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We present a framework for inverse optimization in a Markowitz portfolio model that is extended to
include a third criterion. The third criterion causes the traditional nondominated frontier to become a
surface. Until recently, it had not been possible to compute such a surface. But by using a new method
that is able to generate the nondominated surfaces of tri-criterion portfolio selection problems, we are
able to compute via inverse optimization the implied risk tolerances of given funds that pursue an addi-
tional objective beyond risk and return. In applying this capability to a broad sample of conventional and
socially responsible (SR) mutual funds, we find that there appears to be no significant evidence that social
responsibility issues, after the screening stage, are further taken into account in the asset allocation pro-
cess, which is a result that is likely to be different from what many SR investors would expect.
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1. Introduction

In the seminal work of Markowitz (1952, 1956) and later in
books (1959, 1987, 2000) only the expected returns and the covar-
iances of the returns of all considered assets are taken into account
when attempting to locate optimal portfolios. However, recent
studies suggest that in many situations a more complex decision
model may be at work (Abdelaziz, Aouni, & Fayedh, 2007; Balleste-
ro, Bravo, Pérez-Gladish, Arenas-Parra, & Plà-Santamaria, 2012;
Bollen, 2007; Dorfleitner, Leidl, & Reeder, 2012; Dorfleitner &
Utz, 2012; Hallerbach, Ning, Soppe, & Spronk, 2004; Steuer, Qi, &
Hirschberger, 2007; Xidonas, Mavrotas, Krintas, Psarras, & Zopo-
unidis, 2012). Toward that end, in Hirschberger, Steuer, Utz, Wim-
mer, and Qi (2013), a methodology is developed for extending the
portfolio selection model of Markowitz to include a third criterion.
Whether the third criterion is a financial or, as in this paper, a non-
financial one, this causes the nondominated frontier1 in two-
dimensional space to become a nondominated surface in three-
dimensional space, and that paper describes an algorithm for com-
puting tri-criterion nondominated surfaces exactly. In this paper,
going one step beyond, we utilize information generated by the algo-
rithm for tri-criterion nondominated surfaces in an inverse portfolio
optimization context, and the contributions of this paper are twofold.

One is that we show how inverse portfolio optimization can be
used in a tri-criterion model. In bi-criterion mean–variance portfo-
lio selection, inverse portfolio optimization is described by Zagst
and Pöschik (2008). In their description, one first computes the en-
tire nondominated frontier, for instance with the critical line meth-
od of Markowitz (1956), and then notes that each portfolio along
the nondominated frontier has its own risk tolerance (or risk aver-
sion) parameter. The goal is to compute the implied risk tolerances
of given portfolios (which are likely not to be on the nondominated
frontier) by matching them with close-by portfolios that are on the
nondominated frontier and then considering those portfolios’ risk
tolerances as proxies for the risk tolerances of the given portfolios.

A fundamental input for the inverse portfolio optimizations
conducted in this paper is a nondominated surface. Here, our paper
relates to Xidonas and Mavrotas (2013), who use an e-constraint
method (see Haimes, Lasdon, & Wismer, 1971) to generate a dis-
cretized representation of a nondominated surface. Because accu-
rate knowledge of the nondominated surface is important in
inverse optimization, we use the approach of Hirschberger et al.
(2013) which enables us to compute the entire nondominated
surface exactly, rather than being consigned to working only with
a collection of dispersed dots.

The second contribution consists of an empirical part, where we
apply inverse portfolio optimization in a tri-criterion framework to
socially responsible (SR) mutual funds. Here, our aim is to under-
stand whether the term ‘‘socially responsible’’ is merely a sales

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2013.07.024&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2013.07.024
mailto:sebastian.utz@ur.de
mailto:maximilian.wimmer@ur.de
mailto:rsteuer@uga.edu
http://dx.doi.org/10.1016/j.ejor.2013.07.024
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


Fig. 1. A bi-criterion nondominated frontier. It is composed of a connected
collection of parabolic segments. The frontier shown is from a bi-criterion problem
with n = 50 securities and has 46 segments.
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pitch or whether fund managers in fact really take social responsi-
bility into account throughout the whole investment process.

A socially responsible investing setting is appropriate for study-
ing, in addition to financial criteria, a non-financial (third) criterion
for two reasons. Firstly, the amounts already invested in SR mutual
funds point to the demand for such products. Thus, there are
clearly investors with further preferences besides financial ones.
Secondly, with there being agencies that rate the socially responsi-
ble efforts of firms, studies can be conducted to investigate the
ways SR mutual funds do or do not actually incorporate social
responsibility into their operations.

