking, C1, and κ̃ ∈ [0, 1], a−n(θh)−γ(θh, κ̃) > 0.23

Similarly, taking cancellations as before, if rθl = 0, then

rθlθl(θl, θh)

h(θl)
= πaa(θl, γ(θl, κ̃), ṽ) (γ(θl, κ̃))θl

(
γ(θl, κ̃)− a−n(θl)

)
(30)

−πa(θl, γ(θl, κ̃), ṽ)a−nθ (θl)

≤ πaa(θl, γ(θl, κ̃), ṽ) (γ(θl, κ̃))θl
(
γ(θl, κ̃)− a−n(θl)

)
< 0.

For strict local concavity, it remains to show that where rθl = rθh = 0, we have d ≡ rθlθlrθhθh−
r2
θlθh

> 0. From (29) and (30),

rθlθlrθhθh
h(θl)h(θh)

≥ πaa(θh, γ(θh, κ̃), ṽ) (γ(θh, κ̃))θh
(
a−n(θh)− γ(θh, κ̃)

)
×πaa(θl, γ(θl, κ̃), ṽ) (γ(θl, κ̃))θl

(
γ(θl, κ̃)− a−n(θl)

)
,

23To be careful, a−nθ , and hence rθhθh may not be everywhere defined, in particular, where the opponent
changes. But, since a−n is increasing, lim infε↓0 a

−n
θ (θh + ε) ≥ 0 and lim infε↓0 a

−n
θ (θh − ε) ≥ 0, and so, since

πa(θh, γ(θh, κ̃), ṽ) ≤ 0, we have lim supε↓0 rθhθh(θl, θh + ε) < 0, and lim supε↓0 rθhθh(θl, θh − ε) < 0. We henceforth
ignore this technical detail.
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while from (27) and (28),

rθlθhrθhθl
h(θl)h(θh)

= πaa(θl, γ(θl, κ̃), ṽ) (γ(θl, κ̃))θh
(
γ(θl, κ̃)− a−n(θl)

)
×πaa(θh, γ(θh, κ̃), ṽ) (γ(θh, κ̃))θl

(
a−n(θh)− γ(θh, κ̃)

)
.

Collecting the three positive terms h(θl)h(θh), (γ(θl, κ̃)− a−n(θl)) (a−n(θh)− γ(θh, κ̃)), and

πaa(θl, γ(θl, κ̃), ṽ)πaa(θh, γ(θh, κ̃), ṽ), it suffices that

(γ(θh, κ̃))θh (γ(θl, κ̃))θl − (γ(θl, κ̃))θh (γ(θh, κ̃))θl > 0,

which follows from Lemma 11. �

9.3.2 Essentially Unique Optimality

Say that f : R→ R has a critical point at x if f−x (x)f+
x (x) ≤ 0, so that fx at least weakly changes

sign at x. This includes the case where f is differentiable at x and fx(x) = 0. Recall that K is

the set of kink points of v−n. By C1, |K| ≤ N − 1.

Lemma 13 Any maximum of r is in R = [θ, θx]× [θx, θ̄].

Proof Consider any (θl, θh) with θh < θx, and assume (θl, θh) is a maximum of r. Then, ṽ(θh) =

v−n(θh) by Lemma 4, and so, since κ̃ < 1, it follows from stacking and the definition of θx that

a−n < γ(·, κ̃) for θ < θx, and so v crosses v−n from below at θh, contradicting the definition of

θh. Thus, θh ≥ θx. Similarly, θl ≤ θx. �

Next, we collect some basic properties of z.

Lemma 14 For each κ ∈ [0, 1], z(·, ·, κ) is strictly increasing on R, with z(θl, θ
x, κ) < 0 for all

θl < θx.

Proof Recall from the discussion around (13) that on each R̃, zθh(θl, θh, κ) = a−n(θh)−γ(θh, κ) =s

θh− θx, and so z(θl, ·, κ) is strictly single-troughed with minimum at θx. But, z(θl, θl, κ) = 0, and

hence z(θl, θ
x, κ) < 0 for all θl < θx. Similarly zθl(θl, θh, κ) = −a−n(θl) + γ(θl, κ) > 0 for θl < θx.

�

Recall that the locus LN is defined by z(θl, θh, H(θl)) = 0, and the locus LS is defined by

z(θl, θh, H(θh)) = 0. Note that z is differentiable on each R̃. Hence, since zθl , zθh , and zκ are

strictly positive, LN is continuous, strictly decreasing, and by definition of z, goes through (θx, θx).

The locus LS , which lies below LN , has the same properties.

Let us show that on or below LS , r is strictly increasing in θh where r is positive, and on or

above LN , r is strictly decreasing in θl where r is positive.
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Lemma 15 On or below LS, rθh(θl, θh) exists and equals π(θh, s̃ (θl, θh))h(θh), and if r(θl, θh) > 0,

then rθh(θl, θh) > 0. On or above LN , rθl(θl, θh) exists and equals −π(θl, γ(·, s̃ (θl, θh))h(θl), and

if r(θl, θh) > 0, then rθl(θl, θh) < 0.

Proof Fix (θl, θh) below LS . Then, z(θl, θh, H(θh)) < 0, and so by definition, κ̃(θl, θh) = H(θh),

and by Proposition 1, ṽ(θl) = v−n(θl), and thus ṽ(θh) > v−n(θh). But then, for each ε small, the

menu s̃ (θl, θh + ε) is feasible in P (θl, θh) and so by the Envelope Theorem (or by manipulation

involving Lemma 7), rθh(θl, θh) = π(θh, s̃ (θl, θh))h(θh). If r(θl, θh) > 0, then, since κ̃ = H(θh), we

have by Corollary 5 that π(θh, s̃ (θl, θh)) > 0, and hence rθh(θl, θh) > 0.

