



# JOURNAL OF INFORMATION TECHNOLOGY THEORY AND APPLICATION

A Publication of the Association for Information Systems

## Theories Used in Information Systems Research: Insights from Complex Network Analysis

### Sanghee Lim

Carey Business School Johns Hopkins University <u>lim.sanghee@jhu.edu</u>

### Terence J.V. Saldanha

School of Business Emporia State University tsaldanh@emporia.edu

#### Suresh Malladi

Stephen M. Ross Business School University of Michigan <u>sureshms@umich.edu</u>

#### Nigel P. Melville

Stephen M. Ross Business School University of Michigan npmelv@umich.edu

### Abstract:

Effective application of theory is critical to the development of new knowledge in information systems (IS) research. However, theory foundations of IS research are understudied. Using Complex Network Analysis, we analyze theory usage in IS research published in two premier journals (*MIS Quarterly* and *Information Systems Research*) from 1998 to 2006. Four principal findings emerge from our analysis. First, in contrast with prior studies which found a lack of dominant theories at an aggregate level, we find stronger dominance of theory usage within individual streams of IS research. Second, IS research draws from a diverse set of disciplines, with Psychology emerging as a consistently dominant source of theories for IS during our study period. Moreover, theories originating in IS were found to be widely used in two streams of research ("IS development" and "IT and Individuals" streams) and more sparingly used in other streams of IS research constitute distinct clusters of theory usage, with little crossover across clusters. Moreover, streams of IS research constitute distinct clusters of theory usage. Finally, theories originating from Economics, Strategy, and Organization Science tend to be used together, whereas those originating from Psychology, Sociology, and IS tend to be used together. Taken together, our results contribute to a scholarly user by employing Complex Network Analysis.

Keywords: IS theory, Complex Network Analysis, originating disciplines, IS identity, IS research issues

Volume 14, Issue 2, pp. 5–46, June 2013

Marcus Rothenberger acted as the Senior Editor for this Paper.

Volume 14

•

Issue 2

# Theories Used in Information System Research: Insights from Complex Network Analysis

## **INTRODUCTION**

Explicating the theory foundations of Information Systems (IS) research is critical to knowledge development, given that "theory is the currency of our scholarly realm" (Corley and Gioia 2011, p. 12). Theories are used to provide guidance on analysis, explanation, and prediction of phenomena and for providing design and action guidelines (Gregor 2006). Put simply, while an empirical analysis may suggest correlated phenomena, theory tells us why they are correlated (Sutton and Staw 1995). Given the salience of theory in explaining why phenomena occur, leading journals strongly recommend that manuscripts be firmly rooted in theory (Straub 2009). Indeed, an enduring theme in the literature is continued calls for "good theory" in IS research (Watson 2001) and development of our "own" theory (Weber 2003).

The critical importance of theory in knowledge development would suggest a wellspring of scholarship on theory and its application in IS research. Numerous studies have examined theory structure, philosophical issues, types of theory, epistemology, and sociopolitical issues related to the role of theory in research (e.g., Davison et al. 2012; Gregor 2006; Markus and Robey 1988; Ngwenyama and Lee 1997; Weber 1987). In contrast, very few studies have examined questions related to the application of theory in IS research. Barkhi and Sheetz (2001) examine theories used in two leading journals by tabulating their occurrence. Similarly, Lee et al. (2004) develop a three-dimensional ontology for mapping theory use in leading IS journals, again drawing insights from tabulations of theory usage. In both these prior studies, a key finding is theoretical diversity, i.e., many different theories and few used often. However, insights are constrained by the use of descriptive statistics such as tabulations, a limitation acknowledged by the authors, who suggest that future researchers employ more rigorous analytical methods that "help to provide richer findings" (Lee et al. 2004, p. 560).

In this study, we respond to this call by using Complex Network Analysis (CNA) to examine networks of articles and theories in IS research: which theories are used, in which research streams,<sup>1</sup> from which disciplines are they drawn, whether the usage of some theories greatly exceeds the average, and how are articles and theories in IS research interrelated in terms of theory usage and research contexts. The use of CNA enables us to explore questions that can shed new light on fundamental issues regarding the use of theory in the IS discipline, issues which have not been explored empirically in prior research.

## CONTRIBUTIONS

Our study contributes to the literature in three principal ways and builds on prior related research (Barkhi and Sheetz 2001; Lee et al. 2004). First, by analyzing the distribution of the number of theories by usage incidents, we examine whether there are particular theories used more heavily than the average (referred to as dominant theories in this study). Our power-law analysis indicates that a handful of theories account for a significant portion of theory usage, suggesting that new studies tend to build on prior studies by picking theories heavily used before-a phenomenon we refer to as "convergence of theory usage." This finding may seem contradictory to prior related studies (Barkhi and Sheetz 2001; Lee et al. 2004) which examine and conclude "diversity" and that "no such dominant theory exists in IS" (Barkhi and Sheetz 2001, p. 11). However, our study does not reject the "diversity" view, but rather uncovers a new finding when the issue of theory diversity is examined from new and disaggregated perspectives. Specifically, while a wide range of theories are used in IS research, there are few theories whose usage greatly exceeds the average. Furthermore, our further analysis at a granular (well-defined research stream) level reveals stronger dominance of theory usage within specific streams of IS level as compared to the IS field as a whole and significant difference across streams. The second contribution of our study is the usage of well-recognized methodologies from CNA (small-world analysis and cluster analysis) enabling us to uncover clusters of articles in terms of theory usage in IS research, while also identifying areas where potential opportunities for theory use may be enriched. This finding of disjointed clusters of articles suggests a lack of a core in terms of theory usage, reinforces the diversity of the discipline (Barkhi and Sheetz 2001; Lee et al. 2004; Sidorova et al. 2008), and suggests that IS research may be enriched by "blending" and combining theories to generate new knowledge (Oswick et al. 2011, p. 318). Finally, the study contributes by examining how IS researchers utilize theories from other disciplines. This analysis illuminates how IS researchers in various streams of IS draw theories from disciplines and how theories from sets of disciplines tend to be used together. Taken together, our findings contribute to the literature on analysis of the IS field from the important perspective of theory usage.

<sup>&</sup>lt;sup>1</sup> By streams, we mean distinctive areas of research which share a research theme. Formally, we use the categorization of five research streams derived by Sidorova et al. (2008, p. A3).

There are several reasons why a new analysis using CNA to examine theory usage can benefit the IS discipline. First, analyzing theory application can help "facilitate the building of sound, cumulative, integrated, and practical bodies of theory in IS" (Gregor 2006, p. 635). Understanding the nuances of how theories are applied, such as homogeneity or heterogeneity within and across major research streams, is salient to theory building. Second, investigation of interrelationships among articles and theories using CNA techniques can provide new insights and methodological innovations. For example, construction of article networks provides insights about "theory siblings" (articles that use the same theory), while construction of theory networks can enable co-theory analysis (theories that tend to be used together). Understanding how theories are used together via co-theory (and other network) analysis, and the resultant communities of theory usage can provide a grounding for linkages among theories across boundaries, facilitating the accumulation of knowledge (Nevo and Wade 2010; Porra 2001). Such analysis facilitated by CNA can also shed light on shared phenomena across intellectual domains and can serve as a first step in building unified theories by "blending" existing theories (Oswick et al. 2011). Third, examining the originating disciplines of theories used in IS research helps shed light on "whether native IS theories represent a sizeable proportion of all the theories we employ, an influential proportion, an emergent proportion, or a trivial proportion": a question that is "still open to question" (Straub 2012, p. x). Fourth, various stakeholders benefit from enhanced understanding of theory application in IS research, such as scholars, doctoral students, and review teams. For example, systematic understanding of theories in use supplements reviewers' prior knowledge regarding which theories are widely (and not so widely) used in a given research stream and how to evaluate their application in a particular scholarly manuscript. Another example is scholars who seek to create new theory by blending existing theories (Oswick et al. 2011). Finally, scholarly understanding of diversity in IS research (Benbasat and Weber 1996; Benbasat and Zmud 2003; Robey 1996) can be enriched by enhanced analysis of the intellectual structure of the discipline from the theory usage perspective, for example, in specific streams of research within the discipline.

With this backdrop and motivation, we examine the following three research questions (RQ):

- RQ 1. Are there dominant theories in IS research, from which discipline are they drawn, and how do they vary among different IS research streams? (Theory Dominance Analysis)
- RQ 2. How cohesively have IS researchers built knowledge around theories? Are there observable clusters or cores of theory usage in IS research? (Theory Sibling Analysis)
- RQ 3. Which theories are frequently used together? (Co-theory Analysis)

To address these questions, we analyze the usage of theory in papers published in *MIS Quarterly* (MISQ) and *Information Systems Research* (ISR) in the period 1998–2006, consistent with studies of researcher productivity that focus on these two journals (Dennis et al. 2006). We use Complex Network Analysis for its ability to discover patterns of interaction in complex networks. A complex network refers to a wide variety of systems in nature and society, such as the World Wide Web (Adamic and Huberman 2000), film actor collaboration network (Watts and Strogatz 1998), neural network of worms (Barabasi and Albert 1999), and so on. In the last decade, boosted by the increased computing power, there has been explosive theoretical development in complex network research, in terms of new concepts and measures, which guide researchers to identify underlying patterns and organizing principles in complex networks (Albert and Barabasi 2002). In our context, CNA not only enables us to examine rigorously the distribution of theory usage, but also allows us to visualize the interrelationships between research articles and theories and to systematically identify clusters of research and articles with objective measures, based on their shared commonalities (interrelationships) with other research articles and theories. Such patterns are difficult or impossible to identify using traditional methods such as tabulations or regression analysis.

To enhance objectivity in our analysis, we adopt a strict definition of theory, consistent with Cushing (1990) and Gregor (2006). More specifically, we follow Gregor (2006) in defining theory as that which explains, analyzes, or predicts phenomena. As Gregor (2006, p. 619) notes, theory can have four broad purposes: (a) to analyze and describe a phenomenon of interest, (b) to provide an explanation for how and why things happen, (c) to predict what will happen, and (d) to provide a prescription. Consistent with this definition of theory, we treat a paper as using a theory if that paper explicitly makes a formal use of a theory in making arguments to analyze or describe a phenomenon of interest, to provide an explanation for how things happen, or how that phenomenon of interest is relevant to their current work. For example, if a paper uses Theory of Resource-based View (RBV) in making an argument related to effects of resources on firm performance, we considered that paper as using the theory of RBV.

To scientifically operationalize our adopted definition of theory, as explicated later, we search for the stem "theo" in each paper, and then verified that the paper actually used the theory to build its arguments and did not simply refer to the theory in passing. In adopting this scientific approach, we acknowledge that our definition may not cover all uses of theory. For instance, if a paper bases its arguments on concepts of resources, then our study does not consider it as using resource-based view theory unless it explicitly says so. Likewise, to enhance the scientific and

Volume 14 📍 Issue 2 📍 Article 2

objective nature of our study, we dropped theories that may be considered to be too broad. For example, we considered organization theory as too broad or ambiguous. However, within what is classified as the broad organization theory (i.e., any theory related to studying organizational phenomenon), if the paper specifically uses an identifiable theory in building the arguments, we considered it as a theory. For instance, under the broad classification of "organization theory" if the paper uses an identifiable granular theory like "organizational learning theory" in its argument, we consider it as a theory in our analysis.

We structure the remainder of this article as follows. We start with a review of related prior literature and then describe our methodology. Subsequently, we describe the CNA analysis and findings. Finally, we discuss the limitations and contributions of our study.

## LITERATURE REVIEW

Our study is broadly motivated by three key aspects of IS research: focus on theory, mapping of the IS field, and diversity of IS. We briefly review the literature related to these areas.

### **Focus on Theory**

The application of theory to the study of IT artifacts provides a richer understanding of complex phenomena, helping researchers to ground their arguments and position their study in the appropriate context (Barkhi and Sheetz 2001; Gregor 2006; Orlikowski and Iacono 2001). Despite the importance of theory, few studies have analyzed IS research from the perspective of theory. Two notable exceptions in this regard are Barkhi and Sheetz (2001) and Lee et al. (2004). Analyzing papers from *Journal of Management Information Systems* (JMIS) and *MIS Quarterly* (MISQ) during the period 1994 to 1998, Barkhi and Sheetz (2001, p. 2) found no "grand/unified theory of information systems" (p. 2) and concluded the presence of "theoretical diversity" (p. 11). A similar finding was reported by Lee et al. (2004), who, in their analysis of theory frameworks used by papers in five journals in the 1991–2000 timeframe, found diversity and no presence of a dominant theory framework. Lee et al. (2004, p. 560) suggest that future researchers build on their work by using "more rigorous statistical methods" to "provide richer findings."

These studies underscore the importance of theory in IS and suggest that our understanding of the discipline will be enriched by a systematic analysis of the discipline from the perspective of theory (Gregor 2006; Lee et al. 2004).

### Mapping the IS Field

Research that maps IS as a discipline has received renewed attention in recent studies (Agarwal and Lucas 2005; Banker and Kauffman 2004; Benbasat and Zmud 2003; Sidorova et al. 2008; Taylor et al. 2010). While early analysis developed and identified the IS field using frameworks and key issues (Culnan 1987; Nolan and Wetherbe 1980; Palvia et al. 1996), subsequent research has distilled the core and identity of the discipline by mapping the IS field using various criteria such as streams of research (Banker and Kauffman 2004; Sidorova et al. 2008), co-citations (Culnan 1987; Taylor et al. 2010), and executive perceptions (Claver et al. 2000; Niederman et al. 1991).

Although the aforementioned studies contribute to our understanding of the IS discipline from various important perspectives, scant research exists in terms of mapping the field from the perspective of theory (Lee et al. 2004).

### **Diversity**

The issue of diversity has been prominent in the IS literature. The IS discipline is diverse from the point of view of problems addressed, theory foundations, reference disciplines, and methods used (Benbasat and Weber 1996; Vessey et al. 2002). Although diversity or loss of a central identity is on one hand argued to be detrimental to the development of the field as a whole (Benbasat and Weber 1996; Benbasat and Zmud 2003), diversity is beneficial because it "promotes creativity and helps attract top researchers from other disciplines" (Sidorova et al. 2008, p. 468; Robey 1996). Researchers have highlighted the diversity of IS from the perspective of multiplicity of theories used (Barkhi and Sheetz 2001; Lee et al. 2004).

The aforementioned studies suggest a variety of perspectives with regard to diversity of the IS field. Our study contributes to this literature by using a structured approach of CNA to shed new light on the diversity of IS from the perspective of *interrelationships* among theories used, which to our best knowledge, is not addressed in the extant literature and can provide new insights.

### Synthesis

Despite recognition of the diversity in the IS field and emphasis on the importance of theory by various researchers, few studies to our best knowledge have analyzed the theory foundations underlying IS research. Moreover, researchers have demonstrated the importance of examining IS reference disciplines (Baskerville and Myers 2002; Grover et al. 2006; Vessey et al. 2002; Wade et al. 2006). Notwithstanding studies that have examined some of the

issues in isolation, there is a deficiency in our collective knowledge regarding theories used in IS research: what the dominant theories are, which disciplines are they drawn from, what clusters of theory usage exist, if any, across various streams of IS research, and which theories are used together. Hence, we focus on understanding the theory foundations of IS research, guided by our research questions described earlier.

## **RESEARCH METHODOLOGY**

In this section we describe our sample, our approach to identification of theories and their originating disciplines, and our analysis methodology.

## **Data Collection**

We selected papers (articles) published in ISR and MISQ from 1998 to 2006. These two journals are widely accepted as among the top journals in IS. Two primary considerations guided our selection of the time period 1998–2006. First, this period enabled us to map the articles to research streams identified by Sidorova et al. (2008), thus allowing us to examine the theories dominant within specific streams of IS research, which is one of our key research questions. Specifically, we utilized a subset of the data used by Sidorova et al. (2008), and we employed their coding scheme to classify the articles into the five different streams of IS research.<sup>2</sup> Second, we considered the nine-year period (1998–2006) to be comprehensive enough to serve as a representative sample of relatively recent IS research and to capture variation in theory use.

Each of three authors of our paper identified theories used in papers in both journals during three of the nine years. We excluded research commentaries and editors' comments. First, consistent with prior research (Barkhi and Sheetz 2001; Lee et al. 2004), an electronic search for preliminary identification of theory references in a paper was conducted to find the keyword "*theo.*" Electronic search is used to minimize human error. Then, specific analysis of the theory sections of the paper was undertaken to identify theory foundations. We then meticulously verified that the article used the theory for its argument(s) and did not just mention it in passing or as part of a literature review. To facilitate reliable classification of theories, we used a strict definition of theory (consistent with Cushing 1990). We also dropped theories which we deemed to be too broad or ambiguous. For example, Theory of Planned Behavior is an unambiguous theory, while Goal-sharing Theory was deemed ambiguous and Organization Theory is too broad.<sup>3</sup> Table 1 summarizes our approach to identifying theories (see Appendix 1 for a description of reliability checks).

|       |          | Table 1: Theory Identification Methodology                        |
|-------|----------|-------------------------------------------------------------------|
| Step# | Activity | Description                                                       |
| 1     | Select   | Select MISQ and ISR articles from 1998–2006.                      |
| 2     | Filter   | Drop commentaries and editorial notes.                            |
| 3     | Search   | Electronic search for words beginning with "theo."                |
| 4     | Analyze  | Analyze the article to ensure it used the theory. Do not consider |
|       |          | theories too broad or ambiguous, and exclude frameworks.          |
| 5     | Confirm  | A different author repeats Step #3 and Step #4 for each article.  |
| 6     | Resolve  | Differences resolved by discussion among the three authors.       |

## Identification of Originating Discipline of Theories

Our objective of studying how IS researchers draw theories from across disciplines entailed tracing theories used in IS research to their originating discipline. Since we did not find a formal guideline in the literature to identify the originating discipline of a theory, we adopted the following approach. First, the textual content and the references section of each paper were used to identify the originating disciplines. We used multiple sources of scholarly information, including *Business Source Complete, Google Scholar*, and the York University website,<sup>4</sup> to trace the origins of each theory. All such sources were utilized until the list of potential originating disciplines was narrowed down. If the theory appeared to belong to more than one discipline, a shortlist of possible originating disciplines for each theory was prepared. Second, we conducted further analysis to deduce the origins of each theory by examining prior studies related to it. For most theories, the originating discipline could be unambiguously identified. For example, the Theory of Self-efficacy (Bandura 1977) could be unambiguously traced to Psychology. A final check was conducted (by carefully reading the surrounding text) for the use of the theory in the paper to determine

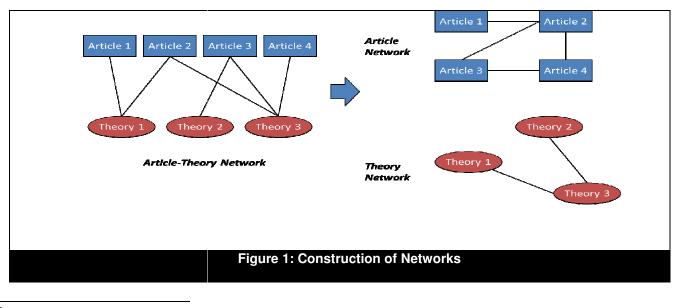
<sup>&</sup>lt;sup>2</sup> More details of the streams are provided later. Sidorova et al. (2008) analyzed 1615 research abstracts published in MISQ, ISR, and JMIS, in the period 1985 to 2006.

<sup>&</sup>lt;sup>3</sup> Before any theory was deemed ambiguous (or broad), every effort was made to identify the theory's roots by searching scholarly resources and the Internet. While we acknowledge a certain amount of subjectivity in this step as a limitation of our study, the number of such ambiguous or broad theories left out was small. Hence, this is not likely to affect our results substantially.

