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Abstract
This paper proposes a random coefficient panel model where the regressors

can depend on the time-varying random coefficients in each period, a critical fea-
ture in many economic applications including production function estimation.
The random coefficients are modeled as unknown functions of a fixed effect of
arbitrary dimension and a random shock, thus incorporating rich forms of un-
observed heterogeneity. A sufficiency argument is used to control for the fixed
effect, which enables one to construct a feasible control function for the random
shock and subsequently identify the moments of the random coefficients via a
sequential argument. A three-step estimator is proposed and an asymptotic
normality result is proved. Simulation results show that the method can accu-
rately estimate both the mean and the dispersion of the random coefficients.
The estimation procedure is applied to panel data for Chinese manufacturing
firms and three main findings emerge. First, larger capital, but smaller labor,
elasticities than previous methods are obtained, which is consistent with the
literature on factor income shares. Second, there is substantial variation in
the output elasticities across firms and periods. Third, the dispersion of the
random intercept among firms is larger than with traditional methods, caused
by a negative correlation between the random intercept and output elasticities.

Keywords: Unobserved heterogeneity, time-varying endogeneity, exchange-
ability, conditional control variable, production function estimation

∗I am deeply indebted to Don Andrews and Yuichi Kitamura for their continual guidance, support
and encouragement. I am very grateful to Steve Berry for his advice and feedback. I thank Joe
Altonji, Tim Armstrong, Clément de Chaisemartin, Xiaohong Chen, Yi Chen, Yingying Dong, Ying
Fan, JJ Forneron, Wayne Gao, Phil Haile, Keisuke Hirano, Mitsuru Igami, Koohyun Kwon, Soonwoo
Kwon, Giuseppe Moscarini, Xiaosheng Mu, Kaivan Munshi, Amil Petrin, Jonathan Roth, Guangjun
Shen, Liangjun Su, Matt Thirkettle, Ed Vytlacil, Xinyang Wang, Thomas Wollmann, Weijie Zhong,
and seminar participants at Yale University for helpful comments. All errors are mine.

†Yale University, 28 Hillhouse Ave., New Haven, CT 06511. ming.li@yale.edu.

1

https://economics.yale.edu/sites/default/files/files/pub/grad/working-papers/ming_li_jmp.pdf
mailto:ming.li@yale.edu


1 Introduction

Linear panel models with fixed coefficients have been a workhorse in empirical re-
search. A leading example concerns production function estimation, where the out-
put elasticities with respect to each input are assumed to be the same both across
firms and through time (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Acker-
berg, Caves, and Frazer, 2015). But it is neither theoretically proven nor empirically
verified that the coefficients should be fixed. For example, why would Apple have the
same capital elasticity as Sony? Moreover, why would Apple in 2019 have the same
labor elasticity as in 2020 when almost everyone is working from home? Restricting
the coefficients to be constant can lead to biased estimates of important model pa-
rameters such as output elasticity with respect to capital or labor (León-Ledesma,
McAdam, and Willman, 2010), and consequently misguided policy recommendations,
e.g., income distribution policy, tax policy, among others. Therefore, it is crucial
to properly account for the unobserved heterogeneity both across individuals and
through time in panel models.

To accommodate the rich forms of unobserved heterogeneity in the economy, one
may consider linear panel models with random coefficients that are either indepen-
dent of the regressors or satisfy certain distributional assumptions joint with or given
the regressors (Mundlak, 1978; Chamberlain, 1984; Wooldridge, 2005a). However,
because of the agent’s optimization behavior, it is rarely the case that one can jus-
tify any ex-ante distributional assumptions on the joint distribution of the random
coefficients and the regressors. To see this, consider a firm with individually unique
and time-varying output elasticities with respect to each input. Then, in each period,
the firm chooses inputs by maximizing its expected profits after taking those hetero-
geneous elasticities into account. Consequently, the firm’s heterogeneous elasticities
enter its input choice decisions for each period in a potentially very complicated way,
making it extremely difficult, if not impossible, to put any distributional assumption
on the joint distribution of the random coefficients and the regressors.

The combination of unobserved heterogeneity and correlation between the regres-
sors and the time-varying random coefficients in each period poses significant chal-
lenges for the analyst. The fact that the time-varying random coefficients are known
to the agent when she optimally chooses the regressors but unobservable to the analyst
gives rise to the classic simultaneity problem (Marschak and Andrews, 1944). Allow-
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ing the regressors to depend on the unobserved (to the econometrician) time-varying
random coefficients in each period in an unknown and potentially complicated way
makes traditional approaches inapplicable (Chamberlain, 1992; Arellano and Bon-
homme, 2012; Graham and Powell, 2012; Laage, 2020). Therefore, a new method
is needed to deal with the challenges discussed so far to identify and estimate the
parameters of interest, e.g., the average partial effects (APE) (Chamberlain, 1984;
Wooldridge, 2005b).

