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a b s t r a c t

This article focuses on systems that enable low-carbon operations within organizations. The thesis that
system accuracy matters to achieving low-carbon operations is explored using two approaches. First, a
generic system model is developed and three alternative technical architectures are described, thereby
illustrating that accuracy varies across architectures but can also be attended to outside system
boundaries. Second, empirical analysis of 220 global organizations assesses the association between
accuracy, managerial incentives, emission targets, and low-carbon impacts. Overall, empirical findings
demonstrate that firms attending to accuracy tend to have managerial incentives to reduce emissions
and emission reductions targets in place. They also tend to exhibit reduced carbon emissions for the
same level of economic output.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Successful environmental initiatives such as lifecycle analysis,
waste treatment, integrated assessment, and eco-design rely on
accurate systems and data, including correctness and completeness
(Binder et al., 2008; Moore, 2002; Zhang and Zwolinski, 2017). A
sustainable business model archetype particularly reliant on ac-
curate data is maximizing material and energy efficiency, including
decarbonization (Bocken et al., 2014). Low-carbon operations
require new data inputs, new parameters, new data calculations,
and the generation of new informational outputs (Catulli and Fryer,
2012; Verdantix, 2009).1 Accuracy is critical to attaining related
organizational objectives such as reducing transport costs, meeting
emissions targets, enabling remote work, and facilitating project
decision making (Watson et al., 2010). As the World Resources
Institute emphasizes in its Greenhouse Gas Protocol accuracy
principle, organizations must: “Achieve sufficient accuracy to
enable users to make decisions with reasonable assurance as to the
integrity of the reported information” (WRI, 2012, p. 7).

Accuracy is a critical aspect of information systems in general
ille), terence.saldanha@wsu.
ush).
greenhouse gas emissions of
and has been a focus of empirical research in other business con-
texts such as healthcare (Ward, 2004) and inventory management
(Bertolini et al., 2015). Attention to accuracy has been demon-
strated to enhance organizational objectives, such as improving
immunization rates (Samuels et al., 2002). However, accuracy has
not been a focus of prior environmental management research
generally, and low-carbon operations in particular, despite con-
cerns about the quality and reliability of corporate sustainability
disclosures (Joshi and Li, 2016). As a result, it is unclear which or-
ganizations focus on accuracy, i.e., what other managerial practices
may correlate with attention to accuracy, and how a focus on ac-
curacy may correlate with low-carbon operations.

Spreadsheet systems are widely used to support low-carbon
operations by enabling management of related data such as en-
ergy use and greenhouse gas scopes (Erlandsson and Tillman,
2009). This raises concerns about data accuracy given empirical
studies demonstrating significant and widespread errors in
spreadsheets, with negative economic and organizational conse-
quences (Chadwick, 2007; LeBlanc et al., 2016; Panko and
Aurigemma, 2010). Additional (and costly) efforts are required to
ensure accuracy of emissions inventory calculation methods and
data processes and reported emissions figures to support organi-
zational decision making.

This article focuses on systems that enable organizations to
adopt low-carbon operations by providing requisite informational
and decision-making support, with a particular focus on accuracy
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(WRI, 2012). The main thesis is that system accuracy matters in the
context of low-carbon operations, though it is unclear how and
under what circumstances. To explore the thesis, two approaches
are employed. First, a generic system model and use-case diagram
are developed. Three alternative technical architectures e spread-
sheet, specialized system, and software network e illustrate vari-
ation in accuracy, efficiency, and effectiveness. Regardless of
adopted architecture, some firms add a system component to
ensure accuracy of related data processes, while others do not,
consistent with the notion that firms vary in terms of being pro-
active or reactive when it comes to data and systems accuracy
(Gartner, 2015). Second, data collected by Carbon Disclosure Project
(CDP) from 220 global firms is used to analyze hypotheses exam-
ining whether attention to data accuracy is correlated with other
organizational practices such as carbon reduction targets and yields
benefits related to low-carbon operations.

2. System modeling

In the computer age, organizational technology architectures
encompassed complex enterprise systems for back-office activities
(such as transaction processing), specialized systems for unit-
specific functionality (such as customer relationship manage-
ment), as well as stand-alone systems (such as tracking project
activities in a spreadsheet). In the realm of environmental data
management, both local systems and stand-alone systems have
been employed, though stand-alone spreadsheets appear to be
most widely used (Erlandsson and Tillman, 2009).

In the emerging fourth industrial age (Schwab, 2016), a new
technology architecture is emerging with the potential to enhance
efficiency, increase speed, and decrease errors. Software networks
e interacting and autonomous software applications and data re-
positories that transcend devices, people, and machinery e bring
new functionality, agility, and validity to data management. Orga-
nizations such as GE, Amazon, and Amtrak employ software net-
works to treat data and related functionality in a “publish and
subscribe” model. Software networks encompassing machine
learning nodes are emerging in a variety of contexts such as edu-
cation, marketing, elections, finance, and medical diagnosis
(Ronamai, 2016). Software networks also offer new possibilities for
supporting and accelerating low-carbon operations, though few
organizations have applied software networks to environmental
management so there is much uncertainty regarding how firms
might apply fourth industrial age organizing principles to reduce
emissions, lower costs, and combat climate change (cf. Braun et al.,
2017). To understand basic system features as well as compare and
contrast the implications of adopting alternative technical archi-
tectures, a generic system model and use-case diagram are now
developed.

2.1. Generic system model

Systems analysis is a robust conceptual approach for examining
a system for enabling low-carbon operations as it focuses on a
standard set of generic features and activities without the need for
technical specificity (Wand et al., 1995). In this way, a single version
of truth is afforded to different organizational stakeholders
2 Two of the organizations were studied by the lead author in another research
study: a large educational institution employing an in-house energy and carbon
management system based on spreadsheets and macros and a global software and
technology services company implementing a third-party system (Melville and
Whisnant, 2014). A key informant in the third organization, a large government
agency employing a contractor-developed system, was interviewed separately by
the lead author for an in-process research study.
independent of architectural choices. Involving both systems ana-
lysts and business stakeholders, systems analysis is used as input to
custom software development, as part of a software selection
process, or as a component of failure analysis (Piccoli, 2012). Based
on interviews with key informants inside three large organizations
implementing and employing systems for low carbon operations
(Melville and Whisnant, 2014), the system diagram in Fig. 1 was
constructed.2

The system comprises essential elements of purpose, compo-
nents, boundary, environment, inputs, outputs, interfaces, and
constraints. The purpose of the system is to enable a firm to
compute emissions, support decision-making, and enable low-
carbon operations. Without such a system, a firm may enact a
few sustainability initiatives, such as providing incentives for vir-
tual meetings rather than plane flights, but no ex ante information
would guide the choice of this option versus others, and no ex post
information would support determination of whether related key
performance indicators were indeed achieved. Over time, sub-
optimal decision-making would undermine a firm's low-carbon
operations efforts.

