
Annals of Operations Research
https://doi.org/10.1007/s10479-024-06047-9

ORIG INAL RESEARCH

Empirical analysis of the trade-offs among risk, return, and
climate risk in multi-criteria portfolio optimization

Sebastian Utz1,2,3 · Ralph E. Steuer4

Received: 29 December 2023 / Accepted: 24 April 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
This paper contains an empirical analysis that studies trade-offs among risk, return, and
climate risk in asset management. Using a multi-criteria optimization approach to gener-
ate nondominated portfolios in a tri-criterion context, we document how it is possible in a
portfolio to reduce climate risk substantially by allowing expected return to be reduced only
slightly. The empirical tests conducted use the sample of stocks that were in the S&P 500
over the period 2001–2020. In demonstrating the versatility of our approach, six different
linear measures of climate risk are employed.

Keywords Climate risk · Portfolio selection · Nondominated surface · Trade-offs

1 Introduction

Multi-criteria decision-making (MCDM) and its application to finance is a widely studied
area of operations research (Steuer, 1986; Steuer & Na, 2003; Zopounidis & Doumpos,
2002). The famous problem in this area is the problem of portfolio selection as developed
by Markowitz (1952, 1956, 1959). As formulated by Markowitz, portfolio selection is a
bi-criterion problem with one objective being quadratic, to minimize risk, and the other
being linear, to maximize return (i.e., expected return). The purpose of the formulation is
to compute the set of all nondominated criterion vectors, which when graphed takes on the
shape of a frontier which, in deference to finance, will be called the efficient frontier. Since
an efficient frontier shows, and only shows, all criterion vector candidates for optimality,
a decision maker finds his or her optimal portfolio by selecting his or her most preferred
point on the efficient frontier. This is the well-studied case for bi-criterion risk–return, or

B Ralph E. Steuer
rsteuer@uga.edu

Sebastian Utz
sebastian.utz@wiwi.uni-augsburg.de

1 Department of Climate Finance, University of Augsburg, Universitaetsstr. 16, 86159 Augsburg,
Germany

2 Centre for Climate Resilience, University of Augsburg, Universitaetsstr. 12, 86159 Augsburg,
Germany

3 Sustainable Finance Research Platform, 10117 Berlin, Germany

4 Department of Finance, University of Georgia, Athens, GA 30602, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-024-06047-9&domain=pdf
http://orcid.org/0000-0003-1570-752X
http://orcid.org/0000-0002-4585-2456


Annals of Operations Research

mean–variance (M–V), portfolio selection. However, a recent challenge is how to include a
third criterion (i.e., an additional objective) thus causing the problem of portfolio selection
to become a tri-criterion one. The additional objectives most often mentioned in this regard
relate to sustainability as in the case in this paper with our concerns being about climate
risk. Thus, with climate risk, our interest in portfolio selection is not just to minimize risk
and to maximize return but to also minimize climate risk for which we use in our testing six
different linear measures.

Hirschberger et al. (2013) present an MCDM algorithm that is able to compute the set
of all nondominated criterion vectors of a tri-criterion portfolio selection problem with one
quadratic and two linear criteria, which is what is needed in this paper. In this case, when
graphed, the set of all nondominated criterion vectors forms what would be called in finance,
andwhatwe call in this paper, an efficient surface. Again, one’s optimal portfolio is one’smost
preferred of the nondominated criterion vectors generated. But here, it is on the problem’s
efficient surface as opposed to being on an efficient frontier as it is in a bi-criterion case.
While it is harder to compute an efficient surface than an efficient frontier, the big difference
between tri-criterion and bi-criterion portfolio selection is that it is far more difficult without
cognitive assistance to identify one’s most preferred point on an efficient surface. A recent
contribution that provides cognitive assistance that benefits the results of this paper is the
non-contour (NC)-efficient fronts method described in Steuer and Utz (2023).

The importance in studying climate risk as a third objective in portfolio selection derives
from at least four sources:

(1) The topic is important for a large proportion of investors since the sustainable investment
market has grown rapidly over the last decade.1

(2) There continue to be differences of opinion in academia about the relationships between
the financial and third criterion portfolio outcomes in the sustainable investment industry
(Cornell, 2021; López Prol & Kim, 2022).

(3) Sustainable investing is considered as a tool for curbing negative externalities (Hong et
al., 2023; Pástor et al., 2021; Riedl & Smeets, 2017).

(4) Climate change, with extreme weather events and average temperature increases, is now
an important business and international agenda item.

From a theoretical point of view, sustainable investing contrasts with traditional investing
in which investors care about only two characteristics (risk and return) as they make their
investment decisions. Sustainable investors, while not ignoring risk and return, strive to put
their money to work in ways that are consistent with their values if at all possible. Moreover,
sustainable investors tend to remain committed to their sustainable holdings even when they
perform poorly (Webley et al., 2001) indicating that they are willing to sacrifice proportions
of their financial returns in order to support sustainability efforts (Hofmann et al., 2008;
Dorfleitner & Utz, 2014; Mackenzie & Lewis, 1999; Pasewark & Riley, 2010). This is in
accordance with the viewpoint that over and above the utility earned by the risk-return
performance of a portfolio, sustainable investors gain further utility from the sustainability
properties of a portfolio. In this way, as found by Levitt and List (2007), sustainable investors
are usually willing to engage in trades between the utilities of wealth and morality.

In this paper, we conduct an empirical study that shows the trade-offs among risk, return,
and climate risk for a real-world data set consisting of stocks that were in the S&P 500 over

1 According to the Global Sustainable Investment Review 2022 technical report (www.gsi-
alliance.org/members-resources/gsir2022), over $30 trillion out of the $115 trillion in global assets under
management are presently overseen in a sustainable fashion.
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the period 2001 to 2020. Our main strategy is to generate the efficient surfaces of different
portfolio selection problems for the six different linear measures of climate risk employed.

On each efficient surface, we apply the NC-efficient fronts method of Steuer and Utz
(2023) to study the trade-offs among the investment objectives of risk, return, and climate
risk. The main idea of the approach is to determine by how much the climate risk of a
portfolio can be reduced ceteris paribus if an investor relaxes portfolio expected return by a
small amount, i.e., by a few basis points. We find, for instance, that a reduction in portfolio
expected return of 5 basis points/month reduces climate risk by at least 17.8%. However, the
rate of substitution between climate risk and expected return is not linear but decreases as
reductions in expected return become larger. Thus, the first few basis points can be swapped
for a comparably large reduction of climate risk. Therefore, our analysis on the climate risk
dimension of portfolios shows that untapped room for improvement regarding the level of
climate risk of portfolios in final investment decisions exists. In summary, the approach of
this paper enables us to substantially reduce climate risk in portfolios while insufficiencies
in financial performance can generally be avoided.

Because all speciality funds, Paris-aligned benchmark portfolios2 included, rely on screens
excluding certain investments, theory tells us that such funds cannot be expected to beat the
market over the long haul as they are less diversified (Adler & Kritzman, 2008). Therefore, it
is assumed that the exposure to risk for sustainable investment is higher than for unsustainable
or traditional investment (Carswell, 2002). But is this true?While numerous studies have been
conducted to test this supposition, the literature has been unable to reach a conclusion about
the issue because of the diversity of results obtained from different studies. Several empirical
studies (Humphrey & Tan, 2014; Kempf & Osthoff, 2007; Pizzutilo, 2017) document that
additional sustainable screenings have no general negative effect on financial performance
and risk. These studies consider investments in firms which to a certain extent are sustainable
(e.g., they have high ESG ratings). ESG (environmental, social, and governance) investments
only exclude the sustainably worst firms from a portfolio, and thus reduce the likelihood of
being involved in an ethical or ecological scandal, and as shown in our tests, do not necessarily
lead to lower financial returns.