This paper proposes a time-varying endogenous random coefficient panel model
where the regressors are allowed to depend on the random coefficients in each pe-
riod, a feature called time-varying endogeneity through the random coefficients. The
model is motivated by production function estimation, but can be applied to other
important applications, e.g., consumer demand analysis, labor supply estimation,
Engel curve analysis, among many others (Blundell, MaCurdy, and Meghir, 2007b;
Blundell, Chen, and Kristensen, 2007a; Chernozhukov, Hausman, and Newey, 2019).
More specifically, the random coefficients in this paper are modeled as unknown and
possibly nonlinear functions of a fixed effect of arbitrary dimension and a random
shock that captures per-period shocks to the agent. In production function appli-
cations, one may interpret the fixed effect as managerial capability and the random
shock as the R&D outcome. The modeling technique is based on the seminal paper of
Graham and Powell (2012), with a major difference that will be discussed in detail in
the model section. Then, the regressors are determined by the agent’s optimization
behavior and expressed as unknown and possibly complicated functions of the fixed
effect, random shock, and exogenous instruments. For example, it can be the solution
to a profit maximization problem with the fixed effect and random shock in the firm’s
information set. As a result, the firm’s choices of inputs are functions of managerial
capability, R&D outcome, and exogenous instruments.

For identification analysis, we use a sufficiency argument to control for the fixed
effect without parametric assumptions, which enables one to construct a feasible
control variable for the random shock given the sufficient statistic and the fixed effect,
and subsequently to identify the moments of the random coefficients. More precisely,
we use an exchangeability assumption on the conditional density of the vector of
random shocks for all periods given the fixed effect to obtain a sufficient statistic that
summarizes all of the time-invariant information about the individual fixed effect.
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Given this sufficient statistic, the agent’s choice of regressors for a specific period is
shown to not contain any additional information about the fixed effect. Thus, the
density of the regressors for a specific period does not depend on the fixed effect
given the sufficient statistic, allowing one to create a feasible control variable for the
random shock given the sufficient statistic and the fixed effect. Finally, a sequential
argument based on the independence result obtained in the first step, the feasible
control variable constructed in the second step, and the law of iterated expectations
(LIE), is adopted to identify the moments of the random coefficients. The intuition
of the last step is after conditioning on the sufficient statistic and the feasible control
variable, the residual variations in the regressors are exogenous. We further discuss
how to extend the flexible identification argument to identify higher-order moments
of the random coefficients, include vector-valued random shocks, incorporate group
fixed effects, and allow exogenous shocks to the random coefficients.

It is worthwhile mentioning that the construction of the feasible control variable for
the random shock in the presence of the fixed effect is not straightforward. Classical
control function literature (Blundell and Powell, 2003) assumes one scalar-valued
unobservable term in the first-step equation that determines the regressors. In this
paper, however, there are two unobserved heterogeneity terms – the fixed effect of
arbitrary dimension and the scalar-valued idiosyncratic shock – that both appear in
the first-step equation. The inclusion of the fixed effect is crucial in applications such
as production function estimation (Dhyne, Petrin, Smeets, and Warzynski, 2020).
Therefore, one cannot directly apply the standard control function analysis (Newey,
Powell, and Vella, 1999; Imbens and Newey, 2009). This paper shows how to exploit
the sufficiency argument to construct a feasible control variable for the random shock
in the presence of the unknown fixed effect.

The constructive identification analysis leads to multi-step series estimators for
both conditional and unconditional moments of the random coefficients. We derive
convergence rates and prove asymptotic normality for the proposed estimators. The
new inference results build on existing ones for multi-step series estimators (Andrews,
1991; Newey, 1997; Imbens and Newey, 2009; Hahn and Ridder, 2013; Lee, 2018; Hahn
and Ridder, 2019). The main deviations from the literature include that the object
of interest is a partial mean process (Newey, 1994) of the derivative of the second-
step estimator with a nonseparable first step, and that the last step of the three-step
estimation is an unknown but only estimable functional of the conditional expectation
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of the outcome variable. Thus, one needs to take the estimation error from each of
the three steps into consideration to obtain correct large sample properties.

Simulation results show that the proposed method can accurately estimate both
the mean and the dispersion of the random coefficients. The mean of the random
coefficients has long been the central object of interest in empirical research as it
measures how responsive the outcome is to changes in regressors. The dispersion of
the random coefficients may also be useful to answering policy-related questions. For
example, to what extent is a new labor augmenting technology being diffused across
firms? Such question can be answered based on the dispersion of labor elasticities
estimated using the method of this paper. The results remain robust under various
configurations of the data generating processes, including when one has different
number of agents or periods in the data or use different orders of basis functions for
estimation, and when an ex-post shock is added to the model.