Beyond purpose, the components of the decarbonization system
include data storage, data validation, analytics, and reporting. For
example, a spreadsheet architecture would use a personal com-
puter's storage, formulae, or visual basic macros for converting raw
data into required information, and perhaps automated graph
generation for tracking emissions over time. The system boundary
delineates the system itself from its environment, the latter
including other systems, users, system auditors, and so forth. For
example, the system takes as input electricity use provided by other
systems in the environment, e.g., accounting information systems
or third-party billing aggregators. Other inputs might include gal-
lons of fuel used by a corporate trucking fleet, coal burned onsite,
and employee business travel.

Outputs include information required by the environment, such
as carbon emissions by scopes, emissions per capita, emissions per
building square foot, cost savings, and so forth. Interfaces represent
connections between the system and its environment, which may
involve humans (e.g., query about emissions per capita for past five
years) or machines (call by the system to an external application
programming interface (API) to obtain an emissions factor to
convert energy use to Scope 2 emissions). Finally, constraints place
limits on system use and operation, such as speed, storage, uptime,
accessibility, flexibility, and so forth.

Another important element of systems analysis is a use-case
diagram, which illustrates scenarios for which the system will be
utilized (Irwin and Turk, 2005). Whether intended to be compre-
hensive or illustrative, a use-case diagram encapsulates how agents
(humans and other systems) will interact with the system using a
narrative form and depicted in a graphical format. In this way, use-
case diagrams complement system models by adding story to fea-
tures (Bustard et al., 2000). An illustrative use-case diagram was
developed based on interviews with key stakeholders in three or-
ganizations that have implemented or are implementing systems
for low carbon operations (Fig. 2). 2 We now describe varying
affordances, features, and functionality across three technical ar-
chitectures using the lens of the three use cases.

2.2. Technical architectures

2.2.1. Spreadsheet system
The spreadsheet system is widely employed in organizations

due to its low cost and ease of use. An example use case concerning
data collection is now described. A data request is emailed annually
to each business unit in the form of an attached spreadsheet. Upon
completion, the spreadsheet is emailed back to the environmental



Fig. 1. Generic system model for enabling low-carbon operations.

Fig. 2. System use-case diagram.
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manager, who uses a pre-written macro to automatically transfer
the data to a master data sheet. The master sheet, in turn, contains
various macros to convert the compiled business unit data into
emissions and other useful output information. The environmental
manager owns and operates the system, including debugging the
underlying macros, upgrading its features, and producing much of
the data used within the organization's annual environmental
report. For example, when new guidelines for calculating emissions
are released, the manager must rewrite some of the calculation
formulae, update relevant parameters, confirm their accuracy, and
use them in subsequent calculations. Regarding accuracy, the
stand-alone approach varies widely, though manual macro coding
errors, human input errors, and the lack of automated data vali-
dation are three of several systemic challenges that threaten high
degrees of accuracy (LeBlanc et al., 2016). Of the three GHG scopes,
Scope 3 is most significantly affected by accuracy, given that it
encompasses the upstream and downstream supply chain of the
organization as well as evolving materiality guidelines (Blanco
et al., 2016). Regarding efficiency, the system is not costly techni-
cally, but it is costly in terms of labor and related process costs.
Moreover, the emailing of spreadsheets can cause reporting delays.
Finally, though the system may be effective at a baseline objective
of developing an annual inventory of carbon emissions, it is less
effective for achieving other objectives such as aiding decision
support, combining environmental data with financial data, or
providing monthly updates (Table 1).
2.2.2. Specialized system
The specialized system architecture differs in many ways from

the spreadsheet approach. Specialized systems are either adopted
by organizations or developed in-house and enable better accuracy,
higher efficiency, and enhanced effectiveness. First, specialized
systems often include workflow management to validate and
expedite each process as data are collected and processed. For
example, an environmental manager can set a timeline of tasks to
be completed and when due dates are passed an automated mes-
sage is sent as an alert status. Moreover, cloud-based systems are
updated frequently by the vendor and require no coding by users,
reducing the likelihood that an environmental manager with little
computing expertise may inadvertently introduce coding errors
with unknown ramifications. Accuracy is also enhanced via use of
industry standard data validation procedures such as field maxima
and minima conformance, trend-based predictive validation, and
data input confirmation checks. Efficiency is also improved as all
stakeholders have a secure account for the system and can log in
anytime and use the system based on a preconfigured user type
(environmental manager, financial analyst, tech support, etc.).
Combined with workflows, user account access also raises effec-
tiveness by enabling the firm to not only develop emissions in-
ventories but also to enable economic and environmental
dimensions to be assessed across projects, more frequent data
collection and reporting thereby improving accuracy, and up-to-
date calculation procedures and parameters according to regula-
tory and voluntary emissions schemes (Fig. 2). For example, the
system might enable production of a chart comparing traditional
financial return metrics such as net present value with emissions
reductions across various project alternatives (solar power, fleet
change, waste heat recovery, etc.).
2.2.3. Software network
The third technical architecture is software networks. In this

fourth industrial age approach e used by such pioneers as Amazon,
Uber, Siemens, Spotify, and Netflix to manage operational data e

business units are responsible for publishing their own data sets
and associated metadata and functionality. These services are
accessed via APIs and listed in catalogs so that other units can re-
use their data and functionality for new purposes. For example,



Table 1
Technical architectures.

Feature Spreadsheet Specialized System Software Network

Accurate (correct and
complete)

Threats include macro coding errors,
human input errors, and lack of automated
data validation

Workflow mgmt. used to validate and
expedite processes. Cloud-based systems
updated frequently by vendor; require no
coding by users. Industry-standard data
validation procedures. Up-to-date
calculation procedures and parameters
according to published schemes.