We examine a broad sample of conventional and SR mutual
funds and use ESG-scores from the Thomson Reuters ASSET4 data-
base. These ESG-scores (where ESG stands for ‘‘environment, social,
and governance’’) are assessments of firms’ efforts to satisfy stan-
dards with respect to social responsibility as in the AA1000
AccountAbility Principles. A typical ESG-score is computed as fol-
lows. A firm is rated on a number of issues such as employment
quality, health and safety, human rights, product responsibility,
emissions, board composition, and so forth. Finally, the ratings
are aggregated in such a way that the best firm in the rating uni-
verse gets a score of 100%, and the worst gets a score of 0.

The results of the empirical part in this paper relate to the re-
cent literature comparing the performance of conventional (or
unscreened) mutual funds to SR mutual funds or screened portfo-
lios in general (Bello, 2005; Guerard, 1997; Hamilton, Jo, & Stat-
man, 1993). In particular, we cannot confirm that conventional
mutual funds exhibit superior financial performance. Moreover,
in contrast to Hamilton et al. (1993), we find that conventional mu-
tual funds tend of have, if anything, a higher portfolio return vola-
tility. Although the screening process leads to fewer opportunities
for diversification and hence a smaller feasible region in decision
space, we find that SR investors do not have to accept significantly
higher risk. This indicates that socially responsible firms can be less
prone to earnings shocks.

However, comparing only financial performance ignores that
investors may gain additional utility by specifically investing in so-
cially responsible companies. In general, this additional utility
stems from higher ESG fund scores. Commonly, SR funds follow a
two-stage process. In the first stage, they filter out firms that do
not meet their specific requirements regarding social responsibility
(screening process). In the second (asset allocation) stage the
fund’s total wealth is allocated across the remaining assets. Some-
what surprisingly, we find that SR mutual funds do not exhibit
significantly higher ESG-scores than their conventional counter-
parts. Using inverse portfolio optimization, we also find that SR
mutual funds’ managers are not too anxious to give up financial
performance in favor of higher ESG-scores in the second stage.

The paper is organized as follows. The tri-criterion model,
which produces a surface as opposed to a frontier, is theoretically
introduced in Section 2. This is followed by an explanation of our
inverse portfolio optimization process in Section 3. We explain
our data in Section 4. Section 5 enumerates the hypotheses tested.
Results are discussed in Section 6, and with final remarks, the pa-
per concludes in Section 7.

2. Model

We now describe the model used in our study. Starting with a
general von Neumann and Morgenstern (1947) utility function u,
the expected utility, as shown by Pratt (1964), of a portfolio with
random portfolio return RP can be computed as

E½uðRPÞ� ¼ uðlPÞ þ
1
2

u00ðlPÞr2
P þ o r2

P

� �
ð1Þ
where lP denotes expected portfolio return and r2
P denotes the var-

iance of portfolio return. The residual term o r2
P

� �
is of smaller order

than r2
P . Following common practice, we go along with Feldstein

(1969), Tobin (1969), Tsiang (1972), Bierwag (1974), Levy (1974),
and Chamberlain (1983) who show that under the assumption that
the investor’s utility function is quadratic or that security returns
follow a multinormal distribution, maximizing (1) is equivalent to
maximizing

bW lP ;r
2
P ;A

� �
¼ �1

2
Ar2

P þ lP ; ð2Þ

where A = �u00(lP)/u0(lP) is Arrow’s absolute risk aversion (Arrow,
1965). By ‘‘equivalent’’ we mean that maximizing (1) and (2) yield
the same solutions. Substituting kl = 2/A and multiplying (2) by
kl, we have2

W lP ;r
2
P ; kl

� �
¼ �r2

P þ kllP : ð3Þ

In (3), kl represents the risk tolerance of the investor regarding
expected return. Varying the risk tolerance parameter kl over
the nonnegative portion of the real line and maximizing W
causes expected utility to yield the Markowitz nondominated
frontier in variance-expected return space as in Fig. 1. It is to
be noted that the nondominated frontier is segment-wise
parabolic. That is, it is made up of a connected collection of
parabolic segments. The dots in Fig. 1 along the nondominated
frontier are where the different parabolic segments connect with
one another.

Since expected utility W cannot explain why certain investors
would specifically choose SR mutual funds, it is suggested by Bol-
len (2007) and Derwall, Koedijk, and Horst (2011, and references
therein) that these investors also obtain utility from the social
component of their investments. Furthermore, Ballestero et al.
(2012) develop a financial-ethical model to select optimal portfo-
lios for SR funds based on the three criteria of expected return, var-
iance of return, and risk aversion. They use the concept of
stochastic goal programming (Ballestero, 2001) to incorporate an
ethical goal into the framework of classical utility theory under
uncertainty.

As discussed earlier, we confine the general Bernoulli decision
theory setting (1) to a mean–variance setup (3). Here, expected
portfolio return is calculated as

lP ¼ lT x

and portfolio variance is calculated as

r2
P ¼ xTRx;
As a technical note, this transformation requires u00 – 0. However, for risk-averse
investors, u00 < 0 always holds due to the concavity of u.
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where x is a portfolio composition vector (elements sum to one), l
is a vector of individual security expected returns, and R is an n � n
covariance matrix. As usual, xT symbolizes the transpose of x.