<sup>&</sup>lt;sup>4</sup> Theories used in IS Research Wiki, York University, online: http://www.fsc.yorku.ca/york/istheory/wiki/index.php/Main\_Page.

the originating discipline for each theory. All results were then validated by an author other than the initial evaluator. This improved the validity and reliability of the data before further analysis. Some theories deemed to be originating from multiple disciplines were assigned to a discipline based on the context in the paper and a discussion among the authors. We acknowledge that tracing theories to their originating disciplines may be somewhat subjective in some cases. For example, it can be argued that the Resource-based View of the firm (RBV) originated in the field of Strategy (Barney 1991), whereas some may argue that RBV originated in Economics based on the concept of resources (Penrose 1959). Nevertheless, a very high proportion of theories in our dataset can be unambiguously traced to their originating discipline. A complete list of mapping of theories to originating discipline is provided in Appendix 3 (Table A2).

## Analysis Method and Complex Network Analysis


Our choice of Complex Network Analysis (CNA) as a research methodology enables us to assess our research questions. CNA enables us to examine *relationships* among large number of research articles and theories with objective measures and graphical visualization. Specifically, we can visually observe and systematically identify clusters of articles and theories based on their shared commonalities with other articles and theories. Such patterns are difficult or impossible to identify using other methods. In addition, CNA produces objective measures for various network properties, from which we can infer what the relationships imply and why such relationships have emerged, based on insights from prior network research.

Despite the strength of CNA to map structural relationships, CNA has been rarely used for the purpose of structuring the IS field. To the best of our knowledge, CNA has been used only in this context in IS for analyzing relationships and influences among journals (Polites and Watson 2009), without examining questions regarding the interactions among individual articles—the focus of this study.

### **Network Construction**

We first represent our data in a "usage" network, where an edge connects an article to a theory it uses (Article-Theory network in Figure 1).<sup>5</sup> Therefore, the number of links attached to an article represents the number of theories the article employs. Similarly, the number of links attached to a theory represents the number of articles employing that theory. We refer to the latter case as the number of *incidents* of theory usage. For example, in Figure 1, though there are only three theories, the total number of incidents of theory usage is six—two for Theory 1, one for Theory 2, and three for Theory 3. Because an article often uses more than one theory and a theory is often used by multiple articles, the number of incidents of theory usage is larger than the number of theories. In effect, the number of links attached to a theory in this network provides a measure of the popularity of the theory.

We then transformed this network into two types of network—the article network (network of articles as nodes) and the theory network (network of theories as nodes)—to examine the interrelationship between articles in terms of theory usage and the interrelationship between theories in terms of their application, respectively.



<sup>5</sup> These types of usage or affiliation networks are referred to as bipartite networks in graph theory. A bipartite network has two types of vertices (articles and theories in our case), and an edge between different types of nodes represents usage or affiliation. A bipartite network is often converted to a one-mode network for analysis purposes.

In the article network, articles are connected by a link if they share at least one theory. For example, Agarwal and Karahanna (2000, ISR) and Gefen et al. (2003, MISQ) are nodes in the article network and are connected by a link because they used the same theory, Technology Acceptance Model (TAM). Consequently, the number of links (edges) attached to an article is the number of other articles which share at least one theory with the article. Thus, a high degree (number of linkages) of an article indicates that the article has many "theory siblings"—other articles that share common theory with the article.

Moving to the theory network, in this network, two theories are connected if both theories are used by at least one article. For example, Zhu and Kraemer (2002, ISR) employed RBV and Theory of Dynamic Capabilities. Connection in the theory network is likely to suggest relatedness between theories, such as ability of both theories to explain a phenomenon (e.g., explanation of firm performance, in the case of RBV and Dynamic Capabilities) and/or the same originating disciplines. This analysis can also be considered "co-theory analysis," analogous to the co-citation concept used in prior research (Culnan 1987; Taylor et al. 2010).<sup>6</sup>

To address our research question pertaining to the identification of dominant theories (RQ 1), we examine the Article–Theory network. The article network and the theory network are investigated for RQ 2 and RQ 3 respectively. Because the purpose of each research question is diverse, we examine different network measures in each network, including the following: (a) power-law degree distribution, (b) small-world properties, and (c) community structures. These properties are aligned with our research purpose and are commonly analyzed in network research (Bampo et al. 2008). Next, we provide a brief overview of these three properties.

### Power-law Degree Distribution

The analysis of power-law degree distribution is one of the most widely investigated network properties in network research because power-law degree distribution is so prevalent; it exists in many networks ranging from organization of Web pages (Adamic and Huberman 2000) to the neural network of worms (Barabasi and Albert 1999). In network research, the degree of a node refers to the number of connections of a node, the degree distribution refers to the frequencies of nodes by degree,<sup>7</sup> and the power-law degree distribution refers to the situation when the frequency of nodes varies as a power of degree. A network with power-law degree distribution has few nodes with very large degrees, which one would not see if the networks were formed completely independently. If a degree distribution follows a power-law, it exhibits a long-tail, and, when plotted on a log-log plot, it becomes linear.

One of the most promising mechanisms to explain the prevalence of power-law degree distribution is the growthbased preferential-attachment model proposed by Barabasi and Albert (1999). The preferential-attachment mechanism suggests that, as the network expands, if a new edge from a new node attaches to existing nodes with the probability proportional to the degree of the existing nodes (i.e., a node with high degree has higher probability to get a new edge), the resulting network has a power-law degree distribution.

Applying the above described phenomenon to our study's context, a power-law degree distribution of theories in the article-theory network would imply that new articles are building on extant work, picking with higher probability theories that are more heavily used in prior related literature. As a result, a well-used theory becomes even more popular as new articles, which build on extant literature, are added to the discipline. This process resembles the process of preferential attachment. Therefore, we expect to observe a power-law degree distribution.

### Small-world

The "*small-world*" network refers to a class of network which has a relatively short path length despite a high level of clustering (Watts and Strogatz 1998). A well-known example is an acquaintanceship network, as (1) a person's acquaintances are also likely to know each other (high clustering), while (2) the number of intermediaries needed to reach to a stranger, on average, remains relatively short (short average path length). The "small-world" characteristic of networks has drawn attention from researchers in various disciplines because a "small-world" creates unique benefits in terms of information creation and diffusion. The reason for this is that many separate clusters enable the incubation of a diversity of specialized ideas, while short paths allow ideas to break out of their local clusters and mix into new and novel combinations (Uzzi et al. 2007). In our context, the presence of a "small-world" in the article network would suggest that even though the phenomena being studied by the studies are diverse, these diverse phenomena still draw on closely related theories.

<sup>&</sup>lt;sup>6</sup> Co-theory analysis refers to the case when two theories are used in the same paper.

<sup>&</sup>lt;sup>7</sup> Mathematically, when P(d) is the fraction of nodes that have degree d under a degree distribution P, a power-law degree distribution P(d) satisfies  $P(d) = cd^{-\gamma}$ . See Jackson (2008, p. 30) for more details.

*Clustering* measures the likelihood of the node's neighbors to be connected to each other (Watts and Strogatz 1998).<sup>8</sup> Shortest path length between two nodes is the minimum number of edges which a node has to pass to get to the other node. Whether the network has a "relatively short path length" and "relatively high degree of clustering" are determined by comparing the real network to a random graph with the same number of nodes and edges, but whose links among the nodes are made at random (Watts and Strogatz 1998). We used the most extensively used algorithm suggested by Edrös and Rényi (1961) for generating random networks.<sup>9</sup>

### **Community Structure**

A "community" is a densely connected sub-network in a network. The examination of communities enables researchers to understand and visualize the structure of networks. Community detection algorithms are aimed at systematically discovering divisions of complex networks into groups. We used the edge-betweenness algorithm (Newman and Girvan 2004), which finds the edge in the network that is most "between" other vertices, meaning that the edge is, in some sense, responsible for connecting many pairs of vertices. Then the edge is removed. By doing this repeatedly, the network is divided into smaller and smaller components.

## SAMPLE DESCRIPTION

|                                       | Table 2: Number of Article     | s by Streams               |                            |
|---------------------------------------|--------------------------------|----------------------------|----------------------------|
| Classification by Sidorova et al. (2  | 2008) No Theory Identifi       | ed Theory Identifi         | ied Total                  |
| Not Identified                        | 24 (29%)                       | 60 (71%)                   | 84 (100%)                  |
| IT and Organization (ITO)             | 17 (21%)                       | 65 (79%)                   | 82 (100%)                  |
| IS Development (ISD)                  | 24 (46%)                       | 28 (54%)                   | 52 (100%)                  |
| IT and Individuals (ITI)              | 13 (18%)                       | 61 (82%)                   | 74 (100%)                  |
| IT and Markets (ITM)                  | 7 (13%)                        | 47 (87%)                   | 54 (100%)                  |
| IT and Groups (ITG)                   | 5 (13%)                        | 34 (87%)                   | 39 (100%)                  |
| Grand Total                           | 90 (23%)                       | 295 (77%)                  | 385 (100%)                 |
| Note: According to Sidorova et al. (2 | 008)'s analysis 84 articles do | not fall clearly within an | IS stream. When an article |

Note: According to Sidorova et al. (2008)'s analysis, 84 articles do not fall clearly within an IS strea loaded on more than two factors, the stream with maximum loading is selected.

|                                                       | Table 3: Visualization of Networks           |                                        |
|-------------------------------------------------------|----------------------------------------------|----------------------------------------|
| Article–Theory Network<br>(Theory dominance analysis) | Article Network<br>(Theory-sibling analysis) | Theory Network<br>(Co-theory analysis) |
|                                                       |                                              |                                        |
| Nodes: 469                                            | Nodes (articles): 385                        | Nodes (theories): 174                  |
| Articles (Red): 295 <sup>10</sup>                     | Color: research stream.                      | Color: orig. discipline.               |
| Theories (Green): 174                                 | Size scaled by # connections                 | Size scaled by # connections           |
| Edges: 447<br>Represent usage of theory               | Edges: 1,773                                 | Edges: 299                             |
| Note: See RQ1 below for details.                      | Note: See RQ2 below for details.             | Note: See RQ3 below for details.       |

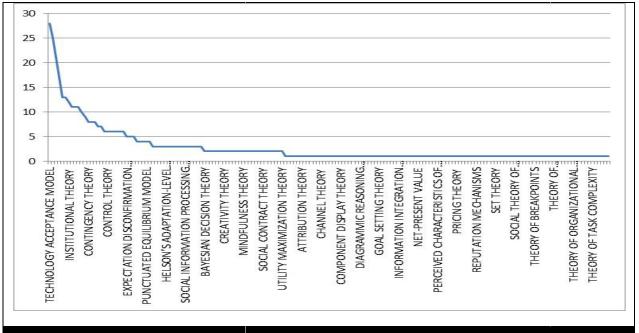
<sup>&</sup>lt;sup>8</sup> Mathematically, Clustering = 3 × (number of triangles in the graph) / (number of connected triples) where a triangle is a set of three nodes, each of which is connected to the other two. Therefore, the clustering coefficient represents the ratio of the real to the potential triangles in a network.

<sup>&</sup>lt;sup>9</sup> Given the number of nodes n and the number of links m, a network is randomly chosen among the set of networks which have randomly chosen m links out of the n(n-1)/2 possible links.

<sup>&</sup>lt;sup>10</sup> Among 385 research articles, ninety articles in which no theory is identified are excluded.

From 385 articles published in MISQ (201 articles) and ISR (184 articles) from 1998 to 2006, we identified 174 distinct theories. To examine the potential differences across sub-streams in IS research, we use a published classification from the results of Sidorova et al. (2008) who employed Latent Semantic Analysis to identify papers belonging to streams of IS research. The use of a published classification helps improve the validity and objectivity of our analysis. Table 2 shows the articles by the classification of IS streams defined by Sidorova et al. (2008).

Among the 385 articles, 295 articles employed at least one theory (MISQ: 152, ISR: 143). Except IS development, 70 percent or more articles in each stream use at least one theory. One potential explanation of the lower use of identifiable theory in ISD, despite the heavy emphasis on theories by the two journals, would be that articles in this stream used frameworks, not theory. Rather than implying a lack of scientific rigor, it may indicate the development stage of the stream (Gregor and Jones 2007; Walls et al. 1992). Alternately, it is possible that few theories exist that may be usefully applied to phenomena in this stream, or perhaps articles in this stream are theory-building in nature. Table 3 displays the article–theory network, article network, and theory network.


## **ANALYSIS AND RESULTS**

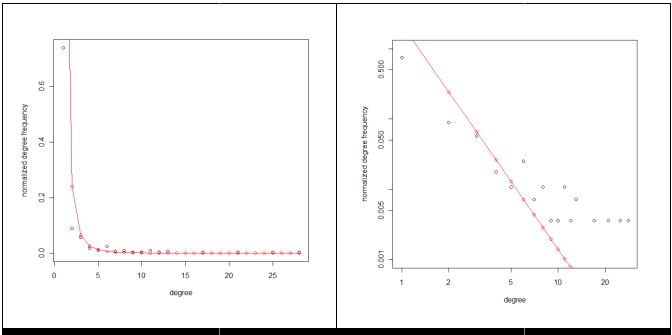
In this section we provide analysis results and develop synthesizing findings to address our developed research questions: (1) Are there dominant theories in IS research, and from which disciplines do they originate? (2) How cohesively have IS researchers built knowledge around theories? and (3) Which theories are frequently used together?

# Research Question 1: Are there dominant theories in IS research, and from which disciplines do they originate? (Theory Dominance Analysis)

We first reexamine whether there exist "*dominant*" theories by analyzing the degree distribution of theories in the article-theory network.<sup>11</sup> Though prior studies advocate the "diversity" of theory usage in IS field (Barkhi and Sheetz 2001; Lee et al. 2004), it is still plausible that with the expanding horizons of IS research, new articles leverage existing dominant theories to build new knowledge.

To empirically shed light on this issue, consistent with Barkhi and Sheetz (2001) and Lee et al. (2004), we counted the number of connections (usage incidents by theories). The total number of incidents of theory usage in our sample is 495.<sup>12</sup> It indicates that, on average, an IS research article employs 1.28 theories to develop its arguments.




## Figure 2: Number of Incidents of Theory Usage

Note: The number of theories identified is 174, and the total number of incidents of theory usage is 495.

<sup>11</sup> Consistent with Lee et al. (2004), in this paper, we refer to "dominant theories" as theories which are employed more frequently than others.
 <sup>12</sup> As discussed earlier, because several studies employ multiple theories, there are more incidents of theory usage (495 incidents) than theories (174 theories).

Figure 2 shows the distribution of usage of theories in the article-theory network. Among the 174 distinct theories we identified, 101 theories (58 percent of total) are used only once. This finding is consistent with prior studies that found diversity of theory usage in IS research (Barkhi and Sheetz 2001; Lee et al. 2004). However, we note the significant disproportion in the usage of theories. The top five and twenty theories respectively account for roughly 21 percent and 53 percent of total theory usage in IS research as a whole. This finding, we believe, deserves further examination, which we next perform.

Figure 3 shows the degree distribution of theories in the article-theory network, a conventional approach in network research to examine the popularity of nodes and the existence of a power-law distribution. If the "lack of dominance" view of the prior studies holds, the graph on the left side should quickly converge to zero (i.e., we would expect to see almost no theories with high degree). However, the figure exhibits a "long-tail," which follows a linear function on log-log plot (right panel). This analysis reveals that the distribution follows a power-law distribution, indicating that there are a few theories with significantly higher number of connections. These theories constitute the long-tail and account for a significant portion of total theory usage; we refer to them as "dominant" theories in IS discipline. The preferential-attachment mechanism implies that that these theories become dominant and get more dominant as new IS articles tend to build on established theories.



### Figure 3: Degree Distribution of Theories in Article-Theory Network

Note: Both figures display the degree distribution. The figure on the right is on a log-log plot. The white dots represent the empirical data of degree distribution. The x-values are the degree of a node (the number of connections, or theory usage incidents), and the y-values are the number of theories (nodes) of the degree, normalized by the total number of theories (nodes). The red dots and line show the fitted values from MLE estimation ( $\alpha = 3.1984$ , -2 log L = 684.3994) for a power-law distribution.

Finding 1A ("Established Theory Use Tendency"): Though a number of theories appear in IS research and many are used only once, a few theories account for a significant portion of theory usage (referred to as "dominant" theories in this study). The tendency to use already established theories in IS research may explain this finding.

In addition, our new analysis at a more granular level reveals more insights on the usage of theories. Table 4 displays the top five most frequently used theories in IS research as a whole and in each of the research streams. Two key findings emerge from this analysis.

First, the analysis reveals the dominance of most frequently used theories in the streams of IS than in the IS field taken as a whole. Especially, in ITI and ITM, the top five theories account for close to 50 percent of theory usage, roughly double the figure for overall IS research (21 percent). This finding emerges from our analysis of separate streams which helps remove the noise from aggregation, because the theories used in each stream are diverse. For example, while TAM appears to be the most frequently used theory in IS research, it is used only in ITI stream. The same finding holds for Game Theory in ITM. Therefore, while it may be hard to see the dominance of theories in

overall IS research (Barkhi and Sheetz 2001; Lee et al. 2004), there is a strong dominance in particular streams of IS.

|   | Total                          | #   | %   | IT and<br>Organizations           | #   | %   | IS Development              | #  | %   |
|---|--------------------------------|-----|-----|-----------------------------------|-----|-----|-----------------------------|----|-----|
| 1 | Technology<br>Acceptance Model | 28  | 6   | Resource Based<br>View            | 17  | 16  | Decision Theory             | 4  | 11  |
| 2 | Resource Based<br>View         | 25  | 5   | Dynamic<br>Capability Theory      | 7   | 7   | Cognitive Fit<br>Theory     | 3  | 8   |
| 3 | Game Theory                    | 21  | 4   | Organizational<br>Learning Theory | 6   | 6   | Bayesian Decision<br>Theory | 2  | 6   |
| 4 | Theory of<br>Reasoned Action   | 17  | 3   | Transaction Cost<br>Theory        | 5   | 5   | Activity Theory             | 1  | 3   |
| 5 | Theory of Planned<br>Behavior  | 13  | 3   | Absorptive<br>Capacity Theory     | 4   | 4   | Agency Theory               | 1  | 3   |
|   | Others                         | 391 | 79  | Others                            | 66  | 63  | Others                      | 25 | 69  |
|   | Total                          | 495 | 100 | Total                             | 105 | 100 | Total                       | 36 | 100 |
|   | IT and Individuals             | #   | %   | IT and Markets                    | #   | %   | IT and Groups               | #  | %   |
| 1 | Technology<br>Acceptance Model | 25  | 19  | Game Theory                       | 13  | 19  | Media Richness<br>Theory    | 5  | 7   |
| 2 | Theory of<br>Reasoned Action   | 11  | 8   | Transaction Cost<br>Theory        | 6   | 9   | Resource Based<br>View      | 3  | 4   |
| 3 | Innovation Diffusion<br>Theory | 9   | 7   | Network<br>Externality            | 4   | 6   | Social Presence<br>Theory   | 3  | 4   |
| 4 | Theory of Planned<br>Behavior  | 9   | 7   | Option Theory                     | 4   | 6   | Channel<br>Expansion Theory | 2  | 3   |
| 5 | Social Cognitive<br>Theory     | 6   | 5   | Production<br>Theory              | 4   | 6   | Media Choice<br>Theory      | 2  | 3   |
|   | Others                         | 70  | 54  | Others                            | 37  | 54  | Others                      | 52 | 78  |
|   | Total                          | 130 | 100 | Total                             | 68  | 100 | Total                       | 67 | 10  |

Second, the dominant theories in each stream are directly related to the main research question in the stream, providing a clue for why these theories have been frequently employed in a particular stream and not as frequently in others. For example, studies in the ITO stream focus on the "implications of IT use for organizations, such as the strategic role of IT, the impact of IT investment on organizational performance, and the effect of IT on business processes" (Sidorova et al. 2008, p. 475). In that sense, the use of RBV in the ITO stream is appropriate, as it examines firms' resources, such as IT artifacts or IT capabilities, and their impact on organizational performance. Conversely, RBV is not as relevant in examining research questions in other streams, such as psychological aspects of human–computer interactions in ITI.

