Computer-Assisted Text Analysis: An Overview and Guide

Laura K. Nelson Kellogg School of Management Content Analysis PWD Academy of Management Annual Conference August 7, 2015 Vancouver, BC

Goals

- Describe the wide range of computerassisted text analysis techniques available
 Hint: more than dictionaries
- Provide some guidance about how to choose your methods
- Give empirical examples of these methods in practice

Why Use Computer-Assisted Techniques?

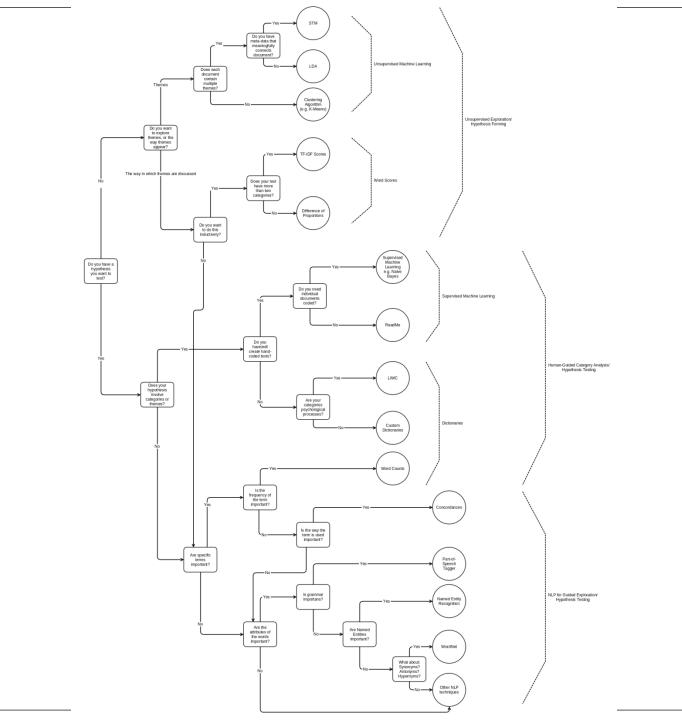
- Speed
 - Humans are slow
 - Text is becoming large
- Reliability / Reproducibility
- Validity (this is controversial)
 - Expanded memory
 - Unburdened by bias

Does not remove the need for interpretation!

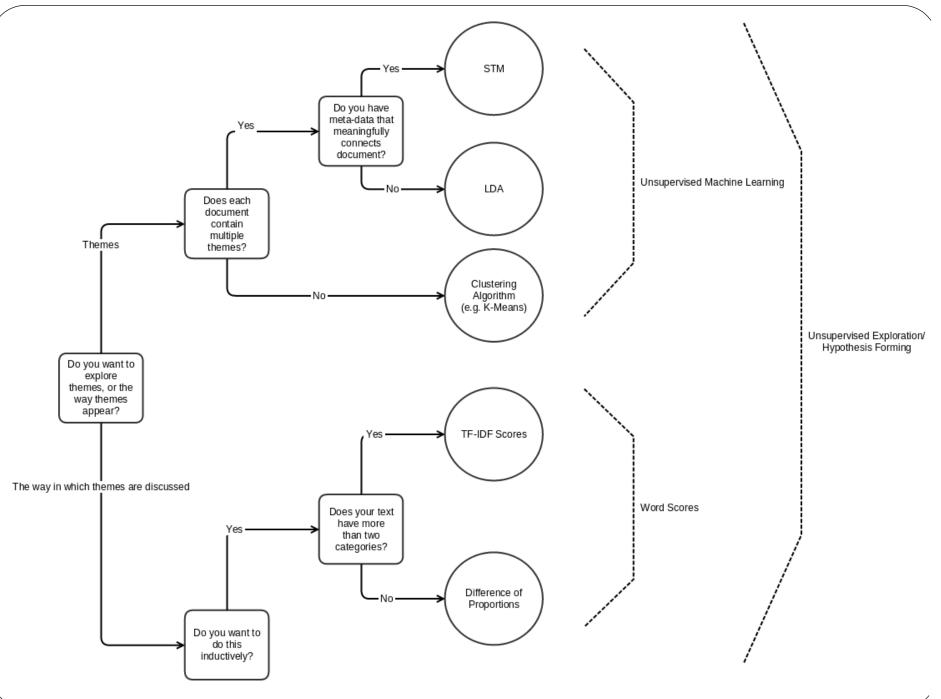
Overview:

Types of Automated Text Analysis

- Unsupervised exploration (hypothesis forming/inductive)
 - Topic modeling
 - Lexical selection
- Human-Guided Categorical Analysis (traditional content analysis deductive hypothesis testing)
 - Supervised machine learning
 - Dictionaries
- Natural Language Processing (guided inductive/hypothesis testing)
 - Part-of-Speech Tagging
 - Named Entity Recognition
 - Concordances
 - Sentiment analysis



Question 1: Do you want to inductively explore the text?



Unsupervised Exploration: The Goal

Informative Groups of Words

Set-Up: Document-Term Matrix*

	ambit	poverti	people	full
Document1	4	2	0	0
Document2	1	3	7	0
Document3	2	0	0	1
Document4	9	1	4	2
Document5	0	0	2	6

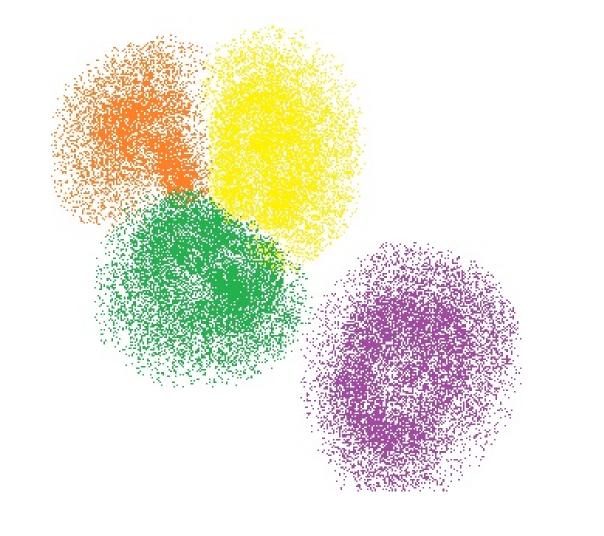
*Cells can be word frequencies or weighted word scores

Question 2: Themes or Style?

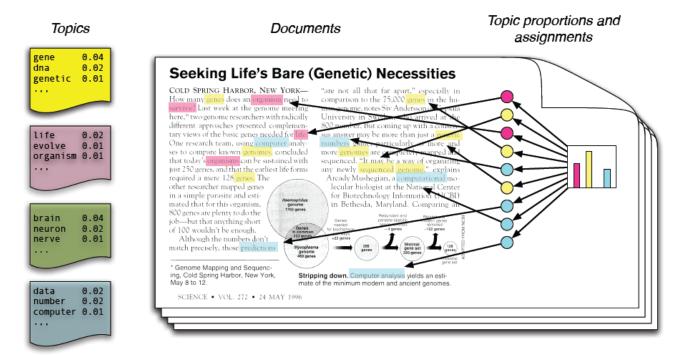
If themes:

Question 3: Multiple Categories?

Single Category per Text: Clustering



Multiple Categories: Topic Modeling



But Which Algorithm?

- Is the order of the documents important?
 - Yes? Structural Topic Modeling (STM)
- Are the topics correlated?
 - Yes? Correlated Topic Modeling (CTM)
- Order is relatively arbitrary, topics may not be related?
 - Latent Dirichlet Allocation (LDA)

music	book	art	game	show
band	life	museum	knicks	film
songs	novel	show	nets	television
rock	story	exhibition	points	movie
album	books	artist	team	series
jazz	man	artists	season	says
pop	stories	paintings	play	life
song	love	painting	games	man
singer	children	century	night	character
night	family	works	coach	know
theater	clinton	stock	restaurant	budget
play	bush	market	sauce	tax
production	campaign	percent	menu	governor
show	gore	fund	food	county
stage	political	investors	dishes	mayor
street	republican	funds	street	billion
broadway	dole	companies	dining	taxes
director	presidential	stocks	dinner	plan
musical	senator	investment	chicken	legislature
directed	house	trading	served	fiscal

Question 2: Themes or Style?