We now temporarily consider the approach of Bollen (2007)
who proposes adding kmmP to the expected utility expression of
(3) where mP is a simple indicator function equaling one if a portfo-
lio satisfies the investor’s requirement for social responsibility.
However, this makes mP a subjective quantity depending on each
investor’s perception. Therefore, we strive for a more objective
measure of mP and feel that the social component is to be taken into
account more appropriately in an investor’s expected utility func-
tion by the continuous quantity

mP ¼ mT x

where m is a vector of individual security ESG-scores. While the fu-
ture ESG-score of a portfolio could be interpreted as a stochastic
quantity, we consider in this paper the ESG-score to be determinis-
tic. Hence, in updating (3) to account for social responsibility, we
now have for expected utility

Uðx;R;l; m; kl; kmÞ ¼ �r2
P þ kllP þ kmmP

¼ �xTRxþ kl lT xþ km mT x ð4Þ

where km is the risk tolerance of the investor regarding social
responsibility.

Varying the risk tolerance pair (kl,km) over the nonnegative por-
tion of R2 (which we call parameter space) and maximizing U
causes expected utility to yield, in contrast to the nondominated
frontier, a nondominated surface in variance-expected return-
ESG space as in Fig. 2. In particular, maximizing U for kl ?1
(while keeping km fixed) yields a maximum expected return portfo-
lio, and maximizing U for km ?1 (while keeping kl fixed) yields a
maximum ESG portfolio. It is to be noted that the nondominated
surface is platelet-wise paraboloidic. That is, it is made up of a
connected collection of (curved) paraboloidic platelets. The lines
on the surface show where different paraboloidic platelets abut
one another.

Whereas, since Markowitz (1956), it has been possible to
compute a nondominated frontier as in Fig. 1, it has not been until
recently, namely by Hirschberger et al. (2013), that it has been pos-
sible to compute a tri-criterion nondominated surface as in Fig. 2.
Using the CIOS (Custom Investment Objective Solver) code from
Hirschberger et al. (2013) to solve for a tri-criterion nondominated
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Fig. 2. A tri-criterion nondominated surface. Note that while a nondominated
frontier is composed of a connected collection of parabolic segments, a nondom-
inated surface is composed of a connected collection of paraboloidic ‘‘platelets.’’ The
surface shown is from a tri-criterion problem with n = 50 securities and has 1460
platelets.
surface, we are able to obtain from its output, for each paraboloidic
platelet, (a) the platelet’s 2-dimensional polyhedron of (kl,km)
vectors in parameter space and (b) the platelet’s polyhedron of
efficient portfolio composition vectors in decision space. Recall
that a point is efficient if and only if its image in criterion space
is nondominated (where a point is nondominated if and only if it
is impossible to move from it to another without at least deterio-
rating one criterion).

To conclude the section, we discuss a few general issues that one
might encounter when considering expected utility U from Eq. (4).

1. Notice that the concept of the rate of substitution for two
objectives (see Krugman & Wells, 2009; Pindyck & Rubin-
feld, 2005) is not general enough to consider indifference
curves of constant utility depending on variance, expected
return, and level of social responsibility. As both expected
return and social responsibility are linear objectives, their
marginal rate of substitution appears to be linear, but this
is only true if variance is zero. If variance is positive the
indifference curves follow the exact differential equation
0 ¼ @U
@lP

dlP þ
@U
@mP

dmP þ
@U
@r2

P

dr2
P :
Here, the left-hand side is zero since the marginal utility of
the entire utility function does not change on a fixed indif-
ference curve. Clearly, the rate of substitution in the values
of expected return and social responsibility is linear, since
both functions are linear in the portfolio weights. However,
the change of portfolio weights also affects the variance of
the portfolio, which is quadratic in the portfolio weights.
Hence, given a fixed level of variance, the expected re-
turn/ESG-score indifference curve is not linear.

2. Our setting allows that risk aversion depends on initial
wealth. More precisely, the level of risk tolerance depends
on the level of the initial wealth due to the fact that each
decision maker chooses an efficient portfolio which is
appropriate to her risk appetite according to both linear
objectives as well as her level of initial wealth.

3. When considering Eq. (3) in the case of a risk-free invest-
ment Rf, the expected utility W = kl Rf depends on the risk
tolerance kl. On first glance, this might seem counter-intu-
itive, since in Eq. (2) the equivalent expected utility bW ¼ Rf

was fixed for risk-free investments. However, notice that
Eq. (2) does not denote the investor’s expected utility
directly, but is an equivalent utility function when it comes
to maximizing the expected utility (1). In fact, according to
Eq. (1), the expected utility of a risk-free investment is
E[u(Rf)] = u(Rf) (see for instance Copeland, Weston, & Sha-
stri (2005), Chapter 3), which also depends on the inves-
tor’s individual utility function.