In sum, classification by streams reveals that (1) there exist dominant theories, especially in ITI, ITO, and ITM streams, and (2) the dominant theories are directly related to the theme of each research stream.

Finding 1B ("Stream-wise Dominance"): The dominance of theory usage is stronger in particular streams of IS research, compared to dominance of theory usage in IS research as a whole. Furthermore, the dominant theories vary greatly across streams and, in some streams, are significantly different from the dominant theories in IS research as a whole.

We also examined from which disciplines the theories used in IS research originated to understand how theories drawn from outside disciplines enhance theory building in IS (Oswick et al. 2011). We measure usage of a discipline as the number of theories from that discipline used in an article (Table 5).<sup>13</sup>

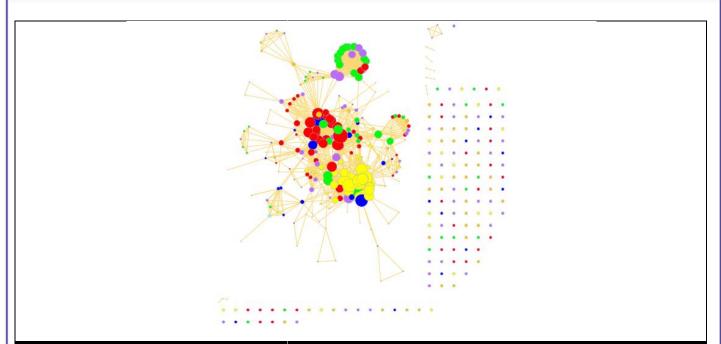
Similar to the case of dominant theories, originating disciplines are diverse in IS as a whole, but each stream is strongly related to a particular discipline. For example, ITI and ITM draw theories heavily (roughly 50 percent or more), from Psychology and Economics, respectively. Similarly, ITO heavily relies (more than 50 percent) on the

<sup>&</sup>lt;sup>13</sup> For example, if an article used RBV and Dynamic Capabilities (both from Strategy), we consider the article as using two theories from Strategy. This measure is also consistent with the counting scheme for the theory usage incidents discussed earlier. The mapping of theories to originating their discipline is provided in Appendix 3 (Table A3).

theories from Strategy and Organizational Science, while ITG relies (more than 50 percent) on the theories from Psychology and Sociology.

With regard to the use of native IS theories (Straub 2012), we find that, although Information Systems is among the top five originating disciplines in every stream of IS research, the proportion of papers drawing on IS theories is greater than 10 percent in only two streams, IS Development and "IT and Individuals." This suggests that IS researchers may not be drawing on core IS theories uniformly across streams.

Finding 1C ("Diversity and Dominance in Origin"): Theories used in IS research originate from a diverse set of disciplines, but each research stream draws most theories from a couple of disciplines.


|   | Table 5: Top 5 Originating Disciplines by Streams |     |     |                |     |     |                |    |     |
|---|---------------------------------------------------|-----|-----|----------------|-----|-----|----------------|----|-----|
|   | Total                                             | #   | %   | IT and         | #   | %   | IS development | #  | %   |
|   |                                                   |     |     | Organizations  |     |     |                |    |     |
| 1 | Psychology                                        | 128 | 26  | Strategy       | 35  | 33  | Info. Systems  | 6  | 17  |
| 2 | Economics                                         | 84  | 17  | Org. Science   | 19  | 18  | Statistics     | 6  | 17  |
| 3 | Sociology                                         | 70  | 14  | Economics      | 18  | 17  | Psychology     | 4  | 11  |
| 4 | Strategy                                          | 62  | 13  | Psychology     | 15  | 14  | Economics      | 3  | 8   |
| 5 | Info. Systems                                     | 50  | 10  | Sociology      | 12  | 11  | Mathematics    | 3  | 8   |
|   | Others                                            | 101 | 20  | Others         | 6   | 6   | Others         | 14 | 39  |
|   | Total                                             | 495 | 100 | Total          | 105 | 100 | Total          | 36 | 100 |
|   |                                                   |     |     |                |     |     |                |    |     |
|   | IT and                                            | #   | %   | IT and Markets | #   | %   | IT and Groups  | #  | %   |
|   | Individuals                                       |     |     |                |     |     |                |    |     |
| 1 | Psychology                                        | 61  | 47  | Economics      | 40  | 59  | Psychology     | 18 | 27  |
| 2 | Info. Systems                                     | 31  | 24  | Psychology     | 8   | 12  | Sociology      | 17 | 25  |
| 3 | Sociology                                         | 16  | 12  | Strategy       | 6   | 9   | Communication  | 11 | 16  |
| 4 | Marketing                                         | 7   | 5   | Info. Systems  | 4   | 6   | Info. Systems  | 5  | 7   |
| 5 | Org. Science                                      | 6   | 5   | Marketing      | 3   | 4   | Linguistics    | 4  | 6   |
|   | Others                                            | 9   | 7   | Others         | 7   | 10  | others         | 12 | 18  |
|   | Total                                             | 130 | 100 | Total          | 68  | 100 | Total          | 67 | 100 |

Research Question 2: How cohesively have IS researchers built knowledge around theories? Are there observable clusters or cores of theory usage in IS research? (Theory Sibling Analysis)

To address this research question, we employ the article network (Figure 4). The article network contains 385 nodes, each of which represents an article, and 1773 edges, each of which indicates use of the same theory by the two articles at its ends. The size of a node is proportional to the number of connections (edges) linking that node to other nodes. Hence, a large-sized node indicates that the article uses a theory that is also used in many other articles. The width of the edge indicates the number of theories that two articles share. We find that in cases where theories are shared by two articles, 96 percent of such articles share only one theory. Many articles are connected via one or more shared theories, forming a big connected network which contains 237 articles (61 percent of total nodes).

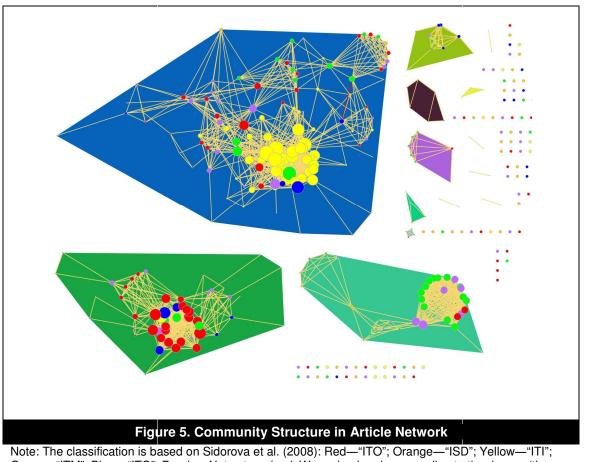
The diversity debate applied to the context of usage of theory raises two diverging possibilities. On one hand, the presence of diversity of IS research, when applied to theory usage, provides a rationale for the presence of clusters of theory usage with few articles that build knowledge across clusters. On the other hand, a core in IS would suggest an absence of clusters in terms of theory usage. CNA enables us to empirically investigate this issue by examining whether the article network exhibits the "small-world" phenomenon by comparing it to an Edrös and Rényi's (1961) random network with the same number of nodes and edges. In a small-world network, the degree of clustering tends to be high, while the average shortest path length is low.

A comparison between the article network and a random network (Table 6) fails to reveal evidence of a small world. Though the clustering coefficient is substantially high (0.72 compared to 0.045 of the random network), the average shortest path length of the real network is 3.14, which is higher than 2.56 of the random network. The high clustering coefficient and long average shortest path suggest that, though there are cohesive research sub-groups within which researchers apply a similar set of theories, there is little research applying theories across groups. Thus, based on SNA research conventions, due to a lack of connection across groups, the article network is not a small world and may be considered to be disconnected, potentially reinforcing concerns of a lack of distinctive intellectual core in IS (Benbasat and Zmud 2003). Our finding suggests that, from the perspective of theory usage, the IS field consists of a few distinctive clusters of research instead of a single core.



## Figure 4: Visualization of Article Network

Note: The classification is based on Sidorova et al. (2008): Red—"ITO"; Orange—"ISD"; Yellow—"ITI"; Green—"ITM"; Blue—"ITG"; Purple—Not categorized. We resized nodes according to the degree (the number of connections) of nodes.


|                 |          | icle Network with Rand          |                           |
|-----------------|----------|---------------------------------|---------------------------|
|                 | Diameter | Average Shortest<br>Path Length | Clustering<br>Coefficient |
| Article Network | 7        | 3.14                            | 0.72                      |
| Random Network  | 4        | 2.56                            | 0.045                     |

Finding 2A ("Clusters as Islands"): IS research does not exhibit a small world; though there are clusters each of which represents a cohesive group of research built on a common theory, there are limited studies that synthesize knowledge developed from distinct research groups.

We now probe deeper into how the theories are used within the clusters. On the one hand, if theories are used across streams (levels) of IS research (consistent with multi-level research paradigms), then we might expect no clear dominance of clusters by articles of particular streams. Conversely, if theories are used strongly within particular streams of research, it would be reflected in the dominance of clusters by particular streams of IS. To empirically shed light on this issue, we systematically identified clusters in the article network<sup>14</sup> using the edge-betweenness algorithm, and subsequently colored each node by the research streams defined by Sidorova et al. (2008).<sup>15</sup> Thus, the communities were first identified independent of the Sidorova et al. (2008) classification. Figure 5 shows the identified community structure in the article network.

<sup>&</sup>lt;sup>14</sup> Since we are not aware of formal guidelines that specify the point at which the clustering process should be stopped, we stopped the procedure when, in the next iteration, no new cluster (which, in our definition, contains more than three nodes) was formed. In other words, we stopped when only a dyad was separated from the cluster that existed in the previous iteration.

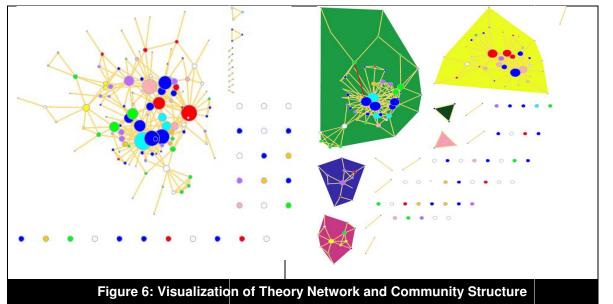
<sup>&</sup>lt;sup>15</sup> For papers which loaded on multiple factors in Sidorova et al. (2008)'s classification, we considered only the highest loading.



Note: The classification is based on Sidorova et al. (2008): Red—"ITO"; Orange—"ISD"; Yellow—"ITI"; Green—"ITM"; Blue—"ITG"; Purple—Not categorized. We resized nodes according to the degree (the number of connections) of nodes.

From the cluster analysis, we find three major clusters where at least one theory is used in more than four papers. We also find that these clusters are a close match with the Sidorova et al. (2008) classification. The clusters are dominated by yellow (ITI), red (ITO), and green (ITM) nodes, respectively.<sup>16</sup> This suggests that IS researchers in these streams draw from dominant theories in the stream. The large ITO (in red) and ITI (in yellow) nodes explicitly indicate the popularity of theories used in the article, implying that researchers in the ITO and ITI streams share a common set of theories and use them heavily. On the other hand, the size of most nodes in ITG, ITM, and ISD is small, suggesting a fragmented use of theories in these streams.

Unlike other streams, ITG and ISD are not identified as having their own communities, which might suggest that a strong theory base has not yet evolved in these streams.<sup>17</sup> The isolated nodes are predominantly ITG (in blue) and ISD (in orange), suggesting the diversity of theories in these fields. We infer that research in ITG, for example, draws from a variety of Psychology theories (potentially also contributing to the long tail of theories found earlier in Figure 2). This is in contrast to papers in the other three streams which tend to locate close to clusters dominated by papers in their own streams.


Finding 2B ("Stream-wise Theory Cohesiveness"): Streams of IS research constitute distinct clusters in terms of theory usage. In other words, articles belonging to a particular stream ground their arguments in commonly used theories in the stream. In particular, ITI, ITO, and ITM present relatively stronger theory-based cohesiveness.

<sup>&</sup>lt;sup>16</sup> We find articles that may be exceptions. We find that they used theories common in other streams. For example, Nicolaou and McKnight (2006, ISR) is the large blue node in the yellow community. This study uses TAM and Theory of Reasoned Action, two of the most popular theories in the ITI stream. This article loaded on two factors in Sidorova et al. (2008) (ITI: 0.171, ITG: 0.1755). Another example is the red node (Fan et al. 2003, ISR) in the green community. This article, though classified as an ITO article, uses game theory, which is heavily used in the ITM stream. Though it appears to be an anomaly in the community, it reflects that the article could not be unambiguously classified into a single stream by Sidorova et al. (2008).

<sup>&</sup>lt;sup>17</sup> The relatively less number of articles in these streams may account for the absence of community. Alternately, ITG and ISD works might be published in other journals in the future.

### Research Question 3: Which theories are frequently used together? (Co-theory Analysis)

As discussed earlier, analysis of how theories are used together in IS research can provide insights into how theories can be merged to generate new knowledge or to explain phenomena (e.g., Nevo and Wade 2010). To shed light on how IS research combines theories, we analyze the theory network to see whether certain theories tend to be used together. In the theory network (Figure 6), nodes represent theories, and edges indicate the articles that use the theories. This theory network contains 174 nodes and 299 edges. We identified communities (right-hand side of Figure 6) using the same algorithms as used for the article-network, and then we colored each node by the originating field of the theory.



Note: The color of node represents its originating discipline: Economics in red, Strategy in pink, Psychology in blue, Sociology in green, Information Systems in cyan, Organizational Science in purple, Marketing in orange, Communication in yellow, and Others in white. We resized nodes according to the degree (the number of connections) of nodes.

Two large, distinct clusters of theories are identified. One community (yellow green community in Figure 6) consists mainly of theories from Economics (in red), Strategy (in pink), and Organizational Science (in purple), indicating that the theories from these disciplines tend to be used together. Examples of theories in this cluster include RBV, Agency Theory, Transaction Cost Economics, Organizational Learning, and Dynamic Capabilities. The second community (green community in Figure 6) consists of theories from Psychology (in blue), Sociology (in green), and IS (in cyan). Examples of theories in this cluster include TAM, Theory of Reasoned Action and Theory of Planned Behavior.

Finding 3 ("Groupings by Origin"): Theories used together tend to belong to one of the following groups: (1) Economics, Strategy, and Organizational Science, and (2) Psychology, Sociology, and Information Systems.

Table 7 summarizes our research questions and corresponding findings.

## **DISCUSSION AND CONTRIBUTIONS**

The objective of this study was to examine the use of theories in IS research, especially with respect to how they interrelate with one another in the context of their use. Intuitively, our approach was analogous to studying the interactions of firms in, for example, alliance networks. We followed the suggestions of prior research to go beyond descriptive statistics and tabulations to generate new insights in the study of theory use. We did this by using Complex Network Analysis as our primary analysis method.

19

Issue 2

| Table 7: Su                                                                                                                                            | mmary of Research Questions and Findings                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Research Questions                                                                                                                                     | Findings                                                                                                                                                                                                                                                                                                                                                                     |
| Research Question 1: Are there<br>dominant theories in IS research, and<br>from which disciplines do they<br>originate? (Theory Dominance<br>Analysis) | Finding 1A ("Established Theory Use Tendency"): Though a number of theories appear in IS research and many are used only once, a few theories account for a significant portion of theory usage (referred to as "dominant" theories in this study). The tendency to use already established theories in IS research may explain this finding.                                |
|                                                                                                                                                        | Finding 1B ("Stream-wise Dominance"): The dominance of theory<br>usage is stronger in particular streams of IS research, compared to<br>dominance of theory usage in IS research as a whole. Furthermore, the<br>dominant theories vary greatly across streams and, in some streams,<br>are significantly different from the dominant theories in IS research as a<br>whole. |
|                                                                                                                                                        | Finding 1C ("Diversity and Dominance in Origin"): Theories used in IS research originate from a diverse set of disciplines, but each research stream draws most theories from a couple of disciplines.                                                                                                                                                                       |
| Research Question 2: How cohesively<br>have IS researchers built knowledge<br>around theories? Are there<br>observable clusters or cores of theory     | Finding 2A ("Clusters as Islands"): IS research does not exhibit a small<br>world; though there are clusters, each of which represents a cohesive<br>group of research built on a common theory, there are limited studies<br>that synthesize knowledge developed from distinct research groups.                                                                             |
| usage in IS research? (Theory Sibling<br>Analysis)                                                                                                     | Finding 2B ("Stream-wise Theory Cohesiveness"): Streams of IS research constitute distinct clusters in terms of theory usage. In other words, articles belonging to a particular stream ground their arguments in commonly used theories in the stream. In particular, ITI, ITO, and ITM present relatively stronger theory-based cohesiveness.                              |
| Research Question 3: Which theories<br>are frequently used together?<br>(Co-theory Analysis)                                                           | Finding 3 ("Groupings by Origin"): Theories used together tend to<br>belong to one of the following groups: (1) Economics, Strategy, and<br>Organizational Science, and (2) Psychology, Sociology, and Information<br>Systems.                                                                                                                                               |

The contributions of this study to the literature are several. First, we examined what theories dominate IS research in the aggregate and in specific well-defined streams of IS research (Sidorova et al. 2008). Our study, unlike related prior studies (Barkhi and Sheetz 2001; Lee et al. 2004), is thus conducted at a granular (research stream) level and identifies the variation of theory usage across research streams. This analysis will help researchers ascertain which theories are most relevant to their research, given their context and stream of research focus. More specifically, it will help researchers to begin a focused investigation into applicable theories by first looking at which research stream their work falls into, what are the dominant theories used in that stream, and what theories they can be used in conjunction with. For example, Table 5 shows that ITO is dominated mainly by strategy theories. If a doctoral student is looking into organizational aspects, looking at strategy literature can be a good starting point.<sup>18</sup> Our study will also be helpful for reviewers when they assess theory foundations of a manuscript. For example, examining Table 4 or Table A1 (Appendix 1), a reviewer can identify whether a study applies a "new" or less dominant theory in a particular stream or whether a study applies an existing theory in an innovative way and interprets a phenomenon from a new perspective.

Our second key contribution lies in shedding new light on the diversity debate via our analysis of theories in welldefined streams. While prior research identified the diversity of theory usage (Barkhi and Sheetz 2001; Lee et al. 2004), our study provides a richer understanding on this issue. Specifically, by examining the streams of IS research at a granular level, we find stronger dominance of theory usage within particular streams of IS. This suggests that "diversity" at the aggregate level and "centrality" of theory usage at the stream-level can coexist. The time analysis (Appendix 5), though not long enough to fully examine historical patterns, offers a glimpse into the trends of theory usage over time, instead of looking at a static average. Our result shows that the pattern is stable over time.

The third key contribution is our article-network analysis which reveals that the IS field consists not of a single core of theory usage but of a few distinctive cohesive groups of research that share a theory base. Analogous to agglomerations of urban developments in geographical regions, this reflects the buildup of "cumulative, integrated …

<sup>&</sup>lt;sup>18</sup> Our study also compares theory usage across the two journals (Appendix 4), MISQ and ISR, and discovers notable differences in the types of theories favored by each journal. This substantiates implicit knowledge among IS researchers that ISR has an inclination toward Economics compared to MISQ. Across the two journals, we also find notable differences in the number of papers in various research streams (Table A4). These results could be considered vital for researchers deciding on a publication outlet for their research.

bodies of theory" (Gregor 2006, p. 635) in IS, suggesting an accumulation of knowledge around theory bases. Nevertheless, while agglomeration of knowledge may suggest a maturation of fields of knowledge, an intriguing finding from our analysis is that there are limited studies that synthesize knowledge developed from the distinctive cores. This represents an opportunity for integrative future research that cross-pollinates and merges knowledge from across the theory-driven cores of knowledge. For example, Figure 5 shows communities dominated by ITI and ITO but very few nodes that bridge these communities. This can potentially represent opportunities for researchers to usefully integrate theories from the ITI and ITO streams to enrich existing knowledge or generate new knowledge in these streams. Nevo and Wade (2010) is an illustrative example of recent IS research which fruitfully blends theories to enrich understanding of phenomena. Our finding of disjointed clusters suggests that there is a need for more such studies, particularly across streams of IS research to generate new knowledge. Our finding also suggests a lack of a core in terms of theory usage, reinforcing the diversity of the discipline (Barkhi and Sheetz 2001; Lee et al. 2004; Sidorova et al. 2008).