Finally, the procedure is applied to comprehensive panel data on the production
process for Chinese manufacturing firms. Specifically, we estimate the conditional
means of the output elasticities with respect to capital and labor as well as the random
intercept, all of which are allowed to be varying both across firms and through time.
Three main findings emerge. First, larger capital, but smaller labor, elasticities on
average than previous methods are obtained, which is more consistent with literature
on the measurement of factor income shares (Bai, Qian, and Wu, 2008; Jia and Shen,
2016). Second, contrary to what fixed coefficients models imply, there are substantial
variations in the elasticities of output with respect to capital and labor both across
firms within each sector and for each firm through time. The results lead to a different
interpretation of the data and policy implications than in the misallocation literature
pioneered by Hsieh and Klenow (2009), who attribute all of the observed variation in
input cost shares to output and input market distortions that drive wedges between
the marginal products of capital and labor across firms. Third, we find the dispersion
of the random intercept among firms is consistently larger than that obtained using
the “proxy variable” based method of Olley and Pakes (1996), and show it is caused
by negative correlations between the random intercept and output elasticities.
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1.1 Related Literature

We review the three lines of literature that this paper is connected to. The first line
concerns random coefficient models. See Hsiao (2014) for a comprehensive survey.
The closest paper to ours is Graham and Powell (2012), who also consider the iden-
tification of the APE in a linear panel model with time-varying random coefficients.
Compared with the celebrated paper by Chamberlain (1992) who considers regular
identification and derives the semiparametric variance bound of the APE, Graham
and Powell (2012) show that the APE is irregularly identified when the number of
periods equals the dimension of the regressors. However, as will be seen more clearly
in the Section 2, their time stationarity assumption on the conditional distribution
of idiosyncratic shocks given the whole vector of regressors effectively rules out time-
varying endogeneity through the random coefficients. Therefore, their method does
not directly apply here. Instead, we propose a different method for identification
based on an exchangeability assumption and the control function approach.

Another closely related paper is Laage (2020), who also considers a correlated
random coefficient linear panel model. Laage (2020) proposes a novel method for
identification based on first differencing and the control function approach to identify
APE when the number of periods is strictly larger than the dimension of the regres-
sors. She allows for time-varying endogeneity through the residual term, but requires
the random coefficient associated with each regressor to be time-invariant such that
one can use first-differencing to cancel out the scalar fixed effect in the first step. As
a result, her method does not apply to the setting considered in this paper. Simi-
larly to Laage (2020), Arellano and Bonhomme (2012) also consider a time-invariant
random coefficient model. They exploit information on the time dependence of the
residuals to obtain identification of variances and distribution functions of the random
coefficients. Their model assumptions and analysis are very different from ours. In
addition to linear models, random coefficients are also widely used in discrete choice
models (Berry, Levinsohn, and Pakes, 1995; Bajari, Fox, and Ryan, 2007; Dubé, Fox,
and Su, 2012; Gautier and Kitamura, 2013).

The second line of research concerns identifiability of models with unobserved
heterogeneity. The concept of exchangeable sequences dates back to Jonnson (1924),
and has been used in many papers in economics (McCall, 1991; Kyriazidou, 1997; Al-
tonji and Matzkin, 2005). The closest paper in this aspect to our work is Altonji and
Matzkin (2005), who assume the conditional density of the fixed effect and random
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shock given the regressors for all periods is a symmetric function of the regressors.
This assumption is not applicable to our model, and we propose an arguably more
primitive exchangeability condition on the conditional density of the random shocks
for all periods given the individual fixed effect. We show how to obtain a sufficient
statistic for the fixed effect, and subsequently identify moments of the random coef-
ficients using the new exchangeability condition.

Another method used in this paper is related to the control function approach
in triangular models (Newey, Powell, and Vella, 1999; Florens, Heckman, Meghir,
and Vytlacil, 2008; Imbens and Newey, 2009; Torgovitsky, 2015; D’Haultfœuille and
Février, 2015). The construction of the feasible control variable for the random shock
in the identification analysis is built upon Imbens and Newey (2009), who assume a
nonseparable first-step equation that determines the regressors and suggest a condi-
tional cumulative distribution function (CDF) based approach for identification. The
main difference between our model and theirs is in the first-step equation of the model
considered in this paper, there are two unobserved heterogeneity terms comprised of
a fixed effect of arbitrary dimension and a idiosyncratic shock, whereas Imbens and
Newey (2009) assume one scalar-valued unobserved shock in their first-step equa-
tion. Therefore, one cannot directly apply their method to the problem considered in
this paper because the control variable constructed using their method is infeasible.
Instead, we use the implied conditional independence result from the sufficiency ar-
gument to construct a feasible control variable for the random shock given the fixed
effect and the sufficient statistic. More recently, Kitamura and Stoye (2018) propose
and implement a control function approach to account for endogenous expenditure in
a nonparametric analysis of random utility models.