Consider next (θl, θh) ∈ LS . Since for each ε > 0, (θl, θh − ε) is below LS , rθh(θl, θh − ε) =

π(θh − ε, s̃ (θl, θh − ε))h(θh − ε) by the previous step. It thus follows as in (25) that r−θh(θl, θh) =

π(θh, s̃ (θl, θh))h(θh), where we note that on LS , ṽ(θh) = v−n(θh). Finally, from (23) and the

discussion immediately following Remark 2, and again exploiting that above LS , ṽ(θh) = v−n(θh),

r+
θh

(θl, θh) = lim
ε↓0

rθh(θl, θh + ε)

= lim
ε↓0

(
πa(θh + ε, s̃ (θl, θh + ε)), v−n)

(
a−n(θh + ε)− γ(θh + ε,H(θh + ε))

))
h(θh + ε)

+ lim
ε↓0

(
π(θh + ε, s̃ (θl, θh + ε)), v−n)

)
h(θh + ε)

= π(θh, s̃ (θl, θh))h(θh).

This follows since a−n(·) − γ(·, H(θh)) is bounded and since limε↓0 πa(θh + ε, s̃ (θl, θh + ε)) = 0

using that γ and v−n are continuous and that on LS , κ̃ = H(θh), and hence πa(θh, s̃ (θl, θh)) = 0

by definition of γ. But then, r+
θh

(θl, θh) = r−θh(θl, θh), and so rθh(θl, θh) exists and has the claimed

value. The proof for (θl, θh) above LN is similar. �

Now let us formalize the assumption that LS hits the western boundary of R.

Assumption 1 z
(
θ, θ̄, 1

)
≥ 0.

Note in particular that since z is increasing, Assumption 1 implies that z
(
θl, θ̄, 1

)
> 0 for all

θl > θ, so that LS does not intersect with the northern boundary of R.

Define θT by z(θ, θT , 0) = 0 if there is such a θT ≥ θx, and by θT = θ̄ otherwise. This is the

latitude at which LN exits R. For Firm 1, θx = θ, and hence θT = θ. Let A = {(θ, θh)|θh ≥ θT }.
By Lemma 15, any maximum of r occurs in Θ∪A. In particular, if r is strictly positive (as it must

be at an optimum), then below LS , rθh > 0, contradicting optimality, and above LN , rθl < 0,

contradicting optimality unless θl = θ. Thus, recalling that Θ(θh) is the interval of θl such that

(θl, θh) ∈ Θ ∪A, and that ψ(θh) = maxθl∈Θ(θh) r(θl, θh), we have that

max
{(θl,θh)|θh≥θl}

r(θl, θh) = max
Θ∪A

r(θl, θh) = max
θh

ψ(θh).
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Given this construction, let us begin by considering the maximization problem as one moves

east to west. Recall that D is the set of θh such that ψ is strictly positive.

Lemma 16 Fix θh ∈ D. Then on Θ(θh), r(·, θh) is strictly single-peaked and has a unique

maximum λ(θh).

Proof This is trivial for θh > θT , since Θ(θh) = {θ}. Fix θh ≤ θT . Let the (closed) interval

Θ(θh) be denoted [τl, τh]. Existence of a maximum follows since r(·, θh) is continuous. Consider

θl ∈ [τl, τh]. If θl /∈ K and θl is a critical point, then rθl = 0 and so by Lemma 12, rθlθl < 0. Thus

θl is a strict local maximum.

Assume θl ∈ K, and that θl is a critical point. Then, since πa(θl, γ(θl, κ̃), ṽ) ≥ 0 and since a−n

jumps upwards at θl, we have that r−θl(θl, θh) ≥ r+
θl

(θl, θh). If r−θl < 0 then r+
θl
< 0, contradicting

that θl is a critical point. Thus, r−θl ≥ 0. If r−θl > 0, then, r(θl, θh) > r(θ′l, θh) for all θ′l in a

neighborhood to the left of θl. If instead r−θl = 0, then, by (30) applied to the rectangle R̃ to

the left of (θl, θh), r(·, θh) is strictly concave on a neighborhood to the left of θl, and so, since

(r|R̃)θl = r−θl = 0, r(·, θh) is strictly increasing on that neighborhood. Thus, again, r(θl, θh) >

r(θ′l, θh) for all θ′l in a neighborhood to the left of θl. Arguing similarly, r(θl, θh) > r(θ′l, θh) for

all θ′l in a neighborhood to the right of θl, and θl is again a strict local maximum. It follows that

r(·, θh) is strictly single-peaked on [τl, τh], and hence has a single optimum on [τl, τh]. �.

Lemma 17 The function ψ is continuous on
[
θx, θ̄

]
. On D, λ is continuous as well.

Proof Since LN and LS are strictly decreasing and continuous, the correspondence Θ(·) is

nonempty, compact-valued, and continuous, and so by the Theorem of the Maximum, ψ is con-

tinuous, and the set of maximizers of r(·, θh) is upper hemicontinuous in θh. But then, since λ is

single-valued on D by Lemma 16, it is continuous as a function on D. �

Our next lemma shows that the set of θh where profits are strictly positive is an interval.

Lemma 18 The set D = {θh > θx|ψ(θh) > 0} is an interval.

Proof Let E be the set on which θ > θx and v∗(θ) > v−n(θ), where recall that v∗ (θ) = B(α∗(θ))−
c(α∗(θ), θ). By stacking and C1, v−n, which has slope a−n, is strictly steeper than vθ, which has

slope γ (θ,H (θ)), above θx. Hence E is an interval (θx, Ē). Our first step is to show that E ⊆ D.