Fourth, our theory-network analysis (Finding 3) reveals disciplines from which theories are used together. This will be helpful for researchers in identifying how to potentially combine theory bases for their arguments based on the domain of research and originating discipline of potential theories. For example, researchers working at the intersection of Psychology and IS can learn that application of theories of Sociology and Psychology may provide synergies for their research, based on prior utilization of the theories in these fields. Alternately, researchers can look to combine theories from across groups of disciplines whose theories are less often used together (Gregor 2006), providing opportunities for new knowledge to emerge. Similarly, the findings from the theory-network analysis will also help reviewers provide more constructive feedback in terms of application of theory. Our study also sheds light on the extent to which IS uses its own theories compared to using theories from other disciplines, as called for by Straub (2012). Our finding suggests (Table 5) that theories originating in IS (native IS theories) are used more widely in particular streams of IS research (IS Development, IT and Individuals), whereas they are being used rather sparingly in other streams of IS research (IT and Markets, IT and Groups, IT and Organizations).

Fifth, this study facilitates IS researchers moving from adapting and borrowing theories to "blending based on difference" to develop new theories (Oswick at al. 2011, p. 330). For example, Nevo and Wade (2010) illustrate the "conceptual synthesis of two complementary theories" (p. 175), systems theory and RBV, to explain the role of IT assets in forming IT-enabled resources. Our study takes a first step to understanding the range of theories available for blending and promoting a new style of theory development that has great potential to enhance new knowledge building. It enables new perspectives on theory application by understanding which theories are used in different research streams at different levels of analysis. By developing "a gist (a holistic representation of the literature)," our study can enable researchers to focus on specific aspects of the literature to identify focal and divergent themes, serving as a starting point for novel theorizing (Shepherd and Sutcliffe 2011, p. 362). This promotes better matching of theory with application as well as creativity in applying new theories to new contexts.

## LIMITATIONS

Notwithstanding our attention to detail in identifying theory and analyzing the resulting article and theory data, our work is not without limitations. First, there may be concerns over the classification and identification of theories and originating disciplines. Despite our effort to keep the identification and classification as objective as possible, we cannot completely eliminate subjectivity. We minimized subjectivity by adopting a well-defined procedure and by employing crosschecks among the authors in case of disagreements. Our findings concerning the top five disciplines in each stream provide some face validity to our classification of theories to disciplines. The good inter-rater reliability further enhances the validity of our findings. In the absence (to our knowledge) of a formal guideline in the literature, this was the best approach we could take; nevertheless, a certain amount of subjectivity remains. Second, during our analysis of originating disciplines, we dropped theories that could not be clearly or unanimously classified into disciplines. Though this might result in some loss of accuracy, we believe it does not significantly influence or bias our results, because the number of such ambiguous or unclear theories was relatively small. Third, our approach to consider papers which used frameworks using "No theory" (in line with Cushing 1990) may be considered a limitation, precluding generalizability to particular research paradigms, such as design science, for example. Likewise, our use of a methodical approach to identify theory use may have resulted in some papers being classified as "not using any theory," although it may have used conceptual arguments related to a theory. For instance, if a paper presents a solution that is built on sets but did not explicitly say that it used "set theory," it would be classified in our study as a "no theory" article. More generally, if a paper does not contain the keyword "theo," does not have a theory section, and does not use a theory for making an argument, we considered it as a "no theory" paper.<sup>19</sup> Fourth, our dataset might be considered not recent enough. While, as earlier discussed, using a time period that overlapped with Sidorova et al. (2008) dataset timeframe to facilitate stream-wise analysis was a

 $<sup>^{19}\,</sup>$  We thank an anonymous reviewer for motivating this discussion.

main reason for our selection of this timeframe, future research can examine generalizability by replicating our analysis using more recent data or even past data which pre-dates the period of our study. Finally, we restricted our attention to papers published in MISQ and ISR, suggesting that our sample is representative of the top papers published in IS. To what extent our findings are generalizable beyond these two journals is a question which can be addressed by future research.

## **CONCLUSION**

Calls for research into what types of theories are borrowed, where they are borrowed from and how borrowed theories are used are not unique to the IS discipline. For instance, in the Organizational Management Theory discipline, Oswick et al. (2011) illuminate the importance of these questions to develop an understanding of the opportunities and constraints in new theory building within disciplines. Our study examines these important issues in the IS discipline. Our work adds support to past evidence of diversity (Robey 1996; Sidorova et al. 2008) in IS research. It also yields evidence about the dominance of theories. The multidimensional relationships in our network analysis uncover the relatedness, focal areas, and influential theory contributions in IS research. Our paper can help researchers by being a primer about theory foundations of the IS field and where to position their own research. In sum, our analysis contributes to scholarly knowledge regarding the theory foundations of IS research.

## ACKNOWLEDGEMENTS

We thank the co-editor, Dr. Marcus Rothenberger, and the review team for their helpful comments, suggestions, and insights during the review process of this paper; their inputs significantly improved this paper. We are grateful to Dr. A. Sidorova, Dr. N. Evangelopoulos, Dr. J. Valacich, and Dr. T. Ramakrishnan for providing the data from Sidorova et al. (2008). We gratefully acknowledge the inputs of participants, reviewers, associate editor, and track chairs at the International Conference on Information Systems (ICIS) 2009 where an earlier version of this paper was presented. We also thank seminar participants of the Ross School of Business at the University of Michigan for helpful comments on earlier versions of this paper. Any errors that might remain in this paper are ours alone.

## REFERENCES

Adamic, L.A., and B.A. Huberman, "Power-law distribution of the World Wide Web," *Science*, 2000, 287:5461, p. 2115.

Agarwal, R., and E. Karahanna, "Time flies when you are having fun: Cognitive absorption and beliefs about information technology usage," *MIS Quarterly*, 2000, 24:1, pp. 665–694.

Agarwal, R., and H.C. Lucas Jr., "The information systems identity crisis: Focusing on high-visibility and high-impact research," *MIS Quarterly*, 2005, 29:3, pp. 381–398.

Albert, R., and A-L. Barabasi, "Statistical mechanics of complex networks," *Review of Modern Physics*, 2002, 74:1, pp. 47–97.

Bampo, M., M.T. Ewing, D.R. Mather, D. Stewart, and M. Wallace, "The effect of the social structure of digital network on viral marketing performance," *Information Systems Research*, 2008, 19:3, pp. 273–290.

Bandura, A., "Self-efficacy: Toward a unifying theory of behavioral change," *Psychological Review*, 1977, 84:2, pp. 191–215.

Banker, R.D., and R.J. Kauffman, "The evolution of research on information systems: A fiftieth-year survey of the literature in management science," *Management Science*, 2004, 50:3, pp. 281–298.

Barabasi, A.L., and R. Albert, "Emergence of scaling in random networks," *Science*, 1999, 286:5439, pp. 509–512.

Barkhi, R., and D.S. Sheetz, "The state of theoretical diversity," *Communications of the Association for Information Systems*, 2001, 7:6.

Barney, J.B., "The resource based view of strategy: Origins, implications, and prospects," *Journal of Management*, 1991, 17, pp. 97–211.

Baskerville, R., and M. Myers, "Information systems as a reference discipline," *MIS Quarterly*, 2002, 26:1, pp. 1–14.

Benbasat, I., and R. Weber, "Research commentary: Rethinking 'Diversity' in information systems research," *Information Systems Research*, 1996, 7:4, pp. 389–399.

Benbasat, I., and R.W. Zmud, "The identity crisis within the IS discipline: Defining and communicating the discipline's core properties," *MIS Quarterly*, 2003, 27:2, pp. 183–194.

Claver, E., R. González, and J. Llopis, "An analysis of research in information systems (1981–1997)," *Information & Management*, 2000, 37:4, pp. 181–195.

Corley, G.K., and A.D. Gioia, "Building theory about theory building: What constitutes a theoretical contribution?" *Academy of Management Review*, 2011, 36:1, pp. 12–32.

Culnan, M.J., "Mapping the intellectual structure of MIS, 1980–1985: A co-citation analysis," *MIS Quarterly*, 1987, 11:3, pp. 341–353.

Cushing, B.E., "Frameworks, paradigms, and scientific research in management information systems," *Journal of Information Systems*, 1990, 4:2, pp. 38–59.

Davison, R.M., M.G. Martinsons, and C.X.J. Ou, "The roles of theory in canonical action research," *MIS Quarterly*, 2012, 36:3, pp. 763–786.

Dennis, A.R., J.S. Valacich, M.A Fuller, and C. Schneider, "Research standards for promotion and tenure in information systems," *MIS Quarterly*, 2006, 30:1, pp. 1–12.

Erdös, P., and A. Rényi, "On the evolution of random graphs," *Bulletin de l'Institut International de Statistique*, 1961, 38, pp. 343–347.

Fleiss, J.L., "Measuring nominal scale agreement among many raters," *Psychological Bulletin*, 1971, 76:5, pp. 378–382.

Gefen, D., E. Karahanna, and D.W. Straub, "Trust and TAM in online shopping: An integrated model," *MIS Quarterly*, 2003, 19:1, pp. 51–90.

Gregor, S., "The nature of theory in information systems," *MIS Quarterly*, 2006, 30:3, pp. 611–642.

Gregor, S., and D. Jones, "The anatomy of a design theory," *Journal of the Association for Information Systems*, 2007, 8:5, pp. 312–335.

Grover, V., R. Ayyagari, R. Gokhale, J. Lim, and J. Coffey, "A citation analysis of the evolution and state of information systems within a constellation of reference disciplines," *Journal of Association for Information Systems*, 2006, 7:5.

Jackson, M.O., Social and economic networks, Princeton, NJ: Princeton University Press, 2008.

Landis, J.R., and G.G. Koch, "The measurement of observer agreement for categorical data," *Biometrics*, 1977, 33:1, pp. 159–174.

Lee, Y., Z. Lee, and S. Gosain, "The evolving diversity of the IS discipline: Evidence from referent theoretical frameworks," *Communications of the Association for Information Systems*, 2004, 13, pp. 546–579.

Markus, M.L., and D. Robey, "Information technology and organizational change: Causal structure in theory and research," *Management Science*, 1988, 34:5, pp. 583–598.

Nevo, S., and M.R. Wade, "The formation and value of IT-enabled resources: Antecedents and consequences of synergistic relationships," *MIS Quarterly*, 2010, 34:1, pp. 163–183.

Newman, M.E., and M. Girvan, "Finding and evaluating community structure in networks," *Physical Review E*, 2004, 69:2.

Ngwenyama, O., and A. Lee, "Communication richness in electronic mail: Critical social theory and the contextuality of meaning," *MIS Quarterly*, 1997, 21:2, pp. 145–167.

Nicolaou, A.I., and D.H. McKnight, "Perceived information quality in data exchanges: Effects on risk, trust, and intention to use," *Information Systems Research*, 2006, 17:4, pp. 332–351.

Niederman, F., J.C. Brancheau, and J.C. Wetherbe, "Information systems management issues for the 1990s," 1991, *MIS Quarterly*, 15:4, pp. 475–500.

Nolan, R.L., and J.C. Wetherbe, "Toward a comprehensive framework for MIS research," *MIS Quarterly*, 1980, 4:2, pp. 1–19.

Orlikowski, W.J., and C.S. Lacono, "Research commentary: Desperately seeking the 'IT' in IT research—A call to theorizing the IT artifact," *Information Systems Research*, 2001, 12:2, pp. 121–134.

Oswick, C., P. Fleming, and G. Hanlon, "From borrowing to blending: Rethinking the processes of organizational theory-building," *Academy of Management Review*, 2011, 36:2, pp. 318–337.

Palvia, P.C., B. Rajagopalan, A. Kumar, and N. Kumar, "Key information systems issues: An analysis of MIS publications," *Information Processing & Management*, 1996, 32:3, pp. 345–355.

Penrose, E.T., *The Theory of the Growth of the Firm*, Oxford: Basil Blackwell, 1959.

Polites, G.L., and R.T. Watson, "Using social network analysis to analyze relationships among IS journals," *Journal of the Association for Information Systems*, 2009, 10:8, pp. 595–636.

Porra, J., "A dialogue with C. West Churchman," Information Systems Frontiers, 2001, 3:1, pp. 19–27.

Robey, D., "Research commentary: Diversity in information systems research: Threat, promise, and responsibility," *Information Systems Research*, 1996, 7:4, pp. 400–408.

Shepherd, A.D., and M.K. Sutcliffe, "Inductive top-down theorizing: A source of new theories of organization," *Academy of Management Review*, 2011, 36:2, pp. 361–380.

Sidorova, A., N. Evangelopoulos, J.S. Valacich, and T. Ramakrishnan, "Uncovering the intellectual core of the information systems discipline," *MIS Quarterly*, 2008, 32:3, pp. 467–482.

Straub, D., "Editor's comments: Does MIS have native theories," MIS Quarterly, 2012, 36: 2. pp. 3-12.

Straub, D., "Editor's comments: Why top journals accept your paper," *MIS Quarterly*, 2009, 33:3. pp. 3–10.

Sutton, R.I., and B.M. Staw, "What theory is not," Administrative Science Quarterly, 1995, 40:3, pp. 371–384.

Taylor, H., S. Dillon, and M. Wingen, "Focus and diversity in information systems research: Meeting the dual demands of a healthy applied discipline," *MIS Quarterly*, 2010, 34:4, pp. 647–667.

Uzzi, B., L.A.N. Amaral, and F. Reed-Tsochas, "Small-world networks and management science research: A review," *European Management Review*, 2007, 4:2, pp. 77–91.

Vessey, I., V. Ramesh, and R. Glass, "Research in information systems: An empirical study of diversity in the discipline and its journals," *Journal of Management Information Systems*, 2002, 19:2, pp. 129–174.

Wade, M., M. Biehl, and H. Kim, "Information systems is not a reference discipline (and what we can do about it)," *Journal of Association for Information Systems*, 2006, 7:5, pp. 247–269.

Walls, J.G., G.R. Widmeyer, and O.A. El Sawy, "Building an information system design theory for vigilant EIS," *Information Systems Research*, 1992, 3:1, pp. 36–59.

Watson, R., "Research in information systems: What we haven't learned," MIS Quarterly, 2001, 25:4, pp. 5–15.

Watts, D.J., and H.S. Strogatz, "Collective dynamics of 'Small-world' networks," *Nature*, 1998, 393:6684, pp. 440–442.

Weber, R., "Editor's comments: Theoretically speaking," *MIS Quarterly*, 2003, 27:3, pp. 3–23.

Weber, R., "Toward a theory of artifacts: A paradigmatic base for information systems research," *Journal of Information Systems*, 1987, 1:2, pp. 3–19.

Xu, J., and H. Chen, "Criminal network analysis and visualization," *Communications of the ACM*, 2005, 48:6, pp. 101–107.

Zhu, K., and K. Kraemer, "Ecommerce metrics for net-enhanced organizations: Assessing the value of ecommerce to firm performance in the manufacturing sector," *Information Systems Research*, 2002, 13:3, pp. 275–295.

## **APPENDICES**

### Appendix 1: Reliability Check for Article–Theory Mapping

We performed two checks to ensure confidence in the reliability of our approach. First, Steps #3 and #4 were independently repeated by another author. Any discrepancies were settled through discussion among the authors. Second, we conducted an assessment of inter-rater reliability with ten doctoral students (raters) from various business disciplines to judge the reliability of our process of theory identification. Using raters from across business disciplines minimizes potential for biases of raters. We randomly selected twenty papers from our sample (sixteen using one theory; four using no theory) and distributed them so that each rater assessed six papers. Thus each paper was independently analyzed by three different raters. We asked each rater to identify theories used in the papers assigned to him/her, based on the heuristic we provided, which is the same procedure we used to identify theories (Table 1). After collation of responses from the raters, we calculated the inter-rater reliability using the Fleiss Kappa statistic (Fleiss 1971). The Fleiss Kappa statistic is relevant since our categories are nominal. The calculation of this statistic requires that each paper be placed in a single category. The Fleiss Kappa statistic was 0.765, which falls in the range described as "substantial strength of agreement" (Landis and Koch 1977, p. 165). This suggests that our method of identification of theories is reliable, replicable, and not largely dependent on subjective human judgment. In sum, though our identification of theories is imperfect, our well-defined methodology and good interrater reliability score suggest that we can be confident in the validity and reliability of our results. Table A1 (Appendix 2) provides the list of identified theories used in each research article.

| Table A1: List of Research Articles, Streams, and Theories |         |                      |                                 |  |
|------------------------------------------------------------|---------|----------------------|---------------------------------|--|
| Article (Year)                                             | Journal | Research Stream      | Theory                          |  |
| Hemant et al. 1998                                         | MISQ    | Not identified       | Gestalt fit theory              |  |
| Banerjee et al. 1998                                       | MISQ    | IT and Individuals   | Theory of planned behavior      |  |
| Banerjee et al. 1998                                       | MISQ    | IT and Individuals   | Theory of reasoned action       |  |
| Watson et al. 1998                                         | MISQ    | IT and Individuals   | Theory of organizational change |  |
| Kambil and van Heck 1998                                   | ISR     | IT and Markets       | Transaction cost theory         |  |
| Griffith et al. 1998                                       | ISR     | IT and Groups        | Socio-technical systems theory  |  |
| Marakas and Elam 1998                                      | ISR     | IS Development       | Not identified                  |  |
| Wright et al. 1998                                         | ISR     | IS Development       | Not identified                  |  |
| Tam 1998                                                   | ISR     | IT and Organizations | Production theory               |  |
| Nidumolu and Knotts 1998                                   | MISQ    | IT and Individuals   | Not identified                  |  |
| Segars and Grover 1998                                     | MISQ    | IT and Organizations | Not identified                  |  |
| El-Shinnawy and Vinze 1998                                 | MISQ    | IT and Groups        | Persuasive arguments theory     |  |
| El-Shinnawy and Vinze 1998                                 | MISQ    | IT and Groups        | Social comparison theory        |  |
| Kumar et al. 1998                                          | MISQ    | IT and Organizations | Transaction cost theory         |  |
| Kumar et al. 1998                                          | MISQ    | IT and Organizations | Theory of competitive advantage |  |
| Francalanci and Galal 1998                                 | MISQ    | IT and Organizations | Agency theory                   |  |
| Francalanci and Galal 1998                                 | MISQ    | IT and Organizations | Information processing theory   |  |
| Francalanci and Galal 1998                                 | MISQ    | IT and Organizations | Transaction cost theory         |  |
| Guinan et al. 1998                                         | ISR     | IT and Groups        | Graph-theory                    |  |
| Marakas et al. 1998                                        | ISR     | IT and Individuals   | Social learning theory          |  |
| Marakas et al. 1998                                        | ISR     | IT and Individuals   | Self-efficacy theory            |  |
| livari et al. 1998                                         | ISR     | IS Development       | Not identified                  |  |