2 Methodology and data

The empirical study of this paper shows the trade-offs that exist between the financial and
non-financial sides of a tri-criterion portfolio selection problem when using six different
climate risk measures from three data providers. In the following, we provide details about
the methodological framework, the sample, and the dataset.

2.1 NC-efficient fronts approach

We study trade-offs in sustainable portfolio selection based upon the NC-efficient fronts
approach of Steuer and Utz (2023). The idea of the approach is to make it easier to deal
with the complexity of the three-dimensional trade-offs present in a climate risk problem by
focusing on, after screening, risk vs. return first so as to obtain an M–V efficient frontier,
and then after extracting the risk from the most preferred point on the M–V efficient frontier,
looks at trade-offs between return and climate risk holding risk constant at the extracted level

2 As described in “Understanding Paris-aligned indexes” published by State Street Global Advisors (https://
www.ssga.com/library-content/pdfs/understanding-paris-aligned-indexes.pdf).
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of risk. At the center of the approach are NC-efficient fronts. “NC-efficient” is in the name to
avoid confusion with iso-quants or contours as NC-efficient fronts are lines like none other of
which we are aware of in the literature. An NC-efficient front is a line on the efficient surface
on which all portfolios have an expected return reduced by some fixed amount compared to
portfolios on the M–V efficient frontier with the same variance.

Consider Fig. 1. The gray area is the projection of an efficient surface onto theM–V plane.
The “northwest boundary” of the projection is the M–V efficient frontier of the problem, and
the dashed line is a projection of an NC-efficient front onto theM–V plane. Since wemeasure
the reduction in expected return in basis points (bp), we refer to an NC-efficient front, whose
reduction in expected return is bp, as a bp NC-efficient front. As for the bp NC-efficient
front of the dashed line, its bp = μ

Pef
1

− μP1 as indicated on the graph, where P1 is a

portfolio on the bp NC-efficient front and Pef
1 is its corresponding portfolio (i.e., portfolio of

identical variance) on theM–V efficient frontier. To be noted is that theM–V efficient frontier
constitutes the far periphery of the efficient surface from the point of minimum climate risk
minCR. Following from this, the point of minCR is the closest to us of all points on the
efficient surface. In this way, the bp NC-efficient front of the dashed line bulges toward us
and is closer to the viewer than the M–V efficient frontier.

In connection with notation to be used shortly, for Pi a criterion vector on the efficient
surface that is on the bp NC-efficient front, let its inverse image in x-space be designated
xbp,i , and for the corresponding point of Pi on the M–V efficient frontier with the same
variance Pef

i , let its inverse image be designated xi .
For portfolios whose criterion vectors are on an NC-efficient front, let us now calculate a

sensitivity measure �ν ∈ [0, 100]. �ν is designed to capture the percentage by which the
climate risk gap, that is, the difference between the climate risk of the minimum climate risk
portfolio and the climate risk of portfolios on the M–V efficient frontier, can be closed by a
reduction of bp in expected return as a function of variance. For giving up bp of expected
return of a portfolio xi on the M–V efficient frontier, the sensitivity measure is defined as

�ν = νT xi − νT xbp,i

νT xi − νmin
(100) (1)

where ν is the objective function coefficient vector of the climate risk measure in question
and νmin is the climate risk measure’s minimum value.

In (1), the numerator is the difference in climate risk between portfolios Pef
1 and P1 both

of which have the same variance in Fig. 1, and the denominator is the difference of the climate
risks between the portfolios ofminimumclimate riskminCRand Pef

1 . The difference between

the climate risks of the portfolios Pef
1 and P1 represents the improvement in the climate risk

objective if the investor is willing to give up μ
Pef
1

−μP1 in expected return keeping variance

fixed. Since this absolute number might be influenced by the units of different climate risk
measures, we relate this difference to the maximal possible improvement in climate risk
starting from portfolio Pef

1 , i.e., to the difference in the climate risks between the portfolios

Pef
1 and minCR. The quotient �ν tells the investor the proportion of the climate risk gap

between the M–V efficient portfolio Pef
1 and the minimum climate risk portfolio minCR that

can be closed by a choosing portfolio P1.
Additionally, one can combine several lines of the measure �ν in one figure to show

the relative improvements in climate risk possible by varying variance for different levels
of bp reductions in expected return (see Figure 3 in Steuer and Utz (2023)). Thus, such a
graph illustrates the three-dimensional trade-offs in two dimensions with the horizontal axis
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Fig. 1 In gray is the projection of an efficient surface onto the M–V plane. Pef
1 and P1 are two portfolios on

the efficient surface that have the same variance but differ in expected return by μ
Pef
1

− μP1 as indicated.

With bp = μ
Pef
1

− μP1 , the dashed line is the bp NC-efficient front. At the vertices of the projection are the

minimum variance, maximum return, and minimum climate risk points of the efficient surface. Also shown is
the maximum Sharpe ratio point with the white line being the line of maximum Sharpe ratio points over the
efficient surface

varying variance, the vertical axis showing �ν, and the different lines representing different
levels of bp reductions in expected return.

The empirical analysis in this paper is based on the calculation of a set of NC-efficient
fronts. On each NC-efficient front, we consider different specific places called portfolio
points atwhich the portfolios generated in this study are compared,where a portfolio point is a
particular location on the efficient surface, or a portfolio possessing a particular composition.3

For the maxSHA and maxRet points on the M–V efficient frontier, they come from the
following formulations

max

{
μT x√
xT� x

}
max {μT x}

s.t. x ∈ S s.t. x ∈ S

where x ∈ R
n is the vector of portfolio weights on the securities, μ ∈ R

n is the vector
of expected returns, and � ∈ R

n×n is the covariance matrix. The portfolios maxSHA0
and maxRet0 as such lie on the portion of the periphery of the efficient surface furthest
away from the minCR point. Concentrating on the maxSHAbp and maxRetbp points on the
bp = 5, 10, 20 NC-efficient fronts, they come from the following formulations

3 Other than for the equally-weighted and value-weighted portfolios, portfolio points are not portfolios.
Portfolio points are just points on the efficient surface as it is their inverse images that are portfolios.
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Table 1 This table provides a guide to the 19 portfolio points at which the problems of this paper are compared
along with their abbreviations

Item q-number Portfolio point description Abbreviation

1 1 Equally-weighted portfolio 1/n

2 2 Value-weighted portfolio vw

3 3 minCR point minCR

4 4, 8, 12, 16 minVar points on the four bp NC-efficient fronts minVarbp

5 5, 9, 13, 17 maxSHA points on the four bp NC-efficient fronts maxSHAbp

6 6, 10, 14, 18 minCR points on the four bp NC-efficient fronts minCRbp

7 7, 11, 15, 19 maxRet points on the four bp NC-efficient fronts maxRetbp

Of the 19, 17 are on the efficient surface. On each of the bp = 0, 5, 10, 20 NC-efficient fronts (where the
0 NC-efficient front is the M–V efficient frontier), there are 4 (the minVarbp, maxSHAbp, minCRbp, and
maxRetbp) points. Of the 19 portfolio points, five are familiar with the other 14 new for addressing the tri-
criterion concerns of this paper. The entries in the q-number column are designations and come into play
starting at the end of this section

max

{
μT x√
xT� x

}
max {μT x}

s.t. x ∈ E(bp) s.t. x ∈ E(bp)

In these formulations, E(bp), not S, is the feasible region. Here E(bp) consists of only
those x ∈ S that define the NC-efficient front for the bp-value in question, bp = 5, 10, 20.
For example, solving max{μT x/

√
xT�x} with E(bp = 10) generates the portfolio point

whose abbreviation is maxSHA10. As another example, solving max{μT x}with E(bp = 20)
generates the portfolio point whose abbreviation is maxRet20.

