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Abstract
Computing efficient sets has long been a topic inmultiple-objective optimization and research
has made substantial progress. However, there are still limitations in the multiple-objective
portfolio selection and optimization areas. Firstly, researchers typically focus on models
containing only one quadratic objective. Secondly, few researchers pursue multiple quadratic
objectives, but their algorithms could be relatively elusive and it could be a pity that they do
not explicitly demonstrate the efficient sets’ structure. Lastly, researchers mostly limit their
scope to three objectives. Within this context, this paper makes theoretical contributions to
the literature. Operating with multiple quadratic objectives, we analytically derive closed-
form formulae for the computation of the properly efficient and weakly efficient sets of
problems and demonstrate the efficient sets’ structure in the form of a sequence of pyramids
in decision space. Although we are restricted to equality-constraint-only models, our results
have implications for general-constraint models. In addition, our methods can be extended
to general k-quadratic objective models.

Keywords Multi-objective portfolio selection · Multiple quadratic objectives · Properly
efficient set · Weakly efficient set

JEL Classification G11 · C61

1 Introduction

Since its introduction by Markowitz (1952), the mean-variance bi-criterion model has been
the dominant model behind the development of what is known today as modern portfolio
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theory MPT (see for instance the content in Elton et al. (2014)). While the bi-criterion model
has had little competition throughout the completion of the 20th century, models that possess
additional criteria have begun to make inroads on the bi-criterion model’s domain. By this
we mean that many papers have been written on the emergence of additional criteria in
portfolio selection and there is the book written by Xidonas et al. (2012) which provides
excellent coverage on the topic. Although the additional criteria appearing in the resulting
multi-criteria models of portfolio selection were at first mostly financial, recent years have
seen non-financial criteria such as social responsibility enter the picture strongly, so almost
anything is possible in this regard. Thus there is a growing need for understanding as much
as possible about portfolio selection models in which there are more than two criteria.

In any bi- or multi-criterion model, it is known that one’s optimal solution is in the
problem’s set of efficient solutions which takes the form of a frontier in bi-criterion situations
and a surface in multi-criterion contexts. However, early on, Geoffrion (1968) recognized
that on these frontiers and surfaces there are two kinds of efficient solutions, those that are
properly efficient and those that are improperly efficient. The significance of the difference
between the two, from a practical point of view, is that it is highly unlikely, or in more
formal terms “not rational", for an improperly efficient point to optimal. Thus it is only the
set of all properly efficient solutions that investors need to be aware of in portfolio selection
without having the set presented to them cluttered up with improperly efficient solutions,
even though there may not be many of them.1 This is because at an improperly efficient
solution there is a tradeoff situation that would cause a rational investor to move away from
the improperly efficient solution to someplace in properly efficient solution territory. This is
clear in the definition of a properly efficient solution given by Geoffrion (1968). (Geoffrion
(1968), p.618) concentrates on properly efficient solutions (instead of efficient solutions),
because properly efficient solutions are normal (instead of anomalous) and carry satisfactory
properties. Due to the technicality, we will introduce the definition in Sect. 2.

What the definition says is that if one is at an improperly efficient solution, there exist
two objectives for which there is not a finite upper bound on the trade-off rate between the
two. That is, initially, one could give up almost nothing in one criterion yet get almost an
unlimited amount of the other criterion in relation. This is the rationale behind why it can
be said that it would not be “rational" for an investor to remain at an improperly efficient
solution when faced with such a prospect.

What we do in this paper, in the sense ofMerton (1972), is to develop, in a mathematically
tractable fashion, formulae for the computation of all properly efficient points of multi-
objective portfolio selection models as essentially this is all that is needed in theory when
dealing with serious investors. Of course, all efficient solutions could be accumulated at any
point in time by adding all improperly efficient solutions to the set developed in the paper,
so at least we always have the option to go one way or the other.

The rest of this paper is organized as follows: We review multiple-objective optimization
and portfolio selection, suggest the research limitations, and present this paper’s originality
in Sect. 2. We justify multi-objective portfolio selection with multiple quadratic objectives in
Sect. 3. We analytically derive properly efficient sets and weakly efficient sets in Sect. 4. We
illustrate our derivation in Sect. 5. We extend the derivation to k-quadratic objective models
in Sect. 6. We conclude this paper in Sect. 7.

1 In bi-criterion portfolio selection improperly efficient points can only occur at the minimum variance point
and the maximum return point. But in multi-criteria portfolio selection improperly efficient points can occur
anywhere along the periphery of the efficient surface.
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2 Background information

2.1 Multiple-objective optimization

A multiple-objective optimization problem can be modeled as

max {z1 = f1(x)}
...

max {zk = fk(x)}
s.t. x ∈ S (1)

where x ∈ R
n is a decision vector in decision space, k is the number of objectives,

f1(x) . . . fk(x) are objective functions, z =
⎡
⎢⎣
z1
...

zk

⎤
⎥⎦ is a criterion vector in criterion space

(i.e., in the space of the objectives), S ⊂ R
n is the feasible region in decision space, and

Z = {z | z1 = f1(x) . . . zk = fk(x), x ∈ S} is the feasible region in criterion space. Then,
we introduce the following definitions:

Definition 1 For z̄ ∈ Z and z ∈ Z , that z̄ dominates z is defined as z̄1 ≥ z1 . . . z̄k ≥ zk with
at least one inequality strict.

Definition 2 That z̄ ∈ Z is nondominated is defined as that there does not exist a z ∈ Z such

that z dominates z̄. Then if x̄ ∈ S is an inverse image of z̄ (i.e., z̄ =
⎡
⎢⎣
f1(x̄)

...

fk(x̄)

⎤
⎥⎦), x̄ is efficient.

Definition 3 That x̄ ∈ S is properly efficient is defined as that x̄ is efficient and there exists
a scalar M > 0 such that for each i ∈ {1, . . . , k}, fi (x)− fi (x̄)

f j (x̄)− f j (x)
≤ M for some j ∈ {1, . . . , k}

such that f j (x) < f j (x̄) whenever x ∈ S and fi (x) > fi (x̄). Then if z̄ is the criterion vector
of x̄, z̄ is properly nondominated.

Definition 4 That z̄ ∈ Z is weakly nondominated is defined as that there does not exist a
z ∈ Z such that z1 > z̄1 . . . zk > z̄k . The inverse image of z̄ is x̄ ∈ S. x̄ is weakly efficient.

