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In this paper we present an extension of goal programming 
to include linear fractional criteria. The extension forms a 
natural link between goal programming (GP) and multiple 
objective linear fractional programming (MOLFP). 

1. Introduction 

During the 1970's, two major solution ap- 
proaches emerged for solving multiple criterion 
'linear-programming-type' problems. They are goal 
programming (GP) and multiple objective linear 
programming (MOLP). 

In goal programming (Chames and Cooper [2], 
Lee [16], lgnizio [8], and Kornbluth [11]), we find 
the lexicographic minimum of 

p : { e , , P 2  . . . . .  er . . . .  ,P~}, 

s.t. d x + d  i- - d i  + =z* f o r i = l , 2  ..... k, 

x ~ S ,  
d - , d  + >~0ER k, 

where: 
(a) Pr represents the deviationai variable objec- 
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tive function of the r th priority level (where the 
deviational variable objective function is a 
weighted-sum of the deviational variables associa- 
ted with that priority class); 

(b) the dx are the (linear) criterion functions; 
(c) the d,- and d, + are the respective under- 

achievement and overachievement deviational 
variables; 

(d) the z* are the desired goal levels of achieve- 
,,nent for the k criterion functions; and 

(e) S is the feasible region {x ~ R" l A x  = b, 
x~>0}. 

When there is only one priority level, we can 
solve the linear goal programming problem using 
ordinary linear programming. When there is more 
than one priority level, we have the preemptive 
model which involves the solution of a sequence of 
LP's, one for each priority level, subject to the 
optimal deviational variable objective function 
value of each higher priority LP. 

Numerous applications of GP have been re- 
ported. See, for example, Lee (with various co- 
authors) [15,17,18 and 19], Ignizio [9] and Charnes, 
Cooper and Niehaus [4]. 

In multiple objective linear programming 
(Zeleny [23], Evans and Steuer [6] and Isermann 
[10D we formulate the MOLP 

max {c 'x=z , (x )} ,  

max {c2x=z2(x)},  

max {CkX:Zk(X)}, : 

s.t. x E S  

where: 
(a) the c~x are the (linear) criterion functions; 

and 
(b) the zk(x ) are the criterion values as a func- 

tion of x E S. 
In multiple objective linear programming, the 

strategy is to generate points from the set of 
efficient solutions in hopes that one of them will 
be optimal for the decision-maker. Illustrative ap- 
plications of the MOLP approach appear in Eat- 
man and Sealey [5] and Steuer and Schuler [21]. 
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With regard to the multiple objective program- 
ming in this paper, two slightly different notions 
of efficiency are defined• 

(1) A point .~ E S is said to be strongly efficient 
(s-efficient) if and only if there does not exist 
another x ~ S such that zAx ) >I z~(Y) for all i and 
z,(x) > z,(.~) for at least one i. 

(2) A point .~ ~ S is said to be weakly efficient 
(w-efficient) if and only if there does not exist 
another x ~ S such that zi(x ) > zi(ff) for all i. 
Note that the set of w-efficient points is a superset 
of the set of s-efficient points. Although contrived 
examples can be constructed where the set of 
w-efficient points is significantly different from 
the set of s-efficient points [14, Example 2.5], in 
practice one can expect there to be little if any 
difference between the two sets. 

Recently, multiple objective linear program- 
ming has been generalized to include linear frac- 
tional (i.e., linear numerator and linear denomina- 
tor) criteria. In Kornbluth and Steuer [13], an 
algorithm has been developed for solving the mul- 
tiple objective linear fractional program (MOLFP) 

m a x  

m a x  

cJx q-" og t 
dlx + fll --zl  , 

ckx + ot k } 
dkx + flk -- Zk ' 

s.t. x ~ S ,  

where: 
(a) the oti and fl~ are constants; and 
(b) it is customary to assume that the d ix + fl, 

> 0 for all x ~ S, 
for all w-efficient vertices of the feasible region. 
The solution set concept of w-efficiency has been 
adopted because it is more workable [14, Section 2] 
with multiple fractional criteria than s-efficiency. 

The algorithm can be viewed as a generalized 
MOLP solution procedure in that 

(a) the criteria (dx  + a , ) /d 'x  + fir) are linear 
when d ~ = 0 E R"; and 

(b) the solution set concept of w-efficiency sub- 
sumes that of s-efficieficy (the normal solution set 
concept of an MOLP). 