The NC-efficient fronts of a problem are roughly parallel to the M–V efficient frontier in
a curved sense on the efficient surface. But of course they are not contours because the third
objective varies over them. The greater the bp-value, the further an NC-efficient front is from
the M–V efficient frontier and the closer it is to the minCR point. Now, for the minCRbp
points on the M-V efficient frontier and other NC-efficient fronts, the formulation is

min {νT x}
s.t. x ∈ E(bp) (2)

where ν is the coefficient vector of the climate risk measure. This is not only for bp =
5, 10, 20, but for bp = 0 as well, because S does not work in this case. This is because if S
were used in place of E(bp), (2) would generate the minCR point.

For items 1 and 2 in the Table 1 we have the equally-weighted (1/n) and value-weighted
(vw) portfolios as portfolio points. The 1/n portfolio is included because of the strong showing
of that portfolio point in the study byDeMiguel et al. (2009b), as none of the other portfolios in
that paperwere able to exhibit better out-of-sample risk-adjusted returns than the 1/n portfolio.
However, with both the 1/n and vw portfolios being inefficient, there is no meaningful way
to represent these portfolios on the display of Fig. 1 and hence dots for them are not shown.

Whereas the path of maxRetbp points as we cross the NC-efficient fronts is the portion
of the periphery of the efficient surface directly connecting the maxRet0 and minCR points,
a typical path of maxSHAbp portfolio points as we cross the NC-efficient fronts is the white
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line in Fig. 1. It is not possible to indicate a typical path of minCRbp portfolio points as one
crosses the NC-efficient fronts even though the paths of maxSHAbp and minCRbp points
wind up at the same minCR point. The reason is this: While one knows about where the
maxSHA0 point is on an M–V efficient frontier by just looking at it (tangency point on the
M–V efficient frontier), the location of the minCR0 point on an M–V efficient frontier could
be anywhere. Thus, one would never know where the path of minCRbp points starts on the
M–V efficient frontier to be able to draw it to theminCR point. In each problem the path could
have a completely different originating point. This is why no attempt is made to indicate a
path of minCRbp portfolio points in Fig. 1.

2.2 Sample and dataset

We now discuss the sample and dataset used in our study. The main sample of our study
consists of all firms that have been included in the S&P500 for at least one month during
the period from 2001 and 2020. In total, these are 1,049 firms. We optimize portfolios on
a monthly basis using only firms that were S&P500 constituents in the respective months.
For each month and all sample firms, we estimate the expected returns and the covariance
matrices based on the previous 120 monthly returns which we derived from price data from
Bloomberg. Moreover, we also downloaded market capitalizations from Bloomberg. In addi-
tion to financial data, we use different measures for climate risk following the climate finance
literature (Bolton & Kacperczyk, 2021; Sautner et al., 2023; Görgen et al., 2020).

In detail, we use the following six measures: From Trucost, we obtained (1) the total envi-
ronmental impact ratio (Total Impact Ratio) measured as the total direct and indirect external
environmental cost divided by revenue4 and (2) total emission intensity (Total Intensity)
measured as the greenhouse gases emitted by the direct operations of and suppliers to a firm
divided by revenue. Both measures are to be minimized to reduce climate risk. From our sec-
ond data source, i.e., the measures described in Sautner et al. (2023), we use (3) the Climate
Change Exposure (CC Expo) measure, (4) the Climate Change Risk (CC Risk) measure, and
(5) the Climate Change Sentiment (CC Senti) measure. The first two of these measures are to
be minimized to reduce climate risk, the latter is to be maximized. Finally, we use (6) Carbon
β from Görgen et al. (2020) that is to be minimized to reduce climate risk. The measures
of climate risk from Trucost are available from 2005 to the end of 2019, the climate change
measures of Sautner et al. (2023) are available from 2001 to the end of 2020, and Carbon β

of Görgen et al. (2020) is available from the end of 2012 to the end of 2019.
Table 2 shows the distribution of the climate risk measures of the firm-level time-series

average quantities. The climate change measures of Sautner et al. (2023) show concentration
of the numbers close to zero. Moreover, the distributions of CC Expo and CC Risk are
skewed to the right which indicates a relatively high number of low values, and only a
few very high values. This observation also holds for the total impact ratio and the total
intensity measure. Carbon β ranges from− 3.035 to 4.964 with a mean of− 0.168 and is less
skewed and less leptokurtic than the other measures. We also provide the correlation matrix
of how the different climate risk measures relate to one another in Table 3. The correlation of

4 The Trucost definition of this variable reads as follows: “Direct external environmental impacts are those
impacts that a company has on the environment through its own activities; indirect environmental impacts
of a company result from the goods and services that they purchase. Trucost applies a monetary value to
environmental impact quantities, which represents the global average damage of each environmental impact.
All values employed are secondary - the synthesis of existing published and unpublished literature. The sum
of all the direct and indirect external environmental costs of the company is expressed as a percentage of
revenue."
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Table 3 This table shows the correlation matrix of the firm-level time-series average values of the six consid-
ered climate risk measures

Tot Imp Rat Tot Int CC Expo CC Risk CC Senti Carbon β

Tot Imp Rat 1.000 0.859 0.092 0.041 −0.112 −0.025

Tot Int 0.859 1.000 0.060 0.030 −0.113 −0.032

CC Expo 0.092 0.060 1.000 0.842 −0.235 0.034

CC Risk 0.041 0.030 0.842 1.000 −0.236 0.043

CC Senti −0.112 −0.113 −0.235 −0.236 1.000 0.044

Carbon β −0.025 −0.032 0.034 0.043 0.044 1.000

measures within provider are seen to deviate substantially from zero whereas the correlation
of measures between providers is seen to be close to zero. The Climate Change Sentiment
measure is negatively correlated with all measures except Carbon β. In general, the negative
correlation is reasonable since this number has to be maximized to reduce climate risk. Since
the correlations between the measures of different providers are rather low, it makes sense
to consider all of them in our test since they might consider different aspects of climate risk.
In using all of them, we are able to study the trade-offs of financial performance and climate
risk for different aspects of climate risk.

2.3 Empirical strategy

In the following, we describe the experiments that we have conducted to demonstrate the
thesis of this paper. In using a rolling-sample approach to carry out our experiments, we
consider subsamples using 121 consecutive monthly return observations. This enables L =
178 subsamples for the Total Intensity and Total Impact Ratiomeasures, L = 215 subsamples
for the CC Expo, CC Risk, and CC Senti measures, and L = 84 subsamples for Carbon β.

Since the subsamples are repetitive, we just focus on how one works on one of the datasets
to illustrate. Each subsample uses 121 consecutive monthly return observations with the last
at time t . From the first 120 months we form expected return vectorμ∗ and covariance matrix
�∗ from which we compute the M–V efficient frontier of the dataset at time (t − 1). After
this is done, next is needed ν∗, the climate risk vector at time (t − 1) for the stocks in the
dataset. The vector does not come from historical data. It comes from the latest available
numbers of the respective variable of climate risk.