The third line of research concerns production function estimation. Production
functions are one of the most fundamental components of economic analysis. Classical
literature (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg, Caves, and
Frazer, 2015) use a fixed coefficient linear model while allowing for a scalar-valued
time-varying productivity shock. The endogeneity problem is caused by the fact that
the productivity shock is unobserved by the econometrician but known to the firm
when making input choice decisions. The key identification idea in this literature
is to use some choice variable of the firm to uncover the productivity. Specifically,
they suggest a “proxy variable” approach where investment (Olley and Pakes, 1996)
or material (Levinsohn and Petrin, 2003) is assumed to be an invertible function
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of the productivity shock given other observables. Based on the invertibility condi-
tion, one can uncover the productivity as a nonparametric function of observables.
Then, under the assumption that the innovation in productivity follows a first-order
Markov process, an orthogonality condition between the innovation in productivity
and lagged input choices can be formed to identify the output elasticities with re-
spect to each input. The main difference between our paper and theirs is that we
allow for time-varying endogeneity through not only the random intercept, but also
output elasticities modeled as random coefficients. We also include a fixed effect of
arbitrary dimension and propose a different identification strategy. Ackerberg, Chen,
Hahn, and Liao (2014) study the asymptotic efficiency of semiparametric two-step
GMM estimators and apply their method to production function estimation with
fixed coefficients. Bang, Gao, Postlewaite, and Sieg (2020) develop a new method for
estimating production functions when the inputs are partially latent. There is some
recent work trying to include a fixed effect into the fixed coefficient linear production
model (Lee, Stoyanov, and Zubanov, 2019; Abito, 2020).

A couple of innovations have been made recently to relax the assumption of fixed
output elasticities with respect to each input. Kasahara, Schrimpf, and Suzuki
(2015) analyze Cobb-Douglas (C-D) production function with heterogeneous but
time-invariant output elasticities modeled as finite mixtures. Li and Sasaki (2017)
analyze C-D production function with heterogeneous output elasticities modeled as
unknown functions of a latent technology term. Their analysis hinges on a key as-
sumption that there is a one-to-one mapping between the latent technology term and
the ratio of the two intermediate goods. The model assumptions and technique are
very different from ours. Doraszelski and Jaumandreu (2018) propose an empirical
strategy to analyze constant elasticity of substitution production function with labor
augmenting productivity, which allows for multi-dimensional heterogeneity and non-
neutral productivity. Fox, Haddad, Hoderlein, Petrin, and Sherman (2016) model the
output elasticities as random walk processes and assume the input choice decisions
are made in period one. They apply their method to the data for Indian manufac-
turing firms and find that there is significant variation in the elasticities both across
firms and through time. The method proposed in this paper is different from theirs
as we do not assume random walk for the innovation of the random coefficients and
the firms are allowed to choose their inputs in each period.

In their influential paper, Gandhi, Navarro, and Rivers (2020) (GNR20) argue that
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the proxy variable based method is not sufficient for identification without functional
form restrictions. They show how to use the first-order conditions from a firm’s profit
maximization problem to achieve nonparametric identification of the production func-
tion. Similarly, Demirer (2020) models the production function non-parametrically
and assumes it satisfy a homothetic separability condition. He also assumes that the
material per capital is a strictly monotonic function of labor augmenting productiv-
ity only, but not the Hicks neutral productivity. He shows that while the functional
form of the production function and output elasticity with respect to capital are not
identified, output elasticities with respect to labor and material are identified via cost
minimization. Chen, Igami, Sawada, and Xiao (2020) study how ownership affects
productivity by extending GNR20’s framework. The assumptions and method of this
paper are very different from those mentioned above.

The rest of this paper is organized as follows. Section 2 introduces the main model
specification and assumptions. Section 3 presents the key identification strategy.
Series estimators are provided in Section 4, together with their asymptotic properties.
Section 5 contains a simulation study. In Section 6, we apply our method to panel
data for the Chinese manufacturing firms to estimate their production functions.
Finally, Section 7 concludes. All the proofs and an index of notation are presented
in the Appendix.

2 Model

In this section, we present a time-varying endogenous random coefficient (TERC)
model where the regressors can depend on the time-varying random coefficients in each
period, a critical feature that appears in many important applications in economics.
We provide three applications that share this feature, followed by assumptions on
model primitives.

Consider the following triangular simultaneous equations model with time-varying
random coefficients:

Yit = X
′

itβit + εit, (1)

βit = β (Ai, Uit) , (2)

Xit = g (Zit, Ai, Uit) , (3)
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where:

• i ∈ {1, ..., n} denotes n decision makers and t ∈ {1, ..., T} denotes T ≥ 2 time
periods.

• Yit ∈ R represents the scalar-valued outcome variable for agent i in period t.
One may interpret it as total output for firm i in year t in production function
applications.

• Xit ∈ RdX is a vector of choice variables of the ith decision maker in period t

with the constant 1 as its last coordinate. It can include, for example, capital,
labor and the constant 1, in the context of production function estimation.

• Zit ∈ RdZ is a vector of exogenous instruments that affects the choice of Xit and
is independent of (Ai, Uit). E.g., Zit can include input prices in the context of
production function estimation.

• Ai represents a fixed effect of arbitrary dimension. The fixed effect Ai can be
interpreted, for example, as the managerial capability of firm i in production
function applications.

• Uit ∈ R is a scalar-valued continuously distributed it-specific random shock
term, which captures idiosyncratic shock that is correlated with input choices
in each period such as an R&D shock to firm i in period t.

• βit ∈ RdX is a vector of random coefficients, the central object of interest. They
are modeled as unknown and possibly nonlinear functions of Ai and Uit. In
production function applications, βit’s are the output elasticities with respect
to each input of Xit. A key feature here is each coordinate of βit varies both
across i and through t.