Our second step that for any θh > Ē, if θh ∈ D, then an interval to the left of θh is also in D.

Our third step is to show that since θh was an arbitrary point in D above Ē, it follows that D is

an interval as claimed.

Step 1 Choose θh ∈ E. We wish to show θh ∈ D. To do so, set α constant at α∗(θh) and set

v(θh) = v−n(θh). Then, by stacking and C1, (α, v) hires some non-empty interval of types (θ̂l, θh),
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and earns v∗(θh)− v−n(θh) > 0 on each type hired, since profits are constant by (10) using that

the action is constant. A fortiori, r(θ̂l, θh) > 0. If we knew θ̂l ∈ Θ(θh) = [τl, τh], we would thus

have shown θh ∈ D, and hence E ⊆ D.

Let us first see that θ̂l ≥ τl. Assume by way of contradiction that τl > θ̂l. Note that for

x < θh,

∂

∂x

(
v−n(θh)− v−n(x)−

∫ θh

x
γ(θh, H(θh))dτ

)
= −a−n (x) + γ(θh, H(θh)) > 0,

where the inequality uses C1, stacking, and that a−n is increasing. Thus, by definition of θ̂l,

0 = v−n(θh)− v−n(θ̂l)−
∫ θh

θ̂l

γ(θh, H(θh))dτ

< v−n(θh)− v−n(τl)−
∫ θh

τl

γ(θh, H(θh))dτ

< v−n(θh)− v−n(τl)−
∫ θh

τl

γ(τ,H(θh))dτ

= z (τl, θh, H (θh)) = 0,

where the second inequality uses that γ (·, H (θh)) is strictly increasing, and the last two equalities

use the definition of Θ (θh), where we use that since τl > θ̂l ≥ θ, the pair (τl, θh) is on LS . This

is a contradiction, and hence we have θ̂l ≥ τl.
Assume that θ̂l > τh. We claim that in this case, r (·, θh) is decreasing on [τh, θ̂l]. To see this,

recall that r (·, θh) is continuous and differentiable almost everywhere. Let θ̃ ≤ θ̂l be given by

θ̃ = inf
{
θ|r is decreasing on (θ, θ̂l)

}
, (31)

and assume that θ̃ > τh, noting that θ̃ ≤ θ̂l. But then, since r is decreasing on (θ, θ̂l), and since

r(θ̂l, θh) > 0, it follows that r(θ̃, θh) > 0, and so, since r is continuous, r(·, θh) > 0 on an interval

to the left of θ̃. But then, by Lemma 15, rθl(·, θh) < 0 almost everywhere on this interval as well,

contradicting the definition of θ̃. Thus θ̃ ≤ τh. But then, ψ (θh) ≥ r (τh, θh) > 0, and so once

again θh ∈ D, and we have established that E ⊆ D.

Step 2 Let θh > Ē with θh ∈ D. We wish to show that for θ′h in an interval to the left

of θh, θ′h is also in D, with profits ψ (θ′h) ≥ ψ (θh). To do so, note first that since θh > Ē,

π(θh, s̃ (λ (θh) , θh)) < 0, and so, since ψ(θh) > 0, there is θ < θh such that

0 > (π(θ, s̃ (λ (θh) , θh))θ =
s
πa(θ, s̃ (λ (θh) , θh))

where the equality of sign uses (10). Thus κ̃ < H(θh) and so (λ(θh), θh) is strictly above LS . But
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then, for small ε > 0, λ(θh) ∈ Θ(θh − ε), and thus

ψ−θh(θh) = lim
ε↓0

r(λ(θh), θh)− r(λ(θh − ε), θh − ε)
ε

≤ lim
ε↓0

r(λ(θh), θh)− r(λ(θh), θh − ε)
ε

= r−θh(λ(θh), θh).

But, since κ̃ < H(θh), πa(θh, s̃ (λ (θh) , θh)) < 0, and thus since π(θh, s̃ (λ (θh) , θh)) < 0 as well,

by (23), r−θh < 0 and hence ψ−θh(θh) < 0. But then, an interval to the left of θh is also in D with

ψ ≥ ψ (θh) as required.

Step 3 Finally, let us show that D is an interval. This follows by a construction similar to that

around (31), using Step 2. In particular choose any θh ∈ D with θh > Ē, and let

θ̂ = inf
{
θ ≥ Ē|[θ, θh] ⊆ D, ψ (θ) ≥ ψ (θh)

}
,

and assume θ̂ > Ē. Then, by continuity of ψ, ψ(θ̂) ≥ ψ (θh) > 0, and so by Step 2 some interval

to the left of θ̂ is also in D, with profits at least ψ (θh), contradicting the definition of θ̂. Hence

θ̂ = Ē, and all of (θx, θh) ∈ D. Since θh was an arbitrary element of D, D is an interval as

claimed, and we are done. �

Since rθl < 0 on LN , (λ(θh), θh) is never on LN . But, because we maximize first with respect

to θl, it may well be that (λ(θh), θh) ∈ LS . Our next result shows that if (λ (θ) , θ) is on LS ,

then ψ is strictly increasing. Hence, no such point is a local maximum or minimum of ψ. As

mentioned in the text, the basic idea is that by Lemma 15, rθh(θl, θh) > 0 anywhere near LS .

But, since LS is decreasing, as one moves a little above LS , the constraint on θl is relaxed. Hence,

ψθh ≥ rθh(θl, θh) > 0. The proof accounts for the presence of kinks and hence points where ψ is

non-differentiable.