The sets of all efficient points, properly efficient points, and weakly efficient points are
respectively called the efficient set, properly efficient set, and weakly efficient set. The sets
of all nondominated points, properly nondominated points, and weakly nondominated points
are respectively called the nondominated set, properly nondominated set, and weakly non-
dominated set. The purpose of multiple-objective optimization is to compute the efficient set,
properly efficient set, and weakly efficient set for the discretion of decision makers. Then,
a final solution in the efficient set, properly efficient set, and weakly efficient set can be
pinpointed in accordance with the decision maker’s preferences.

To solve (1), mechanisms to convert (1) to an ordinary single-objective program are
utilized. One common mechanism is a weighted-sums method. By this method, based on a

weighting vector λ =
⎡
⎢⎣

λ1
...

λk

⎤
⎥⎦ ∈ R

k , we form the weighted-sums program in (2).

max {zw = λ1 f1(x) + . . . + λk fk(x)}
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s.t. x ∈ S. (2)

For properly efficient sets, (Geoffrion (1968), pp.619–621) proves the relationship between
(2) and (1) in the following theorem:

Theorem 1 For (1), let S be a convex set and let all of f1(x) . . . fk(x) be concave functions.
Then, x̄ ∈ S is properly efficient in (1) if and only if there exists a λ̄ > 0 such that x̄ is the
optimal solution of (2) with the λ̄. 2

For weakly efficient sets, (Ehrgott (2005), p.71) proves the relationship between (2) and (1)
in the following theorem:

Theorem 2 If x̄ is the optimal solution of (2) for a λ̄ � 0, x̄ ∈ S is weakly efficient in (1).3

Suppose that for (1), S is a convex set and f1(x) . . . fk(x) are concave functions. If x̄ ∈ S is
weakly efficient in (1), there exists a λ̄ � 0 such that x̄ is the optimal solution of (2) with the
λ̄.

Another common mechanism is the e-constraint method. By this approach, only one
objective is retained while the others are transformed into constraints as follows:

max {z1 = f1(x)}
s.t. f2(x) = e2

...

fk(x) = ek

x ∈ S

where e2 . . . ek are right-hand-side parameters.

2.2 Portfolio selection and the justification

Let us now consider the above in a portfolio context. For n assets, let r1 =
⎡
⎢⎣
r11
...

r1n

⎤
⎥⎦ be an

n-vector of individual asset returns. For a portfolio weight vector x ∈ S, the portfolio return
is r1 as follows:

r1 = rT1 x (3)

Markowitz (1952) formulates portfolio selection as

min {z1 = var(r1) = xT�1x}
max {z2 = E(r1) = μT

1 x}
s.t. x ∈ S (4)

where var() is variance, E() is expectation,�1 is an n×n covariance matrix of asset returns,

and μ1 =
⎡
⎢⎣

μ11
...

μ1n

⎤
⎥⎦ is a vector of asset expected returns.

2 For λ̄ = [
λ̄1 . . . λ̄k

]T ∈ R
k and 0 = [

0 . . . 0
]T ∈ R

k , λ̄ > 0 denotes that λ̄1 > 0 …λ̄k > 0.
3 For λ̄ = [

λ̄1 . . . λ̄k
]T ∈ R

k and 0 = [
0 . . . 0

]T ∈ R
k , λ̄ � 0 denotes that λ̄1 ≥ 0 …λ̄k ≥ 0 with λi �= 0

for some i ∈ {1, ..., k}.
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Traditional financial economists (e.g., (Huang and Litzenberger (1988), pp.59–60)) for-
mulate portfolio selection as

max{E(u(r1))}
s.t. x ∈ S (5)

where u(r1) is a utility function (i.e., defined as increasing and concave w.r.t. r1). (Huang
and Litzenberger (1988), p.61) justify (4) by (5) in the following theorem:

Theorem 3 For a quadratic utility function u(r1) = r1 − 1
2qr

2
1 with q > 0 as a parameter

such that r1 ≤ 1
q in order to for u(r1) over the domain of the problem, the optimal solution

of (5) is an efficient solution of (4).

Ben Abdelaziz and La Torre (2023) contemplate generalized utility for continuous-time
portfolio selection. Merton (1972) and Roll (1977) analyze the following model:

min{z1 = xT�1x}
max{z2 = μT

1 x}
s.t. 1T x = 1 (6)

where 1 is an n × 1 vector of ones. Merton (1972) makes the following assumption:

Assumption 1 �1 is invertible and thus positive definite.

Merton (1972) analytically derives the efficient set by applying an e-constraint method. The
analyticity brings substantial advantage in research and teaching (as appraised by (Huang
and Litzenberger (1988), pp.60–62)), and (6) serves as the foundation of capital asset pricing
models. Assume �1 as invertible and thus positive definite. 4 The relevant formulae are as
follows: The minimum-variance portfolio is

x0 = 1

f
�−1

1 1. (7)

where f = 1T�−1
1 1 and c = μT

1 �−1
1 1. The efficient set is

{x ∈ R
n | x = λ2(�

−1
1 μ1 − c

f
�−1

1 1) + x0, λ2 ∈ [0,∞)}. (8)

With λ2 ∈ [0,∞), (8) is a 1-dimensional pyramid (explained later).

2.3 Multiple-objective portfolio selection and optimization

Markowitz (1991), pp.471&476 notices extra objectives in addition to z1 and z2 of portfolio
selection (4). Sharpe (2001) also notices the objectives and incorporates them into utility
functions. Fama (1996), pp.445–447 and Cochrane (2011), pp.1081–1082 focus on multiple
factors for asset pricing and further propose the factors’ risks as objectives.

Fama (1996), Steuer et al. (2007), Dorfleitner et al. (2012), Hirschberger et al. (2013),
Utz et al. (2015), Qi et al. (2017), and Qi and Steuer (2020) extend (4) and regulate the extra
objectives in multiple-objective portfolio selection as follows:

min {z1 = var(r1) = xT�1x}
4 A positive semidefinite matrix is a covariance matrix and vice versa as documented by Brockwell and Davis
(1991).
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max {z2 = E(r1) = μT
1 x}

max {z3 = E(r2) = μT
2 x}

...

max {zk = E(rk−1) = μT
k−1x}

s.t. x ∈ S (9)

where r2 …rk−1 are n-vectors of individual general stock objectives (e.g., ESG). For a
portfolio weight vector x ∈ S, the portfolio objectives are r2 …rk−1 as extensions of (3) as
follows:

r2 = rT2 x . . . rk−1 = rTk−1x (10)

μ2 . . . μk−1 are vectors of general stock expected objectives. z3 . . . zk measure the general
portfolio expected objectives.