• εit ∈ R is a scalar-valued error term with mean zero. It can be considered as
the measurement error or ex-post shock.

• g (·) is a vector-valued function of (Zit, Ai, Uit) that determines each coordi-
nate of the choice variables Xit. For example, capital input Kit may be de-
termined by its first coordinate, g(1) (Zit, Ai, Uit), while labor input Lit equals
g(2) (Zit, Ai, Uit), the second coordinate of g (·).
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To clarify the information structure of the model, (Yit, Xit, Zit) are data and observ-
able to both the econometrician and the firm, whereas (Ai, Uit) are only observable
to the firm, but not to the econometrician. The functional form of g (·) and β (·)
are only known to the firm, but not to the econometrician. The ex-post shock εit is
unobservable to the firm when it makes input choice decisions in each period.

Model (1)–(3) naturally arises in many economic applications. We mention a few
in this section.

Example 1. The leading example is production function estimation. Suppose firm
i in period t observes its production function (1) in the classic C-D form, which is
the workhorse model in the literature and is employed by Olley and Pakes (1996);
Levinsohn and Petrin (2003); Ackerberg, Caves, and Frazer (2015), among many other
papers. The firm also observes its input prices Zit and input elasticities βit, the latter
of which is a function of the managerial capability Ai and the random R&D outcome
Uit, both known to the firm. Then, the firm chooses capital, labor and materials by
solving a profit maximization problem using the information of (Zit, Ai, Uit), obtaining
(3) as a consequence.

Example 2. Another example is Engel curve estimation. Suppose the budget share of
gasoline Yit for household i at time t is a function of gas price and total expenditure in
(1). Here βit is modeled as a function of the household fixed effect and an idiosyncratic
wealth shock, and captures how elastic gasoline demand is with respect to total
expenditure and gas price, respectively. Given the fixed effect, random wealth shock,
and an instrument of gross income of the head of household Zit, household i optimally
chooses its gas price and total expenditure budget by solving a utility maximization
problem, leading to (3) as a result. See Blundell, Chen, and Kristensen (2007a) for
more details of the endogeneity issue in Engel curve estimation.

Example 3. The third example concerns labor supply estimation. Suppose individ-
ual i has a linear labor supply function in the form of (1), where Yit is the number
of annual hours worked and Xit includes the endogenous hourly wage and other ex-
ogenous demographics. The coordinate of βit that corresponds to wage is the key
object of interest which quantifies how labor supply responds to wage rate variations
over time. Then, given exogenous instruments Zit such as the minimum wage in the
county or non-labor income, individual capability Ai, and random health shocks Uit
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to the individual, agent i chooses the job that provides a wage that is the solution to
her utility maximization problem, leading to (3). See Blundell, MaCurdy, and Meghir
(2007b) for more details on labor supply estimation.

The time-varying correlation between Xit and βit in these examples highlights the
prevalence and importance of time-varying endogeneity through the random coeffi-
cients. Nonetheless, models in this literature do not allow for this feature. Graham
and Powell (2012) propose a panel model with time-varying random coefficients. Us-
ing their notation, they model βit = b∗ (Ai, Uit)+dt (Ui,2t) and assume Ui,2t ⊥ (Xi, Ai)
where Xi = (Xi1, .., XiT )

′
. Thus, the random coefficient βit is time-varying and cor-

related with Xi via (Ai, Uit). However, they impose a time stationarity assumption
on the conditional distribution of Uit given (Xi, Ai):

Uit|Xi, Ai ∼d Uis|Xi, Ai, for t 6= s, (4)

which effectively rule out time-varying endogeneity through the random coefficients.
To see why, omit Ui,2t for now since it is exogenous. Consider a simple example where
the number of periods T = 2 and the true data generating processes of βit and Xit

are
βit = Ai + Uit, Xit = βit (5)

Then, suppose one observes Xi2 > Xi1 in the data, which implies

E [Ui2|Xi, Ai] > E [Ui1|Xi, Ai] , (6)

thus violating (4). From this simple example, it is clear that under (4) one cannot
allow Xit to depend on βit in each period such that one may infer distributional char-
acteristics about Uit given Xi, a feature that is important to applications such as
production function estimation. As can be seen from (3), we allow such dependence
between Xit and Uit in each period. Similarly, Chernozhukov, Hausman, and Newey
(2019) impose a time stationarity assumption on the conditional mean of the random
coefficients given Xi, again ruling out time-varying endogeneity through the random
coefficients. Arellano and Bonhomme (2012) consider time-invariant random coef-
ficients that are correlated with Xit. Similarly to Arellano and Bonhomme (2012),
Laage (2020) also models the random coefficients to be time-invariant and allows
time-varying endogeneity only through the residual term.
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In addition to the time-varying endogeneity of the regressors through the random
coefficients, model (1)–(3) also features a nonseparable first step that determines
Xit and a fixed effect Ai that enters both the first step (3) and the second step (1)
nonlinearly. The nonseparability of g (·) in the instrument Zit, fixed effect Ai, and
random shock Uit appears naturally due to the agent’s optimization behavior. For
example, in C-D production functions firms choose their inputs by maximizing their
expected profits without the knowledge of εit, leading to a nonseparable input choice
function g (·). The nonlinearity of the fixed effect Ai appears in two places: (1) the
unknown random coefficients β (Ai, Uit) could be nonlinear in Ai and (2) the first-step
equation g (·) could be nonlinear in βit. Allowing a nonseparable first step g (·) and
a nonlinear fixed effect Ai significantly improves the flexibility and thus widens the
applicability of the model, however at the cost of greater analytical challenges for
identification. For example, the usual demeaning or first differencing techniques no
longer apply to the model (1)–(3). Nonetheless, we show how to achieve identification
via a sufficiency argument in the next section.