Lemma 19 Let (λ(θh), θh) ∈ LS with θh ∈ D. Then, ψ+
θh

(λ(θh), θh) > 0, and ψ−θh(λ(θh), θh) > 0,

and hence ψ is not critical at θh.

Proof Let (θl, θh) = (λ(θh), θh) ∈ LS with θh ∈ D. Since the set of kinks K is finite, there is

δ > 0 such that (θh − δ, θh) ∩ K = ∅, such that (θl, θl + δ) ∩ K = ∅, and, using continuity of

κ̃, such that κ̃(θl + δ, θh) > H(θl), so that all of (θl, θl + δ) × (θh − δ, θh) lies strictly below LN .

From Lemma 10, rθh is continuous on (θl, θl + δ) × (θh − δ, θh), and by examination of (23) and

by Lemma 15, it follows that rθh is continuous on X ≡ {(θl, θl + δ)× (θh − δ, θh)} ∪ {(θl, θh)}.
Further, since θh ∈ D, r(θl, θh) > 0, and so by Lemma 15, rθh(θl, θh) > 0.
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Note next that for each θ′h such that (λ(θ′h), θ′h) ∈ X ∩Θ,

ψ+
θh

(θ′h) = lim
ε↓0

ψ(θ′h + ε)− ψ(θ′h)

ε
(32)

≥ lim
ε↓0

r(λ(θ′h), θ′h + ε)− r(λ(θ′h), θ′h)

ε

= rθh(λ(θ′h), θ′h),

where the inequality follows since for small ε, λ(θ′h) is feasible at θ′h + ε.24 Thus, in particular,

since since rθh(λ(θh), θh) > 0 by Lemma 15, ψ+
θh

(θh) > 0.

Finally, consider ψ−θh(θh). Fix 0 < ρ < rθh(λ(θh), θh). Since rθh is continuous on X, and using

(32), there is ε̂ > 0 such that for all ε ∈ [0, ε̂), ψ+
θh

(θh − ε) > ρ. Let us show that ψ−θh (θh) ≥ ρ,

for which it is sufficient that for each ε ∈ [0, ε̂), ψ(θh)− ψ(θh − ε) ≥ ρε. Fix ε ∈ [0, ε̂). Then, for

any τ < θh where ψ(τ) − ψ(θh − ε) ≥ ρ(τ − (θh − ε)), the same inequality holds on an interval

to the right of τ by the definition of a right derivative and by definition of ρ. But then, since

ψ(θh − ε)− ψ(θh − ε) ≥ ρ · 0, it follows that ψ(θh)− ψ(θh − ε) ≥ ρε by a construction similar to

that around (31), and we are done. �

Given this result, we turn attention to places where the path described by λ does not lie on

LS . Let D′ = {θh ∈ D|(λ(θh), θh) /∈ LS}. Our next lemma shows that ψθh and rθh agree on D′.

As described in the text, this holds by what is essentially the Envelope Theorem.

Lemma 20 For all θh ∈ D′, ψ+
θh

(θh) = r+
θh

(λ(θh), θh) and ψ−θh(θh) = r−θh(λ(θh), θh).

Proof Let K1 = (K ∩ λ(D′)) ∪ {θ} and K2 = K ∩D′. Thus, r(λ(·), ·) may be non-differentiable

because either θh ∈ K2 or λ(θh) ∈ K1. There are thus several cases to consider.

Case 1 Consider first θh ∈ D′ such that λ(θh) /∈ K1 and θh /∈ K2. Then, we are not on LS by

definition of D′, and we are not on LN since by Lemma 15, rθl(θl, θh) < 0 on LN . Thus, since

ψ(θh) = r(λ(θh), θh),

ψθh(θh) = rθh(λ(θh), θh), (33)

by the Envelope Theorem.

Case 2 For any given θl ∈ K1, let J(θl) = min{θh|λ(θh) = θl}, and let J̄(θl) = max{θh|λ(θh) =

θl}.25 Let J(θl) = (J(θl), J̄(θl)). Since λ is constant on J(θl), if J(θl) is non-empty, then for all

θh ∈ J(θl)\K2, we have again have (33).

Case 3 Consider next θh ∈ ({J(θl)}θl∈K1 ∪ {J̄(θl)}θl∈K1)\K. Assume that θh = J(θl) for some

θl ∈ K1 (the case where θh = J̄ (θl) is similar). Then, ψθh(θ′h) = rθh(λ(θ′h), θ′h) for θ′h on a

24That is, λ(θ′h) ∈ Θ(θ′h + ε), since LS is decreasing and (θl, θl + δ)× (θh − δ, θh) lies strictly below LN .
25These correspond to the bottoms and tops of the vertical segments of the path in Figure 3.
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neighborhood above θh by Case 2. For a neighborhood below θh, θ′h /∈ K, since K is finite, and

λ(θ′h) /∈ K by definition of J(θl) and again since K is finite. Hence ψθh(θ′h) = rθh(λ(θ′h), θ′h) by

(33). But then, by continuity of rθh on these neighborhoods, and by continuity of λ, ψθh(θh) =

rθh(λ(θh), θh) as well.

Case 4 Finally, consider θh ∈ K2. Since K is finite, on some neighborhood above θh, ψθh = rθh
by the previous cases, and λ is continuous, and so

ψ+
θh

(θh) = lim
ε↓0

ψ(θh + ε)− ψ(θh)

ε
= lim

ε↓0
ψθh(θh + ε) = lim

ε↓0
rθh(λ(θh + ε), θh + ε) = r+

θh
(λ(θh), θh),

using L’Hôpital’s rule at the second inequality, and where to justify the last equality, we note from

(23) that rθh does not depend on a−n(θl), and so it does not matter whether or not λ(θh) ∈ K1.