Salas-Molina et al. (2018) harness cash management under multiple objectives. Overall,
Steuer and Na (2003), Zopounidis et al. (2015), Masmoudi and Ben Abdelaziz (2018), and
Aouni et al. (2018) offer surveys.

More broadly, Miettinen (1999) and Ehrgott (2005) investigate nonlinear multiple-
objective optimization. Bank et al. (1983) and Pistikopoulos et al. (2021) explore parametric-
quadratic programming and open the avenue for multiple-objective portfolio selection with
quadratic objectives (instead of only one quadratic objective in (9)). Particularly, Goh and
Yang (1996), Jayasekara et al. (2019), and Jayasekara et al. (2023) dissect such multiple
quadratic objectives.

2.4 Research limitations of multiple-objective portfolio optimization

The researchers above substantially improve multiple-objective portfolio selection and opti-
mization. However, there could be the following research limitations:

Firstly, researchers (e.g., Hirschberger et al. (2013) and Utz et al. (2015)) typically exploit
models with only one quadratic objective.

Secondly, few researchers pursue multiple quadratic objectives, but their algorithms could
be relatively elusive and it could be a pity that they do not explicitly demonstrate the efficient
sets’ structure. For instance, Goh and Yang (1996) resolve multiple quadratic objectives by
launching active-set algorithms. Jayasekara et al. (2019) review the scalarization methods
and instigate modified hybrid methods. Jayasekara et al. (2023) further push the boundary by
generalized scalarization and computational study. However, the three teams do not explicitly
demonstrate the efficient sets’ structure (e.g., the sets’ composition).

Lastly, researchers typically limit the scope to three objectives. For example, Hirschberger
et al. (2013) initiate their algorithms for three objectives only.

2.5 Originality of this paper

With regard to the literature, this paper falls into the analytical derivation stream of portfolio
selection as given its start in Merton (1972) and Roll (1977). There is a related but different
stream in the continuous-time world as addressed in the recent paper by Ben Abdelaziz
and La Torre (2023) but that is not covered here. As Markowitz solution approaches are
cumbersome because of their inequality constraints, the purpose of the analytical derivation
stream relevant to this paper, interchangeably called efficient set mathematics, is to enable the
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computation of portfolio solutions in much less time. This is accomplished by only allowing
equality constraints thereby facilitating the development of closed-form formulas for various
quantities in mean-variance portfolio selection. For instance, out of these formulas we have
(7), (8) for the minimum-variance portfolio and efficient set, respectively.

Given that Merton (1972) and Roll (1977) had done such a complete job on this body of
knowledge, other than for a few additional contributions such as by Best and Grauer (1990),
little has been added to the stream since, the situation being that once a theorem is proved,
it is proved for eternity. While one might feel that this would cause academic interest in the
area to wane, this has not been the case. This is because it has been found that the best way to
teach theory in portfolio selection is through the use of efficient set mathematics as reflected
in textbooks such as by Huang and Litzenberger (1988), Campbell et al. (1997), Cochrane
(2005), and Back (2017), books of the type that are heavily studied in all graduate programs
in finance around the world.

However, recent years have seen substantial changes in portfolio selection with the surge
in interest in additional criterion concerns (beyond risk and return) such as sustainability,
renewable energy, and even Shariah compliance in Islamic investing Masri (2018). Whereas,
looking to the past, the classical model of portfolio selection is the bi-criterion model of risk
and return, looking to the future, it may well be that the classical model of portfolio selection
should be at least a tri-criterion one to be flexible enough to accommodate the increasing
numbers of investors that wish to have additional criteria incorporated into their investing.

All of this has opened the door for it to be recognized that problems of portfolio selection
can easily have more objectives than just traditional risk and return going forward giving
rise to the need for new activity in the analytical derivation stream started by Merton (1972)
and Roll (1977) for portfolio problems with more than usual risk and return as objectives.
While there has already been some work done in the area in the form of Qi et al. (2017) and
Qi and Steuer (2020), results are not as easily obtained as in Merton (1972) and Roll (1977)
as the efficient set becomes a surface when the number of criteria becomes more than two.
Thus, the contribution of this paper is that it presents new closed-form results in support
of the emerging three-or-more objective portfolio selection situations that give evidence of
appearing at a rapid rate.

3 Justifyingmultiple-objective portfolio selection with quadratic
objectives

In this section, we justify multiple-objective portfolio selection with quadratic objectives by
extending Theorem 3. We extend (9) by appending a general quadratic objective as follows:

min {z1 = var(r1) = xT�1x}
min {z2 = var(r2) = xT�2x}
max {z3 = E(r1) = μ1

T x}
max {z4 = E(r2) = μ2

T x}
s.t. x ∈ S (11)

where r1 is introduced in (3). r2 is introduced in (10). �2 is a covariance matrix of r2. μ2 is
introduced in (9).
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A method to justify (11) is to formulate r1 and r2 by the following stochastic multiple-
objective programming model

max {r1}
max {r2}
s.t. x ∈ S. (12)

By the research of Caballero et al. (2001), a variance-expectation operationalization of (12)
is (11).

Another method to justify (11) is to formulate r1 and r2 by extended utility function.
Suppose that the utility function of r1 is u1(r1) = r1 − 1

2q1r
2
1 with q1 > 0, the utility

function of r2 is u2(r2) = r2 − 1
2q2r

2
2 with q2 > 0, and the extended utility function of

(r1, r2) is as follows:

u(r1, r2) = u1(r1) + u2(r2) = r1 − 1

2
q1r

2
1 + r2 − 1

2
q2r

2
2 . (13)

We demonstrate that the joint extended utility function inherits the increasing and concave
properties of the individual utility functions in the following lemma:

Lemma 1 For fixed r2, u(r1, r2) is increasing w.r.t. r1 if r1 ≤ 1
q1
. For fixed r1, u(r1, r2) is

increasing w.r.t. r2 if r2 ≤ 1
q2
. Moreover, u(r1, r2) is concave w.r.t. (r1, r2).