Machine-to-machine interfaces reduce
chances of human error. Re-use of
application programming interfaces (APIs)
reduces coding errors. Modularization of
coding can result in enhanced accuracy
relative to long, monolithic programs.

Efficient (no waste of time
or effort)

Costly in terms of labor and related process
costs. Emailing of spreadsheets and input
delays can cause reporting delays.

All stakeholders have secure account and
can login anytime and use system based on
a preconfigured user type.

Lower cost and increased functionality.
Faster development, testing, and
enhancement.

Effective (achieves
objectives)

May be effective at baseline objective of
developing inventory of carbon emissions.
Not effective in other important objectives
such as aiding decision support, combining
environmental data with financial data, and
providing monthly updates.

User account access enables firm to not only
develop emissions inventories but also to
enable economic and environmental
dimensions to be assessed across projects
and more frequent data collection and
reporting.

Broaden new app identification and coding
to business unit IT personnel rather than
centralized personnel. Innovation
enhanced. Better transparency into
environmental data sources and
functionality to all employees.
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Amtrak rail published data from its core operations platform via an
API, and thereby enabled its schedules to be quickly and accurately
integrated with Google maps (Buchholz et al., 2016). This opens a
new marketing and sales channel for Amtrak as Google maps
customers can easily determine whether going by rail might align
with their route, schedule, and emissions preferences. Another
example is Siemens' use of APIs to more efficiently and effectively
incorporate smart meter functionality and value-added services for
electric power customers (Goddard, 2016). This enables compliance
and new apps via re-use rather than reinvention. In the realm of
low-carbon operations, the re-use of already-tested APIs, reduced
amount of human coding, ability to develop and test quickly, and
direct machine-to-machine interfaces provide the potential to
dominate specialized systems and spreadsheets across all three
performance dimensions of accuracy, efficiency, and effectiveness.
Future possibilities include the use of voice interaction and deep
learning to enhance interactivity and leverage predictive analytics
to suggest effective low-carbon operational tactics (Fig. 2).

In summary, tradeoffs exist among the three technical archi-
tectures. Though accuracy varies widely, at the dawn of the fourth
industrial age firms often address accuracy outside the system
boundary given widespread use of spreadsheets. For example, an
auditor may review key processes, technologies, data inputs, and
information outputs to assure accuracy and to ensure compliance
with emissions standards (WRI, 2012). Given the importance of
system and data accuracy e which can be a life or death matter in
some contexts (Dillon and Lending, 2010) e the current study fo-
cuses on which firms attend to accuracy and what benefits might
result. As emphasized in prior research: “A major concern about
corporate CSR disclosure is its quality and reliability relative to
conventional financial reporting” (Joshi and Li, 2016, p. 5). A key
thesis of this article is that systems for enabling low-carbon oper-
ations require accuracy to support effective decision making and
ultimately lead to reduced emissions for a given level of output. As a
corollary, it is likely that complementary organizational practices
are required to achieve accurate systems, as we now describe.
3. Hypotheses

Complex organizational initiatives such as adoption of low-
carbon operations involve significant planning to develop clear
objectives, determine focus areas, develop an implementation
strategy, and identify key performance indicators (Bocken et al.,
2014). Management control mechanisms are an important
component of such initiatives (Crutzen et al., 2017), and prior
research has focused on the importance of two specific control
mechanisms in the context of low-carbon operations: managerial
incentives to reduce carbon emissions (Eccles et al., 2012; Henri
and Journeault, 2009; Seidel et al., 2014) and the presence of spe-
cific emission reductions targets (Biswas and O'Grady, 2016;
Ioannou et al., 2016; Joshi and Li, 2016). Given the salience of
these two mechanisms as well as the lack of prior research exam-
ining the role of accuracy in low-carbon operations, we develop
two hypotheses concerning the complementarity of attention to
accuracy, managerial incentives, and emission reductions targets.
3.1. Attention to system accuracy, managerial incentives, and
reduction targets

Agency theory addresses situations in which owners and man-
agers of firms have conflicting goals and the attendant mechanisms
that may mitigate goal misalignment (Eisenhardt, 1989). One such
mechanism is outcome-based contracts. In the low-carbon opera-
tions context, this might mean that senior executives (principals)
provide explicit incentives to reduce greenhouse gasses that are
tied to performance targets. In this way, goal misalignment may be
mitigated as the manager now has clear incentives to achieve the
sustainability objectives of the principal. Overall, this reasoning is
consistent with the proposition of Eisenhardt (1989, p. 60) that
“when the contract between the principal and agent is outcome
based, the agent is more likely to behave in the interests of the
principal.”

Empirical evidence supports the link between outcome-based
contracts and managerial behavior in the context of strategic and
individual choices (Devers et al., 2007), suggesting that this link
may exist in the environmental context. If the manager holds the
prior belief that accuracy is salient in the context of systems
enabling low-carbon operations, it follows that managerial in-
centives to reduce greenhouse gas emissions would lead to greater
attention to system accuracy. Moreover, clearly specified emissions
reduction targets complement managerial incentives by providing
a goal against which progress can be measured. In the absence of
targets and incentives, even though managers may hold such prior
beliefs, they may not attend to accuracy, as carbon emission
reduction is not part of their performance evaluation. Managerial
incentives tied to greenhouse gas reduction are thus hypothesized
to be associated with a higher firm propensity to attend to accuracy
in systems enabling low-carbon operations. Likewise, greenhouse
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gas reduction targets are also hypothesized to be associated with a
higher firm propensity to attend to accuracy in systems enabling
low-carbon operations. Based on these arguments, the first two
hypotheses are stated as follows:

Hypothesis 1. Managerial incentives tied to greenhouse gas reduc-
tion are positively associated with firm propensity to attend to accu-
racy in systems enabling low-carbon operations.