Style: Lexical Selection

- Goal: find words that are distinctive to different groups of text
- One solution: Difference of Proportions

Difference of Proportions

Chicago chicago children center union school

Abstract

day vietnam people city hospital cwlu

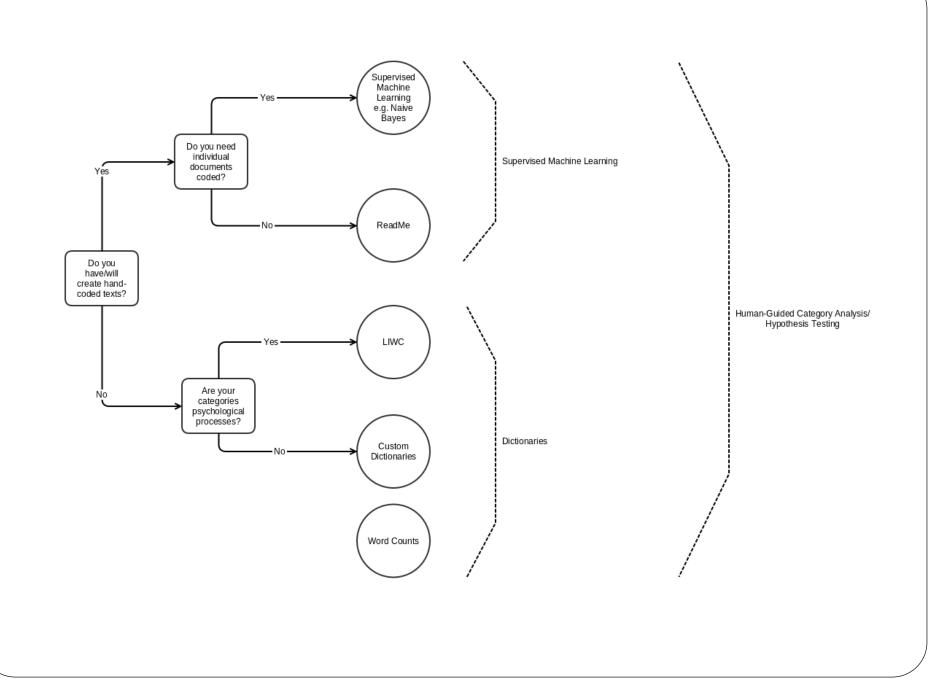
DoD	New York City	DoP
5.31	mo ement	12.54
4.59	won en	11.34
4.34	feminist	8.91
3.61	radical	8.56
3.48	liber tion	7.69
3.19	polit val	
2.93	history Conci	rete
2.86	femi ine	3.85
2.57	male	3.52
2.50	left	2.96
2.44	revo ution	2.58
2.38	cons iousnessraising	2.45
2.7	rpress	2.41

Question 1: Do you want to test a hypothesis?

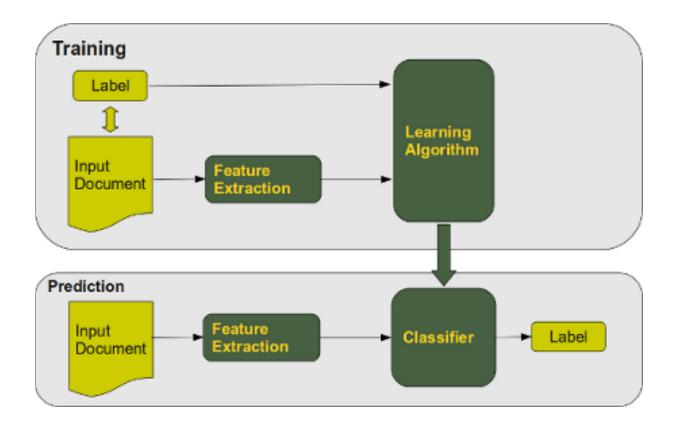
If yes:

Question 2: Themes or Styles?

