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SOCIALMEDIA

DATA TYPES
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2023 Social Media Engagement Rates

ENGAGEMENTS REACH ENG. RATE

LinkedIn 253 M 234 M 10.8 %

Facebook 7.78 %

297B 38.1B

Instagram 210 M 3.75B 5.59 %

YouTube

151 M 340 M 4.43 %

TikTok 138 K 73.6 M 1.70B 432 %

Pinterest 448 K 168 M 2.66%

Twitter/X 383 M 1.82B 211%

Total 12.28 M

Source: 556,966 social accounts connected on www.publer.com



GETTING DATA

Data Providers

Provides data afterinputting platform credentials
* Free: SocialBlade , Dataverse, Social Media Archive
» Paid: Brightdata , Oxylabs , Sociality

3rd Party APIs

Requires application through platform or 3rd party
* Internal: specific to social media platform
* Providers: CrowdTangle , PhantomBuster

Platform Data Scraping

Typically uses an API, but can also use HTML
» Python: Beautiful Soup, Scrapy, Selenium
* R: rvest, Rselenium

Manual Collection

Most labor intensive and may introduce bias
» Copy/pasting data from websites
» Manually coding specific data (e.g., images)
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PROBILEMS
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PROBLEM 1
Cleaning Data -

Academy of Management
August 2 at 7:02AM - Q

https://aom.link/4fs3rdO
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Available in the Apple

Reposting

AOM 2024 CHICAGO

INNOVATING
FOR THE
FUTURE

POLICY, PURPOSE,
AMND ORGANIZATIONS

@ One week until we meet in Chicago for #AOMZ024! Download the AOM 2024
app to easily access the program during the Annual Meeting:

AOM 2024 App

and the




PROBLEM 2:
Cleaning Data -

Auburn Tigers %

OnlyEIdays until Kickoff on The Plains!

Tickets are going fast! Secure your spot in Jordan-Hare while you still
can |}
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PROBIEM 3:
Cleaning Data -

= Organization Management Journal (OMJ) reposted this
>

Academy of Management
40,103 followers
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B One week until we meet in Chicago for #A0M2024! Download the AOM
2024 app to easily access the program during the Annual
Meeting: https://aom.link/4fs3rdO
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PROBIEM 5:
Cleaning Data —
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PROBIEM 6:
Cleaning Data —

Honda & @Honda - Oct 1, 2013 v

Dear @TacoBell crumbs, if you fall on my floor, you will be no mas. Yours
truly, The Honda Odyssey Touring Elite with Built-in HondaVAC.

Q6 1154 Q) 37 N

Duplicated

-~ Taco Bell @ @tacobell - Oct 1, 2013 v Data
‘@ @Honda Your vacuum cleaner sucks. No, really.
O 10 Tl 84 Q) 96 T
Sponsor

Honda & v Posts
@Honda

Replying to @tacobell .
Really @tacobell? After all those late nights we had at the [

drive-thru window together? Sarcasm

©

3:11PM - Oct 1, 2013

40 Retweets 47 Likes




NEW SOLUTIONS FOR
CLEANING DATA
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® Yes, the dialogue in the image is sarcastic. Here's the breakdown:

1. Honda's First Tweet: Honda humorously promotes its Odyssey Touring Elite with Built-in
HondaVAC by addressing Taco Bell crumbs, implying they will be easily cleaned by the

vacuum.

2. Taco Bell's Response: Taco Bell replies with a playful jab, saying "Your vacuum cleaner sucks.
No, really," using the double entendre of "sucks" to mean both "works well" and "is bad,"

typical of sarcasm.

3. Honda's Reply: Honda responds with mock hurt, saying "Really @tacobell? After all those late
nights we had at the drive-thru window together?" This feigned sentimentality further

indicates sarcasm.

The interaction is light-hearted and playful, with both brands using sarcasm to engage with each

other humorously.