Frequently, we will write an MOLFP as 

J clx+og 
dlx + fli -- zl 

w-eft " 

ckx + a k 
dkx + flk - zk 

s.t. x ~ S ,  

where w-eff (with the overbar) signifies that we are 
looking for the set of w-efficient solutions in a 
maximizing sense. 

The purpose of this paper is to present a gener- 
alized approach for solving a goal program with 
linear fractional criteria. In solving such a GP, we 
will employ some techniques from (regular) goal 
programming and so,ne from multiple objective 
linear fractional programming. The idea is to per- 
form a variable change on the deviational varia- 
bles di- and d, + and then, except in the case when 
there is only one criterion associated with each 
priority level, solve the resulting mathematical 
program as an MOLFP. 

To indicate the usefulness of a linear fractional 
goal programming capability, Table l compares 
some traditional linear criteria with possible linear 
fractional criteria that are now facilitated in a GP 
modeling framework. 

2. Fractional objectives and the problems of nonlin- 
earity 

Let us assume that some or all of the DM's 
criterion functions are linear fractional of the form 

CtX + Oli 

dix + fl, 

As shown in [11], the preemptive GP mod,--! can 
be adapted to the situation in which there is only 
one criterion function associated with each priority 
class. In such cases, at any stage j, we are dealing 
with just one criterion function. If the j th criterion 
is linear, normal LP methods are used. If the j th  
criterion is fractional, we can use the single objec- 
tive linear fractional programming methods of 
Charnes and Cooper [3], Martos [20] or Bitran and 
Novaes [11 to solve for thej th  goal. This is done as 
follows. 
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Table ! 
Possible linear fractional criteria 

Functional area Traditional linear criteria Possible fractional criteria 

Financial and corporate planning profi" debt/equity ratio 

Production planning 

Marke,ing and media selection 

University planning and student admissions 

Health care and hospital planning 

dividends current ratio 
sales return on investment 
etc. etc. 
costs invento,'y/sales 
overtime actual cost/standard cost 
units produced output/employee 
etc. etc. 
salesmen allocation market share 
sales goals advertising expense/sales 
advertising exposure units j th  product sold/sales 
etc. etc. 
students accepted student/teacher ratio 
class size cost/student 
new appointments tenured/non-tenured faculty ratio 
etc. etc. 
manpower requirements cost/patient 
patients treated nurse/patient ratio 
bed-night occupancy utilization ratios 
etc. etc. 

Without loss of generality, assume j = 1. We 
augment the feasible region S by adding the con- 
straint 

ctx  + a ! 
F d i- - d l  + = z'~. 

d lx  + P'l 

Since d~x + fll > 0 (by assumption) we cross- 
multiply and. obtain 

( c' -- z~d' )x + d,-  ( d 'x  + fl, ) - d,": ( d ' x  + fl, ) = 

= z'{fl, -- a,. (2.1) 

Note that (2.1) is nonlinear. HowevEr, we can use 
the variable change 

u~- = d , -  ( d ' x  + fl ,) and u + =di  + (d ix  + fl,) 

and formulate our goal programming problem as 

rain wi ul + wl+ ul+ 
dtx  + flt 

s.t. ( c' - z'¢d' )x + u(- - u :  = z~fl, - a , ,  (2.2) 

x ~ S ,  
x , u (  , u (  >- O, 

which is a standard single objective linear frac- 
tional programming problem. Note that for each 
goal i, the w~- and wi + are intragoai weights. 
Within goal i, the wi- and w, + specify the relative 
penalties to be applied to under achievements or 

overachievements from z*. In no way do the w,- 
and w~ + attempt to reflect the relative importance 
among goals. 

If the goal z? is attainable then we will have an 
optimal solution to (2.2) with u~ and u~ + - -0  and 
S would be augmented with the constraint 

( c ,  - zrd')x= - 

before proceeding to the next priority level. If z~' 
cannot be attained, but rather ~l is the nearest 
possible attainment, then S would be augmented 
with the constraint 

(C i - -  Z l d  i )X  "-- Z I # I  - -  ~1" 

The method, however, is only successful when 
there is just one fractional criterion per priority 
class. If there are two such functions, then the 
problem becomes 

{ t . ,  / min~, ~! d lx  + fll 

d2x + f12 

s.t. ( c ' - z r d ' ) x + u ( - u ~ - = z r f l , - a  ,, 

( :  - + . ;  - = d't , - 

x E S ,  
x , u -  ,u + ".>I O. (2.3) 



J.S.H. Kornbluth. R.E. Steuer / Goal programmmg 61 

In (2.3), the h~ > 0 are intergoal weights that re- 
flect the relative importance among goals. The A, 
are often difficult for a decision-maker to estimate. 
Fortunately, in the method of this paper, such 
inter~oal weights do not have to be specified. 