3. Inverse optimization process

For the experiments of this paper, inverse optimizations are
needed to compute the values of the risk tolerance parameters kl
and km that are implied by a given fund’s portfolio composition vec-
tor on a given date (subsequently called a reporting date). In regu-
lar optimization, there is an objective function whose parameters
are all fixed. Then we find the point in decision space that opti-
mizes it. In inverse optimization, we start with a point in decision
space. Usually, this point, which we designate w, is not efficient.
Then the endeavor is to identify the efficient point that is closest
to w as a proxy point. Continuing, we then try to find what the val-
ues of certain parameters in the objective function would have to
be for the proxy point to optimize the objective function. Strictly
speaking, these are the parameters of the closest efficient point



Fig. 3. A picture illustrating the inverse portfolio optimization process where ~w and
~x are the criterion vectors of w and x, and x is the efficient portfolio closest to w in
decision space. The shaded area is the tri-criterion nondominated surface eE . The
white lines across the surface are iso-quants of the variance objective.
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only, but they are then considered to be the implied parameters for
w. The parameter values we are looking for in this paper are the kl
and km in U. Because the kl and km of a portfolio cannot be com-
puted directly, inverse portfolio optimization is used, which here
involves the following steps:

1. Start with a given fund’s portfolio composition vector w on a
given reporting date.

2. Compute for the given fund on the given date its tri-criterion
(financial variance-reward-ESG) nondominated surface, desig-
nated eE .
Here, we make two assumptions before calculating the nondom-
inated surface. One is that the assets a fund is invested in on a
given reporting date comprise all of the assets that the fund can
actually invest in at that time. The other is that due to risk control,
the fund enforces a minimal and maximal investing rule. That is,
for the calculation of the nondominated surface there is a mini-
mum and maximum amount that can be invested in each asset.
These amounts are given by the actual individual minimum and
maximum investments of the fund, i.e., by minj{wj} and maxj{wj}.
Therefore, the nondominated surface for a given vector w con-
sists of the images of all efficient portfolios that are achievable
with the given assets present in w and under the aforementioned
minimum and maximum constraints.
We use the CIOS algorithm to compute the nondominated sur-
face. As an output from CIOS, we obtain information about all of
the efficient polyhedra in decision space whose images form
the platelets which together form the nondominated surface in
criterion space.

3. Now, from the set of all efficient portfolio composition vectors
E, we need to find in decision space the x 2 E closest (in Euclid-
ean norm) to w. We start by first comparing all of the vertices of
all of the efficient polyhedra in decision space with w. We only
work with vertices at this point because in the output of CIOS,
the polyhedra of efficient portfolio composition vectors are only
characterized by their vertices.

4. After finding the closest vertex, we determine all of the polyhedra
of efficient portfolio composition vectors (ascertainable from
the output of CIOS) that are incident to this vertex (i.e., all poly-
hedra that have the ‘‘closest vertex’’ as one if its vertices).

5. Pixelate the polyhedron in (kl,km) parameter space associated
with each polyhedron of efficient portfolio composition vectors
identified in the above step. Utilizing the relationship in Hirsch-
berger et al. (2013) that enables us to specify the x 2 E for each
point in (kl, km) parameter space, we are able to pixelate all inci-
dent polyhedra in E.

6. Compare each pixelated point in x-space with w.
7. Then the point in parameter space associated with the pixelated

x-vector that is closest (in Euclidean norm) to w yields the
desired kl and km implied risk tolerance values.

Given a fund containing n securities, the inverse optimization
process is expressed mathematically as

min
kl ;km

kx�wk

s:t: x 2 Eðkl; kmÞ
ð5Þ

where Eðkl; kmÞ is the solution of

max
x

Uðx;R;l; m; kl; kmÞ ð6aÞ

s:t:
Xn

i¼1

xi ¼ 1 ð6bÞ

xi P min
j
fwjg for all i ð6cÞ

xi 6maxfwjg for all i ð6dÞ

j

With regard to the outer minimization problem (5), note that the
inner maximization problem (6a)—(6d) is a scalarized version of
the actual tri-criterion portfolio selection model

min xTRx

max xTl

max xTm

s:t:
Xn

i¼1

xi ¼ 1

xi P min
j
fwjg for all i

xi 6max
j
fwjg for all i

that we have been alluding to all along. The solution x of the outer
minimization problem (5) is the efficient portfolio corresponding to
portfolio w. Fig. 3 displays the procedure of inverse optimization
graphically.