Now,withμ∗,�∗, ν∗ and knowledge of all (σ 2
i , μi ) combinations along theM–V efficient

frontier, we solve the following optimization model

min{νT∗ x}
s.t. xT�∗x = σ 2

i

μT∗ x ≥ μi − bp

x ∈ S

where “min” is replaced by “max” in the case of the CC Senti climate risk measure, and all
securities have an upper bound of 5% in S, for enough (σ 2

i , μi ) combinations to construct the
bp = 5, 10, 20 NC-efficient fronts, as the M–V efficient frontier (that is, the 0 NC-efficient
front) has already been computed. Then from the four frontiers, we obtain the portfolios that
are the inverse images of the 16 portfolio points on them. Combining them with the inverse
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Fig. 2 For the L = 178 optimizations of Total Intensity, we have the above four plots for the four portfolio
points indicated. Using triangles, we have the Total Intensity, out-of-sample return combinations at the four
portfolio points along the M–V efficient frontier (i.e., along the 0 NC-efficient front). Using dots, we have
the Total Intensity, out-of-sample return combinations at the four portfolio points along the 10 NC-efficient
front. Note the amount by which the cloud of dots is below the cloud of triangles as a result of the 10bp/mth
reduction in expected return

image of the minCR point, the 1/n equally-weighted portfolio, and the vw value-weighted
portfolio, we have the xt−1,q portfolios of the q = 1, . . . , 19 portfolio points of the dataset.
With the subsample’s 121-st monthly return observation giving us the subsample’s out-of-
sample return vector Rt , we are able to compute the subsample’s 19 out-of-sample realized
portfolio returns RT

t xt−1,q for the t-th time period. Furthermore, for q = 1, . . . , 19, the
νT∗ xt−1,q give us the climate risks of these portfolios. Doing this for all subsamples and all
six datasets provides us with the inputs needed for the statistical tests that follow.

3 Results

In the following section,we show that the amounts of climate risk thatM–Vportfolio selection
is unable to bring to the attention of an investor, but can be identified by application of the
Hirschberger et al. (2013) and Steuer and Utz (2023) approaches. In particular, the results
show that the reduction of climate risk does not come with a substantial reduction in financial
out-of-sample performance. Figure2 illustrates a summary of the empirical results for four
different portfolio points, i.e., the minimum variance portfolio, the maximum Sharpe ratio
portfolio, the maximum return portfolio, and the minimum climate risk portfolios on the
M–V efficient frontier and on the 10 NC-efficient front.

Figure 2 displays climate risk on the vertical axis (measured by Total Intensity from
Trucost) and the out-of-sample returns, i.e., the realized portfolio return in the month after
the portfolio construction, on the horizontal axis. The “triangles” represent the climate risk-
return combinations of the M–V efficient frontier portfolio points, while the “dots” represent
the ones of the 10 NC-efficient front portfolio points. It is easy to observe that the 10 NC-
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efficient front portfolio points have substantially lower climate risk than the M–V efficient
frontier portfolios, since the cloud of dots is located lower than the one of the triangles. If the
financial performance of the 10 NC-efficient front portfolios would be substantially lower
than that of the M–V efficient frontier portfolios, we would expect to see a shift of the cloud
of the 10 NC-efficient front portfolios to the left. However, we do not observe such a shift.
Therefore, the figure provides anecdotal evidence that the 10 NC-efficient front portfolios
perform apparently better in terms of climate risk and not worse in the financial dimension.
In the following, we show further statistics that support the conclusion from the illustrating
example.

3.1 Climate risk performance and portfolio characteristics at the portfolio points

In this investigation, we provide a summary of portfolio characteristics {i.e., volatility, return,
climate risk, and the sensitivity measure �ν defined in Eq. (1)} of the M–V efficient frontier
and the 5, 10, 20 NC-efficient front portfolios. Each front is characterized by up to 100
portfolios, and the basis of the reported statistics are all portfolios on all fronts. Table 4
shows the mean, minimum, and maximum values of these portfolios. Each panel in the table
displays the results for another measure of climate risk. The volatility of the portfolio return
(displayed in the first row of each panel) appears to increase on average from the M–V
efficient frontier to the NC-efficient fronts for all climate risk measures except of Panel 6
(Carbon β). The average expected returns of the portfolios appear rather constant across the
different fronts. However, the climate risk objective reduces clearly on the NC-efficient fronts
compared to the M–V efficient frontier. The reduction in climate risk is also documented by
increasing �ν measures. Since �ν specifies how much less climate risk can be attained by
heading into the efficient surface from a given point on the M–V efficient frontier for a given
relaxation in expected return, variance held constant, we observe that in Panel 1, the reduction
of the expected return by 10bp generates portfolios that on average have a �ν = 48.85%.
This means, that the reduction of the expected return by 10bp helps to close the climate risk
gap from M–V efficient frontier portfolios to the climate risk of the minCR portfolio point
by almost 50%. While a 20bp reduction in expected returns yields a �ν measure of about
60–68% for the Trucost climate risk measures and about 77–92% for the Sautner et al. (2023)
climate risk measures, the �ν for the Carbon β in Panel 6 is on average 32%.

In Table 4 the second, third, and fourth sets of columns show the reduction of climate risk
that the procedure by Hirschberger et al. (2013) is able to identify as a function of different
levels of expected return relaxation. Going into the table in more detail, the 5 NC-efficient
fronts experience an average reduction in climate risk of about 37.8%, 47.3%, 53.5%, 89.7%,
53.5%, and 17.8%. In other words, the 5bp/mth relaxation enables us to eliminate on average
17.8–89.7% of the climate risk that would otherwise be included in the portfolios by not
using the tri-objective model to generate portfolios.

Continuing with the 10bp reduction, we observe the �ν values to increase. However,
although these portfolios are twice the distance away from the M–V efficient frontier in
terms of expected return as the 5 NC-efficient front portfolios, the �ν do not double. For
instance, an expected-return relaxation of 10bp/mth, or 1.2%/year, leads to a 1.624 reduction
in total impact ratio on average (4.952 − 3.328) over no relaxation and a �ν of 48.85%.
While relaxations up to 1.2%/yr would probably be within the leeway given to fundmanagers
by investors caring for climate risk, relaxations beyond this might soon become too much.
However, for sake of discussion, should we double the relaxation to 20bp/mth, we would
only experience a further reduction of .66 in the Total Impact Ratio measure. This is less