Proof The increasing property is inherited from that of u1(r1) and u2(r2). We can prove the
concavity of u(r1, r2) by directly using the definition of concavity and utilizing u1(r1)’s and
u2(r2)’s concavity. �	

Portfolio selection can be formulated by the extended utility function as

max{E(u(r1, r2))}
s.t. x ∈ S. (14)

Then, we extend Theorem 3 and justify (11) by (14) in the following theorem:

Theorem 4 For u(r1, r2), if r1 ≤ 1
q1

and r2 ≤ 1
q2
, the optimal solution of (14) is an efficient

solution of (11).

Proof We compute E(u(r1, r2)) by (13) as follows:

E(u(r1, r2)) = E(r1) − 1

2
q1E(r21 ) + E(r2) − 1

2
q2E(r22 )

= E(r1) − 1

2
q1(E(r1))

2− 1

2
q1var(r1)+E(r2)− 1

2
q2(E(r2))

2 − 1

2
q2var(r2)

Because r1 ≤ 1
q1

and r2 ≤ 1
q2
, E(r1) ≤ 1

q1
and E(r2) ≤ 1

q2
. Then, E(u(r1, r2)) is strictly

increasing w.r.t. only E(r1) with E(r1) ≤ 1
q1
, and E(u(r1, r2)) is strictly increasing w.r.t.

only E(r2) with E(r2) ≤ 1
q2
. E(u(r1, r2)) is strictly decreasing w.r.t. only var(r1), and

E(u(r1, r2)) is strictly decreasing w.r.t. only var(r2).

With x̄ the optimal solution of (14), its criterion vector in (11) is

⎡
⎢⎢⎣

var(r̄1)
var(r̄2)
E(r̄1)
E(r̄2)

⎤
⎥⎥⎦. Suppose that

x̄ is not an efficient solution of (11); i.e., there exists an x′ ∈ S with the criterion vector of
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(11) as

⎡
⎢⎢⎣

var(r ′
1)

var(r ′
2)

E(r ′
1)

E(r ′
2)

⎤
⎥⎥⎦ such that

⎡
⎢⎢⎣

var(r ′
1)

var(r ′
2)

E(r ′
1)

E(r ′
2)

⎤
⎥⎥⎦ dominates

⎡
⎢⎢⎣

var(r̄1)
var(r̄2)
E(r̄1)
E(r̄2)

⎤
⎥⎥⎦. Because of the dominance

relationship, two strictly increasing relationships above, and two strictly decreasing relation-
ships above, E(u(r ′

1, r
′
2)) > E(u(r̄1, r̄2)). However, this “>" contradicts the fact that x̄ is the

optimal solution of (14). The supposition is incorrect. Therefore, x̄ is an efficient solution of
(11). �	

4 Analytically deriving properly efficient sets and weakly efficient sets

We further extend (11) as follows:

min {z1 = xT�1x}
min {z2 = xT�2x}
max {z3 = c1T x}
max {z4 = c2T x}

...

max {z2+l = cl T x}
s.t.AT x = b (15)

In (11), variances (e.g., var(r1)) is attached to expectations (E(r1)). Steuer et al. (2007) and
Dorfleitner et al. (2012) recommend some form of the detachment. Therefore, investors carry
the following choices in (15):

• Investors can still attach variances to expectations by setting c1 = μ1 and c2 = μ2.
• Otherwise, investors can moderately detach variances and expectations by setting c1 =

μ1 but c2 as general.

c3 . . . cl can be the vectors of asset expected values of other criteria outlined, for example, in
Steuer et al. (2007).

(15) contains more objectives than (11). (15) extends (6) by including more quadratic
objectives and linear objectives and by generalizing 1T x = 1 to AT x = b with A as being
n × m. Denote C = [

c1 . . . cl
]
as an n × l matrix. Then, we rewrite (15) as

min {z1 = xT�1x}
min {z2 = xT�2x}

max

⎧⎪⎨
⎪⎩

⎡
⎢⎣

z3
...

z2+l

⎤
⎥⎦ = CT x

⎫⎪⎬
⎪⎭

s.t.AT x = b.

Matrix
[
A C

]
is n × (m + l).5 We extend Assumption 1 and the assumption of (Qi and

Steuer (2020), p.525) as follows:

Assumption 2 �1 and �2 are invertible and thus positive definite.

5 In
[
A C

]
, symbol | denotes matrix partitions.
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Assumption 3 Matrix
[
A C

]
has full column rank m + l (i.e., rank(

[
A C

]
) = m + l).

By Assumption 3 and
[
A C

]
as an n × (m + l) matrix, we know n ≥ (m + l). Moreover, A

also has full column rank (i.e., rank(A) = m), so the system of linear equations AT x = b is
always solvable (i.e., S is not empty).

We apply a weighted-sums method to (15) and get

min {λ1xT�1x + λ2xT�2x − λT
3 C

T x}
s.t.AT x = b (16)

where λ3 =
⎡
⎢⎣

λ3
...

λ2+l

⎤
⎥⎦, and λ =

⎡
⎣

λ1
λ2
λ3

⎤
⎦ is a weighting vector for the objectives of (15). We

respectively denote the properly efficient set and weakly efficient set of (15) as PE(15) and
WE(15). Then, we prove that the properly efficient set of (15) and weakly efficient set of (15)
can be respectively obtained by all the optimal solutions of (16) with all λ > 0 (where 0 is
a (2 + l) × 1 vector of zeros) and by all the optimal solutions of (16) with all λ � 0 in the
following theorem:

Theorem 5 PE(15)={all the optimal solutions of (16) with all λ > 0}.
WE(15)={all the optimal solutions of (16) with all λ � 0}.

