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Goals

® Describe the wide range of computer-

assisted text analysis techniques available

® Hint: more than dictionaries

® Provide some guidance about how to choose

your methods

® Give empirical examples ot these methods

1n practice
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Why Use Computer-Assisted Techniques?
®* Speed

® Humans are slow

® Text is becoming large
* Reliability / Reproducibility
® Validity (this is controversial)

® Expanded memory

® Unburdened by bias

Does not remove the need for interpretation!
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Overview:
Types of Automated Text Analysis

* Unsupervised exploration (hypothesis forming/inductive)
* Topic modeling
® [exical selection

® Human-Guided Categorical Analysis (traditional content
analysis — deductive hypothesis testing)
® Supervised machine learning
® Dictionaries

* Natural Language Processing (guided inductive/hypothesis
testing)
® Part-of-Speech Tagging
® Named Entity Recognition
® Concordances

® Sentiment analysis
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Question 1:
Do you want to inductively explore the text?
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Unsupervised Exploration: The Goal

Informative

Groups of Words




Set-Up: Document-Term Matrix*

B T O

Documentl

Document? 1 3 7 0
Document3 2 0 0 1
Document4 9 1 4 2
Document5 0 0 2 6

*Cells can be word frequencies or Weighted word scores
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Question 2: Themes or Style?

If themes:

Question 3: Multiple Categories?
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Multiple Categories: Topic Modeling

Topic propartions and
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But Which Algorithm?

¢ [s the order of the documents important?

®Yes? Structural Topic Modeling (STM)

® Are the topics correlated?
®*Yes? Correlated Topic Modeling (CTM)

® Order is relatively arbitrary, topics may not
be related?

®Latent Dirichlet Allocation (LDA)




music book art ame show
band life museum nicks film
songs novel show nets television
roc story exhibition points movie
album books artist team series
jazz man artists season safys
pop stories paintings play life
song love painting games man
singer children century night character
night family works coach know
theater clinton stock restaurant budget
play bush market sauce tax
production campaign percent menu governor
show gore ~ fund food county
stage political investors dishes mayor
street republican funds, street billion
broadway dole companies dining taxes
director presidential . stocks dinner plan
musical senator investment chicken Iegflislature
directed house trading served iscal




Question 2: Themes or Style?

If style...




Style: Lexical Selection

® Goal: find words that are distinctive to

different groups of text

® One solution: Difference of Proportions




Difference of Proportions

Chicago New York City DoP
chicago S 12.5
children 11.3
center 8.91
union 8.56
school 7.69
Abstract Concrete

day 3.85
vietnam 3.52
people 2.96
city 2.58
hospital : JFiousnessraising 2.45
cwlu - 2.41
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Question 1:
Do you want to test a hypothesis?

If yes:

Question 2: Themes or Styles?

If themes...
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Which Algorithm?

® You want individual documents coded:
®Document Classification (e.g. SVM,
Naive Bayes)

® You want proportion of documents in

each category:

*ReadMe (R package)




Dictionary Methods

eStandardized Dictionaries

® LIWC (can be used for

sentiment analysis)

® Custom Dictionary




Question 2: Themes or Styles?

If styles...
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Natu

ral Language Processing

e Takes into account features of

word

s, relationships between

word

s, grammatical structures, etc.




Examples: Use NLP to test hy

notheses

o Hypothesis: Author A is more descri
Author B.

htive than

® Test: Part-of-Speech tagger, extract adjectives,

count and compare.

o Hypothesis: Organizations in New York City are

more internationally focused than organizations

in Silicon Valley.

® Test: Named Entity Recognition, compare

against lists of corporations, places, and people.




Example: Use NLP to test hypotheses

o Hypothesis: the word “disruptive”is used in a
positive way, and has a ditferent meaning, for
Silicon Valley organizations compared to Wall

Street organizations.

® Test: Concordances
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NLP: Concordances

ong the former , one was of a most monstrous size . ... This came towards us ,

ON OF THE PSALMS . " Touching that monstrous bulk of the whale or ork we have r
11 over with a heathenish array of monstrous clubs and spears . Some were thick
d as you gazed , and wondered what monstrous cannibal and savage could ever hav
that has survived the flood ; most monstrous and most mountainous ! That Himmal
they might scout at Moby Dick as a monstrous fable , or still worse and more de
th of Radney .'" CHAPTER 55 Of the monstrous Pictures of Whales . I shall ere 1
ing Scenes . In connexion with the monstrous pictures of whales , I am strongly
ere to enter upon those still more monstrous stories of them which are to be fo
ght have been rummaged out of this monstrous cabinet there is no telling . But

® very heartily so exceedingly remarkably as vast a great amazingly
extremely good sweet

® Mostly positive

® mean part maddens doleful gamesome subtly uncommon caretul
untoward exasperate loving passing mouldy christian few true
mystifying imperial modifies contemptible

° Mostly negative

-




Example: NLP and WordNet

® Hypothesis: Women’s movement organizations in New York
City approach politics more abstractly compared to those in

Chicago, who have a more concrete approach to politics.




Tactics and Issues Over Time

® Structural Topic Models (structured on

year)

® sed R package stm (Roberts, Stewart, and Tingl
P ( gly)

¢ Further grouped the 40 topics into 7 topic
categories

® Python NLTK, extracted verbs/verb

phrases

® Hand identified tactics, created
dictionaries of tactical categories




Percent Total Words

Percent Total Words in 2000 Percent Total Words in 2012




Tactics by Year

00025 ~ Proportion of Total Words from Tactical Category by Year

0.0020-
0.0015-

0.0010-

0.0005-

9<7/>£><Negotiations

0.00005, 2004 2006 2008 2010 2012 2014 2016
year




Tactics by Year

Proportion of Total Words from Tactical Category by Year

0.0024
0.0022
Juridical
0.0020 -
Organization/Movement Building
0.0018 :
0.0016 -
Political
0.0014
Disruptive Protest
0'00]2%02 2004 2006 2008 2010 2012 2014 2016

year
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Conclusion:

® Research design is key! Good data is critical!

® Match your method to your question and data. Be
purposetul, not trendy

* Use multiple methods, including qualitative, to

verity the analysis
® Learn a programming language
® Off-the-shelf tools box you in (see point 2).

® ] recommend Python, R is also good

® Read NLP and machine learning literature
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Tactical Categories®

Direct Environmental Protection: build, improve, protect, recycle
Non-Disruptive Protest: chant, demonstrate, organize, petition, protest
Disruptive Protest: blockade, chain, prevent, damage, sabotage
Political: campaign, donate, elect, endorse, regulate

Juridical: audit, enforce, inspect, represent, testify

Verbal Statements: advocate, comment, criticize, explain, refute
Business: boycott, buy, invest, purchase, sponsor

Education/Raising Awareness: editorial, outreach, publish, report, tweet
Organization/Movement Building: fund-raise, initiate, launch, participate
Negotiations: deal, discuss, engage, listen, persuade

*Categories are not mutually exclusive

-
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