Hypothesis 2. Greenhouse gas reduction targets are positively
associated with firm propensity to attend to accuracy in systems
enabling low-carbon operations.
3.2. Association of system accuracy and low-carbon operational
outcomes

Accurate systems and data are necessary for enabling low-
carbon operations. As emphasized by a recent report on corporate
carbon reporting: “Assurance of carbon data can also assist com-
panies in embedding good reporting practices and driving internal
performance improvements.” (King and Bartels, 2015, p. 20).
However, the lack of prior research means that this assertion re-
mains an open empirical question. For example, it is possible that
firms are more interested in signaling pro-environmental behavior
(branding) rather than actually achieving low-carbon operations. In
this case, attending to the accuracy of data, for example by hiring a
consultant to audit the resulting numbers, may be solely for
signaling reasons. Media announcements associated with such
actions may send a positive short-term signal to investors, con-
sumers, employees, and other important stakeholders. Green-
washing has been shown to be an important and widespread
phenomenon with a range of underlying mechanisms (Delmas and
Burbano, 2011). In the case of systems enabling low-carbon oper-
ations, if greenwashing is in place, there may be no association
between attending to accuracy and achievement of low-carbon
operations. Despite this potential countervailing mechanism, in
the absence of prior research it is hypothesized that firm atten-
dance to system accuracy is associated with low-carbon opera-
tional outcomes. The third hypothesis is thus stated as follows:

Hypothesis 3. Firm attendance to accuracy in systems enabling low-
carbon operations is positively associated with low-carbon opera-
tional outcomes.
3 The overall overlap of CDP 2009 with the FT Global 500 list in 2009 was 409
firms CDP_Report, 2009. Carbon Disclosure Project 2009: Global 500 Report.

4 The full lists of firms in FT Global 500 of the years 2009 and 2016 were obtained
from the annual FT 500 rankings website (https://www.ft.com/ft500). Information
regarding whether firms responded to CDP 2016 were obtained by running queries
on the CDP open data portal (https://www.cdp.net/en/responses?utf8¼%E2%9C%
93&queries%5Bname%5D¼).

5 We note that 37.73% (83 firms) of firms in our sample were present in the FT
Global 500 lists in both 2009 and 2016. Also, 9.09% (20 firms) of firms in our sample
were present in the 2009 FT Global 500 list but dropped out of the 2016 list,
whereas 5.45% (12 firms) of firms in our sample were present in the 2016 FT Global
500 list but not the 2009 list.
4. Materials and methods

4.1. Data and sample

Primary data come from the CDP, which conducts an annual
survey of large publicly traded global corporations. The CDP pro-
vides data onmost of the variables of interest and is one of themost
widely employed voluntary reporting agencies globally. Data from
the annual CDP surveys has been used in prior research (Blanco
et al., 2016; Reid and Toffel, 2009) and provides the only source
of which we are aware concerning the accuracy of systems enabling
low-carbon operations. Data were drawn primarily from CDP 2009,
whose sample frame comprises lists of publicly traded firms such as
the Global 500 totaling 3741 firms. Themain reason for our choice of
using CDP 2009 was that the question on accuracy was only asked
during a single year. Of the total 3741 firms that were surveyed by
CDP, 1849 firms responded, with 1246 choosing to allow their data
to be publicly available (Matisoff et al., 2013). We used the Risk
Metrics database for additional environmental variables for global
firms, and the Bureau van Dijk's (BVD) database for economic data
of global firms. After matching firms that provided valid carbon
emissions data and other organizational variables included in our
analysis, the final sample comprises 220 firms.

Of the 220 firms in our final sample, 46.8% (103 firms) were
present in the Financial Times (FT) Global 500 list of 2009, sug-
gesting that our sample is reasonably well represented in the FT
Global 500 list of the same year. 3 To assess how representative our
final sample (from CDP 2009) is of firms in more recent years, we
checked for the overlap of our final sample with the FT Global 500
list of 2016, and with the CDP 2016 respondent list. We found that
43.2% (95 firms) of firms in our sample are present in the 2016 FT
Global 500 list, and 84.09% (185 firms) of our sample responded to
CDP 2016.4,5 Taken together, these numbers suggest that the firms
in our final sample in 2009 are reasonably well represented both in
the FT Global 500 list in that same year, and inmore recent FT Global
500 and CDP respondent lists.

Table 2 shows the breakdown of our sample across the ten
Global Industry Classification Standard (GICS) list of industries, as
well as the industry-wise breakdown of firms in the FT Global 500
list of 2009. The breakdown of our sample across the GICS list of
industries mirrors that of the FT Global 500 list reasonably well.

Table 3 shows the country-wise breakdown of our sample, and
the country-wise breakdown of the 2009 FT Global 500 list.

Further, to assess how our final sample compares in terms of
firm characteristics with the FT Global 500 of that timeframe, we
compared our sample firms with the FT Global 500 list of 2009 on
two metrics of firm size: Total Assets and Number of Employees.
Specifically, we performed two-tailed T-tests of difference of means
of Total Assets (shown in Appendix Table A.1) and Number of Em-
ployees (shown in Appendix Table A.2) on the overall lists and on
the industry-wise splits. On Total Assets, we find that our sample,
taken as a group, does not differ statistically (p ¼ 0.59) from the FT
Global 500 list of 2009. When considered industry-wise, for eight of
the ten GICS industries, our sample does not differ statistically
(p > 0.10) from the mean Total Assets of the FT Global 500. For two
industries (Health Care and Industrials), our sample differs statis-
tically (p < 0.10) from the FT Global 500 list. On Number of Em-
ployees, our sample taken as a group does not differ statistically
(p¼ 0.53) from the FT Global 500 list of 2009.When taken industry-
wise, we find that for seven of the ten GICS industries, our sample
does not differ statistically (p > 0.30) from the mean Number of
Employees of the FT Global 500. For three industries (Health Care,
Industrials, and Materials), our sample differs (p < 0.10 or p < 0.05)
from the FT Global 500 list.

Overall, these numbers suggest that: a) in terms of firm size
(Total Assets and Number of Employees), our sample firms as a group
do not differ statistically from the FT Global 500 list of the same
year; and b) when broken down by GICS industries, the sample
means of Total Assets and Number of Employees of firms in each
industry group do not differ statistically from most of the GICS
industries in the 2009 FT Global 500 list (barring two or three in-
dustries). These comparisons also give us some idea of the contri-
bution of the 220 firms in our sample, suggesting that the firms in

https://www.ft.com/ft500
https://www.cdp.net/en/responses?utf8=%E2%9C%93&amp;queries%5Bname%5D=
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https://www.cdp.net/en/responses?utf8=%E2%9C%93&amp;queries%5Bname%5D=


Table 2
Industry Breakdown of Sample, and Comparison with FT Global 500 breakdown.