123



Annals of Operations Research

Ta
bl
e
4

Su
m
m
ar
y
st
at
is
tic
s
fo
r
vo
la
til
ity

(V
ol
a)
,r
et
ur
n
(R
et
),
le
ve
lo

f
cl
im

at
e
ri
sk

(C
R
),
an
d
th
e
se
ns
iti
vi
ty

m
ea
su
re

�
ν
on

th
e
M
–V

ef
fic

ie
nt

fr
on

tie
r
an
d
5,
10

,2
0
N
C
-e
ffi
ci
en
t

fr
on
ts
fo
r
th
e
si
x
di
ff
er
en
tm

ea
su
re
s
of

cl
im

at
e
ri
sk

of
th
is
pa
pe
r

E
ffi
ci
en
tf
ro
nt
ie
r

5
N
C
-e
ffi
ci
en
tf
ro
nt

10
N
C
-e
ffi
ci
en
tf
ro
nt

20
N
C
-e
ffi
ci
en
tf
ro
nt

m
ea
n

m
in

m
ax

m
ea
n

m
in

m
ax

m
ea
n

m
in

m
ax

m
ea
n

m
in

m
ax

Pa
ne
l1

:
Tr
uc
os
tT
ot
al

Im
pa
ct
R
at
io

V
ol
a

0.
03

3
0.
01

8
0.
08

0
0.
04

2
0.
02

1
0.
11

3
0.
04

2
0.
02

1
0.
11

2
0.
04

2
0.
02

1
0.
10

3

R
et

0.
02

5
0.
01

1
0.
03

9
0.
03

0
0.
01

4
0.
04

5
0.
02

9
0.
01

4
0.
04

5
0.
02

8
0.
01

4
0.
04

4

C
R

4.
95

2
2.
10

9
8.
19

1
4.
03

2
1.
28

1
11

.2
21

3.
32

8
1.
15

4
10

.9
26

2.
66

8
0.
95

3
11

.0
87

�
ν

37
.7
98

2.
06

6
69

.1
57

48
.8
50

4.
19

0
76

.3
30

60
.8
21

2.
06

1
83

.9
69

Pa
ne
l2

:
Tr
uc
os
tT
ot
al

In
te
ns
it
y

V
ol
a

0.
03

3
0.
01

8
0 .
08

0
0.
04

2
0.
02

1
0.
11

3
0.
04

2
0.
02

1
0.
11

3
0.
04

2
0.
02

1
0.
10

7

R
et

0.
02

5
0.
01

1
0.
03

9
0.
03

0
0.
01

4
0.
04

5
0.
02

9
0.
01

4
0.
04

5
0.
02

8
0.
01

4
0.
04

4

C
R

47
0.
54

9
16

1.
80

2
89

2.
77

2
34

7.
84

4
74

.2
28

12
46

.5
01

24
9.
53

5
65

.7
62

11
95

.4
04

18
9.
55

51
.2
71

12
24

.5
18

�
ν

47
.2
75

3.
31

8
88

.6
10

59
.3
57

7.
22

9
90

.3
91

68
.3
98

4.
67

1
92

.4
49

Pa
ne
l3

:
Sa
ut
ne
r
et
al
.(
20

23
)
C
li
m
at
e
C
ha

ng
e
E
xp
os
ur
e

V
ol
a

0.
03

5
0.
01

9
0.
08

9
0.
05

0
0.
02

1
0.
14

8
0.
05

0
0.
02

1
0.
14

3
0.
05

0
0.
02

1
0.
14

2

R
et

0.
02

5
0.
01

1
0.
04

0
0.
02

8
0.
01

0
0.
04

7
0.
02

8
0.
00

9
0.
04

7
0.
02

7
0.
00

9
0.
04

6

C
R

0.
00

1
0.
00

0
0.
00

2
0.
00

0
0.
00

0
0.
00

1
0.
00

0
0.
00

0
0.
00

1
0.
00

0
0.
00

0
0.
00

1

�
ν

53
.5
06

8.
52

8
77

.9
04

65
.8
95

18
.1
48

84
.7
19

77
.7
63

5.
25

5
92

.9
27

Pa
ne
l4

:
Sa
ut
ne
r
et
al
.(
20

23
)
C
li
m
at
e
C
ha

ng
e
R
is
k

V
ol
a

0.
03

5
0.
01

9
0.
08

9
0 .
05

1
0.
02

1
0.
14

3
0.
05

1
0.
02

1
0.
14

2
0.
05

0
0.
02

1
0.
13

7

R
et

0.
02

5
0.
01

1
0.
04

0
0.
02

8
0.
01

0
0.
04

7
0.
02

7
0.
00

9
0.
04

7
0.
02

6
0.
00

9
0.
04

6

C
R

0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0

�
ν

89
.6
77

7.
99

2
10

0
90

.7
79

15
.0
8

99
.9
99

92
.1
12

9.
57

2
10

0

123



Annals of Operations Research

Ta
bl
e
4

co
nt
in
ue
d

E
ffi
ci
en
tf
ro
nt
ie
r

5
N
C
-e
ffi
ci
en
tf
ro
nt

10
N
C
-e
ffi
ci
en
tf
ro
nt

20
N
C
-e
ffi
ci
en
tf
ro
nt

m
ea
n

m
in

m
ax

m
ea
n

m
in

m
ax

m
ea
n

m
in

m
ax

m
ea
n

m
in

m
ax

Pa
ne
l5

:
Sa
ut
ne
r
et
al
.(
20

23
)
C
li
m
at
e
C
ha

ng
e
Se
nt
im

en
t

V
ol
a

0.
03

5
0.
01

9
0.
08

9
0.
05

0
0.
02

1
0.
14

8
0.
05

0
0.
02

1
0.
14

3
0.
05

0
0.
02

1
0.
14

2

R
et

0.
02

5
0.
01

1
0.
04

0
0.
02

8
0.
01

0
0.
04

7
0.
02

8
0.
00

9
0.
04

7
0.
02

7
0.
00

9
0.
04

6

C
R

0.
00

1
0.
00

0
0.
00

2
0.
00

0
0.
00

0
0.
00

1
0.
00

0
0.
00

0
0.
00

1
0.
00

0
0.
00

0
0.
00

1

�
ν

53
.5
06

8.
52

8
77

.9
04

65
.8
95

18
.1
48

84
.7
19

77
.7
63

5.
25

5
92

.9
27

Pa
ne
l6

:
G
ör
ge
n
et
al
.(
20

20
)
C
ar
bo

n
β

V
ol
a

0.
03

3
0.
01

8
0.
08

5
0.
03

2
0.
01

8
0.
07

4
0.
03

2
0.
01

8
0.
07

4
0.
03

2
0.
01

8
0.
07

1

R
et

0.
02

3
0.
00

9
0.
03

7
0.
02

3
0.
01

0
0.
03

7
0.
02

3
0.
00

9
0.
03

6
0.
02

2
0.
00

9
0.
03

5

C
R

−0
.1
30

−0
.4
38

0.
24

2
−0

.4
91

−0
.6
78

0.
09

9
−0

.5
88

−0
.7
95

−0
.1
35

−0
.7
05

−0
.9
34

−0
.1
72

�
ν

17
.8
05

0.
39

3
25

.8
86

24
.3
50

0.
73

8
35

.1
78

32
.2
22

1.
21

2
46

.8
83

T
he

va
lu
es

re
po

rt
ed

in
th
is
ta
bl
e
ar
e
ba
se
d
on

17
8
(2
15

an
d
84

)
m
on

th
ly

ge
ne
ra
te
d
fr
on

tie
rs

w
ith

10
0
po

rt
fo
lio

s
on

ea
ch

fr
on

t
fo
r
th
e
si
x
di
ff
er
en
t
cl
im

at
e
ri
sk

m
ea
su
re
s.
T
he

re
sp
ec
tiv

e
st
at
is
tic
s
(m

ea
n,

m
in
,a
nd

m
ax
)
ar
e
ba
se
d
on

al
lt
he

ge
ne
ra
te
d
nu
m
be
rs
on

th
e
pa
rt
ic
ul
ar

fr
on
tie
rs

123



Annals of Operations Research

than that gained in the first basis point of relaxation. What we are witnessing is the trade-off
situation changing from a large amount of climate risk for a small amount of relaxation, to a
small amount of climate risk for a large amount of relaxation. The explanation is curvature
of the efficient surface. This suggests that a sweet spot might exist between a 5 and 10bp
relaxation.

3.2 Financial performance at the portfolio points

With the empirical force of the gains in climate risk of the previous subsection clear, investors
might ask how financial portfolio characteristics are affected. Therefore, we consider diver-
sification and risk-adjusted returns of NC-efficient front portfolios in the following.