### **Appendix 2: Research Articles, Streams, and Theories**

| Dennis and Carte 1998        | ISR  | Not identified       | Cognitive fit theory              |
|------------------------------|------|----------------------|-----------------------------------|
| Agarwal and Prasa 1998       | ISR  | IT and Individuals   | Technology acceptance model       |
| Webster 1998                 | MISQ | Not identified       | Innovation characteristics theory |
| Webster 1998                 | MISQ | Not identified       | Media richness theory             |
| Pinsonneault and Rivard 1998 | MISQ | IT and Organizations | Not identified                    |
| Zigurs and Buckland 1998     | MISQ | IT and Groups        | Task-technology fit               |
| Carlson and Davis 1998       | MISQ | IT and Groups        | Media richness theory             |
| Carlson and Davis 1998       | MISQ | IT and Groups        | Social presence theory            |
| Carlson and Davis 1998       | MISQ | IT and Groups        | Media choice theory               |
| Dewan et al. 1998            | ISR  | IT and Organizations | Production theory                 |
| Lyytinen et al. 1998         | ISR  | IS Development       | Socio-technical systems theory    |
| Dennis and Kinney 1998       | ISR  | IT and Groups        | Media richness theory             |
| Datta 1998                   | ISR  | IS Development       | Not identified                    |
| Goodman and Darr 1998        | MISQ | IT and Groups        | Organizational learning theory    |
| Nissen 1998                  | MISQ | IT and Organizations | Not identified                    |
| Choudhury et al. 1998        | MISQ | IT and Markets       | Transaction cost theory           |
| Straub and Welke 1998        | MISQ | IS Development       | Deterrence theory                 |
| Ang and Straub 1998          | MISQ | IT and Markets       | Production theory                 |
| Kraemer and Dedrick 1998     | ISR  | IT and Organizations | Production theory                 |
| Wong 1998                    | ISR  | IT and Organizations | Game theory                       |
| Jarvenpaa and Leidner 1998   | ISR  | IT and Organizations | Resource based view               |
| Jarvenpaa and Leidner 1998   | ISR  | IT and Organizations | Dynamic capability theory         |
| Parthasarathy and            | ISR  | IT and Individuals   | Innovation diffusion theory       |
| Bhattacherjee 1998           |      |                      |                                   |
| Gopal and Sanders 1998       | ISR  | Not identified       | Not identified                    |
| Talmor and Wallace 1998      | ISR  | Not identified       | Not identified                    |
| Mendelson and Pillai 1998    | ISR  | IT and Organizations | Contingency theory                |
| Smith and Hasnas 1999        | MISQ | Not identified       | Stakeholder theory                |
| Smith and Hasnas 1999        | MISQ | Not identified       | Social contract theory            |
|                              |      |                      |                                   |
| Dennis et al. 1999           | MISQ | IT and Groups        | Act theory                        |
| Klein and Myers 1999         | MISQ | Not identified       | Not identified                    |
| Walsham and Sahay 1999       | MISQ | IT and Organizations | Actor-network theory              |
| Gordon and Moore 1999        | ISR  | Not identified       | Speech act theory                 |
| Porra 1999                   | ISR  | IS Development       | Theory of open systems            |
| Benaroch and Kauffman 1999   | ISR  | IT and Markets       | Option theory                     |
| Sethi and King 1999          | ISR  | IT and Individuals   | Information integration theory    |
| -                            |      |                      |                                   |
| Sethi and King 1999          | ISR  | IT and Individuals   | Theory of cognitive integration   |
| Barrett and Walsham 1999     | ISR  | IT and Organizations | Social theory of transformation   |
| Broadbent et al. 1999        | MISQ | IT and Organizations | Not identified                    |
| Karahanna et al. 1999        | MISQ | IT and Individuals   | Innovation diffusion theory       |
| Karahanna et al. 1999        | MISQ | IT and Individuals   | Theory of reasoned action         |
| Compeau et al. 1999          | MISQ | IT and Individuals   | Social cognitive theory           |
| Compeau et al. 1999          | MISQ | IT and Individuals   | Self-efficacy theory              |
| Ross et al. 1999             | MISQ | IT and Organizations | Pricing theory                    |
| Sambamurthy and Zmud 1999    | MISQ | Not identified       | Contingency theory                |
| Venkatesh 1999               | MISQ | IT and Individuals   | Technology acceptance model       |
| Venkatesh 1999               | MISQ | IT and Individuals   | Cognitive evaluation theory       |
| Venkatesh 1999               | MISQ | IT and Individuals   | Behavioral decision theory        |
| Venkatesh 1999               | MISQ | IT and Individuals   | Social influence theory           |
| Pinsonneault et al. 1999     | ISR  | Not identified       | Not identified                    |
| Hitt 1999                    | ISR  | IT and Organizations | Production theory                 |
|                              |      |                      | i iouuouon moory                  |

Volume 14 Issue 2 Article 2

| Sussman and Sproull 1999       | ISR  | IT and Groups        | Theory of self-monitoring               |
|--------------------------------|------|----------------------|-----------------------------------------|
| Robey and Boudreau 1999        | ISR  | IT and Organizations | Organizational politics                 |
| Robey and Boudreau 1999        | ISR  | IT and Organizations | Organizational culture theory           |
| Robey and Boudreau 1999        | ISR  | IT and Organizations | Institutional theory                    |
| Robey and Boudreau 1999        | ISR  | IT and Organizations | Organizational learning theory          |
| Lee et al. 1999                | ISR  | IT and Markets       | Not identified                          |
| Brown 1999                     | MISQ | IT and Organizations | Organization theory                     |
| Nambisan et al. 1999           | MISQ | IT and Organizations | Organizational learning theory          |
| Reich and Kaarst-Brown 1999    | MISQ | IT and Organizations | Not identified                          |
| Sawy et al. 1999               | MISQ | IT and Organizations | Not identified                          |
| Tractinsky and Meyer 1999      | MISQ | Not identified       | Theory of self-presentation             |
| Segars and Grover 1999         | ISR  | IT and Organizations | Not identified                          |
| Gattiker and Kelley 1999       | ISR  | IT and Individuals   | Domain theory of moral development      |
| Fichman and Kemerer 1999       | ISR  | Not identified       | Network externality                     |
| Fichman and Kemerer 1999       | ISR  | Not identified       | Diffusion theory                        |
| Sein and Santhanam 1999        | ISR  | Not identified       | Act theory                              |
| Grover and Ramanlal 1999       | MISQ | IT and Markets       | Transaction cost theory                 |
| Gregor and Benbasat 1999       | MISQ | IS Development       | Learning theory                         |
| Gregor and Benbasat 1999       | MISQ | IS Development       | Toulmin's model of argumentation        |
| Abdel-Hamid et al. 1999        | MISQ | IT and Organizations | Goal setting theory                     |
| Wastell 1999                   | MISQ | IT and Groups        | Psychodynamic theory                    |
| Wastell 1999                   | MISQ | IT and Groups        | Educational theory                      |
| Wastell 1999                   | MISQ | IT and Groups        | Theory of organizational ill health     |
| Weill and Vitale 1999          | MISQ | Not identified       | Not identified                          |
| Burke and Chidambaram 1999     | MISQ | IT and Groups        | Media characteristics theory            |
| Burke and Chidambaram 1999     | MISQ | IT and Groups        | Social information processing theory    |
| Burke and Chidambaram 1999     | MISQ | IT and Groups        | Media richness theory                   |
| Burke and Chidambaram 1999     | MISQ | IT and Groups        | Time/interaction and performance theory |
| Burke and Chidambaram 1999     | MISQ | IT and Groups        | Bandwidth theory                        |
| Kraut et al. 1999              | ISR  | Not identified       | Not identified                          |
| Armstrong and Sambamurthy 1999 | ISR  | IT and Organizations | Knowledge-based theory of the firm      |
| Armstrong and Sambamurthy 1999 | ISR  | IT and Organizations | Resource based view                     |
| Tan and Harker 1999            | ISR  | IS Development       | Production theory                       |
| Raghunathan et al. 1999        | ISR  | IT and Individuals   | Strategic grid framework                |
| Todd and Benbasat 1999         | ISR  | IS Development       | Behavioral decision theory              |
| Reich and Benbasat 2000        | MISQ | IT and Organizations | Not identified                          |
| Bharadwaj 2000                 | MISQ | IT and Organizations | Resource based view                     |
| Schultze 2000                  | MISQ | IS Development       | Bourdieu's theory of practice           |
| Trauth and Jessup 2000         | MISQ | IT and Groups        | Not identified                          |
| Moore 2000                     | MISQ | IT and Individuals   | Not identified                          |
| Venkatesh and Morris 2000      | MISQ | IT and Individuals   | Technology acceptance model             |
| Dey and Sarkar 2000            | ISR  | IS Development       | Bayesian decision theory                |
| Basu and Blanning 2000         | ISR  | IS Development       | The theory of metagraphs                |
| Marcolin et al. 2000           | ISR  | IT and Individuals   | Task-technology fit                     |
| Kaufman et al. 2000            | ISR  | IT and Markets       | Network externality                     |
| Menon et al. 2000              | ISR  | Not identified       | Production theory                       |
| Hunter and Bock 2000           | ISR  | IT and Organizations | Repertory grids                         |
| Taudes et al. 2000             | MISQ | IT and Markets       | Option theory                           |
| Taudes et al. 2000             | MISQ | IT and Markets       | Net-present value                       |
| Benaroch and Kauffman 2000     | MISQ | IT and Markets       | Option theory                           |
|                                |      |                      |                                         |

.

| Cooper 2000                              | MISQ         | IT and Organizations           | Creativity theory                                 |
|------------------------------------------|--------------|--------------------------------|---------------------------------------------------|
| Swanson and Dans 2000                    | MISQ         | Not identified                 | Not identified                                    |
| Keil et al. 2000                         | MISQ         | Not identified                 | Risk theory                                       |
| Lim et al. 2000                          | ISR          | Not identified                 | Not identified                                    |
| Konana et al. 2000                       | ISR          | IS Development                 | Pricing theory                                    |
| Gurbaxani et al. 2000                    | ISR          | Not identified                 | Production theory                                 |
| West and Dedrick 2000                    | ISR          | Not identified                 | Sunken cost theory                                |
| Montealegre and Keil 2000                | MISQ         | Not identified                 | Not identified                                    |
| Ravichandran and Rai 2000                | MISQ         | IT and Organizations           | Not identified                                    |
| Lim and Benbasat 2000                    | MISQ         | IS Development                 | Task-technology fit                               |
| Lim and Benbasat 2000                    | MISQ         | IS Development                 | Helson's adaptation-level theory                  |
| Nelson et al. 2000                       | MISQ         | IS Development                 | Not identified                                    |
| Gopal and Prasad 2000                    | MISQ         | IT and Groups                  | Not identified                                    |
| Banker and Slaughter 2000                | ISR          | IS Development                 | Not identified                                    |
| Palmer and Markus 2000                   | ISR          | IT and Organizations           | Not identified                                    |
| Sarkar and Ramaswamy 2000                | ISR          | IS Development                 | Not identified                                    |
| Kim et al. 2000                          | ISR          | IS Development                 | Diagrammic reasoning framework                    |
| Nault and Vandenbosh 2000                | ISR          | IT and Markets                 | Game theory                                       |
| Westland 2000                            | ISR          | Not identified                 | Not identified                                    |
| Cooper et al. 2000                       | MISQ         | IT and Organizations           | Not identified                                    |
| Majchrzak et al. 2000                    | MISQ         | IT and Groups                  | Adaptive structuration theory                     |
| Agarwal and Karahanna 2000               | MISQ         | IT and Individuals             | Technology acceptance model                       |
| Agarwal and Karahanna 2000               | MISQ         | IT and Individuals             | Self-perception theory                            |
| Agarwal and Karahanna 2000               | MISQ         | IT and Individuals             | Social cognitive theory                           |
| Agarwal and Karahanna 2000               | MISQ         | IT and Individuals             | Theory of reasoned action                         |
| Mennecke et al. 2000                     | MISQ         | IS Development                 | Cognitive fit theory                              |
| Mennecke et al. 2000                     | MISQ         | IS Development                 | Theory of image processing                        |
| Keil et al. 2000b                        | MISQ         | Not identified                 | Self-justification theory                         |
| Keil et al. 2000b                        | MISQ         | Not identified                 | Prospect theory                                   |
| Keil et al. 2000b                        | MISQ         | Not identified                 | Agency theory                                     |
| Keil et al. 2000b                        | MISQ         | Not identified                 | Approach avoidance theory                         |
| Agarwal et al. 2000                      | ISR          | IT and Individuals             | Self-efficacy theory                              |
| Agarwal et al. 2000                      | ISR          | IT and Individuals             |                                                   |
| Bordestsky and Mark 2000                 | ISR          | IS Development                 | Technology acceptance model Organizational memory |
| 2                                        | ISR          |                                | · ·                                               |
| Limayem and DeSanctis 2000               |              | IS Development                 | Theory of breakpoints                             |
| Venkatesh 2000                           | ISR<br>ISR   | IT and Individuals             | Technology acceptance model                       |
| Venkatesh 2000                           |              | IT and Individuals             | Self-efficacy theory                              |
| Johnson and Marakas 2000                 | ISR          | IT and Individuals             | Self-efficacy theory                              |
| Boudreau et al. 2001                     | MISQ         | IT and Individuals             | Not identified                                    |
| Wixom and Watson 2001                    | MISQ         | IT and Organizations           | Not identified                                    |
| Chatterjee et al. 2001                   | MISQ         | IT and Organizations           | Not identified                                    |
| Venkatesh and Brown 2001                 | MISQ         | IT and Individuals             | Theory of planned behavior                        |
| Venkatesh and Brown 2001                 | MISQ         | IT and Individuals             | Motivation theory                                 |
| Alavi and Leidner 2001                   | MISQ         | IT and Organizations           | Resource based view                               |
| Alavi and Leidner 2001                   | MISQ         | IT and Organizations           | Knowledge-based theory of the firm                |
| Sabherwal and Chan 2001                  | ISR          | IT and Organizations           | Contingency theory                                |
| Moore 2001                               | ISR          | Not identified                 | Speech act theory                                 |
| Lerch and Harter 2001                    | ISR          | IS Development                 | Not identified                                    |
| Im et al. 2001                           | ISR          | IT and Markets                 | Not identified                                    |
|                                          | MISQ         | IT and Groups                  | Conflict resolution theory                        |
| Barki and Hartwick 2001                  |              |                                |                                                   |
| Dennis et al. 2001<br>Dennis et al. 2001 | MISQ<br>MISQ | IT and Groups<br>IT and Groups | Contingency theory<br>Task-technology fit         |

Volume 14 Issue 2 Article 2

| Malhotra et al. 2001                 | MISQ | IT and Groups        | Theory of swift trust                   |
|--------------------------------------|------|----------------------|-----------------------------------------|
| Malhotra et al. 2001                 | MISQ | IT and Groups        | Time/interaction and performance theory |
| Te'eni 2001                          | MISQ | IT and Groups        | Theory of communicative action          |
| Te'eni 2001                          | MISQ | IT and Groups        | Media richness theory                   |
| Te'eni 2001                          | MISQ | IT and Groups        | Uncertainty reduction theory            |
| Orlikowski and Barley 2001           | MISQ | IT and Organizations | Not identified                          |
| Subramani and Walden 2001            | ISR  | IT and Markets       | Resource based view                     |
| Berlanger et al. 2001                | ISR  | IT and Individuals   | Contingency theory                      |
| Kiang and Kumar 2001                 | ISR  | Not identified       | Not identified                          |
| Austin 2001                          | ISR  | Not identified       | Agency theory                           |
| Plouffe et al. 2001                  | ISR  | IT and Individuals   | Technology acceptance model             |
| Plouffe et al. 2001                  | ISR  | IT and Individuals   | Perceived characteristics of innovating |
| Ang and Slaughter 2001               | MISQ | IT and Individuals   | Social comparison theory                |
| Bhattacherjee 2001                   | MISQ | IT and Individuals   | Expectation disconfirmation theory      |
| Bhattacherjee 2001                   | MISQ | IT and Individuals   | Technology acceptance model             |
| Yoo and Alavi 2001                   | MISQ | IT and Groups        | Social presence theory                  |
| Yoo and Alavi 2001                   | MISQ | IT and Groups        | Media richness theory                   |
| Yoo and Alavi 2001                   | MISQ | IT and Groups        | Channel expansion theory                |
| Mingers 2001                         | ISR  | IS Development       | Control theory                          |
| Mingers 2001                         | ISR  | IS Development       | Systems theory                          |
| Dutta 2001b                          | ISR  | IT and Markets       | Systems dynamics                        |
| Krishnan et al. 2001                 | ISR  | IS Development       | Not identified                          |
| Chwelos et al. 2001                  | ISR  | IT and Individuals   | Not identified                          |
| Garfield et al. 2001                 | ISR  | Not identified       | Act theory                              |
| Sircar et al. 2001                   | MISQ | IS Development       | Not identified                          |
| Fichman 2001                         | MISQ | IT and Individuals   | Innovation diffusion theory             |
| Piccoli et al. 2001                  | MISQ | IT and Groups        | Learning theory                         |
| Piccoli et al. 2001                  | MISQ | IT and Groups        | Motivation theory                       |
| Piccoli et al. 2001                  | MISQ | IT and Groups        | Attribution theory                      |
| Piccoli et al. 2001                  | MISQ | IT and Groups        | Information processing theory           |
| Piccoli et al. 2001                  | MISQ | IT and Groups        | Component display theory                |
| Butler 2001                          | ISR  | IT and Groups        | Resource based view                     |
| Raghu et al. 2001                    | ISR  | Not identified       | Game theory                             |
| Raghunathan and Yeh 2001             | ISR  | IT and Markets       | Game theory                             |
| Bodart et al. 2001                   | ISR  | Not identified       | Semantic network theory                 |
| Chari 2002                           | ISR  | IS Development       | Not identified                          |
| Sia et al. 2002                      | ISR  | IT and Groups        | Social comparison theory                |
| Sia et al. 2002                      | ISR  | IT and Groups        | Persuasive arguments theory             |
| Salisbury et al. 2002                | ISR  | IT and Individuals   | Adaptive structuration theory           |
| Kudyba and Diwan 2002                | ISR  | IT and Markets       | Production theory                       |
| Christiaanse and Venkatraman<br>2002 | MISQ | Not identified       | Channel theory                          |
| Christiaanse and Venkatraman<br>2002 | MISQ | Not identified       | Resource based view                     |
| Tan and Hunter 2002                  | MISQ | Not identified       | Personal construction theory            |
| Wheeler 2002                         | ISR  | IT and Organizations | Dynamic capability theory               |
| Wheeler 2002                         | ISR  | IT and Organizations | Nebic theory                            |
| Zahra and George 2002                | ISR  | IT and Organizations | Dynamic capability theory               |
| Zahra and George 2002                | ISR  | IT and Organizations | Nebic theory                            |
| Agarwal and Venkatesh 2002           | ISR  | IT and Individuals   | Not identified                          |
| Torkzadeh and Dhillon 2002           | ISR  | IT and Individuals   | Not identified                          |
| Koufaris 2002                        | ISR  | IT and Markets       | Technology acceptance model             |

.