Proof For (15), S = {x ∈ R
n | AT x = b} is a convex set, and all of f1(x) . . . fk(x) are

convex functions (we use min in (16)). For any x̄ ∈ PE(15), there exists a λ̄ > 0 such that x̄
is the optimal solution of (2) with the λ̄ by Theorem 1, so x̄ ∈ {all optimal solutions of (16)
with λ > 0} and PE(15) ⊆ {all optimal solutions of (16) with λ > 0}.
For any x̄ ∈ {all optimal solutions of (16) with λ > 0}, there exists a λ̄ > 0 such that x̄ is
the optimal solution of (2) with the λ̄, so x̄ ∈ S is properly efficient in (1) by Theorem 1.
Therefore, x̄ ∈ PE(15) and {all optimal solutions of (16) with λ > 0} ⊆ PE(15).
Therefore, PE(15)={all optimal solutions of (16) with λ > 0}. Similarly, WE(15)={all
optimal solutions of (16) with λ � 0} by Theorem 2. �	

For

⎡
⎣

λ′
1

λ′
2

λ′
3

⎤
⎦ > 0, we can always divide the vector by λ′

1, get

⎡
⎣
1
λ2
λ3

⎤
⎦, and simplify (16) as

min {xT�1x + λ2xT�2x − λT
3 C

T x}
s.t.AT x = b. (17)

To solve (17), we apply the method of Lagrange multipliers and construct

L(x, l) = xT (�1 + λ2�2)x − λT
3 C

T x + lT (AT x − b) (18)

where l =
⎡
⎢⎣
l1
...

lm

⎤
⎥⎦ is an m × 1 Lagrange-multiplier vector. Let

� = �1 + λ2�2. (19)

By Assumption 2 and λ2 ≥ 0, � is positive definite. Because xT�x is positive semidefinite
w.r.t. x, x is the optimal solution of (18) if and only if

∂L

∂x
= 2�x − Cλ3 + Al = 0 (20)
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and
∂L

∂l
= AT x − b = 0. (21)

We premultiply (20) by �−1, get x = 1
2�

−1(Cλ3 − Al), substitute x into (21), and obtain

AT 1

2
�−1(Cλ3 − Al) − b = 0

AT�−1Cλ3 − (AT�−1A)l − 2b = 0

(AT�−1A)l = AT�−1Cλ3 − 2b. (22)

Matrix AT�−1A is m × m. We prove it as a covariance matrix in the following lemma:

Lemma 2 AT�−1A is a covariancematrix andmoreover positive definite and thus invertible.

Proof With � positive definite, so is �−1 as documented by Lax (2007), �−1 can function
as a covariance matrix as documented by Brockwell and Davis (1991); i.e., there exists a
random vector v ∈ R

n such that the covariance matrix of v is �−1. The covariance matrix
of AT v is AT�−1A.

For any y �= 0 ∈ R
m , yT (AT�−1A)y = (Ay)T�−1(Ay). Let u = Ay. We know u �= 0

because A has full column rank by Assumption 3. Then, yT (AT�−1A)y = uT�−1u > 0
because �−1 is positive definite. Therefore AT�−1A is positive definite and thus invertible.

�	
We premultiply (22) by (AT�−1A)−1, get l = (AT�−1A)−1(AT�−1Cλ3 − 2b), substi-

tute l into x = 1
2�

−1(Cλ3 − Al), and obtain the optimal solution of (16) as

x = 1

2
�−1(Cλ3 − A(AT�−1A)−1(AT�−1Cλ3 − 2b))

= 1

2
�−1(Cλ3 − A(AT�−1A)−1AT�−1Cλ3 + 2A(AT�−1A)−1b)

= 1

2
�−1(InCλ3 − A(AT�−1A)−1AT�−1Cλ3) + �−1A(AT�−1A)−1b

= 1

2
�−1(In − A(AT�−1A)−1AT�−1)Cλ3 + �−1A(AT�−1A)−1b (23)

where In is an n×n identity matrix. �−1(In −A(AT�−1A)−1AT�−1)C is an n× l matrix.
We denote the latter matrix’s columns as

1

2
�−1(In − A(AT�−1A)−1AT�−1)C = [

h3 . . . h2+l
]

(24)

where h3 . . . h2+l are n × 1 vectors. Because � = �1 + λ2�2, h3 . . . h2+l are functions of
λ2.

Then by (23) and λ3 =
⎡
⎢⎣

λ3
...

λ2+l

⎤
⎥⎦, the properly efficient set of (15) is

{x ∈ R
n | x = λ3h3 + . . . + λ2+lh2+l + x0,

x0 = �−1A(AT�−1A)−1b, λ2 ∈ (0,∞), λ3 ∈ (0,∞), . . . , λ2+l ∈ (0,∞)}. (25)

We observe the following properties of (25) as the key result of this paper:
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• � depends on λ2 in (19). h3 …h2+l also depend on λ2 in (24). Therefore, λ2 …λ2+l act
as parameters of (25).

• With fixed λ2 and varying λ3 …λ2+l (i.e., λ3 ∈ (0,∞), …, λ2+l ∈ (0,∞)), (25) is a
translated, open-ended pyramid. The pyramid is generated open-endedly by h3 . . . h2+l

on the origin and then translated to x0. From now on, we mean all pyramids as translated
and open-ended. x0 is the vertex of the pyramid and the minimum-variance portfolio of
(15), or precisely, x0 is the optimal solution of the following weighted-sums model of
quadratic objectives:

min {xT�1x + λ2xT�2x}
s.t.AT x = b (26)

• Both (25) and x0 respectively extend their counterparts (8) and (7).
• By varying λ2 (i.e., λ2 ∈ (0,∞)), we thus vary � and h3 . . . h2+l . With λ3 ∈

(0,∞), . . . , λ2+l ∈ (0,∞), (25) is then a sequence of pyramids.

We report the result in the following theorem.

Theorem 6 The properly efficient set of (15) is (25). With fixed λ2 and with λ3 ∈
(0,∞), . . . , λ2+l ∈ (0,∞), (25) is a pyramid. With varying λ2 as λ2 ∈ (0,∞) and with
λ3 ∈ (0,∞), . . . , λ2+l ∈ (0,∞), (25) is a 1-dimensional sequence of pyramids.

We present a partially hypothetical figure for two properly efficient sets and the corre-
sponding sets in weighting vector space in Fig. 1. The term “hypothetical" is due to the fact
that high-dimensional spaces which can not be directly depicted are involved in Fig. 1. We
will present exact figures based on (true) historical data in Sect. 5.

In Panel A of Fig. 1, we depict weighting vector space (1, λ2, λ3, λ4) in the left. Three

sets {

⎡
⎢⎢⎣
1
λ2
λ3
λ4

⎤
⎥⎥⎦ ∈ R

4 | λ3 ∈ (0,∞), λ4 ∈ (0,∞)} respectively with λ2 = 1, 2, and 3 in the

space are depicted as planes and marked by three different shades of gray. The three sets
respectively map to three pyramids in the right of Panel A. The three pyramids are marked
by the corresponding shades of gray and depicted as pyramids. We label the three sets and
pyramids and mark the map by arrows. The curved path passing through the three pyramids’
vertices demonstrates that there is a sequence of such pyramids.