First, our measure for diversification is the industry weight, i.e., the sum of all weights of
the stocks in the industry, in a portfolio on a particular NC-efficient front. For this exercise,
we follow the ICB industry classification with the 11 industries Basic Materials, Consumer
Discretion, Consumer Staples, Energy, Financials, Health Care, Industrials, Real Estate,
Technology, Telecommunications, and Utilities. Table 5 shows the average industry weights
for the M–V efficient frontier and the 5, 10, 20 NC-efficient fronts. The six panels show the
distribution of the average weights for the six measures of climate risk.

The table shows that the weights of the industries Energy and Utilities decreased with
a higher reduction of the expected return (and more focus on climate risk). However, with
the exception of the Energy industry in Panels 3, 4, and 5, even the portfolios that focus
more on a reduction of climate risk (i.e., the portfolios on the NC-efficient fronts) invest a
reasonable proportion of their wealth in each industry. The Health Care industry is the only
industry with increasing weights for all measures of climate risk. Besides, the weights of
the Financials industry also increase for the Trucost climate risk measures and Carbon β,
and remain almost unchanged for the experiments using the Sautner et al. (2023) measures.
Overall, the diversification of portfolios with respect to the industry distribution appears to
be not substantially affected by the application of the tri-criterion portfolio model introduced
by Hirschberger et al. (2013).

The next quantity we analyze is risk-adjusted portfolio return. We do this by employing
the five-factor model of Fama and French (2015) and noting the α’s generated and their
significance levels. The news from our tests is that the α’s generated show (in the majority
of the cases) no evidence of risk-adjusted returns of any materiality having to be given up.
That is, what we show is that the significant gains in climate risk of the previous subsection
can be achieved without diminutions in monthly risk-adjusted returns of any significance.

In carrying out our Fama and French tests, we compare the out-of-sample returns at each
of the 19 portfolio points of each dataset with the returns of well-documented risk factors on
financial markets. In doing so, we can determine whether the portfolios that result from our
optimizations generate market-rate compensations for the risks taken. The well-documented
risk factors taken into account are those of the five-factor Fama-French model, i.e., excess
returns on the market portfolio RMkt −R f (with R f the vector of risk-free rates), the return
on the small minus big portfolio RSMB, the return on the high minus low portfolio RHML , the
return on the robust minus weak portfolio RRMW , and the return on the conservative minus
aggressive portfolio RCMA. In this way, we estimate the average abnormal return of portfolio
point q over the period with out-of-sample returns by αq using the following model

Rq = αq1 + βMkt (RMkt − R f ) + βSMBRSMB+
+ βHMLRHML + βRMWRRMW + βCMARCMA + εq . (3)
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Table 5 This table reports average sector portfolio weights on the M–V efficient frontier and on the 5, 10, 20
NC-efficient fronts

Mean weight Eff. frontier 5 NC-efficient front 10 NC-efficient front 20 NC-efficient front

Panel 1: Trucost Total Impact Ratio

Basic Materials 0.029 0.021 0.026 0.026

Consumer Discretion 0.187 0.140 0.136 0.121

Consumer Staples 0.118 0.109 0.102 0.087

Energy 0.081 0.066 0.061 0.047

Financials 0.057 0.105 0.112 0.139

Health Care 0.204 0.313 0.314 0.314

Industrials 0.074 0.051 0.051 0.052

Real Estate 0.019 0.029 0.035 0.044

Technology 0.111 0.109 0.112 0.12

Telecommunications 0.028 0.019 0.019 0.019

Utilities 0.091 0.039 0.034 0.032

Panel 2: Trucost Total Intensity

Basic Materials 0.029 0.022 0.025 0.024

Consumer Discretion 0.187 0.154 0.137 0.120

Consumer Staples 0.118 0.126 0.113 0.092

Energy 0.081 0.047 0.044 0.034

Financials 0.057 0.088 0.115 0.158

Health Care 0.204 0.329 0.335 0.339

Industrials 0.074 0.044 0.047 0.044

Real Estate 0.019 0.026 0.032 0.034

Technology 0.111 0.109 0.110 0.12

Telecommunications 0.028 0.018 0.015 0.012

Utilities 0.091 0.036 0.027 0.022

Panel 3: Sautner et al. (2023) Climate Change Exposure

Basic Materials 0.026 0.040 0.046 0.050

Consumer Discretion 0.173 0.124 0.125 0.131

Consumer Staples 0.122 0.120 0.108 0.102

Energy 0.068 0.001 0.001 0.001

Financials 0.043 0.028 0.030 0.041

Health Care 0.225 0.350 0.359 0.354

Industrials 0.080 0.084 0.086 0.089

Real Estate 0.022 0.038 0.042 0.047

Technology 0.121 0.167 0.160 0.142

Telecommunications 0.029 0.026 0.026 0.029

Utilities 0.090 0.022 0.017 0.015
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Table 5 continued

Mean weight Eff. frontier 5 NC-efficient front 10 NC-efficient front 20 NC-efficient front

Panel 4: Sautner et al. (2023) Climate Change Risk

Basic Materials 0.026 0.040 0.040 0.041

Consumer Discretion 0.173 0.102 0.102 0.104

Consumer Staples 0.122 0.119 0.117 0.114

Energy 0.068 0.002 0.004 0.007

Financials 0.043 0.025 0.03 0.037

Health Care 0.225 0.325 0.317 0.301

Industrials 0.080 0.088 0.089 0.092

Real Estate 0.022 0.034 0.034 0.035

Technology 0.121 0.174 0.174 0.171

Telecommunications 0.029 0.027 0.028 0.031

Utilities 0.090 0.062 0.065 0.067

Panel 5: Sautner et al. (2023) Climate Change Sentiment

Basic Materials 0.026 0.040 0.046 0.050

Consumer Discretion 0.173 0.124 0.125 0.131

Consumer Staples 0.122 0.120 0.108 0.102

Energy 0.068 0.001 0.001 0.001

Financials 0.043 0.028 0.030 0.041

Health Care 0.225 0.350 0.359 0.354

Industrials 0.080 0.084 0.086 0.089

Real Estate 0.022 0.038 0.042 0.047

Technology 0.121 0.167 0.160 0.142

Telecommunications 0.029 0.026 0.026 0.029

Utilities 0.090 0.022 0.017 0.015

Panel 6: Görgen et al. (2020) Carbonβ

Basic Materials 0.024 0.010 0.006 0.006

Consumer Discretion 0.250 0.230 0.232 0.222

Consumer Staples 0.110 0.156 0.164 0.176

Energy 0.056 0.078 0.070 0.056

Financials 0.046 0.058 0.069 0.078

Health Care 0.161 0.224 0.227 0.240

Industrials 0.058 0.030 0.028 0.025

Real Estate 0.017 0.001 0.000 0.000

Technology 0.126 0.138 0.139 0.138

Telecommunications 0.034 0.001 0.001 0.001

Utilities 0.116 0.073 0.063 0.056
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For the model, we download from Kenneth French’s website5 the monthly returns of the
risk factors from the North-American category for the S&P sample. We ran 114 regression
models (19 portfolio points times 6 measures for climate risk) to obtain from Equation (3) the
risk-adjusted abnormal returns αq and coefficients of the risk factors (βMkt , βSMB , βHML ,
βRMW , and βCMA) for the portfolios of all portfolio points.

In Table 6 we show the 114 monthly α-results (i.e., abnormal returns) of the regressions.
The portfolio points 1/n, vw, minVar0, maxSHA0, and maxRet0 are available for investors
who ignore climate risk as an objective, i.e., who only base their decisions on the financial
characteristics. That is, they are only for the portfolio points on the M–V efficient frontier.
While slightly negative, they are not statistically different from zero (except the maxSHA0
portfolio point).