Notice that according to Eq. (4), the nondominated surface ~E

could also be computed by solving a family of quadratic programs.
One possibility would be the weighting method, where (6a)—(6d)
is solved for many (kl, km) pairs. Another would be to use the
e-constraint method, where portfolio variance is minimized for a
given level of expected return and a given level of ESG-score. While
there has been some progress on improving the performance of the
e-constrained method (Hamacher, Pedersen, & Ruzika, 2007), the
accuracy of an inverse portfolio optimization still depends on the
accuracy of the generated nondominated surface. Yet, in order to
obtain a reasonable degree of accuracy for the nondominated sur-
face, it would have to be pixelated to the extent of at least several
thousand points thus requiring many quadratic programs to be
solved to generate a single nondominated surface. Since we
calculate more than 22,000 nondominated surfaces in total (see
Section 4), such a direct approach would require the solution of
tens of millions of quadratic programming problems.
4. Data and summary statistics

In this study, after computing returns from stock prices in
Thomson Reuters Datastream, we use a rolling window approach
where each window has a length of 120 months and ends on a date
that a fund reports its portfolio composition. In particular, we per-
form an inverse portfolio optimization for each reported fund com-
position and compute the one-month out-of-sample returns, i.e.,
the returns one month after the reported fund composition, both
for the fund’s portfolio and for its respective efficient portfolio.

As for ESG-scores, they are based on actions already imple-
mented in an observed company as well as on planned or started
programs regarding the socially responsible performance of a com-



Table 1
Summary ESG statistics for conventional and socially responsible mutual funds.

Year Compositions Mean
ESG

Median
ESG

Min
ESG

Max
ESG

Std
ESG

Panel (C): Conventional mutual funds
2002 152 0.621 0.626 0.408 0.817 0.060
2003 1119 0.641 0.642 0.402 0.799 0.054
2004 1372 0.666 0.674 0.437 0.854 0.064
2005 1663 0.683 0.693 0.417 0.888 0.077
2006 2522 0.683 0.692 0.416 0.882 0.075
2007 2594 0.696 0.705 0.365 0.874 0.073
2008 4930 0.688 0.709 0.342 0.886 0.099
2009 8003 0.678 0.707 0.311 0.908 0.115
2010 391 0.681 0.710 0.346 0.877 0.111

Panel (S): SR mutual funds
2002 0
2003 8 0.611 0.614 0.568 0.664 0.031
2004 20 0.653 0.642 0.584 0.732 0.051
2005 32 0.656 0.676 0.470 0.758 0.083
2006 34 0.668 0.693 0.474 0.796 0.099
2007 33 0.677 0.697 0.528 0.758 0.069
2008 51 0.672 0.683 0.518 0.842 0.073
2009 96 0.674 0.690 0.430 0.822 0.091
2010 2 0.608 0.608 0.524 0.693 0.119
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pany. Consequently, an ESG-score obtained from existing data at
the end of month t is an appropriate proxy for the socially respon-
sible performance in month t + 1.

The mutual fund compositions, which constitute the main
information needed for the inverse optimizations are derived from
the CRSP Survivor-Bias-Free US Mutual Fund database over the
period December 31, 2001 to February 27, 2010. In contrast to re-
turns, data on mutual fund compositions are typically not available
more frequently than quarterly, with the dates on which composi-
tion information is reported called, as referred to earlier, reporting
dates. Because of incomplete ESG data over the period of the study,
certain funds are dropped. If it is not possible to obtain ESG-scores
covering over 70% of a fund’s portfolio, the fund is dropped. Finally,
we filter out all funds with n < 10 or n > 150 securities. For identi-
fying which are SR mutual funds, we utilize the classifications of
the U.S. Social Investment Forum (SIF).3 This then leaves us with
27 SR mutual funds and 2346 conventional mutual funds. For the
27 SR mutual funds, we have a total of 276 different portfolio com-
positions over the different reporting dates. For the 2346 conven-
tional mutual funds, we have a total of 22,746 different portfolio
compositions over the different reporting dates.

In Table 1 we list, by year, the number of different portfolio
compositions, the mean portfolio ESG-score, median portfolio
ESG-score, minimum portfolio ESG-score, maximum portfolio
ESG-score, and the standard deviation of the different portfolio
composition ESG-scores. A fund’s composition is included in a gi-
ven year depending upon the date a change in composition is re-
ported. Note that the average mean and average maximum ESG-
scores of the SR mutual funds do not exceed those of the conven-
tional mutual funds for all years. Nevertheless, the average mini-
mum ESG-scores of SR mutual funds – that an SR investor would
suppose to be higher – are indeed higher than those of conven-
tional mutual funds. As the totals of SR mutual funds in 2002
and 2010 are 0 and 2, respectively, we do not consider these two
years furthermore.
5. Hypothesis development

In this section, we develop testable hypotheses regarding the
investment policies of SR mutual funds. While the first two
3 SIF provides a list with all known, socially responsible screened mutual funds
online at the US SIF website at http://ussif.org/resources/mfpc/screening.cfm.
hypotheses consider the actual level of social responsibility of a
fund, the next four hypotheses regard solely financial performance.