If themes...



Supervised Machine Learning



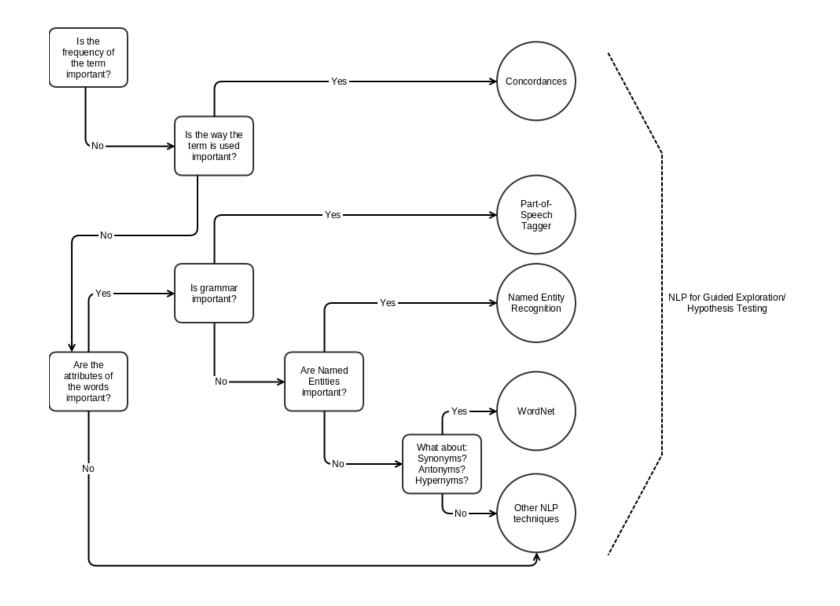
Which Algorithm?

- You want individual documents coded:
 - Document Classification (e.g. SVM, Naive Bayes)
- You want proportion of documents in each category:
 - •ReadMe (R package)

Dictionary Methods Standardized Dictionaries •LIWC (can be used for sentiment analysis) • Custom Dictionary

Question 2: Themes or Styles?

If styles...



Natural Language Processing

 Takes into account features of words, relationships between words, grammatical structures, etc.

Examples: Use NLP to test hypotheses

- Hypothesis: Author A is more descriptive than Author B.
 - Test: Part-of-Speech tagger, extract adjectives, count and compare.
- Hypothesis: Organizations in New York City are more internationally focused than organizations in Silicon Valley.
 - Test: Named Entity Recognition, compare against lists of corporations, places, and people.

Example: Use NLP to test hypotheses

- Hypothesis: the word "disruptive" is used in a positive way, and has a different meaning, for Silicon Valley organizations compared to Wall Street organizations.
- Test: Concordances