The problem with (2.3) is that the sum of two 
linear fractionals is in general a quadratic (and not 
a linear) fractional function--and thus single ob- 
jective linear fractional methods cannot be used. 
Notin$~ this difficulty with the preemptive model, 
let as now consider Section 3. 

3. Frac~onal goal programming and multiple objec- 
tive li~,~ear fractional programming 

lns;ead of each fractional criterion being as- 
signed, its own priority level, let us assume the 
non-preemptive case in which all criteria are at the 
same level. Employing the variable change, we 
have 

min ,-,2 x, 

s.t. ( d - z * d ' ) x + u , -  - u ,  + = (3.1) 

=z*f l , -o t , ,  i = l  .... ,k, 

x E S ,  
X,U - ,U + I> 0 ,  

which has, at least, linear constraints. The objec- 
tive function, however, is the sum of linear frac- 
tional functions and is, in general, nonlinear. The 
difficulty of course with (3.1) is that it may have 
several local optima and may be unsolvable in any 
kind of reliable fashion. 

How then should (3.1) be solved? The method 
proposed is to use multiple objective linear frac- 
tional programming because of the ability of an 
MOLFP algorithm [13] to characterize the set of 
all possible optimal solutions (see the Appendix) 
by computing all w-efficient vertices. 

Let 

v , (  x ) = w , -  u,-  + w, + u ?  

and consider the MOLFP 

w-elf ( 
- -  (3.2) 

s.t. constraints of (3.1) 

where w-eft (with the un~lerbar) signifies that we 
are l o o k i ~  for w-efficient solutions in a minimiz- 
ing seine. (Note that w.eft{v(x)} is the same as 

w-eff{-v(x)}).  As shown in the Appendix, the 
global optimum of (3.1) will be in the neighbor- 
hood of solutions characterized by all w-efficient 
vertex solutions of (3.2). To find the optimum (or 
a sufficiently close approximation to terminate the 
decision process) we can employ the intra-set point 
generation and filtering devices described in [22]. 

The use of an MOLFP algorithm has an addi- 
tional advantage that we can combine fractional 
goals and fractional objectives in one model. This 
is accomplished as follows. 

Suppose we have k fractional criterion func- 
tions, f of which have goals z* and ( k - f )  of 
which are to be maximized. Augmenting the con- 
straint set and performing the variable change for 
the f fractional goals, we have the MOLFP 

w-ef--f { - v , ( x )  . . . . .  - v / ( x ) , z / , , ( x )  ... . .  - , (x )} .  

s.t. ( c '  - + - , , , '  : 

= z*13, - i =  l . . . . .  f .  

x ~ S ,  
x , u -  ,u + >t0. (3.3) 

The set of solutions to (3.3) will contain both 
the fractional goal programming optimum (for 
goals l , . . . , f )  and the entire set of w-efficient 
attainments with respect to both the goal devia- 
tions (vi(x)) and the objectives (z,(x)). As shown 
in [12] the updated tableau at a w-efficient vertex 
.~ can be used to determine the relative importance 
of the criteria in terms of the intergoai weights h, 
at that vertex. 

Let R be the matrix of nonbasic reduced costs 
pertaining to the updated tableau at w-efficient 
vertex .~ in (3.3). Paralleling the reasoning associa- 
ted with Theorem 1 in Geoffrion [7], E will be 
locally optimal for 

max - h , v , ( x ) +  Y~ X,z,(x) , 
i= i i=f+ I 

s.t. constraints of (3.3), 
k 

i = l  

for some vector of intergoal weights ~,. 
Using R, .~ will be locally optimal for any 

intergoal weighting vector ~, provided it satisfies 
k 

h'rR~>O, ~ h i = 1, A, >10. 
i = l  

Thus we can specify, if so desired, the set of 
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intergoal weighting -,cctors associated with a par- 
ticular w-efficient vertex. We note that these 
weights are not supplied a priori by the decision- 
maker--they are supplied a postedod by a model 
to the decision-maker. Recall that ti~e only weights 
that have to be set a priori are the intragoal 
weights ~,- and w, + for each goal fractional crite- 
rion. 