As already hinted above, asset allocation in a SR mutual fund is
typically conducted in a two-stage approach. In the first stage, a set
of suitable assets is selected by some kind of screening of all avail-
able assets, which is a binary selection process of the assets an
investor is willing to buy. Among the criteria for the screening pro-
cess can be requirements about the size and liquidity of a stock, or
certain predefined standards regarding social responsibility (see
Renneboog, Horst, and Zhang, 2008). In the second stage, the fund
manager then allocates the fund’s total wealth to the selected as-
sets. We wish to analyze whether this asset allocation ignores so-
cial responsibility, i.e., is influenced only by the expected returns
and the covariances of the returns, or whether social responsibility
is taken into account in the second stage, too.

Hypothesis 1a. Asset allocation after screening in SR mutual funds
depends upon the social responsibility of the individual assets.

Hypothesis 1a is about whether ESG-scores continue to play a
role in the asset allocation of the second stage, i.e., after the
screening process has been conducted. Notice that the importance
of the ESG-score in the second-stage asset allocation is measured
by the implied risk tolerance km with respect to the ESG-score. For
instance, small values of indicate that fund managers weight the
ESG-scores only marginally, whereas a high km indicates a high
appreciation of ESG-scores.

Consequently, it can be asked (below) whether the ESG-scores
of SR mutual fund portfolios exceed those of their conventional
peers.
Hypothesis 1b. SR mutual funds show higher weighted ESG-
scores than conventional mutual funds.

A high ESG-score can be explained either by the screening
process or by giving assets with high ESG-scores more weight in a
fund’s portfolio, i.e., by operating with a higher risk tolerance km.

Having challenged funds’ abilities to incorporate ESG-scores
into their asset allocations, we now continue with hypotheses
about their skills in generating financial performance. The financial
performance of SR mutual funds is a heavily discussed area in the
literature (see Bauer, Koedijk, & Otten, 2005; Bello, 2005; Guerard,
1997; Hamilton et al., 1993; Kreander, Gray, Power, & Sinclair,
2005; Mallin, Saadouni, & Briston, 1995; Statman, 2000). We
compare the implied financial risk tolerances, the overall returns,
the overall risks (which we measure in terms of standard devia-
tion), and the out-of-sample returns of the conventional and SR
mutual funds.
Hypothesis 2a. SR mutual funds differ from conventional mutual
funds in terms of financial risk tolerance.
Hypothesis 2b. SR mutual funds show lower returns than conven-
tional mutual funds.
Hypothesis 2c. SR mutual funds differ from conventional mutual
funds in terms of risk.
Hypothesis 2d. SR mutual funds differ from conventional mutual
funds in terms of out-of-sample return.

Table 2 formally summarizes the hypotheses from above. As for
notation, in line H1a, the Alternative Hypothesis is that the risk tol-
erance parameter regarding social responsibility is higher in SR

http://ussif.org/resources/mfpc/screening.cfm


Table 2
Test hypotheses.

Null hypothesis Alternative hypothesis

H1a (km)C P (km)S (km)C < (km)S

H1b (wTm)C P (wTm)S (wTm)C < (wTm)S

H2a (kl)C = (kl)S (kl)C – (kl)S

H2b (wTl)C 6 (wTl)S (wTl)C > (wTl)S

H2c ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT Rw
p� �

C
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT Rw
p� �

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT Rw
p� �

C
–

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTRw
p� �

S

H2d (wTrOS)C = (wT rOS)S (wTrOS)C – (wTrOS)S

Table 3
Descriptive statistics for use in hypothesis testing.

Year Financial ESG kx �wk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT
P

w
p

kl wTl wTrOS km wTv

Panel (C): Conventional mutual funds
2003 0.0482 0.22 0.0145 0.0279 0.0084 0.64 0.15
2004 0.0484 0.16 0.0156 �0.0080 0.0080 0.67 0.15
2005 0.0467 0.16 0.0139 0.0165 0.0088 0.69 0.14
2006 0.0470 0.14 0.0125 0.0151 0.0108 0.69 0.14
2007 0.0462 0.13 0.0110 �0.0154 0.0122 0.70 0.14
2008 0.0478 0.09 0.0089 �0.0033 0.0061 0.71 0.15
2009 0.0608 0.17 0.0082 0.0360 0.0146 0.71 0.14

Panel (S): SR Mutual Funds
2003 0.0466 0.23 0.0144 0.0276 0.0094 0.61 0.17
2004 0.0452 0.06 0.0157 �0.0061 0.0038 0.64 0.12
2005 0.0447 0.11 0.0124 0.0054 0.0037 0.68 0.11
2006 0.0463 0.35 0.0122 0.0117 0.0107 0.69 0.13
2007 0.0443 0.14 0.0104 �0.0126 0.0093 0.70 0.13
2008 0.0479 0.14 0.0087 �0.0386 0.0074 0.68 0.15
2009 0.0576 0.20 0.0073 0.0436 0.0096 0.69 0.13
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mutual funds than in conventional mutual funds. As another exam-
ple, in line H2d, the Null Hypothesis is that the out-of-sample re-
turns of conventional mutual funds are equal to the out-of-
sample returns of the actual portfolios of SR mutual funds.
6. Results

Using a rolling window approach, the latest available ESG-
scores before a reporting date, the inverse portfolio optimization
process, and out-of-sample returns, we now have, for our hypoth-
esis testing, the descriptive statistics of Table 3. This table and the
following tests are based on the computation of an inverse optimi-
zation for each of the 22,477 different fund compositions reported
in Table 1.