The minCR portfolio is essentially never located on the M–V efficient frontier as it is
the portfolio that ignores expected return and variance and only concentrates on minimizing
climate risk. For this portfolio, the results of the experiments show that this portfolio generates
risk-adjusted abnormal returns close to zero. Another portfolio that is new to the decision-
making process in the M–V framework is minCR0 portfolio. It is the portfolio of minimum
climate risk of all portfolios on the M–V efficient frontier. While the α’s of this portfolios
are slightly negative, they are again not significantly less than zero.

The other rows in the table are for the portfolio points on the bp = 5, 10, 20 NC-efficient
fronts and give us a sense of what else is on the efficient surface as we shift away from the
M–V efficient frontier to regions of lower climate risk. The 14 other portfolio points could be
generated when applying Hirschberger et al. (2013) to obtain the efficient surface. Related
to these 14 portfolio points are 84 abnormal return estimates of which only three (two, five)
portfolio points generate an out-of-sample risk-adjusted portfolio return that is significantly
smaller than zero at the 1%-level (5%-, 10%-level). These portfolios have a significantly
lower return than an investment alternative generating market return at the same profile.
These results reveal that the majority of the NC-efficient front portfolio points (about 88%)
generate a return that is not significantly different from the market-rate return. Therefore, we
conclude that reducing climate risk does not to a large extent harm financial return.

Even if wewere to take themost negativeα for aminCR-portfolio point on anNC-efficient
front portfolio, the one of −0.463 (minCR05, Carbon β), that would only amount to −5.56
bp/yr, well within any leeway of any climate risk committed investor would certainly grant
to a fund manager for pursuing low climate risk. Thus, the meaning of the columns is that we
find no evidence that there is anymaterial loss in risk-adjusted returnswhen using tri-criterion
portfolio selection, rather than M–V optimization. In summary, Table 6 shows us that the
portfolios of almost all portfolio points on the efficient surface generate performances that
compensate investors with market-rate returns.

4 Robustness checks

In this section, we conduct robustness checks on the portfolio results of the previous section.
We do this to see if anything unusual crops up that might cast doubt on the interpretation
of this paper, which is that current methods for computing optimal climate risk portfolios
fail to notice considerable amounts by which climate risk can be reduced without affecting
risk-adjusted returns.

5 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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In these robustness checks, other performance measures (following DeMiguel, Garlappi,
Nogales, & Uppal, 2009a; DeMiguel, Garlappi, & Uppal, 2009b) are applied to compare the
portfolios generated at NC-efficient front portfolio points against the 1/n portfolio under the
assumption that the 1/n portfolio can be viewed as a satisfactory benchmark for normalcy
that performs as well as any other portfolio.

The performance measures used for comparing the portfolios of the experiments against
the 1/n portfolio are out-of-sample variance, out-of-sample Sharpe ratio, out-of-sample
certainty-equivalent (CEQ) return, and portfolio turnover. In summary, the results of all
below robustness tests provide supporting evidence for the conclusions drawn from the main
analyses.

(1) Out-of-sample variance. Our first additional performance measure is the out-of-sample
variance of the portfolio returns. Therefore, we test the hypothesis that the out-of-sample
variance of a particular portfolio point is equal to the out-of-sample variance of the 1/n
portfolio point, i.e., H0 : �σ 2 := σ 2

q − σ 2
1/n = 0, q ∈ {2, . . . , 19}. The reason for this

notation is that the 1/n portfolio is portfolio q = 1 in Table 1. The out-of-sample variance is
given by

σ̂ 2
q = 1

L − 1

L∑
t=1

(RT
t,qxt−1,q − μ̂q)

2, (4)

where L is the number of out-of-sample periods. Statistical inference is derived by applying
the bootstrap approach suggested by Ledoit and Wolf (2011).

Results of our out-of-sample variance tests are given in the first set of columns of Table 7
for the Trucost Total Impact Ratio. Results for the other measures of climate risk are not
shown as they are in effect qualitatively the same. The results of the tests show that the
out-of-sample variance of the minVarbp and the maxSHAbp portfolio points for all levels of
bp are significantly lower than the out-of-sample variance of the 1/n portfolio. Additionally,
the out-of-sample variance of the minCRbp portfolio points is not significantly different
from the out-of-sample variance of the 1/n portfolio. Moreover, the absolute levels of the
out-of-sample variance appear also to be rather invariant to changes in the bp-relaxation.

(2) Out-of-sample Sharpe ratio. In comparing portfolios using this metric, we test the hypoth-
esis that there is no difference between the out-of-sample Sharpe ratio of portfolio q and the

out-of-sample Sharpe ratio of the 1/n portfolio, i.e., H0:
μ̂q

σ̂q
− μ̂1/n

σ̂1/n
= 0, q ∈ {2, . . . , 19}. In

H0, μ̂q is the sample mean of out-of-sample returns given by

μ̂q = 1

L

L∑
t=1

RT
t,qxt−1,q (5)

where L is the number of out-of-sample periods and σ̂q is out-of-sample standard deviation
given by Equation (4).

To test the hypothesis, we compute two-sided p values using the studentized circular
block bootstrap process of Ledoit and Wolf (2008) with B = 1000 bootstrap resamples and
block size b = 5. The performance of bootstrap methods has been shown to be more efficient
than the standard test suggested by Jobson and Korkie (1981) after correcting as in Memmel
(2003). Results of our out-of-sample Sharpe ratio tests are given in the second set of columns
of Table 7 for the Trucost Total Impact Ratio.

The Sharpe ratio tests reveal that no NC-efficient front portfolio underperforms the 1/n
portfolio point at the 10% significance level on this measure. The column labeled �ŜHA
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Table 7 This table reports on the differences in out-of-sample (ofs) variances, Sharpe ratios, certainty-
equivalent returns (CEQs), and turnover rates between our portfolio points and the 1/n portfolio for the
climate risk measure Total Impact Ratio

ofs variance ofs Sharpe ofs CEQ

�v̂ar p value �ŜHA p value �ĈEQ p value turnover

1/n 0.002 0.000 0.007 0.065

vw −0.309 (0.000) −0.003 (0.878) −0.001 (0.852) 0.016

minCR 0.756 (0.000) −0.065 (0.190) −0.002 (0.753) 0.186

minVar0 −0.804 (0.000) −0.006 (0.886) −0.002 (0.858) 0.288

maxSHA0 −0.467 (0.000) −0.040 (0.305) −0.003 (0.935) 0.337

minCR0 0.170 (0.261) −0.027 (0.540) −0.001 (0.660) 0.364

maxRet0 0.525 (0.001) −0.020 (0.663) 0.000 (0.422) 0.224

minVar05 −0.798 (0.000) −0.007 (0.879) −0.002 (0.858) 0.288

maxSHA05 −0.436 (0.001) −0.043 (0.251) −0.003 (0.948) 0.337

minCR05 0.090 (0.592) −0.031 (0.461) −0.001 (0.728) 0.362

maxRet05 0.468 (0.002) −0.005 (0.916) 0.001 (0.303) 0.248

minVar10 −0.788 (0.000) −0.008 (0.849) −0.002 (0.863) 0.289

maxSHA10 −0.411 (0.001) −0.041 (0.277) −0.003 (0.946) 0.331

minCR10 0.048 (0.745) −0.026 (0.508) −0.001 (0.714) 0.377

maxRet10 0.423 (0.005) −0.002 (0.957) 0.001 (0.301) 0.257

minVar20 −0.771 (0.000) −0.011 (0.801) −0.002 (0.870) 0.296

maxSHA20 −0.369 (0.002) −0.027 (0.442) −0.002 (0.888) 0.334

minCR20 0.065 (0.671) −0.029 (0.477) −0.001 (0.733) 0.371

maxRet20 0.410 (0.005) 0.005 (0.907) 0.002 (0.236) 0.259

The test of the out-of-sample variance considers the difference �v̂ar = σ̂ 2
q − σ̂ 2