It is worthwhile mentioning that Ai and Uit appear in both the first-step equation
(3) that determines Xit and the second-step equation (1) that determines Yit. This
is again a feature motivated by economic applications, because agents choose Xit

optimally based on the complete information of (Ai, Uit), both of which affect the
outcome Yit. It is different from traditional triangular simultaneous equations models
(Newey, Powell, and Vella, 1999; Imbens and Newey, 2009) which assume in (3)
there is only one unknown scalar that is arbitrarily correlated with (Ai, Uit), which
effectively assumes the agent has incomplete information of (Ai, Uit) when choosing
Xit. The complete information assumption is arguably more realistic based on agent’s
optimization behavior, however makes identification challenging because now one has
two unknown terms Ai and Uit in both (1) and (3). Thus, the control function
approach suggested in Imbens and Newey (2009) does not directly apply. Instead, we
show how to deal with both unobserved heterogeneity terms via a sequential argument
in the identification section.

It should be pointed out that the fixed effect Ai, modeled as an arbitrary dimen-
sional object, effectively incorporates unobserved variations in the distributions of the
idiosyncratic shocks Uit. For example, if the joint distribution of (Ui1, .., UiT ) is Fi
which does not depend on time, then the whole function Fi can be incorporated as
part of the fixed effect Ai, which may lie in a vector of infinite-dimensional functions.
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Fi captures a form of heteroskedasticity specific to each agent, and our method is ro-
bust to such forms of heterogeneity in error distributions without the need to specify
Fi.

Before proceeding to the assumptions, we briefly discuss some extensions to the
model (1)–(3). First, suppose Uit =

(
U

(1)
it , U

(2)
it

)
and Xit is two-dimensional. Then,

we can allow βit to depend on both Ai and
(
U

(1)
it , U

(2)
it

)
and let each of the two

coordinates of Xit depend on Ai and a different coordinate of Uit. For example, let
X

(1)
it depend on

(
Ai, U

(1)
it

)
and X(2)

it depend on
(
Ai, U

(2)
it

)
. The modification is allowed

and the identification argument can go through as given. Second, it is possible to
follow Graham and Powell (2012) and include an exogenous U2,it in βit to capture
exogenous shocks to agents i at period t. Third, similarly to Arellano and Bonhomme
(2012), both exogenous and endogenous regressors Xit can be included in the model
(1) that are associated with constant coefficients β.

Next, we provide a list of assumptions on model primitives required for the sub-
sequent identification argument, and discuss them in relation to the model (1)–(3).

Assumption 1 (Monotonicity of g (·)). At least one coordinate of g (Z,A, U)
is known to be strictly monotonic and continuously differentiable in U , for every
realization of (Z,A) ∈ Z ×A.

Assumption 1 requires at least one coordinate of the unknown function g (Z,A, U)
defined in (3) that determines one element of X, say labor choice in production
function applications, to be strictly monotonic in U on its support for every realization
of (Z,A). Without loss of generality (wlog), assume the first coordinate of g, denoted
by g(1), satisfies Assumption 1. Then, the assumption implies that there is a one-to-
one mapping between the first coordinate of X and U given (Z,A), which is used to
establish an exchangeability property and subsequently construct a feasible control
variable for U .

It is worthwhile mentioning that strict monotonicity in U for all coordinates of
g is not needed because a single U appears in both (1) and (3). We show in (67)
that Assumption 1 suffices to prove the exchangeability condition (60), an essential
step for the analysis. If one has a model with a multi-dimensional U in (1) and each
coordinate of U appearing in one equation of (3), then for the proposed method to
work, all of the coordinates of g are required to be strictly monotonic in U to properly
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control for the unobserved heterogeneity in the model.
Assumption 1 is mild in the sense that it is satisfied in many applications and

models. For example, in production function applications one may interpret U as
R&D outcome. Then, the firm takes advantage of a better R&D outcome (larger U)
by purchasing more machines and hiring more workers, leading to a larger choice of
each coordinate of Xit defined as the vector of capital and labor. Thus, Assumption
1 is satisfied. As in Newey, Powell, and Vella (1999), the assumption is automatically
satisfied if g (·) is linear in U , but allows for more general forms of non-additive
relations. An assumption similar to Assumption 1 is also imposed in Imbens and
Newey (2009).