Usmmg CATA for
SocialMedia Data

1. Frequent and
Abrahamson & Park (1994)

emotional Henry (2008)

: . Wheeler & laham (2016)
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Brigham etal (2014)

dissem ination Hubbard etal (2018)
3. Network/ McKennyetal (2018)
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& Word Count
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L Etter,Ravasi, & Colleon1,2019; Dobele etal,2007;2. Veil, Sellnow, & Petrun,2012; 3. Veilet al,2012
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Solutions to these problems can lead to more robustcontent
and textualanalysisusing unique data!
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PROBILEM 2:
ANALYZING DATA
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Instagram Algorithm
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PROBLEM 2:
ANALYZING DATA
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THE FACEBOOK ALGORITHM DEMYSTIFIED
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How the Tik Tok Algorithm Works

3.0nce sufficient data is
collected clusters of users with
similar interests are formed

1. First-time users are
shown 8 popular videos
featuring different trends,
music, and topics.

2. The algorithm identifies
similar videos based on a user’s
engagement with those videos
and interactions which includes:

Captions Hashtags Sounds Device
Account settings Country settings

Language preferences

4.Machine learning is used to
distribute content to users based
on proximity to other clusters

E socialbakers

5. TikTok keeps users
entertained by not showing
repeat videos, music, or content
creators



Outlier

S

Mean SD Min. Max.

1. Number of 407,586.5 1,230,326 40.00 12,895,427.00
followers

2. Positive 1.317.10 2.754.69 0.00 30,110.00
emotional
interactions

3. Post word 2,186.38 2.285.52  0.00 19,171.00
count

4. Reply word 1,340.82 2.468.37 0.00 31,842.00
count

5. Comment word 15.883.05 a7,351.16 0.00 553,584.00
count

6. Posts in period 17.78 14.34  1.00 116.00

7. Numbher of 2,981.30 9.442.40 0.00 234,659.00

YOUTUBE USER ANALYTICS / STATISTICS FOR KATY (: 02/.-

DATE

comments

Roccapriore & Pollock,

SUBSCRIBERS

2024-07-09 Tue
2024-07-10 Wed
2024-07-11 Thu
2024-0712 Fri
2024-0713 Sat
2024-07-14 Sun
2024-0715 Mon
2024-07-16 Tue

2024-0717 Wed

1.87M

1.87M

1.87M

1.87M

1.87M

1.87M

1.87M

1.87M

1.87M

2023

Missing

73i =09 - 20 '4-08-07)

VIDEO VIEWS

+495

+512

+624

+531

+1,087

+483

+432

+533

168,046,652
168,047,164
168,047,788
168,048,319
168,049,406
168,049,880
168,050,321
168,050,321

168,050,854

ESTIMATED EARNINGS

$0.12 - §2
$0.13 - $2
$0.16 - $2
$013 - $2
$0.27 - $4
$0.12 - $2
$0.11 - $2
$0 - S0

$0.13 - $2

PROBLEM 2:
ANALYZING DATA
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Decision Tree of When to Employ the ITCV

" 5 . There is 00 méed to fisther
mw';"""’?“ﬁw“‘?‘?‘”“’.‘”ﬁ\*“h‘" No | comideromited variable
mmummw ---- bias i o sre 0
enhance parsmeter estimates? Found

lYﬂ
13 the dependent variable The ITCY iz not
binary (logit/probit model) Y_". appropriate, Preliminary
ot the parameter an research suggests the RIR,
interaction term® mght accommodate these.
l!\'o
The RIR mught be more
Is the independent variable | Yes | appropriate, but the ITCV
Proceed to the next step.
o
Are there correlations with 1t ia possible that the causal
coutl vaablesthat | | No_ | infeence is no bissed by
exceed the ITCV valae?
variable.
[
—— - n It might be pecessary to
Ix this still the case when examining pariial Yes =
comelations of controls, taking care to partial gut f-»-o-=r= -] “’.“"'“’m'w
the farm fooed effects in pane models? 'ﬂml.euﬂmmm;_
an
It is possible that the causal
inference is not biased by
ied‘confoandi
variable,

Note, *It m importam o eciterate that the ITCV nepecicnss the square noot of the prodiact of correlatsons betwoen
dependest v

a potential omisted vasiable and both the independent and

ariables. This is therefore the case when

examisiing conirol variables as posential proxies for an omitted variable. Specifically, it is exsential to compare the
square oot carr [cantrol, ] fimes corr [comtral, %] against the ultimate [TCY value.

Busenbarketal,
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