Similarly, ψ−θh(θh) = r−θh(λ(θh), θh). �

We are now ready to show that ψ has a unique maximum on D.

Lemma 21 The function ψ is strictly single-peaked, and thus has a unique maximum, on D.

Proof We will show first that if θh is a critical point, then it is a strict local maximum of ψ. By

Lemma 19, any critical point of ψ is in D′. This will follow because Lemma 20, lets us relate the

local concavity properties of ψ to those we establish for r in Lemma 12. We go through the same

four cases as in Lemma 20.

Case 1 Consider first θh ∈ D′ such that λ(θh) /∈ K1 and θh /∈ K2. Then, since θ ∈ K1,

(λ(θh), θh) ∈ Θ, and so Lemma 12 applies, and thus, by the Implicit Function Theorem, λθh =

−rθlθh/rθlθl , where by Lemma 12 rθlθl < 0. Since (33) holds on a neighborhood of θh,

ψθhθh(θh) = rθhθl(λ(θh), θh)λθh(θh) + rθhθh(λ(θh), θh)

= −(rθlθh(λ(θh), θh))2

rθlθl(λ(θh), θh)
+ rθhθh(λ(θh), θh)

=
1

rθlθl(λ(θh), θh)

(
rθlθl(λ(θh), θh)rθhθh(λ(θh), θh)− (rθlθh(λ(θh), θh))2

)
. (34)

But then, if θh is a critical point, so that ψθh(θh) = 0, then rθl = rθh = 0 at (λ (θh) , θh), and so

by Lemma 12 rθlθlrθhθh − r2
θlθh

> 0. Hence, ψθhθh(θh) < 0, and θh is a strict local maximum of ψ.

Case 2 Consider θh ∈ D′ where θh /∈ K2 but for some θl ∈ K1, λ(θh) ∈ J(θl). Then, since

J(θl)\K2 is open, by Case 2 of Lemma 20, (33) holds on a neighborhood of θh, and so, since λ is

constant on J(θl), ψθhθh(θh) = rθhθh(θl, θh). If θh ≤ θT , so that (λ(θh), θh) ∈ Θ, then by Lemma

12, if ψθh(θh) = 0, then ψθhθh(θh) < 0, so θh is a strict local maximum of ψ. Assume that θh ≥ θT ,

so that λ(θh) = θ and κ̃(λ(θh), θh) = 0. Trace the derivation of rθhθh in the proof of Lemma 12 up

through (29) with κ̃ replaced by 0, and note that this part of the proof relies on ṽ(θh) = v−n(θh)
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but not on ṽ(θl) = v−n(θl). It follows that where rθh(θ, θh) = 0, ψθhθh(θ, θh) = rθhθh(θ, θh) < 0,

and again, θh is a strict local maximum of ψ.

Case 3 Consider next θh ∈ ({J(θl)}θl∈K1 ∪ {J̄(θl)}θl∈K1)\K. Assume that θh = J(θl) for some

θl ∈ K1 (the other case is similar), and assume that ψθh(θh) = 0. Then by Case 2, ψ is strictly

concave on a neighborhood just above θh, while by Case 1, ψ is strictly concave on a neighborhood

just below θh. Hence, again, θh is a strict local maximum of ψ.

Case 4 Finally, consider θh ∈ K2 = K ∩D′. Since κ̃ ∈ [0, 1], and since θh > θx, we have that

a−n − γ is positive and bounded away from 0 and ∞ on a neighborhood of θh by stacking and

C1. At any point θ′h of continuity of a−n, and repeating (23) for convenience,

ψθh(θ′h)

h(θ′h)
=
rθh(λ(θ′h), θ′h)

h(θ′h)
= π(θ′h, γ(·, κ̃), v−n(θ′h)) + πa(θ

′
h, γ(·, κ̃), v−n(θ′h))

(
a−n(θ′h)− γ(θ′h, κ̃)

)
,

(35)

where we recall that κ̃ is continuous, and hence so is γn(·, κ̃), and that v−n is also continuous, and

hence so are π and πa. Thus any discontinuity in ψθh at θh is driven by an upward jump of a−n

at θh and, since πa(θh, γ(·, κ̃), v−n(θh)) ≤ 0 (since κ̃ ≤ H (θh)), for there to be a discontinuity, we

must have πa < 0.

If π ≤ 0, then, by (35) both ψ+
θh

(θh) and ψ−θh(θh) are strictly negative, and θh is not a critical

point. If π > 0,then since a−n jumps up at θh, we have ψ−θh > ψ+
θh

. Assume that θh is a critical

point, so that ψ−θhψ
+
θh
≤ 0. If ψ−θh > 0 > ψ+

θh
, then θh is a strict local maximum of ψ. If ψ+

θh
= 0,

then, first, ψ−θh > 0, and, second, from the previous cases, ψθhθh < 0 for all θ on a neighborhood

to the right of θh. Similarly if ψ−θh = 0, then ψ+
θh
< 0, and ψθhθh < 0 for all θ on a neighborhood

to the left of θh. In each case θh is again a strict local maximum of ψ.

Thus, if θh ∈ D is a critical point of ψ, then θh is a strict local maximum of ψ. Since D is

a non-empty interval, ψ is strictly single-peaked on D, and so has a unique maximum, and any

critical point of ψ in D is that maximum. �

Finally, let us connect the maximization of ψ to that of r.

Lemma 22 Let θ∗h be the unique maximizer of ψ. Then, the unique maximizer of r is (λ(θ∗h), θ∗h).