Assumption 2 (Exchangeability). The conditional probability density function of
Ui1, ..., UiT given Ai wrt Lebesgue measure is continuous in (ui1, .., uiT ) and exchange-
able across t, i.e.

fUi1,...,UiT |Ai
(ui1, ..., uiT | ai) = fUi1,...,UiT |Ai

(uit1 , ..., uitT | ai) , (7)

where (t1, ..., tT ) is any permutation of (1, ..., T ).

Assumption 2 requires that the conditional density of (Ui1, ..., UiT ) given Ai is
invariant to any permutation of time. To provide a simple example when it holds,
suppose T = 2, Uit = Ai + κit for t = 1, 2 where κit are iid through time and
independent of Ai. Then, Assumption 2 is satisfied and Ui1 and Ui2 are correlated.
In this sense, Assumption 2 is milder than requiring Uit to be iid through time. Note
that the simple example corresponds to the standard equicorrelated random effects
specification due to Balestra and Nerlove (1966) from the panel analysis literature.
Another attractive feature of Assumption 2 is that it does not rely on parametric
assumptions on the joint density of (Ui, Ai).

It is worthwhile emphasizing that Assumption 2 requires exchangeability in the
conditional density of Uit’s given Ai, thus allowing arbitrary correlation between Ai
and Uit which is an important feature in many economic applications. For example, in
production function estimation, one may expect that the better managerial capability
a firm has, the greater chance a positive R&D outcome shall occur. Such correlation
is allowed under Assumption 2.
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Altonji and Matzkin (2005) also impose an exchangeability assumption (Assump-
tion 2.3 in their paper) to achieve identification in a nonparametric regression set-
ting. Compared with their exchangeability condition, Assumption 2 avoids directly
imposing distributional assumptions on the conditional density of Uit given Xi and
is arguably more primitive. More precisely, Altonji and Matzkin (2005) denote
Φit := (Ai, Uit) and assumes

fΦit|Xi1,..,XiT
(ϕit|xi1, .., xiT ) = fΦit|Xi1,..,XiT

(ϕit|xit1 , .., xitT ) , (8)

where (t1, ..., tT ) is any permutation of (1, ..., T ). There are two main differences be-
tween (7) and (8). First, Altonji and Matzkin (2005) do not distinguish Ai from Uit

in the definition of Φit, whereas Ai and Uit play different roles in this paper. The
difference between Ai and Uit could be important in applications such as production
function estimation because they have different economic interpretations and implica-
tions. Second, and more importantly, the exchangeability assumption (8) requires the
value of the conditional density function of Φit given regressors (Xi1, .., XiT ) does not
depend on the order in which the regressors are entered into the function. In (7), the
requirement is that the conditional density of (Ui1, .., UiT ) given Ai is exchangeable
in (Uit, .., UiT ), which is on the model primitives (A,U) rather than on (X,A,U) as
in (8). Moreover, it could be challenging to justify (8) since Φit includes Uit which
determines Xit by (3), but not Xis for s 6= t, which creates asymmetry between Xit

and Xis in (8).
In light of these differences and observations, we distinguish Ai from Uit in this

paper and impose the exchangeability assumption on the conditional probability den-
sity function (pdf) of Uit given Ai in (7). In the next section, we use (7) to prove an
exchangeability condition (15) on the conditional pdf of Ai wrt the elements (Xit, Zit).
We show that the new exchangeability condition (15) guarantees the existence of a
vector-valued functionWi symmetric in the elements of (Xi,Zi), such that condition-
ing on Wi, the fixed effect Ai is independent of (Xit, Zit) for any fixed t.

Assumption 3 (Random Sampling, Compact Support, and Exogeneity of
Z ). (Xi,Zi, Yi, Ai, Ui, εi) is iid across i ∈ {1, ..., n} with n → ∞ and fixed T ≥ 2.
The support of (Xit, Zit) is compact. Zit ⊥ (Ai, Uit).

The first part of Assumption 3 is a standard assumption on random sampling.
Notice that only a short panel is required. We focus on cross-sectional asymptotics
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with the number of agents getting larger (n→∞), while the number of time periods
T is held fixed. After obtaining Wi for each individual, which requires T ≥ 2, one
can treat each t-specific subsample across individuals separately in the identification
analysis and one does not need to do inter-temporal differencing as in Graham and
Powell (2012) or Laage (2020).

Assumption 3 can be relaxed to allow exogenous macro shocks in the model. One
can still obtain consistency and normality results by using conditional law of large
numbers and central limit theorems by conditioning on the sigma algebra generated
by all of the random variables common to each individual i but specific to period
t. This methodological convenience brings about significant computational advan-
tages because parallel computing can be used to deal with each t-specific subsample
simultaneously.