| Koufaris 2002               | ISR  | IT and Markets       | Flow theory                        |
|-----------------------------|------|----------------------|------------------------------------|
| Koufaris 2002               | ISR  | IT and Markets       | Theory of planned behavior         |
| Koufaris 2002               | ISR  | IT and Markets       | Theory of reasoned action          |
| Koufaris 2002               | ISR  | IT and Markets       | Achievement motivation theory      |
| Palmer 2002                 | ISR  | IT and Individuals   | Media richness theory              |
| Chatterjee et al. 2002      | MISQ | IT and Organizations | Institutional theory               |
| Chatterjee et al. 2002      | MISQ | IT and Organizations | Structuration theory               |
| Tillquist et al. 2002       | MISQ | IT and Organizations | Resource dependence theory         |
| Biros et al. 2002           | MISQ | Not identified       | Signal detection theory            |
| Jiang et al. 2002           | MISQ | IT and Individuals   | Not identified                     |
| Kim and Lee 2002            | ISR  | IT and Individuals   | Not identified                     |
| Chen and Hitt 2002          | ISR  | IT and Markets       | Switching cost theory              |
| Chen and Hitt 2002          | ISR  | IT and Markets       | Random utility model               |
| McKinney et al. 2002        | ISR  | IT and Individuals   | Expectation disconfirmation theory |
| Zhu and Kraemer 2002        | ISR  | IT and Individuals   | Dynamic capability theory          |
| Zhu and Kraemer 2002        | ISR  | IT and Individuals   | Resource based view                |
| Devaraj et al. 2002         | ISR  | IT and Individuals   | Technology acceptance model        |
| Devaraj et al. 2002         | ISR  | IT and Individuals   | Transaction cost theory            |
| Devaraj et al. 2002         | ISR  | IT and Individuals   | Service quality                    |
| McKnigh et al. 2002         | ISR  | IT and Individuals   | Theory of reasoned action          |
| Markus et al. 2002          | MISQ | IS Development       | Is design theory                   |
| Schultz and Leidner 2002    | MISQ | Not identified       | Not identified                     |
| Ba and Pavlou 2002          | MISQ | IT and Markets       | Not identified                     |
|                             | MISQ |                      | Resource based view                |
| Massey et al. 2002b         |      | IT and Organizations |                                    |
| Massey et al. 2002b         | MISQ | IT and Organizations | Knowledge-based theory of the firm |
| Wand and Weber 2002         | ISR  | IS Development       | Not identified                     |
| Lyytinen and Yoo 2002       | ISR  | IT and Organizations | Not identified                     |
| Sarathy and Muralidhar 2002 | ISR  | IS Development       | Not identified                     |
| Alavi et al. 2002           | ISR  | IT and Groups        | Social learning theory             |
| Nadiminti et al. 2002       | ISR  | Not identified       | Game theory                        |
| Gallaugher and Wang 2002    | MISQ | IT and Markets       | Network externality                |
| Davidson 2002               | MISQ | Not identified       | Social cognitive theory            |
| Walsham 2002                | MISQ | Not identified       | Structuration theory               |
| Thatcher and Perrewe 2002   | MISQ | IT and Individuals   | Social learning theory             |
| Jasperson et al. 2002       | MISQ | Not identified       | Not identified                     |
| Fan et al. 2003             | ISR  | IT and Organizations | Game theory                        |
| Aalst and Kumar 2003        | ISR  | IT and Markets       | Petri-net theory                   |
| Sussman and Siegal 2003     | ISR  | IT and Individuals   | Technology acceptance model        |
| Sussman and Siegal 2003     | ISR  | IT and Individuals   | Information influence theory       |
| Ho et al. 2003              | ISR  | Not identified       | Belief preservance theory          |
| Ho et al. 2003              | ISR  | Not identified       | Agency theory                      |
| Miranda and Saunders 2003   | ISR  | IT and Groups        | Social construction theory         |
| Miranda and Saunders 2003   | ISR  | IT and Groups        | Social presence theory             |
| Miranda and Saunders 2003   | ISR  | IT and Groups        | Task closure theory                |
| Chen and Png 2003           | ISR  | IT and Markets       | Game theory                        |
| Teo et al. 2003             | MISQ | IT and Individuals   | Institutional theory               |
| Gefen et al. 2003           | MISQ | IT and Individuals   | Technology acceptance model        |
| Susarla et al. 2003         | MISQ | IT and Individuals   | Expectation disconfirmation theory |
| Santhanam and Hartono 2003  | MISQ | IT and Organizations | Resource based view                |
| Enns et al. 2003            | MISQ | IT and Organizations | Not identified                     |
| Kohli and Devaraj 2003      | ISR  | IT and Individuals   | Not identified                     |
| Yi and Davis 2003           | ISR  | IT and Individuals   | Social cognitive theory            |
| 11 and Davis 2003           | ISR  | IS Development       | Decision theory                    |

Volume 14

4 🔹 Issue 2 🔹 Article 2

| Chin et al. 2003                                             | ISR  | Not identified       | Contingency theory                                 |
|--------------------------------------------------------------|------|----------------------|----------------------------------------------------|
| Benbasat and Zmud 2003                                       | MISQ | Not identified       | Not identified                                     |
| Lamb and Kling 2003                                          | MISQ | Not identified       | Dynamic capability theory                          |
| Lamb and Kling 2003                                          | MISQ | Not identified       | Socio-technical systems theory                     |
| Sambamurthy et al. 2003                                      | MISQ | IT and Organizations | Dynamic capability theory                          |
| Griffith et al. 2003                                         | MISQ | IT and Groups        | Dynamic capability theory                          |
| Griffith et al. 2003                                         | MISQ | IT and Groups        | Resource based view                                |
| Dennis and Garfield 2003                                     | MISQ | IT and Groups        | Not identified                                     |
| Lee and Baskarville 2003                                     | ISR  | IS Development       | Not identified                                     |
| Bapna et al. 2003                                            | ISR  | IT and Markets       | Auction theory                                     |
| Purao et al. 2003                                            | ISR  | IS Development       | Not identified                                     |
| Choudhury and Sabherwal 2003                                 | ISR  | IT and Organizations | Control theory                                     |
| Choudhury and Sabherwal 2003                                 | ISR  | IT and Organizations | Agency theory                                      |
| Levina and Ross 2003                                         | MISQ | IT and Markets       | Complementarity theory                             |
| Piccoli and Ives 2003                                        | MISQ | IT and Groups        | Control theory                                     |
| Piccoli and Ives 2003                                        | MISQ | IT and Groups        | Psychological contract theory                      |
| Speier and Morris 2003                                       | MISQ | IS Development       | Decision theory                                    |
| Speier and Morris 2003                                       | MISQ | IS Development       | Cognitive fit theory                               |
| Venkatesh et al. 2003                                        | MISQ | IT and Individuals   | Theory of reasoned action                          |
| Venkatesh et al. 2003                                        | MISQ | IT and Individuals   | Technology acceptance model                        |
| Venkatesh et al. 2003                                        | MISQ | IT and Individuals   | Motivation theory                                  |
| Venkatesh et al. 2003                                        | MISQ | IT and Individuals   | Theory of planned behavior                         |
| Venkatesh et al. 2003                                        | MISQ | IT and Individuals   | Social cognitive theory                            |
| Carte and Russell 2003                                       | MISQ | IT and Individuals   | Not identified                                     |
| Bassellier et al. 2003                                       | ISR  | IT and Organizations | Theory of reasoned action                          |
| Basu and Blanning 2003                                       | ISR  | IS Development       | Graph-theory                                       |
| Sharma and Yetton 2003                                       | MISQ | IT and Individuals   | Institutional theory                               |
| Sharma and Yetton 2003                                       | MISQ | IT and Individuals   | Structuration theory                               |
| Lyytinen and Rose 2003                                       | MISQ | IT and Organizations | Innovation diffusion theory                        |
| Dube and Pare 2003                                           | MISQ | IS Development       | Not identified                                     |
| Dehning et al. 2003                                          | MISQ | IT and Organizations | Not identified                                     |
| Lewis et al. 2003                                            | MISQ | IT and Individuals   | Technology acceptance model                        |
| Lewis et al. 2003                                            | MISQ | IT and Individuals   | Institutional theory                               |
| Lewis et al. 2003                                            | MISQ | IT and Individuals   | Social information processing theory               |
| Lewis et al. 2003                                            | MISQ | IT and Individuals   | Social cognitive theory                            |
| Lewis et al. 2003                                            | MISQ | IT and Individuals   | Innovation diffusion theory                        |
| Chiang and Mookerjee 2004                                    | ISR  | Not identified       | Not identified                                     |
| Bhargava and Choudhary 2004                                  | ISR  | IT and Markets       | Game theory                                        |
| Pavlou and Gefen 2004                                        | ISR  | IT and Markets       | Institutional theory                               |
| Pavlou and Gefen 2004                                        | ISR  | IT and Markets       | Theory of reasoned action                          |
| Hong et al. 2004                                             | ISR  | Not identified       | Visual search theory                               |
| Hong et al. 2004                                             | ISR  | Not identified       | Central capacity theory                            |
| <u> </u>                                                     | ISR  | Not identified       | Associative network model                          |
| Hong et al. 2004<br>Schultze and Orlikowski 2004             | ISR  | IT and Markets       |                                                    |
| Schultze and Orlikowski 2004                                 | ISR  | IT and Markets       | Brockerage<br>Social embeddeness                   |
| Schultze and Orlikowski 2004<br>Schultze and Orlikowski 2004 | ISR  | IT and Markets       |                                                    |
| Dennis and Reinicke 2004                                     | MISQ | Not identified       | Social capital<br>Time/interaction and performance |
|                                                              |      |                      | theory                                             |
| Dennis and Reinicke 2004                                     | MISQ | Not identified       | Technology acceptance model                        |
| Bapna et al. 2004                                            | MISQ | IT and Markets       | Game theory                                        |
| Subramani 2004                                               | MISQ | IT and Markets       | Organizational learning theory                     |
| Subramani 2004                                               | MISQ | IT and Markets       | Transaction cost theory                            |
| Hevner et al. 2004                                           | MISQ | IS Development       | Not identified                                     |

31

•

Issue 2

| Wade and Hulland 2004                  | MISQ | IT and Organizations             | Resource based view                |
|----------------------------------------|------|----------------------------------|------------------------------------|
| Lee et al. 2004                        | ISR  | IT and Organizations             | Residual right theory              |
| Lee et al. 2004                        | ISR  | IT and Organizations             | Transaction cost theory            |
| Fichman 2004                           | ISR  | IT and Organizations             | Resource based view                |
| Fichman 2004                           | ISR  | IT and Organizations             | Organizational learning theory     |
| Fichman 2004                           | ISR  | IT and Organizations             | Network externality                |
| Asvanund et al. 2004                   | ISR  | IT and Markets                   | Network externality                |
| Karimi et al. 2004                     | ISR  | IT and Individuals               | Task-technology fit                |
| Karimi et al. 2004                     | ISR  | IT and Individuals               | Information processing theory      |
| Jones et al. 2004                      | ISR  | Not identified                   | Information overload               |
| Albert et al. 2004                     | MISQ | IT and Markets                   | Not identified                     |
| Bhattacherjee and Premkumar 2004       | MISQ | IT and Individuals               | Expectation disconfirmation theory |
| Melville et al. 2004                   | MISQ | IT and Organizations             | Resource based view                |
| Lilien et al. 2004                     | ISR  | IS Development                   | Cognition theory                   |
| Lilien et al. 2004                     | ISR  | IS Development                   | Fit-appropriation model            |
| Hu et al. 2004                         | ISR  | IT and Markets                   | Game theory                        |
| Jarvenpaa and Shaw 2004                | ISR  | IT and Groups                    | Punctuated equilibrium model       |
| Thatcher and Pingry 2004               | ISR  | IT and Markets                   | Production theory                  |
| Sundararajan 2004                      | ISR  | IT and Markets                   | Game theory                        |
| Braa et al. 2004                       | MISQ | IT and Organizations             | Actor-network theory               |
| Kohli and Kettinger 2004               | MISQ | Not identified                   | Control theory                     |
| Kohli and Kettinger 2004               | MISQ | Not identified                   | Agency theory                      |
| Iversen et al. 2004                    | MISQ | Not identified                   | Software process improvement       |
| Lindgren et al. 2004                   | MISQ | Not identified                   | Structuration theory               |
| Lindgren et al. 2004                   | MISQ | Not identified                   | Learning theory                    |
| Street and Meister 2004                | MISQ | IT and Organizations             | Punctuated equilibrium model       |
| Martensson and Lee 2004                | MISQ | Not identified                   | Not identified                     |
|                                        | ISR  |                                  | Decision theory                    |
| Raghu et al. 2004<br>Raghu et al. 2004 | ISR  | IS Development<br>IS Development |                                    |
| 8                                      | ISR  |                                  | Agency theory                      |
| Raghu et al. 2004                      |      | IS Development                   | Theory of coordination             |
| Raghu et al. 2004                      | ISR  | IS Development                   | Multi-attribute utility theory     |
| Malhotra et al. 2004                   | ISR  | IT and Individuals               | Social contract theory             |
| Malhotra et al. 2004                   | ISR  | IT and Individuals               | Theory of reasoned action          |
| Koh et al. 2004                        | ISR  | Not identified                   | Psychological contract theory      |
| Kirsch 2004                            | ISR  | IT and Organizations             | Control theory                     |
| Krishnan et al. 2004                   | ISR  | IS Development                   | Decision theory                    |
| Swanson and Ramiller 2004              | MISQ | IT and Organizations             | Mindfulness theory                 |
| Barua et al. 2004                      | MISQ | IT and Markets                   | Resource based view                |
| Potter and Balthazard 2004             | MISQ | IT and Groups                    | Memory cognition model             |
| Pawlowski and Robey 2004               | MISQ | Not identified                   | Learning theory                    |
| Bassellier and Benbasat 2004           | MISQ | IT and Organizations             | Theory of planned behavior         |
| Bassellier and Benbasat 2004           | MISQ | IT and Organizations             | Theory of reasoned action          |
| Heijden 2004                           | MISQ | IT and Individuals               | Motivation theory                  |
| Heijden 2004                           | MISQ | IT and Individuals               | Technology acceptance model        |
| Garud and Kumaraswamy 2005             | MISQ | IT and Organizations             | Organizational learning theory     |
| Garud and Kumaraswamy 2005             | MISQ | IT and Organizations             | Resource based view                |
| Garud and Kumaraswamy 2005             | MISQ | IT and Organizations             | Adaptive structuration theory      |
| Wasko and Faraj 2005                   | MISQ | IT and Groups                    | Social capital                     |
| Wasko and Faraj 2005                   | MISQ | IT and Groups                    | Collective action theory           |
| Ko et al. 2005                         | MISQ | IT and Organizations             | Absorptive capacity theory         |
| Bock et al. 2005                       | MISQ | IT and Individuals               | Theory of reasoned action          |
| Bock et al. 2005                       | MISQ | IT and Individuals               | Knowledge-based theory of the firm |

JOURNAL OF INFORMATION TECHNOLOGY THEORY AND APPLICATION

| Kankanhalli et al. 2005                                        | MISQ         | IT and Individuals                   | Social exchange theory                           |
|----------------------------------------------------------------|--------------|--------------------------------------|--------------------------------------------------|
| Kankanhalli et al. 2005                                        | MISQ         | IT and Individuals                   | Social capital                                   |
| Malhotra et al. 2005                                           | MISQ         | IT and Organizations                 | Absorptive capacity theory                       |
| Majchrzak et al. 2005                                          | ISR          | IT and Groups                        | Critical social theory                           |
| Majchrzak et al. 2005                                          | ISR          | IT and Groups                        | Theory of communicative action                   |
| Cavusoglu et al. 2005                                          | ISR          | Not identified                       | Decision theory                                  |
| Bandyopadhyay et al. 2005                                      | ISR          | IT and Markets                       | Game theory                                      |
| Zhu and Kraemer 2005                                           | ISR          | IT and Organizations                 | Innovation diffusion theory                      |
| Zhu and Kraemer 2005                                           | ISR          | IT and Organizations                 | Resource based view                              |
| Wixom and Todd 2005                                            | ISR          | IT and Individuals                   | Technology acceptance model                      |
| Wixom and Todd 2005                                            | ISR          | IT and Individuals                   | Theory of reasoned action                        |
| Wixom and Todd 2005                                            | ISR          | IT and Individuals                   | Expectancy theory                                |
| Wixom and Todd 2005                                            | ISR          | IT and Individuals                   | Theory of acceptance and use of technology       |
| Lin et al. 2005                                                | MISQ         | Not identified                       | Game theory                                      |
| Poston and Speier 2005                                         | MISQ         | Not identified                       | Information processing theory                    |
| Ryu et al. 2005                                                | MISQ         | IS Development                       | Activity theory                                  |
| Chen and Edgington 2005                                        | MISQ         | IT and Organizations                 | Resource based view                              |
| Chen and Edgington 2005                                        | MISQ         | IT and Organizations                 | Learning theory                                  |
| Chen and Edgington 2005                                        | MISQ         | IT and Organizations                 | Absorptive capacity theory                       |
| Chen and Edgington 2005                                        | MISQ         | IT and Organizations                 | Human capital theory                             |
| Chen and Edgington 2005                                        | MISQ         | IT and Organizations                 | Transaction cost theory                          |
| Chen and Edgington 2005                                        | MISQ         | IT and Organizations                 | Agency theory                                    |
| Chen and Edgington 2005                                        | MISQ         | IT and Organizations                 | Cognitive decay                                  |
| Chen and Edgington 2005                                        | MISQ         | IT and Organizations                 | Organizational memory                            |
| Chen and Edgington 2005                                        | MISQ         | IT and Organizations                 | Complementarity theory                           |
| Tanriverdi 2005                                                | MISQ         | IT and Organizations                 | Complementarity theory                           |
| Tanriverdi 2005                                                | MISQ         | IT and Organizations                 | Information processing theory                    |
| Tanriverdi 2005                                                | MISQ         | IT and Organizations                 | Resource based view                              |
| Levina and Vaast 2005                                          | MISQ         | Not identified                       | Bourdieu's theory of practice                    |
| Van de Ven 2005                                                | MISQ         | IT and Organizations                 | Transaction cost theory                          |
| Levina 2005                                                    | ISR          | IT and Organizations                 | Practice theory                                  |
| Jiang et al. 2005                                              | ISR          | Not identified                       | Decision theory                                  |
| Chidambaram and Tung 2005                                      | ISR          | IT and Groups                        | Social impact theory                             |
| Adomavicius and Gupta 2005                                     | ISR          | Not identified                       | Not identified                                   |
| Gal-Or and Ghose 2005                                          | ISR          | Not identified                       | Game theory                                      |
| Dellarocas 2005                                                | ISR          | IT and Markets                       | Reputation mechanisms                            |
| Dellarocas 2005                                                | ISR          | IT and Markets                       | Game theory                                      |
| Agarwal and Lucas 2005                                         | MISQ         | Not identified                       | Not identified                                   |
| Brown and Venkatesh 2005                                       | MISQ         | IT and Individuals                   | Technology acceptance model                      |
| Brown and Venkatesh 2005                                       | MISQ         | IT and Individuals                   | Household lifecycle theory                       |
| Brown and Venkatesh 2005                                       | MISQ         | IT and Individuals                   | Theory of planned behavior                       |
| Ahuja and Thatcher 2005                                        | MISQ         | IT and Individuals                   | Technology acceptance model                      |
| Ahuja and Thatcher 2005                                        | MISQ         | IT and Individuals                   | Innovation diffusion theory                      |
| Ahuja and Thatcher 2005                                        | MISQ         | IT and Individuals                   | Creativity theory                                |
| Ahuja and Thatcher 2005                                        | MISQ         | IT and Individuals                   | Organizational stress theory                     |
| Ahuja and Thatcher 2005                                        | MISQ         | IT and Individuals                   | Theory of reasoned action                        |
| Ahuja and Thatcher 2005                                        | MISQ         | IT and Individuals                   | Theory of trying                                 |
| Ahuja and Thatcher 2005                                        | MISQ         | IT and Individuals                   | Social information processing theory             |
| Ahuja and Thatcher 2005                                        | MISQ         | IT and Individuals                   |                                                  |
|                                                                |              |                                      | Demand-control theory                            |
| Lapointe and Rivard 2005                                       | MISQ         | Not identified<br>IT and Individuals | Not identified                                   |
| Beaudry and Pinsonneault 2005<br>Beaudry and Pinsonneault 2005 | MISQ<br>MISQ | IT and Individuals                   | Coping theory<br>Theory of acceptance and use of |