Industry Our Sample (CDP 2009) Financial Times Global 500
(year 2009)

Number of
firms

Percentage Number of
firms

Percentage

Consumer
Discretionary

14 6.36% 55 11.00%

Consumer Staples 15 6.82% 50 10.00%
Energy 23 10.45% 51 10.20%
Financials 43 19.55% 104 20.80%
Health Care 12 5.45% 41 8.20%
Industrials 35 15.91% 24 4.80%
Information

Technology
25 11.36% 36 7.20%

Materials 29 13.18% 61 12.20%
Telecommunications 9 4.09% 33 6.60%
Utilities 15 6.82% 45 9.00%
Total 220 100% 500 100%

Note: GICS (Global Industry Classification Standard) is used for industry
classification.

Table 3
Country Breakdown of Sample, and Comparison with FT Global 500 breakdown.

Country Our Sample (CDP 2009) Financial Times Global 500
(year 2009)

Number of firms Percentage Number of firms Percentage

Australia 23 10.45% 14 2.80%
Canada 20 9.09% 27 5.40%
Denmark 1 0.45% 2 0.40%
Finland 2 0.91% 2 0.40%
France 11 5.00% 23 4.60%
Germany 8 3.64% 20 4.00%
Italy 2 0.91% 7 1.40%
Japan 14 6.36%% 49 9.80%
Netherlands 2 0.91% 8 1.60%
Norway 3 1.36% 1 0.20%
South Africa 7 3.18% 6 1.20%
South Korea 1 0.45% 5 1.00%
Spain 3 1.36% 13 2.60%
Sweden 2 0.91% 5 1.00%
Switzerland 7 3.18% 10 2.00%
USA 72 32.73% 181 36.20%
United Kingdom 42 19.09% 32 6.40%
Others 0 0% 95 19.00%
Total 220 100% 500 100%

N.P. Melville et al. / Journal of Cleaner Production 166 (2017) 1074e1083 1079
our sample are substantially important to theworld economy to the
extent that a significant proportion of them were in the FT Global
500 list of the same year, as well as in more recent FT Global 500 and
CDP respondent lists, and the sample, when taken as a group and
when broken down by industry, is reasonably similar in terms of
size (Total Assets and Number of Employees) to firms in the FT Global
500 list of the same year.
6 For details, see RiskMetrics Group, “Global Compact Plus Assessment Service
(GCþ): A Concise Explanation of our Company Rating Model,” June 2009.
4.2. Variables

A description of key variables follows, with a full listing pro-
vided in Table 4. The analysis employs a unique CDP survey ques-
tion regarding system accuracy: “Does your company have a system
in place to assess the accuracy of GHG emissions inventory calcu-
lation methods, data processes and other systems relating to GHG
measurement?” Regarding low-carbon operational outcomes, both
Scope 1 (emissions due to stationary and mobile combustion) and
Scope 2 (emissions due to purchased electricity and energy)
emissions are employed, consistent with prior research (Eccles
et al., 2012). Scope 3 emissions exhibit variable accuracy given
their purview extending beyond firm boundaries (upstream and
downstream supply chain) (Blanco et al., 2016) and are thus
excluded from the current analysis. The ratio of output to the sum
of both scopes is computed and normalized by industry to develop
a carbon productivity metric that is comparable across firms within
industries (CP). Incentives (INCENT) and targets (TARGET) are
measured by items in the CDP database. The former asks “do you
provide incentives for individual management of climate change
issues including attainment of GHG targets?” while the latter asks
“Do you have an emissions and/or energy reduction target(s)?”
(Table 4).

Control variables include climate agreements (UNFCCC and
KYOTO) and measures of environmental strategy (STRAT). The
latter is used by institutional investors, including investment
managers, mutual funds, hedge funds and pension funds.6 Other
controls include environmental risk (RISK) and the number of years
for which a firm has disclosed its emissions in the CDP (DISC)
weighted to account for learning curve effects, which might serve
as a proxy for its environmental capabilities.

4.3. Empirical modeling

Ordinary least squares regression was employed to estimate the
following model: CPi ¼ ao þ a1ACCi þ a2HIEMITi þ a3SIZEi þ
a4TRADEi þ a5UNFCCCi þ a6KYOTOi þ a7INCENTi þ
a8TARGETi þ a9DISCi þ a10STRATi þ a11RISKi þ εi. However, in this
model it is possible that self-selection bias is present, given that
firms decide whether to attend to accuracy based on factors that
may be unobserved. This is especially possible given the newness of
the context and lack of prior research providing guidance on
important phenomena and variables (unobserved heterogeneity).
In this case, ordinary least squares estimation may result in biased
estimation.

To correct for bias that may be present, a self-selection model is
employed (Greene, 1997). The endogenous switching regression
model assumes that firms decide which of two regimes to join
based on unobserved characteristics (Heckman, 1979; Maddala,
1983). A simple analogy is students choosing whether to study
ecology or graphic design based on their own private knowledge of
their capabilities. Mackenzie chooses ecology as she expects to do
better in that field given that she started a solar panel consultancy
in high school. In contrast, Vinod chooses graphic design as he
expects to do better in that field given his extensive art and drawing
background and fascination with graphic novels. We would expect
Mackenzie to do worse in college if a central planner decided to
place her into the graphic design major, and likewise with Vinod
into the ecology major. The self-selection model provides a test for
such selections by examining the counterfactual that Mackenzie
was indeed placed into graphic design. Moreover, if we ran a simple
regression, biased estimates would result due to unobserved het-
erogeneity of the major choice antecedents.

The self-selection model is appropriate to address self-selection
in new and emerging contexts where correlates with the decision
process have yet to be identified and observed e precisely the
current context. The model splits the sample into those that attend
to accuracy and those that do not. It uses a first-stage adoption
model to generate the Inverse Mills Ratio (IMR), then uses the IMR
in the second stage as an additional term in the regression. If the



Table 4
Variables.

Variable Definition Survey Item or Constructed Measure

ACC Accuracy Does your company have a system in
place to assess the accuracy of GHG
emissions inventory calculation methods,
data processes and other systems relating
to GHG measurement?

CP Carbon productivity Output/(Scope 1 þ Scope 2), normalized
to GICS 10 industry, where Revenue and
Net Income are measures of output.

INCENT Managerial incentives Item “Do you provide incentives for
individual management of climate
change issues including attainment of
GHG targets?”