Proof Let (θ∗∗l , θ
∗∗
h ) ∈ arg max{(θl,θh)|θh≥θl} r(θl, θh). Since D is non-empty, r(θ∗∗l , θ

∗∗
h ) > 0, and

hence θ∗∗l < θ∗∗h , and θ∗∗h ∈ D. By Lemma 15, (θ∗∗l , θ
∗∗
h ) ∈ Θ ∪ A, and so θ∗∗l ∈ Θ(θ∗∗h ). Hence by

Lemma 16, θ∗∗l = λ(θ∗∗h ). Since (θ∗∗l , θ
∗∗
h ) is optimal and since the constraint θh ≥ θl is slack, we

must have r+
θh

(λ(θ∗∗h ), θ∗∗h ) ≤ 0 and r−θh(λ(θ∗∗h ), θ∗∗h ) ≥ 0. But then, by Lemma 20, ψ+
θh

(θ∗∗h ) ≤ 0

and ψ−θh(θ∗∗h ) ≥ 0, and so by Lemma 21 θ∗∗h = θ∗h, and we are done. �
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9.4 Proofs for Section 6.6

Proof of Theorem 4 Let ŝ satisfy stacking, PS, IO and OB. Fix n and let ŝn = (α̂, v̂),

with associated κ̂. By IO, (α̂, v̂) satisfies C1 on (θl, θh). But then, by IO, if n < N , then

πa(θh, α̂, v̂) < 0, and by C1 and stacking, a−n(θh) − α̂(θh) > 0. Hence, by (9), π(θh, α̂, v̂) > 0.

Similarly, π(θl, α̂, v̂) > 0 if n > 1. But then, since by Lemma 2 profits are strictly single-peaked

with maximum at θ0 solving H(θ0) = κ̂, π(θ, α̂, v̂) > 0 for all θ ∈ [θl, θh]. Thus v̂(θ) < v∗(θ), so

that (α̂, v̂) satisfies C2 on [θl, θh].

Let us first re-define (α̂, v̂) outside of [θl, θh] to satisfy C1 and C2 there as well. Set

α(θ) =


min {γ(θ, 0), α̂(θl)} θ < θl

α̂(θ) θ ∈ [θl, θh]

max {γ(θ, 1), α̂(θh)} θ > θh

,

and set v(θ) = v̂(θl) +
∫ θ
θl
α(τ)dτ for all θ. That is, modify (α̂, v̂) such that actions and surplus

are unchanged in [θl, θh], and modified outside of [θl, θh] to ensure that C1 holds while respecting

monotonicity. Note that α̂(θh) = γ(θh, κ̂) ≥ γ(θh, 1), and so no discontinuity is introduced at θh,

and similarly at θl. By stacking, it remains the case that (α, v) is single-dominant on [θl, θh], and

so, since (α, v) and (α̂, v̂) agree on [θl, θh], (α, v) and (α̂, v̂) are essentially equivalent.

To show that C2 is now satisfied for θ /∈ [θl, θh], assume (θh, θ̄] is non-empty (the argument

when [θ, θl) is non-empty is the same). On the interval where α (·) = α̂(θh), (π(θ, α, v))θ =

πa(θ, α, v)αθ(θ) = 0 by (10). Where α (·) = γ(·, 1), (π(θ, α, v))θ = πa(θ, γ(·, 1), v)γθ(θ, 1) ≥ 0,

using that γθ(θ, 1) > 0, that γ(θ, 1) ≤ γ (θ,H(θ)) = α∗(θ), and that π is strictly concave in a, and

so πa(θ, γ(·, 1), v) ≥ 0. Thus, π(θ, α, v) ≥ π(θh, α, v) > 0 for all θ > θh, and so v(θ) < v∗(θ) and

C2 is satisfied.

Construct the strategy profile s by performing the above process for each n. Then OB con-

tinues to hold for all n, since for each of n’s opponents, α̂ and α agree on [θl, θh], and since both

the modified and original action profiles of n’s opponents are continuous. Let us show that s is

a Nash equilibrium. Fix n /∈ {1, N}. Assume first that Assumption 1 holds. By the argument

in the first paragraph of this proof, θh ∈ D. Since by PS, θ < θl < θh < θ̄, it follows that

z (θl, θh, κ̃(θl, θh)) = 0, where κ̃(θl, θh) ∈ (H(θl), H(θh)) by IO, and so we have θl ∈ Θ(θh). But

then, since rθl(θl, θh) = 0 by OB, we must have θl = λ(θh) by Lemma 16. But then, again by

OB, 0 = rθh(θl, θh) = rθh(λ(θh), θh) = ψθh(θh), where the third equality is by Lemma 20. Finally,

since by Lemma 21 ψ is strictly single-peaked on the interval D, we have θh = θ∗h by Lemma 22.

Thus, sn is a best response to s−n by Corollary 2.

If Assumption 1 fails, then recall from the end of Section 6.5 that λ̃ is the analogue to λ. So,

we argue first that θh ∈ Θ̃(θl), then by the analogue to Lemma 16 that θh = λ̃(θl), and then by

the analogue to Lemma 20 that by OB 0 = rθl(θl, θh) = rθl(θl, λ̃(θl)) = ψ̃θl(θl). But then, since ψ̃
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is strictly single-peaked on D̃, we have θl = θ̃∗l , and again sn is a best response to s−n.

Consider n = 1. Then, κ1 = 0 by IO, and θl = θ by PS. But, since κ1 = 0, and since, as argued

in the first paragraph of this proof, π(θh, α̂, v̂) > 0, it follows by Lemma 2 that π(θ, α̂, v̂) > 0

for all θ < θh. Hence, since πa(θ, α̂, v̂) < 0 for all θ < θh, we have rθl < 0, and so θ = λ(θh).

But then, by OB, 0 = rθh(θ, θh) = rθh(λ(θh), θh) = ψθh(θh), and again θh = θ∗h, and s1 is a best

response to s−1.