•

|                                  |      |                      | technology                                   |
|----------------------------------|------|----------------------|----------------------------------------------|
| Beaudry and Pinsonneault 2005    | MISQ | IT and Individuals   | Innovation diffusion theory                  |
| Beaudry and Pinsonneault 2005    | MISQ | IT and Individuals   | Theory of planned behavior                   |
| Beaudry and Pinsonneault 2005    | MISQ | IT and Individuals   | Task-technology fit                          |
| Jasperson et al. 2005            | MISQ | IT and Organizations | Agency theory                                |
| Jasperson et al. 2005            | MISQ | IT and Organizations | Punctuated equilibrium model                 |
| Jasperson et al. 2005            | MISQ | IT and Organizations | Structuration theory                         |
| Jasperson et al. 2005            | MISQ | IT and Organizations | Theory of acceptance and use of technology   |
| Jasperson et al. 2005            | MISQ | IT and Organizations | Theory of planned behavior                   |
| Gattiker and Goodhue 2005        | MISQ | IT and Organizations | Organizational information processing theory |
| Ferratt et al. 2005              | ISR  | IT and Organizations | Resource based view                          |
| Ferratt et al. 2005              | ISR  | IT and Organizations | Configuration theory                         |
| Menon et al. 2005                | ISR  | IS Development       | Not identified                               |
| Tam and Ho 2005                  | ISR  | IT and Markets       | Elaboration likelihood model                 |
| Ji et al. 2005                   | ISR  | Not identified       | Control theory                               |
| Ramayya et al. 2005              | ISR  | IS Development       | Set theory                                   |
| Chiasson and Davidson 2005       | MISQ | IT and Organizations | Institutional theory                         |
| Kettinger and Lee 2005           | MISQ | IT and Individuals   | Not identified                               |
| Ray et al. 2005                  | MISQ | IT and Organizations | Resource based view                          |
| Ray et al. 2005                  | MISQ | IT and Organizations | Absorptive capacity theory                   |
| Majchrzak et al. 2005b           | MISQ | IT and Groups        | Collaborative elaboration theory             |
| Suh and Lee 2005                 | MISQ | IT and Markets       | Cognitive fit theory                         |
| Walden 2005                      | MISQ | Not identified       | Contract theory                              |
| Porra et al. 2005                | MISQ | IT and Organizations | Systems theory                               |
| Porra et al. 2005                | MISQ | IT and Organizations | Punctuated equilibrium model                 |
| Piccoli and Ives 2005            | MISQ | IT and Organizations | Dynamic capability theory                    |
| Piccoli and Ives 2005            | MISQ | IT and Organizations | Organizational learning theory               |
| Wu et al. 2005                   | ISR  | Not identified       | Utility maximization theory                  |
| Wu et al. 2005                   | ISR  | Not identified       | Learning theory                              |
| Bakos et al. 2005                | ISR  | IT and Markets       | Game theory                                  |
| Pavlou and Gefen 2005            | ISR  | IT and Markets       | Cognitive dissonance theory                  |
| Pavlou and Gefen 2005            | ISR  | IT and Markets       | Theory of planned behavior                   |
| Pavlou and Gefen 2005            | ISR  | IT and Markets       | Expectation disconfirmation theory           |
| Pavlou and Gefen 2005            | ISR  | IT and Markets       | Agency theory                                |
| Pavlou and Gefen 2005            | ISR  | IT and Markets       | Social exchange theory                       |
| Chellappa and Shivendu 2005      | ISR  | IT and Markets       | Game theory                                  |
| Chellappa and Shivendu 2005      | ISR  | IT and Markets       | Contract theory                              |
| Kim et al. 2005                  | ISR  | Not Identified       | Theory of acceptance and use of technology   |
| Awad and Krishnan 2006           | MISQ | IT and Markets       | Utility maximization theory                  |
| Shaft and Vessey 2006            | MISQ | Not identified       | Cognitive fit theory                         |
| Shaft and Vessey 2006            | MISQ | Not identified       | Theory on dual-task problem solving          |
| Tanriverdi 2006                  | MISQ | IT and Organizations | Resource based view                          |
| Tanriverdi 2006                  | MISQ | IT and Organizations | Complementarity theory                       |
| Massey and Montoya-Weiss<br>2006 | MISQ | IT and Groups        | Theory of knowledge creation                 |
| Massey and Montoya-Weiss<br>2006 | MISQ | IT and Groups        | Resource based view                          |
| Massey and Montoya-Weiss<br>2006 | MISQ | IT and Groups        | Media choice theory                          |
| Massey and Montoya-Weiss<br>2006 | MISQ | IT and Groups        | Channel expansion theory                     |
| Pavlou and Fygenson 2006         | MISQ | IT and Individuals   | Theory of planned behavior                   |

| Pavlou and Fygenson 2006   | MISQ   | IT and Individuals   | Technology acceptance model                  |
|----------------------------|--------|----------------------|----------------------------------------------|
| Pavlou and Fygenson 2006   | MISQ   | IT and Individuals   | Theory of implementation intentions          |
| Nissen and Sengupta 2006   | MISQ   | Not identified       | Behavioral decision theory                   |
| Moores and Chang 2006      | MISQ   | IT and Individuals   | Theory of reasoned action                    |
| Moores and Chang 2006      | MISQ   | IT and Individuals   | Contingency theory                           |
| Moores and Chang 2006      | MISQ   | IT and Individuals   | Theory of planned behavior                   |
| Moores and Chang 2006      | MISQ   | IT and Individuals   | Theory of marketing ethics                   |
| Moores and Chang 2006      | MISQ   | IT and Individuals   | Gender socialization theory                  |
| Venkatesh and Ramesh 2006  | MISQ   | IT and Individuals   | Technology acceptance model                  |
| Ghose et al. 2006          | ISR    | IT and Markets       | Welfare theory                               |
| Galletta et al. 2006       | ISR    | IT and Individuals   | Information foraging theory                  |
| Galletta et al. 2006       | ISR    | IT and Individuals   | Theory of task complexity                    |
| Burton-Jones and Meso 2006 | ISR    | IS Development       | Representation model                         |
| Burton-Jones and Meso 2006 | ISR    | IS Development       | Theory of decomposition                      |
| Burton-Jones and Meso 2006 | ISR    | IS Development       | Semantic network theory                      |
|                            | ISR    | IT and Individuals   |                                              |
| Dinev and Hart 2006        |        |                      | Theory of reasoned action                    |
| Dinev and Hart 2006        | ISR    | IT and Individuals   | Theory of planned behavior                   |
| Dinev and Hart 2006        | ISR    | IT and Individuals   | Expectancy theory                            |
| Khatri et al. 2006         | ISR    | IS Development       | Cognitive fit theory                         |
| Butler and Gray 2006       | MISQ   | IT and Individuals   | Cognition theory                             |
| Butler and Gray 2006       | MISQ   | IT and Individuals   | Mindfulness theory                           |
| Rai et al. 2006            | MISQ   | IT and Organizations | Resource based view                          |
| Padmanabhan et al. 2006    | MISQ   | IS Development       | Not identified                               |
| Allen and March 2006       | MISQ   | IS Development       | Not identified                               |
| Stewart and Gosain 2006    | MISQ   | IT and Groups        | Not identified                               |
| Banker et al. 2006         | MISQ   | Not identified       | Dynamic capability theory                    |
| Sherif et al. 2006         | MISQ   | Not identified       | Learning theory                              |
| Sherif et al. 2006         | MISQ   | Not identified       | Conflict resolution theory                   |
| Sherif et al. 2006         | MISQ   | Not identified       | Theory of coordination                       |
| Leidner and Kayworth 2006  | MISQ   | IT and Organizations | Organizational culture theory                |
| Leidner and Kayworth 2006  | MISQ   | IT and Organizations | Bourdieu's theory of distinction             |
| Stewart et al. 2006        | ISR    | Not identified       | Institutional theory                         |
| Ranganathan and Brown 2006 | ISR    | IT and Organizations | Organizational integration theory            |
| Ranganathan and Brown 2006 | ISR    | IT and Organizations | Organizational information processing theory |
| Ranganathan and Brown 2006 | ISR    | IT and Organizations | Organizational learning theory               |
| Ranganathan and Brown 2006 | ISR    | IT and Organizations | Option theory                                |
| Hong and Tam 2006          | ISR    | IT and Individuals   | Technology acceptance model                  |
| Banker et al. 2006b        | ISR    | IT and Markets       | Transaction cost theory                      |
| Banker et al. 2006b        | ISR    | IT and Markets       | Contract theory                              |
| Markus et al. 2006         | MISQ   | Not identified       | Collective action theory                     |
| Markus et al. 2006         | MISQ   | Not identified       | Stakeholder theory                           |
| Markus et al. 2006         | MISQ   | Not identified       | Institutional theory                         |
| Nickerson and Muehlen 2006 | MISQ   | Not identified       | Institutional theory                         |
| Nickerson and Muehlen 2006 | MISQ   | Not identified       | Theory of organizational ecology             |
| Nickerson and Muehlen 2006 | MISQ   | Not identified       | Structuration theory                         |
| Weitzel et al. 2006        | MISQ   | Not identified       | Network externality                          |
| Weitzel et al. 2006        | MISQ   | Not identified       | Game theory                                  |
| Zhu et al. 2006            | MISQ   | IT and Markets       | Network externality                          |
| Zhu et al. 2006            | MISQ   | IT and Markets       | Path dependency theory                       |
| Chen and Forman 2006       | MISQ   | IT and Markets       | Not identified                               |
| Hanseth et al. 2006        | MISQ   | Not identified       | Actor-network theory                         |
| Hanseth et al. 2006        | MISQ   | Not identified       | Risk theory                                  |
| 1 Ianselli el di. 2000     | IVIISQ | INOLIGENTINEG        | I USA LIEULY                                 |

•

Issue 2

| Hanseth et al. 2006            | MISQ | Not identified       | Theory of reflective modernization           |
|--------------------------------|------|----------------------|----------------------------------------------|
| Hanseth et al. 2006            | MISQ | Not identified       | Complexity theory                            |
| Hanseth et al. 2006            | MISQ | Not identified       | Theory of high modernity                     |
| Fitzgerald 2006                | MISQ | Not identified       | Option theory                                |
| Allen et al. 2006              | MISQ | Not identified       | Trespass theory                              |
| Gregor 2006                    | MISQ | IS Development       | Not identified                               |
| Cotteleer and Bendoly 2006     | MISQ | IT and Organizations | Flow theory                                  |
| Webster and Ahuja 2006         | MISQ | Not identified       | Not identified                               |
| Srite and Karahanna 2006       | MISQ | IT and Individuals   | Technology acceptance model                  |
| Soh et al. 2006                | MISQ | IT and Markets       | Resource based view                          |
| Soh et al. 2006                | MISQ | IT and Markets       | Theory of competitive advantage              |
| Miranda and Kim 2006           | MISQ | Not identified       | Transaction cost theory                      |
| Miranda and Kim 2006           | MISQ | Not identified       | Institutional theory                         |
| Oh and Lucas 2006              | MISQ | IT and Markets       | Theory of market transparency                |
| Pavlou and El Sawy 2006        | ISR  | IT and Organizations | Dynamic capability theory                    |
| Burton-Jones and Straub 2006   | ISR  | IT and Individuals   | Not identified                               |
| Masuda and Whang 2006          | ISR  | IT and Markets       | Game theory                                  |
| Li and Sarkar 2006             | ISR  | IS Development       | Bayesian decision theory                     |
| Dellarocas 2006                | ISR  | IT and Markets       | Game theory                                  |
| Kim and Benbasat 2006          | ISR  | Not identified       | Toulmin's model of argumentation             |
| Kim and Benbasat 2006          | ISR  | Not identified       | Helson's adaptation-level theory             |
| Slaughter and Kirsch 2006      | ISR  | Not identified       | Knowledge-based theory of the firm           |
| Karahanna et al. 2006          | MISQ | IT and Individuals   | Technology acceptance model                  |
| Karahanna et al. 2006          | MISQ | IT and Individuals   | Innovation diffusion theory                  |
| Bhattacherjee and Sanford 2006 | MISQ | IT and Individuals   | Elaboration likelihood model                 |
| Bhattacherjee and Sanford 2006 | MISQ | IT and Individuals   | Innovation diffusion theory                  |
| Benaroch et al. 2006b          | MISQ | IT and Markets       | Option theory                                |
| Tam and Ho 2006                | MISQ | IT and Individuals   | Social cognitive theory                      |
| Tam and Ho 2006                | MISQ | IT and Individuals   | Consumer research theories                   |
| Tam and Ho 2006                | MISQ | IT and Individuals   | Depth of processing theory                   |
| Tam and Ho 2006                | MISQ | IT and Individuals   | Organizational information processing theory |
| Slaughter et al. 2006          | MISQ | IT and Markets       | Theory of competitive advantage              |
| Slaughter et al. 2006          | MISQ | IT and Markets       | Production theory                            |
| Mitchell 2006                  | MISQ | IT and Organizations | Dynamic capability theory                    |
| Mitchell 2006                  | MISQ | IT and Organizations | Learning theory                              |
| Komiak and Benbasat 2006       | MISQ | IT and Groups        | Theory of reasoned action                    |
| Kuechler and Vaishnavi 2006    | MISQ | IS Development       | Not identified                               |
| Nicolaou and McKnight 2006     | ISR  | IT and Groups        | Theory of interorganizational relations      |
| Nicolaou and McKnight 2006     | ISR  | IT and Groups        | Technology acceptance model                  |
| Nicolaou and McKnight 2006     | ISR  | IT and Groups        | Theory of reasoned action                    |
| Nicolaou and McKnight 2006     | ISR  | IT and Groups        | Risk theory                                  |
| Banker et al. 2006c            | ISR  | IT and Markets       | Media richness theory                        |
| Sun et al. 2006b               | ISR  | Not identified       | Not identified                               |
| Pavlou and Dimoka 2006         | ISR  | IT and Markets       | Not identified                               |
| Heninger et al. 2006           | ISR  | IT and Groups        | Not identified                               |
| Kumar and Benbasat 2006        | ISR  | IT and Individuals   | Information processing theory                |
| Kumar and Benbasat 2006        | ISR  | IT and Individuals   | Helson's adaptation-level theory             |

| Appendix 3: Theori | ies and Originatir | ng Disciplines |
|--------------------|--------------------|----------------|
|--------------------|--------------------|----------------|

| Table A2: Mapping of Theories to   |                        |
|------------------------------------|------------------------|
| Theory                             | Originating Discipline |
| Absorptive capacity theory         | Strategy               |
| Achievement motivation theory      | Psychology             |
| Act theory                         | Psychology             |
| Activity theory                    | Psychology             |
| Actor-network theory               | Sociology              |
| Adaptive structuration theory      | Sociology              |
| Agency theory                      | Economics              |
| Approach avoidance theory          | Psychology             |
| Appropriation theory               | Linguistics            |
| Associative network model          | Psychology             |
| Attribution theory                 | Psychology             |
| Auction theory                     | Economics              |
| Bayesian decision theory           | Statistics             |
| Behavioral decision theory         | Economics              |
| Belief perservance theory          | Psychology             |
| Bourdieu's theory of distinction   | Sociology              |
| Bourdieu's theory of practice      | Sociology              |
| Capm                               | Finance                |
| Central capacity theory            | Psychology             |
| Channel expansion theory           | Communication          |
| Channel theory                     | Communication          |
| Cognition theory                   | Psychology             |
| Cognitive decay                    | Psychology             |
| Cognitive dissonance theory        | Psychology             |
| Cognitive evaluation theory        | Psychology             |
| Cognitive fit theory               | Information Systems    |
| Collaborative elaboration theory   | Psychology             |
| Collective action theory           | Sociology              |
| Complexity theory                  | Computer science       |
| Component display theory           | Education              |
| Configuration theory               | Organizational science |
| Conflict resolution theory         | Psychology             |
| Contingency theory                 | Strategy               |
| Contract theory                    | Economics              |
| Control theory                     | Organizational science |
| Coping theory                      | Psychology             |
| Decision theory                    | Statistics             |
| Depth of processing theory         | Psychology             |
| Deterrence theory                  | Political Science      |
| Diagrammic reasoning framework     | Mathematics            |
| Diffusion theory                   | Sociology              |
| Domain theory of moral development | Psychology             |

Article 2

Issue 2

| Dynamic capability theory                    | Strategy               |
|----------------------------------------------|------------------------|
| Elaboration likelihood model                 | Psychology             |
| Expectancy theory                            | Organizational science |
| Expectation disconfirmation theory           | Marketing              |
| Facet theory                                 | Psychology             |
| Flow theory                                  | Psychology             |
| Game theory                                  | Economics              |
| Gender socialization theory                  | Sociology              |
| Gestalt fit theory                           | Psychology             |
| Goal setting theory                          | Psychology             |
| Graph-theory                                 | Mathematics            |
| Helson's adaptation-level theory             | Psychology             |
| Household lifecycle theory                   | Psychology             |
| Human capital theory                         | Economics              |
| Impression management theory                 | Sociology              |
| Information foraging theory                  | Psychology             |
| Information influence theory                 | Sociology              |
| Information integration theory               | Psychology             |
| Information overload                         | Organizational science |
| Information processing theory                | Psychology             |
| Innovation diffusion theory                  | Psychology             |
| Institutional theory                         | Sociology              |
| IS design theory                             | Information Systems    |
| Knowledge-based theory of the firm           | Strategy               |
| Learning theory                              | Psychology             |
| Media characteristics theory                 | Communication          |
| Media choice theory                          | Communication          |
| Media richness theory                        | Communication          |
| Memory cognition model                       | Psychology             |
| Mindfulness theory                           | Psychology             |
| Motivation theory                            | Psychology             |
| Multi-attribute utility theory               | Engineering            |
| Option theory                                | Economics              |
| Organization theory                          | Organizational science |
| Organizational culture theory                | Organizational science |
| Organizational information processing theory | Organizational science |
| Organizational integration theory            | Organizational science |
| Organizational learning theory               | Organizational science |
| Organizational memory                        | Organizational science |
| Organizational politics                      | Organizational science |
| Organizational stress theory                 | Organizational science |
| Path dependency theory                       | Economics              |
| Perceived characteristics of innovating      | Information Systems    |
| Personal construction theory                 | Psychology             |
| Persuasive arguments theory                  | Psychology             |

| Petri-net theory                     | Mathematics         |
|--------------------------------------|---------------------|
| Politeness theory                    | Linguistics         |
| Practice theory                      | Sociology           |
| Pricing theory                       | Marketing           |
| Production theory                    | Economics           |
| Prospect theory                      | Psychology          |
| Psychodynamic theory                 | Psychology          |
| Psychological contract theory        | Psychology          |
| Punctuated equilibrium model         | Biology             |
| Random utility model                 | Economics           |
| Repertory grids                      | Psychology          |
| Representation model                 | Information Systems |
| Reputation mechanisms                | Information Systems |
| Residual right theory                | Economics           |
| Resource based view                  | Strategy            |
| Resource dependence theory           | Strategy            |
| Risk theory                          | Finance             |
| Self justification theory            | Sociology           |
| Self-efficacy theory                 | Psychology          |
| Self-perception theory               | Psychology          |
| Semantic network theory              | Linguistics         |
| Service quality                      | Marketing           |
| Set theory                           | Mathematics         |
| Signal detection theory              | Physics             |
| Social capital                       | Sociology           |
| Social construction theory           | Sociology           |
| Social contract theory               | Sociology           |
| Social embeddeness                   | Sociology           |
| Social exchange theory               | Sociology           |
| Social impact theory                 | Sociology           |
| Social influence theory              | Psychology          |
| Social information processing theory | Sociology           |
| Social learning theory               | Sociology           |
| Social presence theory               | Sociology           |
| Social theory of transformation      | Sociology           |
| Socio-technical systems theory       | Sociology           |
| Speech act theory                    | Linguistics         |
| Stakeholder theory                   | Strategy            |
| Strategic grid framework             | Strategy            |
| Structuration theory                 | Sociology           |
| Sunken cost theory                   | Economics           |
| Switching cost theory                | Economics           |
| Systems dynamics                     | Physics             |
| Systems theory                       | Biology             |
| Task closure theory                  | Information Systems |