TARGET Carbon performance target Item “Do you have an emissions and/or
energy reduction target(s)?”

UNFCCC Institutional pressure (not
legally binding & no
targets)

Number of years that country in which
firm is domiciled has been a signatory to
the non-legally binding United Nations
Framework Convention on Climate
Change (UNFCCC).

KYOTO Institutional pressure
(legally binding and
targets)

Number of years that the country in
which the firm is domiciled has been
signatory to Kyoto Protocol.

STRAT Environmental strategy Independent rating of environmental
strategy.

RISK Monetary risk Item “Do you consider your company to
be exposed to [monetary] risks?”

DISC Number of years that firm
has voluntarily disclosed.

Years that firm has provided data to
Carbon Disclosure Project (weighted by
base 2 to account for learning curve
effects).

SIZE Firm size Industry normalized revenue.
TRADE Environmental trading Item “Have you purchased any project-

based carbon credits? Have you been
involved in the origination of project-
based carbon credits?”

HIEMIT High emitting industry Dummy for three industries with highest
median raw carbon emissions.

Notes: CP numerator (operating revenue and net income) and SIZE are from Bureau
van Dijk's (BVD) ORBIS database. UNFCCC and KYOTO are from the United Nations
Statistics Division. STRAT is fromMSCI Environmental, Social, and Governance (ESG)
Research, Global Compact Assessment Environmental Strategy Score (used with
permission of Innovest Strategic Value Advisors.) ACC is used from CDP 2008 as it
did not appear in CDP 2009 (also referred to as CDP7) for which sufficient data exist
for sample matching and estimation.

N.P. Melville et al. / Journal of Cleaner Production 166 (2017) 1074e10831080
IMR is positive and significant, self-selection is present, the self-
selection model is appropriate, ordinary least squares is biased,
and firms are better off from a carbon productivity standpoint
having attended to data accuracy. To estimate the self-selection
model, three additional variables are employed to identify the
first-stage adoptionmodel that are not included in the performance
regressions in the self-selection model (Greene, 1997). Firm size
(SIZE) is proxied by revenue. Whether a firm engages in environ-
mental trading of carbon credits (TRADE), which might affect its
need for accurate data but which does not affect carbon produc-
tivity given that our GHG measure is gross of any adjustments due
to purchase or sales of carbon credits, is also included. Finally, a
control for whether a firm is in a high-emitting industry (HIEMIT),
which are more regulated andmay necessitate accuracy, and which
is accounted for in the dependent variable in Stage 2, is also
included in the first stage.

5. Results

5.1. Descriptive statistics

Descriptive statistics and correlations are provided in Table 5.
Both INCENT and TARGET are positively and significantly correlated
with ACC (0.37 and 0.31, respectively). Furthermore, when splitting
the sample by adoption, we observe that incentives and targets are
statistically significantly higher in firms attending to accuracy than
others. These bivariate results provide initial support for our first
two exploratory hypotheses that managerial incentives related to
carbon emissions reductions and carbon emissions reduction tar-
gets are associated with a higher firm propensity to attend to ac-
curacy in systems enabling low-carbon operations.

5.2. Association of system accuracy with managerial incentives &
emission reduction targets

The first stage of the self-selection model estimation represents
a Probit adoption model for the case of revenue used in the per-
formance metric (Table 6, Column 2) and net income used in the
performance metric (Table 6, Column 5). In both cases, the esti-
mates of INCENT and TARGET are positive and significant, sup-
porting the first two hypotheses in alignment with correlations
presented in Table 5. Both types of climate agreements (UNFCCC
and KYOTO) are weakly and positively associated with firm pro-
pensity to attend to accuracy in systems enabling low-carbon op-
erations, as expected. Moreover, the positive and significant
estimate for RISK also confirms ex ante beliefs that firms facing
greater risk are more likely to attend to accuracy.

5.3. Association of system accuracy and low-carbon operational
outcomes

Ordinary least squares regression estimation (Column 1) reveals
that the ACC coefficient is negative (�0.321) and weakly statisti-
cally significant (p < 0.1), which appears to provides weak rejection
of our third hypothesis (the pattern is the same for performance
based on net income). However, as discussed in the methods sec-
tion, these results are likely to be biased, as unobserved variables
are likely to be present but not included.

The self-selection model estimation is presented in Columns
2e7. Columns 4 and 7 contain estimates of the two performance
equations for firms attending to accuracy (ACC ¼ 1). In the case of
CP based on revenue (column 4), the self-selection coefficient (IMR)
is positive (0.367) but only weakly significant (based on boot-
strapped standard errors whose 95% confidence interval is heavily
weighted above zero but does include a few instances below zero).
In the case of CP based on net income, the IMR is positive and
significant (0.940, p < 0.01). These findings are consistent with the
presence of self-selection bias, as hypothesized, rendering OLS es-
timates biased.

Regarding the developed hypothesis of the association between
system accuracy and low-carbon operational outcomes, the posi-
tive signs of Sigma and IMR in columns 4 and 7 are both consistent
with the generated hypothesis (H3). Intuitively, if firms adopt a
system to assess the accuracy of GHG emissions inventory calcu-
lation methods, data processes and other systems relating to GHG
measurement based on unobserved adoption factors, an additional
factor in the performance regression would be present (the IMR)
(Greene, 1997; Maddala, 1983). Contrary to results presented in
Table 6, if the IMR had not been statistically significantly, the OLS
model would obtain as no self-selection bias would have been
present. For further insight, we examined our results when we
disaggregate our summed measure of carbon productivity. Scope 1
and Scope 2 emissions are very different to one another, though
such differences are masked by our summation of the two in the
denominator of carbon performance. Results of the selection
equation estimation reveal the same sign and significance pattern
and the same inferences for targets and incentives (for both vari-
ations of CP). For Scope 1, which is stationary and mobile



Table 6
Estimation results for ordinary least squares and self-selection models.