Finally, consider n = N . Then, since κN = 1 by IO, it follows that θh = θ̄ = λ̃ (θl). Thus, by

OB, 0 = rθl(θl, θ̄) = rθl(θl, λ̃(θl)) = ψ̃θl(θl), and so θl = θ̃∗l , and sN is a best response to s−N . �

9.5 Proofs for Section 6.7

We begin by defining three further restrictions on strategies that will turn out not to bind in

equilibrium, but that help us towards compactness and continuity.

Recall that BR(s−n) = arg maxsn∈Sn Πn(sn, s−n). Let

η = max{γN (θ, 0), max
n,θ,κ∈[0,1]

γnθ (θ, κ)}. (36)

Since πnaa = Bn
aa, and by definition of γ,

γnθ (θ, κ) =
1

Bn
aa(γ

n(θ, κ))

((
κ−H(θ)

h(θ)

)
θ

− 1

)
.

SinceBn
aa < 0 is continuous, it is bounded away from zero on the set of actions

{
γn (θ, κ) |θ ∈

[
θ, θ̄
]
, κ ∈ [0, 1]

}
,

which is compact since γn is continuous. But then, since h is C1 and bounded away from 0, η is

well-defined and finite.

Since γn(θ, κ) ≤ γN (θ, 0) for all n, θ, and κ ∈ [0, 1], η is a bound on the highest value and

slope of any γ satisfying C1. We will thus bound the slopes of our allowable action profiles by η.

C3 0 ≤ αn(θ′)− αn(θ) ≤ η(θ′ − θ) for all θ, θ′ with θ′ > θ.

Next, let

β = min
n,θh,κ∈[0,1]

(
πna (θh, γ

n(·, κ), 0)γN (θh, 0) + πn(θh, γ
n(·, κ), 0)

)
where β > −∞ since each relevant object is continuous and hence bounded on the compact choice

set. We will see that anywhere that (9) holds, vn(θ̄) ≥ β, motivating our next restriction.

C4 vn(θ̄) ≥ β.

For each n, let SnR be the subset of Sn such that C1–C4 hold. Let SR = ×n′Sn
′

R , and S−nR =

×n′ 6=nSn
′

R .

57



Lemma 23 Fix s−n ∈ S−nR . Then BRn(s−n) ∩ SnR is nonempty.

Proof Fix n, and fix ŝn ∈ BRn(s−n), where we note that BRn(s−n) is non-empty since r has

a maximizer and using Corollary 2. Further, by that Corollary, and using stacking, ŝn is single-

dominant on some region [θl, θh], and has the form (α̂, v̂), where α̂ = γ(·, κ) on [θl, θh], where

κ ∈ [H(θl), H(θh)], and where C1 and C2 are satisfied on [θl, θh]. Let (α, v) be defined from

(α̂, v̂) as in the proof of Theorem 4, so that as shown there, C1 and C2 are satisfied on [θ, θ̄]. By

stacking, and using that for n′ 6= n, C1 and C2 are satisfied by assumption, it remains the case

that (α, v) is single-dominant on [θl, θh], and since (α, v) and (α̂, v̂) agree on [θl, θh], it follows that

(α, v) ∈ BR(s−n). Condition C3 holds by construction.

To show that C4 holds, assume by way of contradiction, that v(θ) < β. Then, since vn
′
(θ̄) ≥ β

for each n′ 6= n, θh < θ, and so by (23), if we let ā = limθ′h↓θh a
−n(θ′h), then, by Corollary 2, since

(θl, θh) maximized r,

0 ≥
r+
θh

(θl, θh)

h(θh)
= πa(θh, γ(·, κ), v)(ā− γ(θh, κ)) + π(θh, γ(·, κ), v).

But, since sn is a best response, it follows from Proposition 3 and continuity of π, γ, and v

that π(θh, γ(·, κ), v) ≥ 0. By C1 and C2 for n′ 6= n, and stacking, ā − γ(θh, κ) > 0. Hence

πa(θh, γ(·, κ), v) ≤ 0, and so we have

0 ≥ πa(θh, γ(·, κ), v)γN (θh, 0) + π(θh, γ(·, κ), v)

> πa(θh, γ(·, κ), 0)γN (θh, 0) + π(θh, γ(·, κ), 0)− β

≥ 0,

where the first inequality uses ā − γ(θh, κ) ≤ ā ≤ γN (θh, 0), the second uses monotonicity of v

and v(θ) < β, and the last inequality uses the definition of β. This is a contradiction, and hence

v(θ) ≥ β as required. Since (α, v) is a best response and satisfies C1− C4, we are done. �

Proof of Theorem 5 Let us now prove that the game (Sn,Πn)Nn=1 has a pure-strategy equi-

librium. It is enough to show that (SnR,Π
n)Nn=1 has a pure-strategy equilibrium: By Lemma 23

BRn(s−n) ∩ SnR is nonempty, and so in a Nash equilibrium of (SnR,Π
n)Nn=1, each player is playing

an element of BRn(s−n), and we have a Nash equilibrium of (Sn,Πn)Nn=1.

The set of continuous functions from [θ, θ̄] to R, endowed with the sup norm ‖ · ‖∞, is a

Banach space, and thus SnR, with norm ‖(αn, vn)‖ = ‖αn‖∞ + ‖vn‖∞ is a subset of a Banach

space. Similarly SR with norm
∑

n ‖(αn, vn)‖ is a subset of a Banach space.