Continuing with the notation that x is an efficient portfolio and
w is an already existing mutual fund portfolio, we now have by
year, in Table 3, median values for portfolio in-sample volatility,4

implied financial risk tolerance, monthly portfolio in-sample returns,
and monthly portfolio out-of-sample returns. Also, we have median
values for implied socially responsible risk tolerance, and in-sample
portfolio ESG-scores. In the last column of the table we have median
values for the distances between the x’s and their w’s in our
experiments.

Especially for the implied km and kl, the median is a more appro-
priate statistic than the mean to depict the data in a single quantity
because of skewness and outliers. Even so, the mean values (not
reported) of the empirical distributions of all columns, apart from
those of the two implied risk tolerances, do not differ much
from the reported medians anyway. The implied risk tolerance
4 We report volatility in opposition to variance in the remainder of this section
since volatility is given in the same unit (percent per month) as return.
parameters range between 0 and 13,112 (kl), and 0 and 2215
(km), respectively. However, the informative value of these intervals
is rather limited due to the fact that the level of the risk tolerance
parameters depends on the scale of l and m as well as on the
specification of the utility function (see Kallberg & Ziemba, 1983,
for an extensive discussion).

As mean values of the parameters could be biased by outliers,
we test our hypotheses using the non-parametric Mann–Whitney
U-Test. We report the test statistics and the corresponding p-val-
ues of each test in Table 4.

The parameters kl and km display the implied risk tolerances,
which we compute via inverse portfolio optimization as described
earlier. Since the two risk tolerance parameters are computed from
the efficient portfolios x rather than from the funds’ real portfolios
w, one could be fearful that the implied parameters do not reflect
the funds’ actual parameters reasonably well. However, when con-
sidering the distances kx �wk reported in Table 3, we see that the
two fund compositions do not differ a lot.

Generally, zero values for kl or km imply infinite risk aversion.
By this we mean that no efforts will be made to increase expected
return (in the case of kl = 0) or ESG-score (in the case of km = 0) if it
comes at the expense of increasing risk above its minimal value.
While a few funds exhibit a zero kl or a zero km, we see that most
fund managers are willing to take on risk above the minimum.

To determine whether screening is the only approach used to
build SR mutual funds, we test to see if the implied tolerances km
are greater in SR mutual funds than in conventional mutual funds.
In principle, conventional mutual funds are to maximize expected
utility containing only financial terms implying a km of zero. How-
ever, conventional mutual funds may exhibit non-zero km’s due to
random noise stemming from the inverse optimizations. If SR mu-
tual funds value assets with high ESG-scores more, then we would
expect their km’s to exceed the random km’s of their conventional
counterparts. Yet, we find no statistically significant evidence to
reject the null hypothesis of H1a in any year. Therefore, we cannot
confirm that managers of SR mutual funds pursue any socially
responsible strategies in their second-stage asset allocations that
conventional fund managers do not. This is in clear contrast to
the common investor opinion that SR mutual funds would not be
disregarding social responsibility issues after their initial screen-
ings have been made. Next, we test whether there are any differ-
ences in the socially responsible performance of the two types of
funds at all. Since we have already found that SR mutual funds
do not show higher risk tolerances with respect to social responsi-
bility, higher ESG performances have to be attributed to the screen-
ing processes. However, we cannot reject the null of H1b at any
arbitrary confidence level. Therefore, our data suggest that SR mu-
tual funds do not exhibit higher ESG-scores than conventional mu-
tual funds.

With regard to the commonly used term of financial risk toler-
ance displayed as kl, we investigate H2a, but we find no strong evi-
dence with the Mann–Whitney U-Test in any year that there is a
difference between the kl’s of the SR mutual funds and the conven-
tional funds. Nevertheless, we find some evidence to reject the null
in the years 2004, 2006, and 2008, which indicates that the finan-
cial risk tolerance of conventional and SR mutual funds differ in
those years.

Adler and Kritzman (2008) and Dorfleitner and Utz (2012) show
that building portfolios in which ESG-score is an objective yields a
decrease in returns relative to portfolios where social responsibil-
ity is of only minor importance. Following this result, we test in
H2b whether the returns of SR mutual funds are significantly lower
than the returns of conventional funds. Apart from weak empirical
evidence to reject the null in 2005, we do not find any statistical
evidence in other years. This indicates that we cannot reject the
null hypothesis, which states that the distribution function of the



Table 4
Test statistics and p-values for hypotheses H1a–H2d of Table 2.