In Panel B of Fig. 1, we depict weighting vector space (1, λ2, λ3, λ4, λ5) in the left. There

are three sets {

⎡
⎢⎢⎢⎢⎣

1
λ2
λ3
λ4
λ5

⎤
⎥⎥⎥⎥⎦

∈ R
5 | λ3 ∈ (0,∞), λ4 ∈ (0,∞), λ5 ∈ (0,∞)} respectively with

λ2 = 1, 2, 3 in a 5-dimensional weighting vector space. The sets are depicted as boxes and
marked by three different shades of gray. Three correspondingly-mapped pyramids are in the
right of Panel B.

With λ3 ∈ (0,∞), . . . , λ2+l ∈ (0,∞) in (25), the pyramids of (25) are not closed. Next,
we discuss the dimensionality of such pyramids by computing the rank of matrix (24). An
ideal situation is that the n × n matrix

�−1(In − A(AT�−1A)−1AT�−1) (27)

is invertible. Consequently, rank(matri x(24)) = rank(C) and h3 . . . h2+l are linearly inde-
pendent and the pyramids of (25) are l-dimensional because of Assumption 3. With � as
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Fig. 1 Two properly efficient sets and the corresponding sets in weighting vector spaces

invertible, we premultiply (27) by � and then postmultiply the product by � and get

� − A(AT�−1A)−1AT . (28)

Bothmatrix (28) andmatrix (27) are possibly singular and thus negate the certain existence of
the ideal situation by the following example:With n = 4, k = 2, andm = 2,�1 = 0.5I4 with
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I4 as a 4× 4 identity matrix, �2 = I4, λ2 = 0.5, � = �1 +λ2�2 = I4, A =

⎡
⎢⎢⎣
1 0
0 1
0 0
0 0

⎤
⎥⎥⎦, matrix

(28)=matrix (27) =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ as singular. Therefore, the dimensionality of the pyramids of

(25) can depend on problems. Next, we substitute (25) into the objectives of (15) to get the
properly nondominated surface of (15) as
⎧⎪⎨
⎪⎩

⎡
⎢⎣

z1
...

z2+l

⎤
⎥⎦ ∈ R

2+l | z1 = (λ3h3+. . .+λ2+lh2+l+x0)T�1(λ3h3 + . . . + λ2+lh2+l + x0),

z2 = (λ3h3 + . . . + λ2+lh2+l + x0)T�2(λ3h3 + . . . + λ2+lh2+l + x0),⎡
⎢⎣

z3
...

z2+l

⎤
⎥⎦ = CT (λ3h3 + . . . + λ2+lh2+l + x0), λ2 ∈ (0,∞), . . . , λ2+l ∈ (0,∞)

⎫⎪⎬
⎪⎭

. (29)

Next, we compute the weakly efficient set of (15) by studying (16) with

⎡
⎣

λ1
λ2
λ3

⎤
⎦ � 02+l

(where 02+l is a (2+l)×1 vector of zeros, 0l is an l×1 vector of zeros, and 02 is a 2×1 vector

of zeros). The set {
⎡
⎣

λ1
λ2
λ3

⎤
⎦ � 02+l} can be exhaustively and mutually exclusively divided into

the following cases:
⎧⎨
⎩

⎡
⎣

λ1
λ2
λ3

⎤
⎦ � 02+l

⎫⎬
⎭ =

⎧⎨
⎩

⎡
⎣

λ1
λ2
λ3

⎤
⎦ > 02+l

⎫⎬
⎭ ∪

⎧⎨
⎩

⎡
⎣

λ1 > 0
λ2 = 0
λ3 � 0l

⎤
⎦

⎫⎬
⎭ ∪

⎧⎨
⎩

⎡
⎣

λ1 = 0
λ2 > 0
λ3 � 0l

⎤
⎦

⎫⎬
⎭ ∪

⎧⎨
⎩

⎡
⎣

[
λ1
λ2

]
� 02

λ3 = 0l

⎤
⎦

⎫⎬
⎭ ∪

⎧⎨
⎩

⎡
⎣

[
λ1
λ2

]
= 02

λ3 � 0l

⎤
⎦

⎫⎬
⎭ . (30)

Then by Theorem 5, we demonstrate that the weakly efficient set of (15) can be computed
by the union of all optimal solutions of (16) with all the cases in the following theorem:

Theorem 7 The weakly efficient set of (15) equals the union of all optimal solutions of (16)
with the following cases:

(a) For the case

⎧⎨
⎩

⎡
⎣

λ1
λ2
λ3

⎤
⎦ > 02+l

⎫⎬
⎭ for (16), the optimal solutions are specified in (25) and

Theorem 6.

(b) For the case

⎧⎨
⎩

⎡
⎣

λ1 > 0
λ2 = 0
λ3 � 0l

⎤
⎦

⎫⎬
⎭ for (16), � = �1 + 0�2 = �1 and does not depend on λ2

in (19). The optimal solutions

{x ∈ R
n | x = λ3h3 + . . . + λ2+lh2+l + x1, λ3 ∈ [0,∞), . . . , λ2+l ∈ [0,∞)}.
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are a closed pyramid.

(c) For the case

⎧⎨
⎩

⎡
⎣

λ1 = 0
λ2 > 0
λ3 � 0l

⎤
⎦

⎫⎬
⎭ for (16), the analyses from (17) to (28) do not hold because

λ1=0. However, we can exchange the order of z1 = xT�1x and z2 = xT�2x in (15).
The analysis for (b) holds, and the optimal solutions are a closed pyramid.

(d) For the case

⎧⎨
⎩

⎡
⎣

[
λ1
λ2

]
� 02

λ3 = 0l

⎤
⎦

⎫⎬
⎭ for (16), the pyramids of (25) degenerate into points.

The optimal solutions are a sequence of points.

(e) For the case

⎧⎨
⎩

⎡
⎣

[
λ1
λ2

]
= 02

λ3 � 0l

⎤
⎦

⎫⎬
⎭ for (16), the optimal solutions are an empty set (i.e., (16)

has no optimal solution). We prove the result in the lemma below.

Lemma 3 With

⎧⎨
⎩

⎡
⎣

[
λ1
λ2

]
= 02

λ3 � 0l

⎤
⎦

⎫⎬
⎭, (16) becomes as follows:

max {λT
3 C

T x}
s.t.AT x = b (31)

(31) does not have an upper bound (i.e., (31) has no optimal solution).