Let us show that for each n, the set SnR is nonempty, convex, and compact. To see that SnR
is nonempty, we will argue that (αn∗ , v

n
∗ ) ∈ SnR. Note that C2 is immediate, and that C1 follows
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because αn∗ (θ) = γn(θ,H(θ)). But then, by definition of η,

(αn∗ (θ))θ = γnθ (θ,H(θ)) + γnκ (θ,H(θ))h(θ) < γnθ (θ,H(θ)) ≤ η,

using that γnκ < 0, and so C3 follows. To see C4, note that since αn∗ (θ̄) = γn(θ̄, 1), it follows that

πna (θ̄, γn(θ̄, 1), 0) = 0, and hence

πna (θ̄, γn(θ̄, 1), 0)γN (θh, 0) + πn(θ̄, γn(θ̄, 1), 0) = vn∗ (θ̄),

and thus vn∗ (θ̄) ≥ β. Thus, SnR is nonempty.

To prove convexity of SnR, let (αn1 , v
n
1 ) and (αn2 , v

n
2 ) ∈ SnR, let δ ∈ [0, 1], and let (αn3 , v

n
3 ) =

(δαn1 + (1− δ)αn2 , δvn1 + (1− δ)vn2 ). Then, (αn3 , v
n
3 ) satisfies the integral condition vn3 (θ) = vn3 (θ) +∫ θ

θ α
n
3 (τ) dτ, since integration is a linear operator, so that (αn3 , v

n
3 ) ∈ Sn, and it is direct that

(αn3 , v
n
3 ) satisfies C1–C4.

To prove compactness, let (αnk , v
n
k )∞k=1 be a sequence of elements of SnR. Then, by C1 and the

definition of η, we have αnk(θ) ≥ 0 and αnk(θ̄) ≤ η. Hence, since C3 is satisfied by αnk for each k,

it follows by the Arzela-Ascoli Theorem (e.g., Rudin (1987), Theorem 11.28, p. 245) that there

exists αn satisfying C1 and C3 and a subsequence along which ‖αnk −αn‖∞ → 0. Note that αn is

increasing and has range contained in [0, η], and so is integrable. Since vnk (θ̄) lies in a compact set

by C2 and C4, we can also, by taking a further subsequence and re-indexing, assume that along

the chosen subsequence vnk (θ̄)→ v̄, for some v̄. For each θ ∈
[
θ, θ̄
]
, define vn(θ) = v̄−

∫ θ̄
θ α

n(τ)dτ .

We claim that (i) along the same subsequence, ‖vnk − vn‖∞ → 0, and (ii) (αn, vn) ∈ SnR. To see

(i), note that for each θ and k, vnk (θ) = vnk (θ̄)−
∫ θ̄
θ α

n
k(τ)dτ , and hence

|vn(θ)− vnk (θ)| ≤
∣∣vnk (θ̄)− v̄

∣∣+

∫ θ̄

θ
|αnk(τ)− αn(τ)| dτ ≤

∣∣vnk (θ̄)− v̄
∣∣+
(
θ̄ − θ

)
‖αnk − αn‖∞

and thus, since the last expression is independent of θ, ‖vnk − vn‖∞ → 0. To see (ii), note that we

have already checked C1 and C3, and that weak inequalities are preserved under limits, and so

C2 and C4 hold as well. Thus, SnR is sequentially compact and is a metric space, it is compact.

Since N is finite and, for each n, SnR is nonempty, convex, and compact, so is the product

SR = ×Ni=1S
n
R. Fix s ∈ SR, let sk → s, and fix n. Then, by stacking and since s ∈ SR, there exist

θl and θh such that ϕ(θ, s) = 1 on (θl, θh) and ϕ(θ, s) = 0 for θ /∈ [θl, θh]. But then, since for each

n′, ‖vn′k − vn
′‖ → 0, and again using stacking, for any given δ > 0, and for s′ close enough to s,

ϕ(θ, s′) = 1 on [θl + δ, θh − δ] and ϕ(θ, s′) = 0 for θ /∈ (θl − δ, θh + δ). Since ‖αnk − αn‖ → 0 as

well, and since π is bounded and continuous, it follows that Πn(sk)→ Πn(s), and thus that Πn is

continuous on SR.26

26Recall that without stacking, and outside of SR, it is easy to construct examples where payoffs are discontinuous.
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Fix n. Since Πn is continuous on SR, and since SnR is non-empty, compact, and independent of

v−n (and hence trivially continuous as a correspondence) the Theorem of the Maximum implies

that BRnR(s−n) = arg maxsn∈SnR Πn(sn, s−n) is non-empty and compact valued for each s−n, and

is upper hemicontinuous in s−n.

Finally, let us show that BRnR(s−n) is convex. Let ŝn ∈ BRnR(s−n), with single- dominance

region (θ̂l, θ̂h). Then, by Corollary 2, (θ̂l, θ̂h) maximizes r, and on (θ̂l, θ̂h), ŝn = s̃(θ̂l, θ̂h), and by

Lemma 22, (θ̂l, θ̂h) = (λ(θ∗h), θ∗h). Thus, any two elements of BRnR(s−n) win for sure on (λ(θ∗h), θ∗h)

and agree with s̃(λ(θ∗h), θ∗h) on (λ(θ∗h), θ∗h), and lose for sure for θ /∈ [λ(θ∗h), θ∗h)]. But then, their

convex combination does the same, and so is also a best response.

We have shown that SR is a non-empty, compact, convex subset of a Banach space, and that

the correspondence defined by BRR(s) ≡ BR1
R(s−1)×· · ·×BRNR (s−N ) from SR to SR has a closed

graph and nonempty convex values. Thus, by the Kakutani-Fan-Glicksberg Theorem (Aliprantis

and Border (2006), Corollary 17.55, p. 583) BRR has a fixed-point on SR, and we are done. �
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