min 

+X3(d3-- + d3 + )] 
! 

s . t . -  x~ + 3x 2 
Xl 

xl + x2 + ul- "- ul + 

x I + 2 x  2 

- - X i +  X 2 

all variables I> 0, 

4. Numerical example 

Consider the linear fractional GP 

( x 4 z,,x,t 
- x  2 + 3  

x 2 + l  

(-x, + = 

s . t .  - x  t + 3x 2 ~--<0. 

x~ 4 6 ,  

x~>O, 
where: 

(a) z * = ( z ' : , z * , z ~ )  = (1,2,0), 

(b) w-  = (w?  ,w 2- ,w 3- ) = (100,200,1), 

(¢) )=(200,100,1). 
This problem might describe a highly simplified 

production problem with two decision variables x t 
and x 2. Criterion z 3 might be profit and z I and z 2 
some operating ratios. The goal z~' = 0 implies 
that we are looking for a breakeven point. The 
intragoal weighting structure implies that it is twice 
as important to minimize the overattainment of 
goal 1 as opposed to minimizing its underattain- 
ment. The opposite is true for goal 2. 

Augmenting the constraint set along with the 
variable change, we have the non-preemptive GP 

{h,( lOOu~-+ 200u~+ ) + h  2 ( 20Our + lOOu~ \] 
- - X  2 + 3  X 2 + 1 ! 

+u: 

~< 0, 
~< 6, 
----- 7, 

"-" 2 ,  

+d: -d:  =0, 

(4.1) 

that is graphed in Fig. 1. 
The shaded areas and line segments described 

by x~,x2,...  ,x  m constitute the set of all w-efficient 
solutions. Noting that level curves of the two 
fractional criteria are straight lines emanating from 
the 'rotation points' r t = (4,3) and r 2 = ( 4 , -  1), 
respectively, the dashed lines on the figure are the 
goal lines z~ = 1, z~ = 2 and z~ = 0 along with 
their associated deviational variables. 

Solving the MOLFP 

100u~ + 200u~ 

--X 2 + 3  

w-eff 200u 2 + 100u~ 

x 2 + l  

d f  + d3 + 

s.t. constraints of (4. l), 

the w-efficient vertices x ~, x 2, . . . .  x ~o result as listed 
in Table2. 

Suppose that upon examination of the w- 
efficient vertices, the decision-maker selects x 2 as 
his most preferred. At x 2 the reduced cost matrix 

88.89 100.00 -33.33 33.33 0.00 
R = 0.00 0.00 200.00 100.00 0.00 

- 3.00 0.00 1.00 - 1.00 2.00 

where the columns correspond to the nonbasic 
variables x2,u ~- ,u 2 ,u~ and d3 + . Using (3.4), the 
domain of intergoal weighting vectors h is given by 

88.89 )k~ - 3h3~>0, 
100.00 )k t I> 0, 

- 33.33 h ! + 200)k 2 + h 3 >10, 
33.33 )~l + 100~,2- ha ~>0, 

22~ 3 i>0, 
)kl + ~'2 + h3 = 1, 

hl,~,2,h3 ~> O. (4.2) 

For instance, h I = h 2 - - h  3 - -  1/3 makes X 2 opti- 
mal in (4.2). Other values such as A I = 0 , h  2 ::  
1, A3 = 0 in which the second goal is of paramount 
importance, and h I = 7/6,)~ 2 = 1/7,h 3 = 0  in 
which considerable emphasis is placed upon the 
first goal also satisfy (4.2). The space of h's for 
which x 2 is optimal is shown in Fig. 2 as the 
hatched area superimposed upon the triangle. 

With regard to the intergoal weighting vectors 
w-  and w ÷ (which in the numerical example of 
this section equal (100,200,1)and (200,100,1) re- 
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x 2 
i 

r = (4 ,  3 )  + 
% dt 

d i P ~% x 9 

* ='~  d -  p _ 10 
z 2 - ~ d 3 

x X x I 

2 
r = (4,--I} 

Fig. i. G r a p h  o f  numerical  example .  