Corresp. Hyp. Mann–Whitney U-test

km wTm kl wTl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT Rw
p

wTrOS

H1a H1b H2a H2b H2c H2d

2003 Test stat. 3959 6302 4240 4421 5165 4596
p-value (0.2828) (0.9757) (0.7878) (0.5293) (0.4620) (0.4535)

2004 Test stat. 15,963 15,920 17,782 14,380 19,448 12,766
p-value (0.8957) (0.8912) (0.0228)⁄⁄ (0.3559) (0.0013)⁄⁄⁄ (0.7037)

2005 Test stat. 30,354 30,366 27,142 29,950 32,411 27,359
p-value (0.9551) (0.9555) (0.6128) (0.0610)⁄ (0.0140)⁄⁄ (0.2789)

2006 Test stat. 45,245 43,022 34,188 44,738 42,450 44,320
p-value (0.7091) (0.5123) (0.0417)⁄⁄ (0.3329) (0.9180) (0.3692)

2007 Test stat. 44,807 47,262 40,688 40,845 39,783 40,055
p-value (0.7832) (0.9130) (0.8538) (0.5586) (0.6917) (0.6303)

2008 Test stat. 132,479 147,577 105,374 129,152 118,989 139,180
p-value (0.7528) (0.9847) (0.0480)⁄⁄ (0.3606) (0.5226) (0.0901)⁄

2009 Test stat. 410,838 414,671 361,563 404,457 461,939 362,837
p-value (0.8786) (0.9092) (0.3185) (0.1874) (0.0006)⁄⁄⁄ (0.8263)

⁄ Significant parameter at 10%.
⁄⁄ Significant parameter at 5%.
⁄⁄⁄ Significant parameter at 1%.
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portfolio return of the conventional mutual funds is not signifi-
cantly higher than that of the SR mutual funds, at any arbitrary sig-
nificance level. Therefore, we are in line with several former
studies (Bauer et al., 2005; Bello, 2005; Guerard, 1997; Hamilton
et al., 1993; Kreander et al., 2005; Mallin et al., 1995; Statman,
2000) that find no significant differences in fund performance be-
tween conventional and SR mutual funds.

We also test the standard deviations of the mutual funds and
find that the null of H2c can be rejected at the 1% significance level
in 2004 and 2009 and at the 5% significance level in 2005. Thus, in
our sample, conventional mutual funds differ with some signifi-
cance from SR mutual funds in terms of standard deviation. More-
over, the data in Table 3 show that the standard deviations of
conventional mutual funds are at least as high as the standard
deviations of SR mutual funds in all years but 2008.

The out-of-sample fund returns, which describe real fund per-
formance in the month following the date of portfolio composition,
are tested in H2d. We check whether the distribution of one-month
out-of-sample returns of conventional mutual funds differs from
the distribution of one-month out-of-sample returns of SR mutual
funds. We do not find any statistical evidence to reject the null.
Thus, we cannot conclude that there are statistically significant dif-
ferences between the two respective distributions.

Summarizing the results of Table 4, we cannot find any
statistical evidence that implies profound differences between
conventional and SR mutual funds. Furthermore, we checked the
robustness of our results. With regard to supposed sensitivity of
the results of a Markowitz model to its input parameters (see for
example Fabozzi, Gupta, & Markowitz, 2002), we applied different
methods for estimating (i.e., exponentially weighted moving aver-
age) the financial parameters and we also varied the time period
upon which the estimation is based. In summary, we did not find
any profound differences in the tests’ results.
7. Summary and conclusion

In this article, we present a framework for inverse portfolio
optimization in a Markowitz model which is extended to include
a third criterion. Using the prescribed inverse optimization process
we are able to compute the implied risk tolerance parameters of
mutual funds that pursue a third criterion.
In applying this capability to a broad sample of conventional
and socially responsible (SR) mutual funds, we find that after the
screening process there appears to be no significant difference in
how assets are allocated in socially responsible and conventional
mutual funds. By considering the implied risk tolerance with re-
spect to the ESG-score, we are unable to find evidence that social
responsibility is taken into account in the asset allocation stage
at all. With regard to key indicators such as volatility, expected re-
turn, and ESG-scores (used to measure social responsibility), we
find a slightly lower volatility for the SR mutual funds’ returns,
but we find no significant differences for the expected return and
the mean ESG-scores.

The methodological ideas developed in this paper pave the
ground to various new research. For instance, the approach is not
bound to the application of SR mutual funds. Applying a tri-criteri-
al model to other real-world problems might be of interest both for
practitioners and the scientific community. Moreover, while the
decision model in the inverse optimization in this paper was tri-
criterial, further research could broaden the model to include more
than three criteria.
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