Volume 14

4 Issue 2

•

Article 2

39

| Task-technology fit                        | Information Systems    |
|--------------------------------------------|------------------------|
| Technology acceptance model                | Information Systems    |
| Theory of acceptance and use of technology | Information Systems    |
| Theory of breakpoints                      | Sociology              |
| Theory of cognitive integration            | Psychology             |
| Theory of communicative action             | Linguistics            |
| Theory of competitive advantage            | Strategy               |
| Theory of coordination                     |                        |
|                                            | Strategy               |
| Theory of decomposition                    | Ontology               |
| Theory of graph comprehension              | Psychology             |
| Theory of high modernity                   | Sociology              |
| Theory of implementation intentions        | Psychology             |
| Theory of interorganizational relations    | Organizational science |
| Theory of knowledge creation               | Psychology             |
| Theory of market transparency              | Marketing              |
| Theory of marketing ethics                 | Marketing              |
| Theory of open systems                     | Physics                |
| Theory of organizational change            | Organizational science |
| Theory of planned behavior                 | Psychology             |
| Theory of reasoned action                  | Psychology             |
| Theory of reflective modernization         | Sociology              |
| Theory of self-monitoring                  | Psychology             |
| Theory of self-presentation                | Psychology             |
| Theory of swift trust                      | Sociology              |
| Theory of task complexity                  | Psychology             |
| Theory of technology dominance             | Information Systems    |
| Theory of trying                           | Marketing              |
| Time/interaction and peformance theory     | Sociology              |
| Transaction cost theory                    | Economics              |
| Uncertainty reduction theory               | Communication          |
| Utility maximization theory                | Economics              |
| Visual search theory                       | Psychology             |
| Welfare theory                             | Economics              |
| Theory of self-monitoring                  | Psychology             |
| Theory of self-presentation                | Psychology             |
| Theory of swift trust                      | Sociology              |
| Theory of task complexity                  | Psychology             |
| Theory of technology dominance             | Information Systems    |
| Theory of trying                           | Marketing              |
| Time/interaction and peformance theory     | Sociology              |
| Transaction cost theory                    | Economics              |
| Uncertainty reduction theory               | Communication          |
| Utility maximization theory                | Economics              |
| Visual search theory                       | Psychology             |
|                                            | Economics              |
| Welfare theory                             | Economics              |

As a summary, Table A3 shows the number of theories by originating discipline. Among 174 theories identified, theories from Psychology and Sociology account for 30 percent and 18 percent respectively of the total. Economics and Organizational Science with 10 percent each also are prominent.

| Table A3: Number of Theories by Originating Discipline |       |      |  |  |  |  |  |
|--------------------------------------------------------|-------|------|--|--|--|--|--|
| Originating Discipline                                 | Total | %    |  |  |  |  |  |
| Psychology                                             | 52    | 30%  |  |  |  |  |  |
| Sociology                                              | 31    | 18%  |  |  |  |  |  |
| Economics                                              | 17    | 10%  |  |  |  |  |  |
| Organizational science                                 | 17    | 10%  |  |  |  |  |  |
| Information Systems                                    | 10    | 6%   |  |  |  |  |  |
| Strategy                                               | 10    | 6%   |  |  |  |  |  |
| Marketing                                              | 7     | 4%   |  |  |  |  |  |
| Communication                                          | 6     | 3%   |  |  |  |  |  |
| Linguistics                                            | 5     | 3%   |  |  |  |  |  |
| Mathematics                                            | 4     | 2%   |  |  |  |  |  |
| Others                                                 | 15    | 9%   |  |  |  |  |  |
| Total                                                  | 174   | 100% |  |  |  |  |  |

## Appendix 4: Theory Usage by Journal

### Is there a notable difference between articles published in MSQ and ISR in terms of the usage of theories?

Journal publication is the main communication channel for researchers to share the crux of their years of endeavor. As each journal may have a unique flavor, selection of journal outlet for submission of their manuscripts is a critical decision for researchers. This decision is usually not only influenced by the chance and the time taken for publication, but also by the review process, including the styles of editors and reviewers, which may potentially significantly reshape the manuscript. Therefore, understanding the style of each journal is valuable knowledge for researchers in deciding a publication outlet for their research. Table A4 shows the articles by research streams and published journal and the percentage of articles that employed at least one theory.

| Table A4: Number of Articles by Journals |                      |                      |             |                      |                      |             |
|------------------------------------------|----------------------|----------------------|-------------|----------------------|----------------------|-------------|
| Research Stream                          | MISQ                 |                      |             | ISR                  |                      |             |
|                                          | No theory identified | Theory<br>identified | Total       | No theory identified | Theory<br>identified | Total       |
| Not Identified                           | 13<br>(28%)          | 33<br>(72%)          | 46<br>(23%) | 11<br>(29%)          | 27<br>(71%)          | 38<br>(21%) |
| IT and Organization (ITO)                | 14<br>(26%)          | 40<br>(74%)          | 54<br>(27%) | 3<br>(11%)           | 25<br>(89%)          | 28<br>(15%) |
| IS Development (ISD)                     | 8<br>(50%)           | 8<br>(50%)           | 16 (8%)     | 16<br>(44%)          | 20<br>(56%)          | 36<br>(20%) |
| IT and Individuals (ITI)                 | 6<br>(15%)           | 33<br>(85%)          | 39<br>(19%) | 7<br>(20%)           | 28<br>(80%)          | 34<br>(19%) |
| IT and Markets (ITM)                     | 4<br>(20%)           | 16<br>(80%)          | 20 (10%)    | 3 (9%)               | 31<br>(91%)          | 34<br>(18%) |
| IT and Groups (ITG)                      | 4 (15%)              | 22<br>(85%)          | 26<br>(13%) | 1 (8%)               | 12 (92%)             | 13 (7%)     |
| Grand Total                              | 49<br>(24%)          | 152<br>(76%)         | 201 (100%)  | 41<br>(22%)          | 143<br>(78%)         | 184 (100%)  |

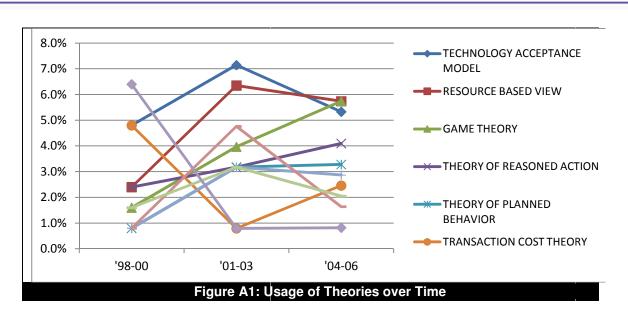
The result shows that ITO (fifty-four papers in MISQ vs. twenty-eight papers in ISR) and ITG (twenty-six papers in MISQ vs. thirteen papers in ISR) research tend to be published more in MISQ than in ISR, while ITM (twenty papers in MISQ vs. thirty-four papers in ISR) and ISD (sixteen papers in MISQ vs. thirty-six papers in ISR) research tend to be published more in ISR than in MISQ. ITI, on the other hand, has seen roughly the same number of papers published in both journals (thirty-nine in MISQ vs. thirty-four in ISR) during the time period of our study. Both journals emphasize theory foundations of research findings, with a high proportion of articles employing at least one theory. The slightly lower proportion in ISR may be attributed to its high proportion of articles in ISD, the stream in which an

established theory is not frequently used. In each stream, the proportion of the articles that employ at least one theory is similar across the two journals.

Table A5 shows the top ten theories used in articles published in each journal, and Table A6 shows top five originating disciplines.

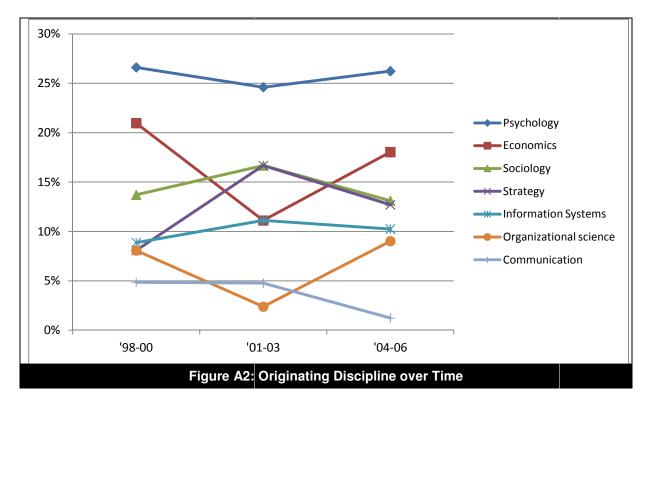
| Table A5: Top 10 Theories by Journals |                                             |    |    |                             |    |    |
|---------------------------------------|---------------------------------------------|----|----|-----------------------------|----|----|
| MISQ ISR                              |                                             |    |    |                             |    |    |
|                                       | Theory                                      | #  | %  | Theory                      | #  | %  |
| 1                                     | RESOURCE BASED VIEW                         | 17 | 6% | GAME THEORY                 | 18 | 9% |
| 2                                     | TECHNOLOGY ACCEPTANCE MODEL                 | 17 | 6% | TECHNOLOGY ACCEPTANCE MODEL | 11 | 5% |
| 3                                     | INNOVATION DIFFUSION THEORY                 | 9  | 3% | PRODUCTION THEORY           | 9  | 4% |
| 4                                     | INSTITUTIONAL THEORY                        | 9  | 3% | RESOURCE BASED VIEW         | 8  | 4% |
| 5                                     | THEORY OF PLANNED BEHAVIOR                  | 9  | 3% | THEORY OF REASONED ACTION   | 8  | 4% |
| 6                                     | THEORY OF REASONED ACTION                   | 9  | 3% | AGENCY THEORY               | 5  | 2% |
| 7                                     | TRANSACTION COST THEORY                     | 9  | 3% | DECISION THEORY             | 5  | 2% |
| 8                                     | LEARNING THEORY                             | 7  | 2% | DYNAMIC CAPABILITY THEORY   | 5  | 2% |
| 9                                     | DYNAMIC CAPABILITY THEORY                   | 6  | 2% | CONTINGENCY THEORY          | 4  | 2% |
| 10                                    | SOCIAL COGNITIVE THEORY                     | 6  | 2% | CONTROL THEORY              | 4  | 2% |
| Note                                  | : # indicates the number of usage incidents | •  |    |                             | •  |    |

| Table A6: Top Five Originating Disciplines by Journals |                        |    |     |                        |    |     |  |
|--------------------------------------------------------|------------------------|----|-----|------------------------|----|-----|--|
|                                                        | MISQ                   |    |     | ISR                    |    |     |  |
|                                                        | Originating Discipline | #  | %   | Originating Discipline | #  | %   |  |
| 1                                                      | Psychology             | 83 | 29% | Economics              | 52 | 25% |  |
| 2                                                      | Sociology              | 48 | 17% | Psychology             | 45 | 21% |  |
| 3                                                      | Strategy               | 41 | 14% | Sociology              | 22 | 10% |  |
| 4                                                      | Economics              | 32 | 11% | Information Systems    | 21 | 10% |  |
| 5                                                      | Information Systems    | 29 | 10% | Strategy               | 21 | 10% |  |
| Note: # indicates the number of usage incidents        |                        |    |     |                        |    |     |  |


Consistent with the finding that MISQ tends to publish more of ITO articles (roughly 27 percent of MISQ articles during the time period), the most frequently used theory in MISQ is Resource Based View (RBV), the top theory used in ITO research. On the other hand, Game Theory and Production Theory are ranked as the first and the third accordingly in ISR, consistent with the finding that ISR is found to publish more articles in the ITM stream.

## Appendix 5: Analysis over Time

We also examined whether there have been significant changes in the dominance of theories over time. Figure A1 show the progression of usage of these theories during the period of our study, by segregating the top-10 most dominant theories into three 3-year time periods.<sup>20</sup> We observe that some theories, such as RBV and Game Theory, gained prominence toward the latter periods of our study. However, no theory received a significant surge in attention or faded completely, indicating that the pattern is relatively stable. In particular, TAM appears as the most frequently used theory in IS in two periods (1998–2000 and 2001–2003).


<sup>&</sup>lt;sup>20</sup> Aggregation allows us to mitigate yearly fluctuation (e.g., special issues) and increase reliability.





Note: Institutional Theory overlaps exactly with Theory of Planned Behavior and is, hence, not separately visible.

Similarly, the pattern of originating disciplines also remains relatively stable (Figure A2), although Economics and Organizational Science experienced a slight drop in 2001–2003. Psychology theories clearly dominate in IS over all periods of our study. Sociology and Economics come a close second and third respectively. Psychology and Sociology together account for about 45 percent of theory use in IS in the periods 1998–2000 and 2001–2003. Information Systems constitutes 10–15 percent of theory use throughout the period of the study.



### **ABOUT THE AUTHORS**



**Sanghee Lim** is an Assistant Professor in the area of Information Systems at the Carey Business School, Johns Hopkins University. Her research primarily examines the ways in which organizations employ IT to generate value. Her current research focuses on the strategic and performance implications of IT, with particular emphasis on organizational capabilities for managing strategic alliance portfolios and networks. Her work has been presented at the International Conference on Information Systems (ICIS) and the Americas Conference on Information Systems (AMCIS). She earned a Ph.D. in Business Administration from the University of Michigan and an MS and a BS in management engineering from Korea Advanced Institute of Science and Technology (KAIST). Before pursuing her career in academia, she worked in the strategy consulting industry.



**Terence J.V. Saldanha** is an Assistant Professor of Information Systems at the School of Business, Emporia State University. He received a Ph.D. in Business Administration (Business Information Technology) from the University of Michigan. He also holds an MBA from S.P. Jain Institute of Management and Research (India) and a BE from University of Mumbai (India). His current research interests include the role of Information Technology (IT) in business innovation and the business value of IT. His research has appeared in *Journal of Operations Management, Journal of Organizational Computing and Electronic Commerce,* and in the proceedings of academic conferences, including the International Conference on Information Systems (ICIS), Americas Conference on Information Systems (AMCIS), and Hawaii International Conference on System Sciences (HICSS). He has served as a co-chair for a mini-track at AMCIS. Prior to his graduate studies, he worked in the IT services industry in the area of software development.



**Suresh Malladi** is a Ph.D. Candidate in Technology & Operations at the Ross School of Business, University of Michigan, Ann Arbor, USA. He holds an MIS from Carnegie Mellon University and an MBA and BS in Engineering from India. His research investigates the strategic implications of emerging technologies at the intersection of technology and strategy. His research has been published in academic journals and in the proceedings of International Conference on Information Systems (ICIS) and Americas Conference on Information Systems (AMCIS). In addition, he has authored more than twenty-five articles in practitioner outlets and authored chapters in two books centered on IT outsourcing and project management.



**Nigel Melville** is an Associate Professor of Information Systems at the Stephen M. Ross School of Business, University of Michigan. His professional experience includes new product development and research and development with Motorola and co-founding a customer relationship management software company. The common theme was innovative application of information systems to generate new sources of value in organizations, which is the focus of his research. Professor Melville is the author of numerous research articles appearing in leading academic and professional journals such as *Information Systems Research, MIS Quarterly, Decision Support Systems,* and *Communications of the ACM.* Professor Melville earned a BS in electrical engineering from UCLA, an MS in electrical and computer engineering from UC Santa Barbara, and a Ph.D. in management from UC Irvine.

Copyright © 2012 by the Association for Information Systems. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and full citation on the first page. Copyright for components of this work owned by others than the Association for Information Systems must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific permission and/or fee. Request permission to publish from: AIS Administrative Office, P.O. Box 2712, Atlanta, GA, 30301-2712 Attn: Reprints or via email from ais@aisnet.org.



## JOURNAL OF INFORMATION TECHNOLOGY THEORY AND APPLICATION

### **Editors-in-Chief**

Marcus Rothenberger University of Nevada Las Vegas

Mark Srite

University of Wisconsin - Milwaukee

### **Tuure Tuunanen**

University of Jyväskylä

| Governing Board                                               |                                          |                                 |                                     |  |  |  |
|---------------------------------------------------------------|------------------------------------------|---------------------------------|-------------------------------------|--|--|--|
| Kalle Lyytinen,<br>AIS Vice President for<br>Publications     | Case Western Reserve<br>University       | Lars Mathiassen                 | Georgia State University            |  |  |  |
| Ken Peffers, Founding<br>Editor, Emeritus Editor-<br>in-Chief | University of Nevada Las Vegas           | Douglas Vogel,<br>AIS President | City University of Hong Kong        |  |  |  |
| Rajiv Kishore,<br>Emeritus Editor-in-<br>Chief                | State University of New York,<br>Buffalo |                                 |                                     |  |  |  |
|                                                               | Senior                                   | Advisory Board                  |                                     |  |  |  |
| Tung Bui                                                      | University of Hawaii                     | Gurpreet Dhillon                | Virginia Commonwealth Univ          |  |  |  |
| Brian L. Dos Santos                                           | University of Louisville                 | Sirkka Jarvenpaa                | University of Texas at Austin       |  |  |  |
| Robert Kauffman                                               | Arizona State University                 | Julie Kendall                   | Rutgers University                  |  |  |  |
| Ken Kendall                                                   | Rutgers University                       | Ting-Peng Liang                 | Nat Sun Yat-sen Univ, Kaohsiung     |  |  |  |
| Ephraim McLean                                                | Georgia State University                 | Timo Saarinen                   | Aalto Univ. School of Economics     |  |  |  |
| Edward A. Stohr                                               | Stevens Institute of Technology          | J. Christopher Westland         | HKUST                               |  |  |  |
|                                                               | Sei                                      | nior Editors                    |                                     |  |  |  |
| Roman Beck                                                    | University of Frankfurt                  | Jerry Chang                     | University of Nevada Las Vegas      |  |  |  |
| Kevin Crowston                                                | Syracuse University                      | Wendy Hui                       | Curtin University                   |  |  |  |
| Karlheinz Kautz                                               | Copenhagen Business School               | Yong Jin Kim                    | State Univ. of New York, Binghamton |  |  |  |
| Peter Axel Nielsen                                            | Aalborg University                       | Balaji Rajagopalan              | Oakland University                  |  |  |  |
| Jan Recker                                                    | Queensland Univ of Technology            | Nancy Russo                     | Northern Illinois University        |  |  |  |
| Jason Thatcher                                                | Clemson University                       |                                 |                                     |  |  |  |
|                                                               | Editoria                                 | al Review Board                 |                                     |  |  |  |
| Murugan Anandarajan                                           | Drexel University                        | F.K. Andoh-Baidoo               | University of Texas Pan American    |  |  |  |
| Patrick Chau                                                  | The University of Hong Kong              | Brian John Corbitt              | Deakin University                   |  |  |  |
| Khalil Drira                                                  | LAAS-CNRS, Toulouse                      | Lee A. Freeman                  | The Univ. of Michigan Dearborn      |  |  |  |
| Peter Green                                                   | University of Queensland                 | Chang-tseh Hsieh                | University of Southern Mississippi  |  |  |  |
| Peter Kueng                                                   | Credit Suisse, Zurich                    | Glenn Lowry                     | United Arab Emirates University     |  |  |  |
| David Yuh Foong Law                                           | National Univ of Singapore               | Nirup M. Menon                  | University of Texas at Dallas       |  |  |  |
| Vijay Mookerjee                                               | University of Texas at Dallas            | David Paper                     | Utah State University               |  |  |  |
| Georg Peters                                                  | Munich Univ of Appl. Sci.                | Mahesh S. Raisinghan            | University of Dallas                |  |  |  |
| Rahul Singh                                                   | Univ of N Carolina,<br>Greensboro        | Jeffrey M. Stanton              | Syracuse University                 |  |  |  |
| Issa Traore                                                   | University of Victoria, BC               | Ramesh Venkataraman             | Indiana University                  |  |  |  |
| Jonathan D. Wareham                                           | Georgia State University                 |                                 |                                     |  |  |  |

## JITTA IS A PUBLICATION OF THE ASSOCIATION FOR INFORMATION SYSTEMS ISSN: 1532-3416

Article 2



JOURNAL OF INFORMATION TECHNOLOGY THEORY AND APPLICATION