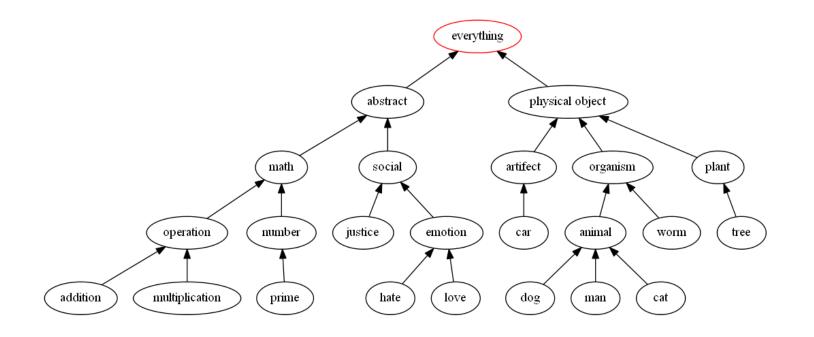
NLP: Concordances

ong the former , one was of a most monstrous size This came towards us , ON OF THE PSALMS . " Touching that monstrous bulk of the whale or ork we have r ll over with a heathenish array of monstrous clubs and spears . Some were thick d as you gazed , and wondered what monstrous cannibal and savage could ever hav that has survived the flood ; most monstrous and most mountainous ! That Himmal they might scout at Moby Dick as a monstrous fable , or still worse and more de th of Radney .'" CHAPTER 55 Of the monstrous Pictures of Whales . I shall ere l ing Scenes . In connexion with the monstrous pictures of whales , I am strongly ere to enter upon those still more monstrous stories of them which are to be fo ght have been rummaged out of this monstrous cabinet there is no telling . But

- very heartily so exceedingly remarkably as vast a great amazingly extremely good sweet
 - Mostly positive
- mean part maddens doleful gamesome subtly uncommon careful untoward exasperate loving passing mouldy christian few true mystifying imperial modifies contemptible
 - Mostly negative

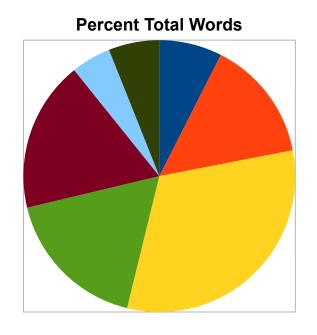
Example: NLP and WordNet

• Hypothesis: Women's movement organizations in New York City approach politics more abstractly compared to those in Chicago, who have a more concrete approach to politics.

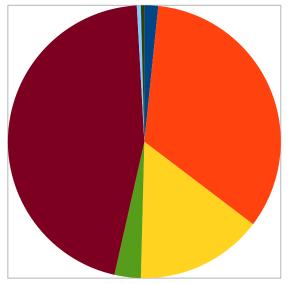


Tactics and Issues Over Time

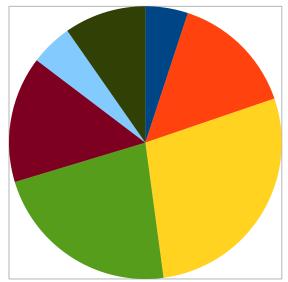
- Structural Topic Models (structured on year)
 - Used R package stm (Roberts, Stewart, and Tingly)
- Further grouped the 40 topics into 7 *topic categories*
- Python NLTK, extracted verbs/verb phrases
- Hand identified tactics, created dictionaries of tactical categories