DEP VAR (1) (2) (3) (4) (5) (6) (7)

Ordinary least
squares

Self-sel
adoption

Self-sel outcome
(ACC ¼ 0)

Self-sel outcome
(ACC ¼ 1)

Self-sel
adoption

Self-sel outcome
(ACC ¼ 0)

Self-sel outcome
(ACC ¼ 1)

CPrev ACC CPrev CPrev ACC CPNetInc CPNetInc

ACC ¡0.321* (0.183)
HIEMIT 0.265 (0.248) 0.091 (0.220)
SIZE �0.006 (0.121) �0.159 (0.101)
TRADE 0.047 (0.175) 0.347* (0.180)
UNFCCC 0.133 (0.084) 0.232* (0.121) 0.298 (0.238) 0.160 (0.140) 0.251** (0.122) 0 0.246 (0.243) 0.175 (0.116)
KYOTO 0.069** (0.028) 0.093* (0.050) 0.221* (0.124) 0.105*** (0.036) 0.024* (0.049) 0.078 (0.111) 0.050 (0.033)
INCENT �0.023 (0.139) 0.861***

(0.252)
2.345*** (0.737) 0.054 (0.155) 0.578** (0.236) 1.754*** (0.670) 0.192 (0.155)

TARGET �0.191 (0.196) 0.747***
(0.276)

0.467 (0.678) 0.043 (0.244) 0.681** (0.271) 0.495 (0.616) 0.143 (0.231)

DISC 0.002 (0.014) 0.021 (0.021) 0.067 (0.057) �0.043** (0.017) 0.009 (0.023) 0.062 (0.052) 0.002 (0.016)
STRAT �0.028 (0.051) 0.129 (0.093) 0.195 (0.197) �0.201*** (0.062) 0.013 (0.091) �0.236 (0.175) 0.009 (0.057)
RISK �0.311* (0.179) 0.550** (0.280) �0.389 (0.634) �0.004 (0.223) 0.469* (0.258) �0.378 (0.581) 0.059 (0.211)
Sigma

(si)
1.988*** (0.374) 0.965*** (0.073) 1.772*** (0.411) 0.980*** (0.057)

IMR (riε) 0.868*** (0.073) 0.367 [-0.19, 0.83] 0.860*** (0.138) 0.940*** (0.033)
N 220 41 179 220 41 179

Notes: Bolded quantities refer to hypothesis tests. An intercept is included in all models; standard errors are in parentheses with ***p < 0.01; **p < 0.05; *p < 0.1. For self-
selectionmodels (columns 2e7), full-informationmaximum-likelihood (FIML) estimation is employedwith SANNmaximization. For operating revenue specification (columns
2e4), log-likelihood is �399.5062; significance of rho for ACC ¼ 1 based on bootstrapped standard error, with 95% confidence interval in square brackets. For net income
specification (columns 5e7), log-likelihood is �363.4744.

Table 5
Descriptive statistics.

Mean SD 1 2 3 4 5 6 7 8 9 10 11

1. ACC 0.81 0.39 1
2. CP �0.04 0.96 �0.17 1
3. HIEMIT 0.30 0.46 0.09 0.03 1
4. SIZE 0.06 0.99 0.13 �0.03 �0.02 1
5. TRADING 0.50 0.69 0.20 �0.09 0.29 0.33 1
6. UNFCCC 15.33 1.00 0.20 0.01 0.11 �0.01 �0.05 1
7 KYOTO 3.48 2.85 0.00 0.11 0.04 �0.01 0.18 �0.59 1
8. INCENT 0.57 0.50 0.37 �0.06 �0.07 0.28 0.22 0.13 0.05 1
9. TARGET 0.85 0.36 0.31 �0.12 �0.04 0.18 0.17 �0.15 0.25 0.32 1
10. DISC 12.02 4.59 0.20 �0.01 0.09 0.25 0.18 0.17 0.02 0.14 0.08 1
11. STRAT 7.88 1.31 0.16 �0.09 �0.36 0.21 0.10 �0.06 0.14 0.22 0.23 0.13 1
12. RISK 0.85 0.35 0.13 �0.18 �0.09 0.13 0.10 �0.08 0.01 0.11 0.11 0.07 0.20

Note: Italics indicates significant at p � 0.05.
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combustion, there is no significant self-selection for adopters, but
for Scope 2 (purchased energy) the pattern for the aggregate
measure is preserved. Performance results based on the aggregated
metric would thus appear to be driven more by Scope 2 than Scope
1 emissions. This is an interesting finding that suggests a focus on
both aggregated and disaggregate carbon performance metrics for
maximal insights given the potential for differing drivers and
outcomes.

To assess robustness of results, re-estimation of the self-
selection model was undertaken using a two-step limited-infor-
mation maximum likelihood (LIML) procedure using bootstrapped
standard errors, with no change in the pattern of results. Also, a
variance inflation factor (VIF) test ofmulticollinearity for LIML stage
1 was conducted, with all VIFs less than 2, which is well below the
rule of thumb of 10 (Greene, 1997) and thereby mitigates concerns
of multicollinearity. Though these results provide some support for
the validity of inferences, the exploratory nature of the findings is
emphasized given the newness of the domain, lack of prior research
on which to build, and dearth of existing measures for key
variables.
6. Discussion

6.1. Findings and implications

As a primary institution for organizing the production and dis-
tribution of goods and services, global organizations play a signif-
icant role in mitigating the causes and effects of climate change.
Migration to low-carbon operations is thus critical. Much research
has examined new business models, systems, and associated
technologies for doing so (Bocken et al., 2014; Catulli and Fryer,
2012; El-Gayar and Fritz, 2006; Moore, 2002).

At the same time, the ability of organizations to produce suffi-
ciently accurate information and associated processes to support
low-carbon operational objectives is not well understood. While
emissions standards specify that data must be accurate and of high
quality and reliability, it is unknown whether firms are indeed
meeting these aspirational guidelines. Moreover, it is unclear which
firms are attending to accuracy and why.

To ensure accuracy, two approaches are possible. The first is at
the system level, involving the use of an appropriate system to
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enable low-carbon operations. The second lies outside the system,
and involves such measures as auditing and external validation to
assess and ensure accuracy of data and processes. In this study, the
fundamental thesis is that accuracy matters, though it is unclear
how and under what circumstances. Using systems approaches and
CDP data, this question was examined in two ways.

First, a systems model, use case diagram, and three technical
architectures were introduced. Manifestation of features present in
the generic systems across different architectures enabled com-
parison and contrast of spreadsheets, specialized systems, and
software networks. While spreadsheets are widely used, and
specialized systems increasingly being adopted, software networks
are at the frontier of systems architecture. In this way, the systems
analysis enabled both an assessment of existing approaches as well
as an examination of next practices in low-carbon operations. This
answers a call in academic research to pursue future-oriented
studies in addition to focusing on the past (Teece, 2011).