T a b l e  2 

W - e f f i c i e n t  vertices o f  numerica l  example  

w-e f f i c i en t  coord inates  z n z 2 z~ D e v i a t i o n a l  variables 
vertex 

x n (0,0) - 4 / 3  4 0 dj = 7 / 3  

x:' ( ! ,0 )  - ! 3 -- I d t = 2  
x 3 ( 6 / 5 , 2 / 5 )  - 14 /13  2 - 4 / 5  d I = 2 7 / 1 3  

x 4 ( 4 / 3 , 1 / 3 1  - ! 2 - 5 / 4  dl = 2 

x 5 ( 3 / 2 , 1 / 2 )  - 1 5 / 3  - i dt -= 2 

x 6 (2,0) - 2 / 3  2 - -2  d u : 5 / 3  

x 7 (4,0) 0 0 - 4  d I =: I 

x 8 ( 4 , 4 / 3 )  0 0 - 8 / 3  d n ::= I 

x 9 ( 2 1 / 4 , 7 / 4 )  I - 5 / i l  - - 7 / 2  

x I° (6,1) i - 1 - 5  

d2' = 2  

d2 + = I 

d ,  = I / 3  

d ,  -= 2 

d ,  : : 2  

d ,  : 27 /11  

d 2 ::  3 

d 3 =: I 
d~ - - 4 / 5  

d~ =: 5/4 
d.~ : 1  

d 3 -=2 
d~ = 4 

d~ = 8 / 3  
d~ = 7 / 2  

d 3 = 5  

10. I. 0) 

! I ,  o. o) 

Fig. 2. The  d o m a i n  o f  ~ for w h i c h  x 2 is w-eff ic ient .  

spectively) we note without loss of  generality that 
all of  the entries in these vectors can be set to 
either 0 or 1. In case of a less than or equal to goal 
i, we could set w,- -- 0 and w /  -- 1. With a greater 
than or equal to goal i, we can set w, -~ -- 1 and 
w[ ~ = 0. And  with an equality goal i, we can set 
w,- = wi + = 1. Of course the intergoal h, weights 
computed in (4.2) would be different because the 
contents of  the reduced cost matrix R would be 
different, but the w-efficient solutions generated 
by the fractional GP procedure would be the same. 

5. Concluding remarks 

Section 2 discussed a method for solving pre- 
emptive linear fractional goal programs and Sec- 
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tion 3 presented a method for solving non- 
preemptive linear fractional goal programs. When 
using the method of Chames and Cooper [3] at 
each stage, the advantage of the preemptive ap- 
proach is that it can be solved using regularly 
available software. The advantage of the non- 
preemptive approach is that more than one frac- 
tional goal can be accommodated at a priority 
level and a priori intergoal weights are not re- 
quired. 

Although these are two different approaches, 
hybrid models are envisioned. Suppose for exam- 
ple that we have a preemptive GP with five linear 
fractional criteria: one at the I st priority level, one 
at the 2nd, two at the 3rd and one at the 4th. 

We would begin by following the preemptive 
approach for the first two priority levels. 'l'hen all 
of the remaining goals (the two from the 3rd 
priority level and the one from the 4th priority 
level) would be grouped into a single formulation 
and the preemptive model would be followed to 
complete the solution of the problem. 

Thus we have a flexible range of approaches 
consisting of the preemptive, hybrid and non- 
preemptive methods, none of which require the 
explicit specification of intergoal weights, for solv- 
ing goal programs with linear fractional criteria. 

Appendix 

An MOLFP algorithm is used to solve the 
fractional goal programming problem because the 
optimal solution of an fractional GP is w-efficient. 

Consider the two problems 

w-ef--f (fl(x), .... h ( x ) l x ~ S } ,  (AI) 

k 
max ~ hif , (x) ,  (A2) 

i=! 

s.t. x E S ,  

in which 
(a) h, > 0 for all i; and 
(b) the f~(x) are real valued functions defined 

over S. 
In connection with these problems, a point .~ ~ S 

is properly efficient if and only if 
(a) $ is s-efficient; and 
(b) there exists an M > 0 such that for all x ~ S 

with f~(x) >f~(.£) there is some index j 5/= i for 

which fj(x) < fj(2) with 

f (x) 
f / (2)  --f / (x)  ~<M. 

From Theorem I in Geoffrion [7] we know that 
if ~ is optimal in (A2), .~ is properly efficient in 
(Al). Since any point that is properly efficient is 
also s-efficient and any point that is s-efficient is 
w-efficient, all properly efficient points are w- 
efficient. Thus the reason for using an MOLFP 
algorithm to solve a non-preemptive GP because 
the set of all properly efficient points can be 
characterized by the computation of all w-efficient 
vertices. 