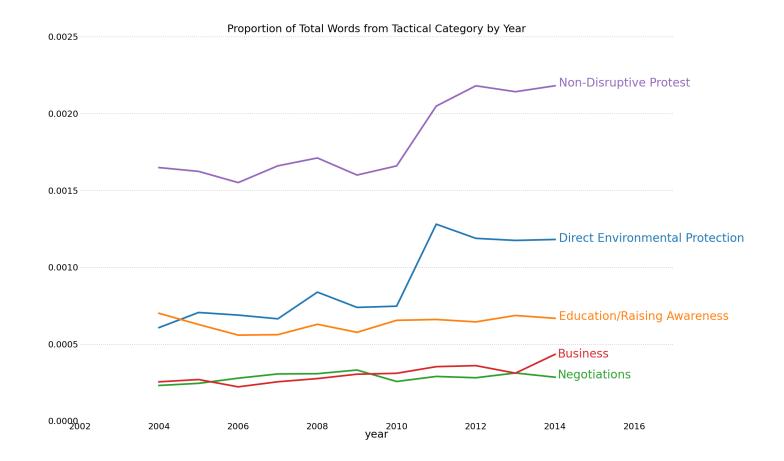
Percent Total Words in 2000



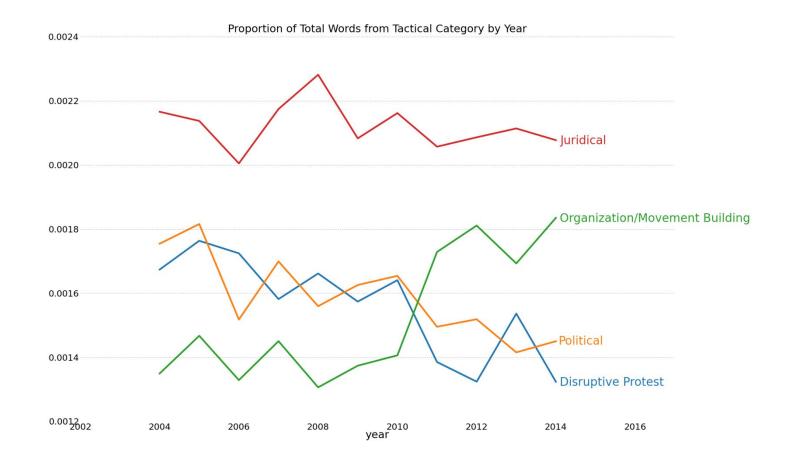
Percent Total Words in 2012



Tactics by Year

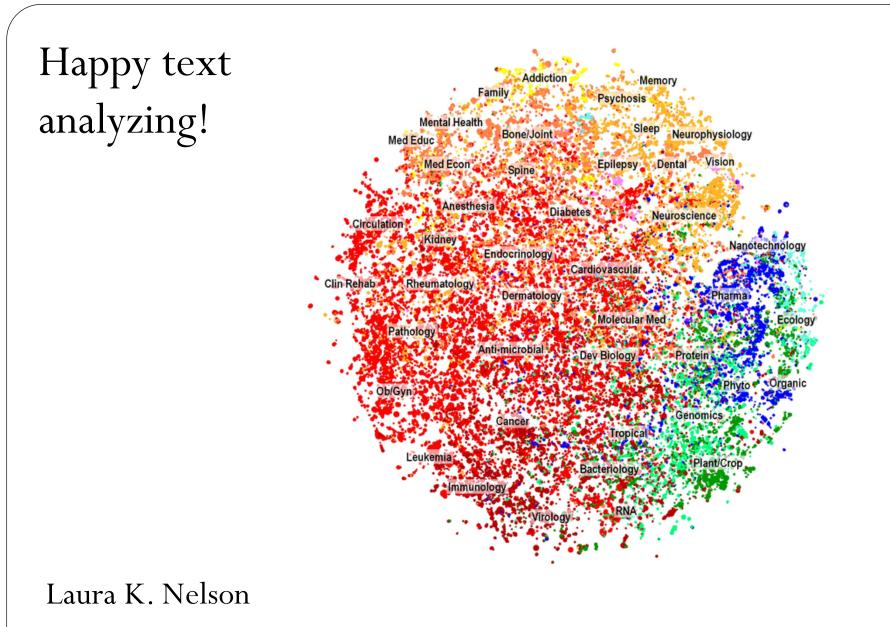


Tactics by Year



Conclusion:

- Research design is key! Good data is critical!
- Match your method to your question and data. Be purposeful, not trendy
- Use multiple methods, including qualitative, to verify the analysis
- Learn a programming language
 - Off-the-shelf tools box you in (see point 2).
 - I recommend Python, R is also good
- Read NLP and machine learning literature



laura.nelson@kellogg.northwestern.edu

Tactical Categories*

Direct Environmental Protection: build, improve, protect, recycle **Non-Disruptive Protest:** chant, demonstrate, organize, petition, protest **Disruptive Protest:** blockade, chain, prevent, damage, sabotage **Political:** campaign, donate, elect, endorse, regulate Juridical: audit, enforce, inspect, represent, testify **Verbal Statements:** advocate, comment, criticize, explain, refute **Business:** boycott, buy, invest, purchase, sponsor Education/Raising Awareness: editorial, outreach, publish, report, tweet **Organization/Movement Building:** fund-raise, initiate, launch, participate **Negotiations:** deal, discuss, engage, listen, persuade *Categories are not mutually exclusive