A key result of the systems modeling exercise was identification
of strengths and limitations of each technical architecture accord-
ing to three key features: accuracy, efficiency, and effectiveness. For
firmswishing to secure low-carbon operations through attention to
accuracy, our results suggest that their approach should vary based
on their existing system and capabilities. We find that accuracy is
lacking with the widely used spreadsheet system, so firms with
such a system can upgrade to either a specialized system and/or a
software network for a long-term increase in accuracy. Alterna-
tively, firms unwilling or unable to upgrade can follow the example
of their peers and augment their spreadsheet systemswith external
audits and other extra-system approaches. To explore these further
and provide a second perspective on the key thesis of the study,
CDP data on 220 global organizations were analyzed.

Regression results were consistent with all three of the devel-
oped hypotheses. First, consistent with agency arguments and
intuition, a positive association between attention to system ac-
curacy and both managerial incentives and emission reduction
targets was identified. This suggests that firms are enacting low-
carbon operations by including both managerial programs as well
as technical considerations. Second, consistent with the third hy-
pothesis, a positive association was found between attention to
system accuracy and low-carbon operational outcomes. Together
with the first two hypotheses, this suggests that appropriate sys-
tems for low-carbon operations that include attention to data ac-
curacy may enable firms to achieve more output without attendant
Table A.1
Comparison of Sample with Financial Times (FT) Global 500 (2009) on Total Assets.

Industry Our Sample (CDP 2009)

Mean SD N

Consumer Discretionary $23,201.96 $9245.54 9
Consumer Staples $35,005.95 $8633.93 11
Energy $48,384.08 $14,184.57 17
Financials $607,016.80 $144,887.40 28
Health Care $48,778.18 $9576.37 11
Industrials $19,022.82 $3576.10 24
Information Technology $29,496.27 $7773.63 18
Materials $23,733.31 $5776.21 18
Telecommunications $83,853.93 $24,733.06 9
Utilities $45,751.16 $10,028.01 10
All industries $139,202.10 $31,413.37 155

Notes:
(1) Significant at * p < 0.10. Means and SDs are in millions of US dollars. N is number of firm
Global 500 2009 sample.
(2) Data on Total Asset values of firms in our sample are obtained from the Bureau van Dij
500 firms are obtained from FT databases.
(3) For this comparison, we drop firms that have missing Total Assets values.
increases in carbon emissions e one indicator of low-carbon
operations.
6.2. Limitations and future research

It is acknowledged that this study suffers from some limitations,
which can serve as a springboard for future research. First, the use
of CDP data may limit generalizability to a wider population of
firms. More specifically, firms in the CDP are generally large global
firms. How the findings of this study may extend to firms of smaller
size is an area for future research. Future research can extend this
study to other contexts and firms of smaller size (e.g., small and
medium enterprises) using other datasets. Second, although care in
modeling was employed to account for the potential for self-
selection, future research can use methods such as longitudinal
analyses and case studies to build on these findings. Such an
analysis may shed more light on underlying mechanisms that may
explain more nuances of our findings. Third, future research can
examine howother dimensions of the contextual environmentmay
play a role in explaining how firms attend to accuracy in their
sustainability initiatives. Some promising avenues for researchmay
include the cultural and economic factors prevalent in specific
countries. While our results do not indicate whether setting
emissions goals and providing incentives to meet those goals lead
to attention to accuracy or are a consequence of such attention, we
do find that they are related and future research could investigate
which companies aspiring to low-carbon operations should
attempt first. Overall, notwithstanding the limitations, this study
provides support to enable future researchers to extend the current
research in several directions.
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Appendix A
FT Global 500 (2009) Two-tailed t-test (p-value)

Mean SD N

$55,367.55 $8343.35 55 p ¼ 0.13
$34,942.75 $6583.94 50 p ¼ 0.99
$62,559.31 $9494.79 51 p ¼ 0.44
$585,038.27 $75,127.17 104 p ¼ 0.89
$30,446.46 $4179.97 41 p ¼ 0.058*
$84,027.33 $33,895.54 24 p ¼ 0.063*
$30,204.24 $4544.91 36 p ¼ 0.93
$32,299.79 $3350.24 61 p ¼ 0.22
$63,168.04 $12,345.52 32 p ¼ 0.44
$55,982.15 $8679.03 45 p ¼ 0.59
$159,699.50 $18,592.69 499 p ¼ 0.59

s. p-values are of two-tailed t-tests for difference of means of our sample and the FT

k's (BVD) database for economic data of global firms. Data on Total Assets of FT Global



Table A.2
Comparison of Sample with Financial Times (FT) Global 500 (2009) on Number of Employees.

Industry Our Sample (CDP 2009) FT Global 500 (2009) Two-tailed t-test (p-value)

Mean SD N Mean SD N

Consumer Discretionary 97.98 39.69 8 160.85 160.85 55 p ¼ 0.55
Consumer Staples 132.30 56.59 8 91.77 15.50 49 p ¼ 0.36
Energy 27.86 7.55 13 55.92 14.25 51 p ¼ 0.33
Financials 84.70 16.13 21 73.61 73.61 101 p ¼ 0.57
Health Care 69.31 10.83 9 39.52 39.52 41 p ¼ 0.011**
Industrials 84.72 22.03 20 157.92 29.93 23 p ¼ 0.062*
Information Technology 74.78 24.39 17 84.17 17.98 36 p ¼ 0.76
Materials 29.40 5.27 13 65.15 8.10 60 p ¼ 0.047**
Telecommunications 110.55 29.10 7 81.46 16.15 30 p ¼ 0.43
Utilities 47.17 28.00 10 29.72 6.31 44 p ¼ 0.35
All industries 73.02 7.80 126 80.76 5.92 490 p ¼ 0.53

Notes:
(1) Significant at *p < 0.10, **p < 0.05. Means and SDs are in thousands of employees. N is number of firms. p-values are of two-tailed t-tests for difference of means of our
sample and the FT Global 500 2009 sample.
(2) Data on Number of Employees of firms in our sample are obtained from the Bureau van Dijk's (BVD) database for economic data of global firms. Data on Number of
Employees of FT Global 500 firms are obtained from FT databases.
(3) For this comparison, we drop firms that have missing values on Number of Employees.
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