Proof By Assumption 3, we can partitionA intoA =
[
B
N

]
where B ism×m and invertible,

and N is (n − m) × m. 6 Similarly, we respectively partition C and x into C =
[
CB

CN

]
and

x =
[
xB
xN

]
where CB is m × l, CN is (n − m) × l, xB =

⎡
⎢⎣
x1
...

xm

⎤
⎥⎦, and xN =

⎡
⎢⎣
xm+1

...

xn

⎤
⎥⎦.

Then, AT x = b is rewritten as
[
BT NT

] [
xB
xN

]
= b and BT xB + NT xN = b. We

premultiply BT xB +NT xN = b by (BT )−1, rearrange the product, and get xB = (BT )−1b−
(BT )−1NT xN . Then, we substitute xB into CT x = [

CT
B CT

N

] [
xB
xN

]
and get

CT x = CT
B(BT )−1b + (CT

N − CT
B(BT )−1NT )xN . (32)

With A =
[
B
N

]
and C =

[
CB

CN

]
,

[
A C

]T =
[
BT NT

CT
B CT

N

]
. Then, we compute

[
Im×m
B 0m×l

−CT
B
l×m

Il×l
N

] [
(BT )−1m×m

0m×l

0l×m Il×l
N

] [
BT m×m

NT m×(n−m)

CT
B
l×m

CT
N
l×(n−m)

]
where IB is an identity

matrix, 0 is a matrix of zeros, IN is an identity matrix, and all the matrices’ dimensions are

6 By Assumption 3, there exists an m ×m and invertible submatrix of A, and we can take the first m rows of
A as the submatrix. Otherwise, we can exchange the rows of A to make the first m rows of A as the submatrix
and exchange the corresponding parts of x, C, etc.
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written as superscripts.
[

IB 0
−CT

B IN

] [
(BT )−1 0

0 IN

] [
BT NT

CT
B CT

N

]
=

[
IB 0

−CT
B IN

] [
IB (BT )−1NT

CT
B CT

N

]

[
IB 0

−CT
B IN

] [
(BT )−1 0

0 IN

] [
BT NT

CT
B CT

N

]
=

[
IB (BT )−1NT

0 CT
N − CT

B(BT )−1NT

]
(33)

Because IB , IN , and (BT )−1 are all invertible, both

[
IB 0

−CT
B IN

]
and

[
(BT )−1 0

0 IN

]
are

invertible by Lax (2007). Therefore, rank(

[
BT NT

CT
B CT

N

]
)= rank(

[
IB (BT )−1NT

0 CT
N − CT

B(BT )−1NT

]
)

by (33). ByAssumption 3 and
[
A C

]T =
[
BT NT

CT
B CT

N

]
, rank(

[
IB (BT )−1NT

0 CT
N − CT

B(BT )−1NT

]
) =

m + l. Then with IB as invertible, rank(CT
N − CT

B(BT )−1NT ) = l (i.e., (CT
N −

CT
B(BT )−1NT )l×(n−m) has full row rank) by Lax (2007). The rows of CT

N − CT
B(BT )−1NT

are linearly independent.
For λ3 � 0l , by (32), we compute the following:

λT
3 C

T x = λT
3 C

T
B(BT )−1b + λT

3 (CT
N − CT

B(BT )−1NT )xN (34)

We obtain λT
3 (CT

N − CT
B(BT )−1NT ) �= 0n−m (where 0n−m is a 1 × (n − m) vec-

tor of zeros) because of the linear independence. Suppose that the first element of

λT
3 (CT

N − CT
B(BT )−1NT ) �= 0n−m is g > 0. We take x̄N =

⎡
⎢⎢⎢⎣

t
0
...

0

⎤
⎥⎥⎥⎦ with t ∈ R and

x̄B = (BT )−1b − (BT )−1NT x̄N . By (34), we obtain λT
3 C

T x̄ = λT
3 C

T
B(BT )−1b + gt → ∞

as t → ∞. Therefore, (31) does not have an upper bound. �	
Then, the efficient set of (15) is between the properly efficient set specified by Theorem

6 and the weakly efficient set specified by Theorem 7. We have also tried to analyze (15) by
an e-constraint method. Unfortunately, a system of nonlinear equations is encountered in the
analysis.

5 An illustration

In this section for three stocks, we illustrate the properly efficient set and properly nondom-
inated set of the following model:

min {z1 = xT�1x}
min {z2 = xT�2x}

max {z3 = c1x}
s.t. 1T x = 1 (35)

We purposefully choose three stocks in order to directly depict the properly efficient set in
3-dimensional decision space. We also purposefully set three objectives in order to directly
depict the properly nondominated set in 3-dimensional criterion space. Moreover, A = 1,
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Fig. 2 The properly efficient set of (35) in decision space

so S is a 2-dimensional affine subspace and we can see the properly efficient set’s structure.
Otherwise, if A is 3 by 2, S can be 1-dimensional. The properly efficient set is compressed
into 1-dimension and is not clearly visible. For (35), z1 and z3 respectively measure the
variance of portfolio return and expected portfolio return, and z2 measures the variance of
portfolio liquidity.

We choose American Express Co. (AXP) and Coca Cola Co. (KO) and Disney Walt Co.
(DIS), sample the three stocks’ monthly returns from January 2008 to December 2012, and
respectively take the sample covariance matrix and sample mean as �1 and c1. 7 We also
sample the stocks’ monthly bid-asked spread ratio ( bid-asked spreadprice ) to measure liquidity in the
same time period and take the sample covariance matrix and sample mean as �2 as follows:

�1 =
⎡
⎣
0.0219 0.0019 0.0072
0.0019 0.0026 0.0017
0.0072 0.0017 0.0059

⎤
⎦

�2 =

⎡
⎢⎢⎣

7.6779E − 07 3.7496E − 07 −4.8947E − 08
3.7496E − 07 4.1621E − 07 3.1361E − 08

−4.8947E − 08 3.1361E − 08 3.0532E − 07

⎤
⎥⎥⎦

c1 = [
0.0123 0.0066 0.0114

]

We delineate the properly efficient set of (35) in Fig. 2. The cone vertices are marked by
black dots. The cone generators are depicted as red (printed as gray) lines. By connecting
the dots with a curve, we see the properly efficient set as a sequence of cones. We mark the
minimum-variance portfolio by a bigger black dot and label the portfolio as x0.