References 

[ ! ] G.R. Bitran and A.G. Novaes, Linear programming with a 
fractional objective function, Operations Res. (!) (1973) 
22-29. 

[2] A. Charnes and W.W. Cooper, Management Models and 
Industrial Applications of Linear Programming (Wiley, 
New York, 1961). 

[3] A. Charnes and W.W. Cooper, Programming with linear 
fractional functionals, Naval Res. Logist. Quart. 9 (1962) 
181-186. 

[4] A. Charnes, W.W. Cooper and R.J. Niehaus, Studies in 
manpower planning, Office of Civilian Manpower m~na- 
gement, Department of the Navy, Washington, DC ( ! 972). 

[5] J.L. Eatman and C.W. Sealey, Jr., A Multiobjective linear 
programming model for commercial bank balance sh,.~et 
management, J. Bank Res. IX (1979) 227- 236. 

[6] J.P. Evans and R.E. Steuer, A revised simplex method t!or 
linear multiple objective programming, Math. Progr~m- 
ming 5 (!) (1973) 54-72. 

[7] A.M. Geoffrion, Proper efficiency and the theory of vecllor 
maximization, J. Math. Anal. Appl. 22 (1968) 618-630. 

[8] J.P. Ignizio, Goal Programming and Extensions (Hea~h, 
Farnborough, 1976). 

[9] J.P. Ignizio, Antenna array beam pattern synthesis via gc,al 
programming, Department of Industrial and Management 
Systems Engineering, Pennsylvania State University ( ! 97'9). 

[10] H. Isermann, The enumeration of the set of all efficieat 
solutions for a linear multiple objective program, Opera- 
tional Res. Quart. 28 (3) (1977) 711-725. 

[! ~] J.S.H. Kornbluth, A survey of goal programming, Omega 
! (2)(1973) 193-205. 

[ 12] J.S.H. Kornbluth, Indifference regions and marginal utilhy 
weights in multiple objective linear fractional program- 
ruing, Working Paper 79-02.03, Department of Decisio,n 
Sciences, The Wharton School, University of Pennsylvania 
(1979). 

[13] J.S.H. Kornbluth and R.E. Steuer, Multiple objective lira- 
ear fractional programming, Working Paper 79-03-19, De- 
partment of Decision Sciences, The Wharton School, Unii- 
versity of Pennsylvania (1979). 



J.S.1l. Kornbluth, R.E. Steuer / Goal programming 65 

[14] J.S.H. Kornbluth and R.E. Steuer, On computing the set 
of all weakly efficient vertices in multiple objective linear 
fractional programming, in: G. Fandel and T. Gal, Eds., 
Multiple Criterion Decision Making: Theory and Applica- 
tions, Lecture Notes in Economics and Mathematical Sys- 
tems, 177 (Springer, Berlin, 1979) 189-202. 

[15] S.M. Lee, An aggregative model for municipal economic 
planning, Policy Sci. 2 (2) ( ! 97 I) 99- ! ! 5. 

[16] S.M. Lee, Goal Programming for Decision Analysis 
(Auerbach, Philadelphia, 1972). 

[17] S.M. Lee and E.R. Clayton, A goal programming model 
for academic resource allocation, Management Sci. 18 (8) 
(1972) 395-408. 

[I 8] S.M. Lee and L.J. Moore, A practical approach to produc- 
tion scheduling, Production and Inventory Management 
15 (!) (1974) 79-92. 

[19] S.M. Lee and R. Nicely, Goal programming for marketirig 
decisions: a case study, J. Marketing 38 ( i ) (1974) 24- 32 

[20] B. Martos, Hyperbolic programming, Naval Res. Logist. 
Quart. II (1964) 135-155. 

[21] R.E. Stt:uer and A.T. Schuler, An interactive multiple 
objective linear programming approach to a problem in 
forest management, Operations Res. 26 (2) (1978) ~,54-26tL 

[22] R.E. Steuer and F. Harris, latra-set point generation and 
filtering in decision and criterion space, Comput. Opera- 
tions Res. 7 ( I- 2) (1980) 41 - 53. 

[23] M. Zeleny, Linear Muitiobjectivc Programming, Lecture 
Notes in Economics and Mathematical Systems 95 
(Springer, Berlin, 1974). 