1/n and the bootstrapped p
values (in parentheses) of the differences are computed in accordance with Ledoit and Wolf (2011). The test
of the out-of-sample Sharpe ratio considers the difference �ŜHA = ŜHAq − ŜHA1/n and the bootstrapped
p values (in parentheses) of the differences are also computed in accordance with Ledoit and Wolf (2008).
The test of the out-of-sample CEQ considers the difference �ĈEQ = ĈEQq − ĈEQ1/n and the p values (in
parentheses) of the differences as computed in accordance with Greene (2002). Finally, turnover is reported
in the last column of the table

reports the bootstrapped differences in Sharpe ratios between the different portfolios and
the 1/n portfolio, with the numbers in parentheses being bootstrapped p values. A positive
�ŜHA value represents a greater level of compensation (in terms of financial return) per unit
of risk for the portfolio undergoing comparison than for the 1/n portfolio, and thus indicates
better risk-adjusted performance. The statistical inference (reported as p values) adds to our
findings by showing that the risk-adjusted performance of NC-efficient front portfolios is
insignificantly different from that of the 1/n portfolio.

(3) Out-of-sample certainty-equivalent (CEQ) return. Here we compare the portfolios gen-
erated at the 18 portfolio points on the NC-efficient fronts against the 1/n portfolio using
certainty-equivalent returns, where the CEQ return of an uncertain payoff is the risk-free rate
at which an investor is indifferent between the two. In this way, the higher the CEQ return of
a portfolio, the better its performance all other things equal. The CEQ return of a portfolio
at portfolio point q is given by
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ĈEQq = λμμ̂q − 1

2
σ̂ 2
q (6)

where μ̂q and σ̂ 2
q are as in (5) and (4), and λμ is a risk tolerance parameter. Following

DeMiguel et al. (2009b), we report results for the λμ = 1 case. For determining whether
the out-of-sample CEQ returns of two strategies q and 1/n are statistically distinguishable6,
we apply one-sided tests with null hypothesis H0: ĈEQq − ĈEQ1/n = 0 and alternative

hypothesis Ha : ĈEQq − ĈEQ1/n < 0.
Results of our CEQ tests are given in Table 7 and they support the conclusion that NC-

efficient front portfolios do not suffer financially, i.e., their risk-adjusted performances are
on a par with those of the 1/n portfolio. To illustrate the table, the �ĈEQ = −0.003 entry
for the maxSHA0 point asserts that the certainty equivalent of this point is only 0.3bp lower
(statistically insignificant) than the riskless equivalent payoff of the 1/n portfolio. A high
certainty-equivalent return of a risky asset indicates that the asset generates high returns,
and thus, an investor would only substitute the gamble for a riskless alternative if the riskless
alternative payoffwere higher. Thus, a positive or insignificantly negative�ĈEQvalue occurs
if the performance of the portfolio is not worse than that of the 1/n portfolio. We observe
this result (positive or insignificantly negative �ĈEQ values) at all portfolio points for all
datasets. Tests for other values of λμ were conducted but are not reported because they show
nothing new.

(4) Portfolio turnover. With this metric, we assess the amount of trading associated with the
different portfolios. We calculate the monthly turnover of a portfolio as the percentage of the
total wealth of a portfolio that is traded on average between two reporting dates. Formally,
for generic portfolio q , portfolio turnover is given by

Turnoverq = 1

L − 1

L−1∑
t=1

n∑
i=1

∣∣∣xiq,t+1 − xiq,t+
∣∣∣ (8)

where n is the number of securities, xiq,t+ is the weight on asset i at time t + 1 before

rebalancing, and xiq,t+1 is the weight on asset i at time t + 1 after rebalancing. We report
turnover because of concerns about this issue in actively managed portfolios, particularly
when there is rebalancing each month. Results of our turnover testing are given in the last
column of Table 7.

The average monthly turnover of the 1/n portfolio is observed to be 6.5%, and is thus
similar to the ones reported in DeMiguel et al. (2009b). The value-weighted portfolio has
a turnover smaller than the 1/n portfolio. All other turnover rates at the NC-efficient front
portfolios exceed the turnover rate of the 1/n portfolio. Since in active portfolio management
there always seem to be shares bought and sold between reporting dates, this leads to an

6 Let μ̄q , μ̄r , σq , σr and σq,r denote the calculated means, standard deviations, and covariances of the out-of-
sample rewards of portfolios q and r over a sample of size L . We evaluate the p values of the difference using
the results of the asymptotic properties of the test statistic f (η) = (λμμ̄q−σ 2

q )−(λμμ̄r−σ 2
r ) for two different

portfolio strategies r and q and the estimators for means and variances pooled in η = (λμμ̄q , λμμ̄r , σ
2
q , σ 2

r )

following Greene (2002), who shows

√
M

(
f (η̂) − f (η)

) ∼ N

(
0,

∂ f

∂η

′



∂ f

∂η

)
with 
 =

⎛
⎜⎜⎜⎝

σ 2
q σq,r 0 0

σq,r σ 2
r 0 0

0 0 2σ 4
q 2σ 2

q,r
0 0 2σ 2

q,r 2σ 4
r

⎞
⎟⎟⎟⎠ . (7)
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increase in turnover compared to passive strategies, in which only small adjustments to
existing weights are normally required. Nevertheless, with regard to the turnover rates for the
active portfolio management approaches described in DeMiguel et al. (2009b), our turnover
rates are modest and do not jeopardized this research.

5 Conclusion

Whereas most research on sustainability and climate risk in investing has focused on how
sustainability funds perform on returns, this paper is different in that we also focus onwhether
sustainability funds do all they can to offer investment solutions with the least climate risk
content for their investors. This is important to serious, or “motivated” to use the term from the
ESG paper by Pedersen et al. (2021), climate risk investors. Our findings are that significant
amounts of climate risk are overlooked, but can be reduced in portfolios without significant
losses in risk-adjusted returns provided appropriate methods are used. The situation is not
obvious. Fund managements are unaware of what they are not taking care of, and clients are
unaware of what reduction in climate risk they are missing. But here we spell it out as we
can’t see why both sides wouldn’t be interested in the perspective.

Reduction potential is overlooked because it is totally not seen by the standard procedures
used for constructing optimal portfolios (portfolio approaches only considering financial
objectives). Nobody picks up a $100 bill if nobody sees it. But to reliably uncover amounts
of climate risk that are very hard to know exist, one needs to treat a serious investor’s interest
in climate risk as, beyond risk and return, a third objective.With a third objective, the efficient
frontier becomes an efficient surface. This is important because on the efficient surface are
all points of Pareto optimal risk, return, climate risk trade-off. Since one’s point of optimal
three-way trade-off could be anywhere on the efficient surface, NC-efficient fronts as applied
in this paper are used for exploring the efficient surface and this is how portfolios with
significantly less climate risk without significantly diminished risk-adjusted returns can be
found. The difficulty of the approach is that efficient surfaces and NC-efficient fronts require
techniques of parametric quadratic programming to construct as shown in Hirschberger et al.
(2013) and Steuer and Utz (2023), techniques known in operations research but not yet well
known in finance.
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