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Goals
1. Shared vocabulary
2. Shared understanding of NLP landscape
3. Familiarity with how computers understand and analyze text



How Computers Interpret Text
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Be The Computer…

© Mark Millmore 1997

What is the meaning of this passage?
…or at least tell me how many words are presented here?
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What You See vs What the Computer Sees
“I am happier. I have had 3 good days in a row.”

Words Sentences Person 
References

Indicators of 
Sentiment
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What You See vs What the Computer Sees
“I am happier. I have had 3 good days in a row.”

Words Sentences Person 
References

Indicators of 
Sentiment

Characters
(44)

…but is most of the meaning from understanding the individual characters?
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Where is the Meaning?
• Sentences

• Words/Tokens

– And some words convey more meaning than others

“I am happier. I have had 3 good days in a row.”

Transformed: [ [happier], [3, good, days, row] ]

Tokenization

Sentence Segmentation

Stopword/Non-word
Character Removal
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Bigger Vocabulary, Greater Complexity
Happy: Happy, happier, happiest, happily, happiness

Be: Be, is, am, are, was, were, been

Same meaning, but different conjugations/inflections/words

Stemming – HappierHappi, WereWere

Lemmatization – HappinessHappy, WereBe

Transformed: [ [happy], [3, good, day, row] ]
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Challenges With Processing Language
• Are these words different?    “Have” “have”

– The computer thinks so by default (“H” vs “h”)

– Often normalize the casing of words

• Are these ‘words’?    “”, “:)”, “3”

– Decide how to treat emoji/emoticons/numerals

Transformed: [ [happy], [three, good, day, row] ]
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A Final Catch
Most NLP applications don’t work with words

[ [happy], [three, good, day, row] ]  simpler, but still uninterpretable

Solution: Use numeric vectors based on the words used (“vector space model”)

• Document-Term Matrix 

• One-Hot Vectors

• Word Embeddings

day good happy row three

S1. 0 0 1 0 0

S2. 1 1 0 1 1



What Can We Do With This?
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Understand Contextualized Meaning
• Older approaches assume words have a single meaning/use

“Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo”

Part of Speech Tagging Word Sense Disambiguation

Noun Verb N-Place N-Animal
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Who Is Doing What With/to Whom?
• “During his trip to the United Kingdom, Jeff visited Oxford University. Hana 

visited Cambridge University in hers.”

Named Entity Recognition

LocationGPEPeople

Coreference Resolution

Anaphora Resolution
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Investigate What Is Being Discussed

Text Summarization

Topic Modeling
Topic 1: CEO, executive, manage
Topic 2: supply, source, procure, chain
Topic 3: manufacture, create, develop
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Label/Score Texts Based on Their Contents

Text Classification Regression Analysis

“Goldman Sachs analysts are pessimistic regarding the promise of this new 
object recognition technology to obtain a significant market foothold.”

Sentiment Positive Neutral Negative

Intent Investment 
Guidance

Financial 
Disclosure

Other

Future Orientation 5.7/7.0



How We Accomplish These
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AI, Machine Learning, & NLP

Artificial Intelligence

Machine
Learning

Get machine to do things that 
historically required human 

intelligence

Machine learns how automatically
(more or less)

NLP

Get the machine to understand/ 
manipulate/ generate human language
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NLP Applications of Machine Learning
1. Unsupervised – Text features as inputs

– E.g., Clustering, Topic Modeling

2. Supervised – Text features as inputs, researcher-provided data as outputs

– E.g., Regression Analysis, Text Classification, Named Entity Recognition

3. Others: 

– Reinforcement, Self-Supervised
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Neural Networks – Squint… Look Familiar?

IVs
Regression 
Coefficients

Intercept

Link Function
DV
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Neural Networks
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Training NNs From Scratch
1. Many weights and biases to train

– Sample size requirements

2. Models have to learn

– Language itself (e.g., English, Spanish, Chinese)

– Understand/manipulate/generate that language in some desired way
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Foundation (Pre-Trained) Language Models
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Transformer-Based Language Models
• A type of neural network architecture 

• Use context to interpret meaning of text

– Uses “attention” to look at an entire sequence (e.g., sentence) of text at once

– Older approaches (e.g., RNN, LSTM) looked at text sequentially

• Most popular foundation models use transformers

– GPT, BERT
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So… What About ChatGPT?
Next Word Prediction (using transformers)

1. Encoding step:
– Preprocess your input text
– “Attention” and a pretrained NN transform embeddings into contextualized 

vectors
2. Decoding step:

– Take output from encoding step (and previously generated tokens) as input
– Attention and a pretrained NN identify the highest probability next word
– Repeat decoding step until the next word is an indicator to stop

*(over)simplified



Final Thoughts



“Text analysis moves pretty fast.

If you don’t stop and look around 
once in a while you could miss it”

-Ferris Bueller (probably)
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Upcoming ORM Feature Topic
• Aim: Catalyze innovation in text analytics in organizational 

research
– Where do text analyses presently fall short?
– How can existing practices be improved?
– How do new techniques open new doors?
– How might text analysis aid in and support interpretive, qualitative research?

• Format:
– Full paper submissions – open call
– Initial submission deadline: August 31, 2024
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