Human Coding & Interrater Reliability In Content Analysis

Jonathan Bundy University of Georgia

2012 SMA Annual Meeting

The University of Georgia

Human Coding

We have computers, why on Earth use human coding?

- 1. When the meaning of the variable resides within source/receiver interpretation
 - Attributions (Lee et al., 2004)
- 2. When context matters
 - Socio-cognitive variables (King et al., 2011)
- 3. When concepts are not easily identified by particular words or phrases
 - Strategic actions (Zavyalova et al., 2012; Lamin & Zaheer, 2012)
- 4. To identify grounded or emergent variables

The University of Georgia TERRY COLLEGE OF BUSINESS

Measurement Issues

(measure = true score + error)

M=t+e

- Sources of error = Humans
 - Coder misinterpretation, poor scheme, inadequate training, inattention/fatigue, recording error, rogue coder!
- Thus, we need *reliability* the extent to which a measuring procedure yields the same results on repeated trials
 - More specifically, *interrater reliability* the amount of agreement or correspondence among two or more coders

The University of Georgia TERRY COLLEGE OF BUSINESS

Why Reliability?

- Validity of coding scheme
 - Results are not the idiosyncratic to rater subjectivity
- Allows for the use of multiple coders
- Replication over time

Reviewers are going to ask for it!

Reliability Flowchart (Neuendorf, 2002; Weber, 1990)

Reliability Measures

http://dfreelon.org/utils/recalfront/

Measure	Туре	Best for	More than 2 coders?
Percent Agreement	Agreement	Nominal	No
Holsti's Method	Agreement	Nominal	No
Scott's Pi	Agreement (w/ chance)	Nominal	No
Cohen's Kappa	Agreement (w/ chance)	Nominal	Yes
Krippendorff's Alpha	Agreement (w/ chance)	Any	Yes
Spearman Rho	Covariation	Ordinal	No
Pearson Correlation	Covariation	Interval/ratio	No
Lin's Concordance	Covariation	Interval/ratio	No

Other Thoughts

- Codebook and form make the set so complete and unambiguous as to eliminate individual coder differences
- At least 2 coders, 10% overlap ranging between 50-300 observations depending on sample size
- Reliability can be low when coding subjective into objective, thus cut-offs can be lower (.67-.80)
- Blind coding is preferable
- Consensus needed when training/building, but not in final coding
- What to do with variables that are **not reliable**?
 - Redefine variable, split variable, re-train coders, drop variable, drop coder, integrate non-content analytic data
- Need separate reliability for each measure
- With CATA, reliability always = 1, but validity still an issue

The University of Georgia TERRY COLLEGE OF BUSINESS

Tips

- Habits & Routines
 - Code daily, but avoid fatigue
- Spend time up front
 - Familiarize self with content texts and theory
 - Invest in training!

Revise early and revise often!

References

- Practical guide Neuendorf, K. A. 2002. *The content analysis guidebook*. Sage.
- More robust guide Krippendorff, K. 2012. Content analysis: An introduction to its methodology. Sage.
- A classic (greenie) Weber, R. P. 1990. *Basic content analysis*. Sage.
- From MGMT Duriau, V. J., Reger, R. K., & Pfarrer, M. D. 2007. A content analysis of the content analysis literature in organization studies: Research themes, data sources, and methodological refinements. *Organizational Research Methods*, 10: 5-34.
- <u>http://www.terry.uga.edu/management/contentanalysis/</u>

The University of Georgia TERRY COLLEGE OF BUSINESS