

Kelley School of Business

Text Analysis: A Primer

INDIANA UNIVERSITY – Aaron F. McKenny – August 4, 2023

Goals

- 1. Shared vocabulary
- 2. Shared understanding of NLP landscape
- 3. Familiarity with how computers understand and analyze text

How Computers Interpret Text

Be The Computer...

What is the meaning of this passage? ... or at least tell me how many words are presented here?

<u>What You See vs What the Computer Sees</u>

What You See vs What the Computer Sees

...but is most of the meaning from understanding the individual characters?

Where is the Meaning?

- Sentences
 <u>Sentence Segmentation</u>
- Words/Tokens <u>Tokenization</u>
 - And some words convey more meaning than others
 <u>Stopword/Non-word</u>
 Character Removal

"+ am happier + have had 3 good days in a row."

Transformed: [[happier], [3, good, days, row]]

Bigger Vocabulary, Greater Complexity

Happy: Happy, happier, happiest, happily, happiness

<u>Be</u>: Be, is, am, are, was, were, been

Same meaning, but different conjugations/inflections/words

<u>Stemming</u> – Happier → Happi, Were → Were

Lemmatization – Happiness→Happy, Were→Be

Transformed: [[happy], [3, good, day, row]]

Challenges With Processing Language

- Are these words different? "Have" "have"
 - The computer thinks so by default ("H" vs "h")
 - Often normalize the casing of words
- Are these 'words'? "☺", ":)", "3"
 - Decide how to treat emoji/emoticons/numerals

Transformed: [[happy], [three, good, day, row]]

A Final Catch

Most NLP applications don't work with words

[[happy], [three, good, day, row]] ← simpler, but still uninterpretable

Solution: Use numeric vectors based on the words used ("vector space model")

•	Document-Term Matrix \rightarrow		day	good	happy	row	three
•	One-Hot Vectors	S1.	0	0	1	0	0
•	Word Embeddings	S2.	1	1	0	1	1

What Can We Do With This?

Understand Contextualized Meaning

• Older approaches assume words have a single meaning/use

Who Is Doing What With/to Whom?

"During his trip to the United Kingdom, Jeff visited Oxford University. Hana visited Cambridge University in hers."

Location

Coreference Resolution

Anaphora Resolution

Named Entity Recognition

GPE

People

Investigate What Is Being Discussed

Text Summarization

Topic 1: CEO, executive, manage Topic 2: supply, source, procure, chain Topic Modeling Topic 3: manufacture, create, develop

Label/Score Texts Based on Their Contents

Text Classification Regression Analysis

"Goldman Sachs analysts are pessimistic regarding the promise of this new object recognition technology to obtain a significant market foothold."

Sentiment	Positive	Neutral	Negative 🧹	
Intent	Investment Guidance	Financial Disclosure	Other	
Future Orientation		5.7/7.0		

How We Accomplish These

AI, Machine Learning, & NLP

INDIANA UNIVERSITY

NLP Applications of Machine Learning

- 1. Unsupervised Text features as inputs
 - E.g., Clustering, Topic Modeling
- 2. Supervised Text features as inputs, researcher-provided data as outputs
 - E.g., Regression Analysis, Text Classification, Named Entity Recognition
- 3. Others:
 - Reinforcement, Self-Supervised

Neural Networks – Squint... Look Familiar?

Neural Networks

Training NNs From Scratch

- 1. Many weights and biases to train
 - Sample size requirements
- 2. Models have to learn
 - Language itself (e.g., English, Spanish, Chinese)
 - Understand/manipulate/generate that language in some desired way

Foundation (Pre-Trained) Language Models

a BigScience initiative

176B params 59 languages Open-access

٦ſ

Transformer-Based Language Models

- A type of neural network architecture
- Use context to interpret meaning of text
 - Uses "attention" to look at an entire sequence (e.g., sentence) of text at once
 - Older approaches (e.g., RNN, LSTM) looked at text sequentially
- Most popular foundation models use transformers
 - GP<u>T</u>, BER<u>T</u>

So... What About ChatGPT?

Next Word Prediction (using transformers)

- 1. Encoding step:
 - Preprocess your input text
 - "Attention" and a pretrained NN transform embeddings into contextualized vectors
- 2. Decoding step:
 - Take output from encoding step (and previously generated tokens) as input
 - Attention and a pretrained NN identify the highest probability next word
 - Repeat decoding step until the next word is an indicator to stop

Final Thoughts

"Text analysis moves pretty fast.

If you don't stop and look around once in a while you could miss it"

-Ferris Bueller (probably)

Upcoming ORM Feature Topic

- Aim: Catalyze innovation in text analytics in organizational research
 - Where do text analyses presently fall short?
 - How can existing practices be improved?
 - How do new techniques open new doors?
 - How might text analysis aid in and support interpretive, qualitative research?
- Format:
 - Full paper submissions open call
 - Initial submission deadline: August 31, 2024