We delineate the properly nondominated set of (35) in Fig. 3 and mark the criterion vector
of x0 as z0. The criterion vectors of each cone are a curve in criterion space. We can view

7 Data source: Wharton Research Data Services (WRDS), 〈https://wrds-web.wharton.upenn.edu/wrds/〉, July
2, 2013.
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Fig. 3 The properly nondominated set of (35) in criterion space

0.02 0.04 0.06 0.08 0.1

0.01

0.015

0.02

0.025

0.03

z1

z 3

z0

Fig. 4 The projection of the properly nondominated set of (35) onto (variance of portfolio return, expected
portfolio return) space

the properly nondominated set as a sequence of such curves. We delineate the projection of
the properly nondominated set as a sequence of such curves in Fig. 4.
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6 Extending to general k-quadratic objective models

We extend (15) into a model with k-quadratic objectives and also extend the theorems in
Sects. 3 and 4 without proofs because the proofs are of direct extension of their counterparts
in Sects. 3 and 4. We introduce r2 in (10) and �2 and μ2 in (11). We study as follows:

min {z1 = var(r1) = xT�1x}
...

min {zk = var(rk) = xT�kx}
max {zk+1 = E(r1) = μ1

T x}
...

max {z2k = E(rk) = μk
T x}

s.t. x ∈ S (36)

By the research of Caballero et al. (2001), (36) is a variance-expectation operationalization
of the following stochastic multiple-objective programming model:

max {r1}
...

max {rk}
s.t. x ∈ S.

Suppose that the utility function of r1 is u1(r1) = r1 − 1
2q1r

2
1 with q1 > 0, the utility

function of rk is uk(rk) = rk − 1
2qkr

2
k with qk > 0, and the extended utility function of

(r1, . . . , rk) is

u(r1, . . . , rk) = u1(r1) + . . . + uk(rk) = r1 − 1

2
q1r

2
1 + . . . + rk − 1

2
qkr

2
k .

Portfolio selection can be formulated by the extended utility function as

max{E(u(r1, . . . , rk))}
s.t. x ∈ S. (37)

Then, we justify (36) by (37) in the following theorem:

Theorem 8 For u(r1, . . . , rk), if r1 ≤ 1
q1
... rk ≤ 1

qk
, the optimal solution of (37) is an efficient

solution of (36).

Then, we further extend (36) into the following model:

min {z1 = xT�1x}
...

min {zk = xT�kx}
max {zk+1 = c1T x}

...

max {zk+l = cl T x}
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s.t.AT x = b (38)

We apply a weighted-sums method to (38) and get

min {λ1xT�1x + · · · + λkxT�kx − λT
3 C

T x}
s.t.AT x = b (39)

where λ3 =
⎡
⎢⎣

λk+1
...

λk+l

⎤
⎥⎦, and λ =

⎡
⎢⎢⎢⎣

λ1
...

λk
λ3

⎤
⎥⎥⎥⎦ is a weighting vector for (38). We denote the properly

efficient set of (38) as PE(38). Then, we prove that PE(38) can be obtained by all the optimal
solutions of (39) with all λ > 0 (where 0 is a (k + l) × 1 vector of zeros) in the following
theorem:

Theorem 9 PE(38)={all the optimal solutions of (39) with all λ > 0}.

Basically following the analyses from (16) to (25), PE(38) is

{x ∈ R
n | x = λk+1h3 + . . . + λk+lh2+l + x0,

x0 = �−1A(AT�−1A)−1b, λ2 ∈ (0,∞), λk+1 ∈ (0,∞), . . . , λk+l ∈ (0,∞)} (40)

where � = �1 + λ2�2 + . . . + λk�k . x0 is the vertex of the pyramid and the minimum-
variance portfolio of (38), or more precisely, x0 is the optimal solution of the following
weighted-sums model of quadratic objectives:

min {xT�1x + λ2xT�2x + . . . + λkxT�kx}
s.t.AT x = b. (41)

Theorem 10 The properly efficient set of (38) is (40). With fixed λ2 . . . λk and with λk+1 ∈
(0,∞) . . . λk+l ∈ (0,∞), (40) is a pyramid. With varying λ2 . . . λk as λ2 ∈ (0,∞) . . . λk ∈
(0,∞) and with λk+1 ∈ (0,∞) . . . λk+l ∈ (0,∞), (40) is (k − 1)-dimensional sequences of
pyramids.

Then, we substitute (40) into (38) to get the properly nondominated set.

In the left of Fig. 5, we depict six sets

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

1
λ2
...

λ6

⎤
⎥⎥⎥⎦ ∈ R

6 | λ4 ∈ (0,∞) . . . λ6 ∈ (0,∞)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

respectively with λ2 = 1, 2, and 3 and λ3 = 1 and 2 in a 6-dimensional weighting space. The
six sets are illustrated as boxes and marked by three different shades of gray according to
λ2 =1, 2, and 3. The six sets respectively map to six pyramids in the right. The six pyramids
are marked by the corresponding shades of gray. According to λ3 = 1 and 2, two curved
paths pass through the six pyramids’ vertices and demonstrate that there are 2-dimensional
(according to λ2 and λ3) sequences of such pyramids.⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

1
λ2
...

λ6

⎤
⎥⎥⎥⎦ ∈ R

6 | λ4 ∈ (0,∞) . . . λ6 ∈ (0,∞)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

respectively with λ2 = 1, 2, and 3 and

λ3 = 1 and 2 in a 6-dimensional weighting vector space in the left of Fig. 5. The six sets are
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Fig. 5 A properly efficient set and the corresponding sets in weighting vector space

illustrated as boxes and marked by three different shades of gray according to λ2 =1, 2, and
3. The six sets respectively map to six pyramids in the right. The six pyramids are marked
by the corresponding shades of gray.

7 Conclusion

The purpose of this paper is to make analytical derivation progress on multiple criteria
(meaning three ormore objectives) portfolio selection problems inwhich twoof the objectives
are quadratic. While analytical derivation achievements have been carried out in complete
form by Merton (1972) and Roll (1977) for the bi-criterion case in which there is only one
quadratic objective, this paper is the first analytical derivation paper of which we are aware to
address portfolio problems in which two of the objectives are quadratic, as for instance, with
short-term variance and long-term variance in Garcia-Bernabeu et al. (2019). But because of
the more difficult mathematics involved, it is anticipated that it will take much more than five
years and two papers as it did with Merton and Roll to complete the multiple objective case
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with two quadratic objectives. Thus, it is along these lines that we see many opportunities
for research ahead of us to complete the task in this area.
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