The second part of Assumption 3 requires the support of (Xit, Zit) to be compact,
which is required for the Weierstrass approximation theorem in the proof to show
that Wi is a sufficient statistic for Ai. The last part of Assumption 3 requires the
exogenous instrument Zit to be independent of (Ai, Uit) unconditionally. In produc-
tion function applications, it is satisfied when Zit is chosen to be, for example, input
prices. It is worthwhile mentioning that in the identification section, we impose an-
other conditional independence assumption between Zit and (Ai, Uit) conditioning on
a sufficient statistic for Ai. The reason for deferring the conditional independence as-
sumption is because we need first obtain the sufficient statistic, which is summarized
in Lemma 1.

3 Identification

In this section, we show how to identify the first-order moments of the random co-
efficient βit. To motivate the method, consider the classical linear regression model
without random coefficients

Yit = X
′

itβ + εit. (9)

Under the mean independence assumption that E [εit|Xit] = 0, one may take the
conditional expectation on both sides of (9) given Xit to obtain

E [Yit|Xit] = X
′

itβ, (10)
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and subsequently exploit the exogenous variation in Xit to identify β. For example,
taking the partial derivative on both sides of (10) wrt Xit identifies

β = ∂E [Yit|Xit] /∂Xit (11)

provided there is enough variation in Xit. Since E [Yit|Xit] is an identifiable object
from the data, β is thus identified.

But the identification argument (9)–(11) does not go through when β is random
and Xit depends on βit in each period. To see this, since βit is now random and
correlated with Xit, if one follows the analysis (9)–(11), instead of (10) she obtains

E [Yit|Xit] = X
′

itE [βit|Xit] . (12)

If one follows (11) to take partial derivative wrt Xit, it will simultaneously change
the conditional expectation E [βit|Xit] because the conditional pdf of βit given Xit is
changed. In this sense, the variation in Xit is no longer exogenous even though εit is
still exogenous and satisfies E [εit|Xit] = 0, exactly because βit is correlated with Xit.

Therefore, for identification the goal here is to find a set of feasible random vari-
ables that can control for the time-varying endogeneity through the random coeffi-
cients, such that after conditioning on these variables the residual variation in Xit is
exogenous and can identify the moments of the random coefficients. More precisely,
we show how to construct control variables in

E [Yit|Xit, cv] = X
′

itE [βit| cv] (13)

labeled as “cv” (control variable), such that conditioning on these variables, the resid-
ual variation in Xit is exogenous and can be used to identify the first-order moments
of βit as in (11).

The analysis is divided into four steps. First, we obtain a key sufficient statistic
Wi for the fixed effect Ai via the exchangeability condition (7). Second, we construct
a feasible variable Vit based on the sufficient statisticWi and show that Vit is a control
variable for Uit given (Ai,Wi). Third, if Ai is known, we prove the residual variation
in Xit conditioning on (Ai, Vit,Wi) is exogenous and can be used to identify the first-
order moments of βit. Lastly, we deal with the unknown Ai via a LIE argument and
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show the “cv” vector in (13) to be the feasible (Vit,Wi) .

Step 1: Sufficient Statistic for Ai

To construct a sufficient statistic for Ai, we exploit the exchangeability condition (7)
and prove the following lemma.

Lemma 1 (Sufficient Statistic for Ai). Suppose that Assumptions 1–3 are satis-
fied. Then, one can construct a feasible vector-valued function Wi := W (Xi,Zi) that
is symmetric in the elements of (Xi,Zi) and satisfies

fAi|Xit,Zit,Wi
(ai|xit, zit, wi) = fAi|Wi

(ai|wi) (14)

for any fixed t ∈ {1, ..., T}.

Lemma 1 exemplifies that one can exploit the panel data structure to control for
complicated unobserved individual heterogeneity terms. The intuition of Lemma 1 is
that Wi “absorbs” all the time-invariant information in the observable variables Xi

and Zi. Given Wi, any t-specific Xit or Zit, e.g., Xi1, Zi1, does not contain any addi-
tional information about Ai. Therefore, one can exclude them from the conditioning
set in (14) following the sufficiency argument. It is also worth emphasizing that
Lemma 1 only concerns the density of the fixed effectAi, not the random shock Uit,
whereas Assumption 2.1 of Altonji and Matzkin (2005) concerns the joint distribution
of Φit := (Ai, Uit).

To see an example of Wi, suppose T = 2 and both Xit and Zit are scalars. Then,
one example of such Wi is T−1∑

t (Xit, Zit, X
2
it, Z

2
it, XitZit). See Weyl (1939) for a

detailed illustration on how to construct Wi. Notice that we do not impose any
distributional assumption on the conditional density of Ai given (Xit, Zit) in Lemma
1. With that said, ex-ante information about Ai can be incorporated to reduce the
number of elements appearing in Wi. For example, when one knows the probability
distribution of Ai belongs to exponential family, such information can greatly simplify
Wi. See Altonji and Matzkin (2005) for a more detailed discussion.

We prove Lemma 1 in Appendix A. The key to the proof involves a change of vari-
ables step that uses the exchangeability condition (7) to establish that the conditional
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density of Ai given (Xi,Zi) is exchangeable through time, i.e.,

fAi|Xi1,Zi1,..,XiT ,ZiT
(ai|xi1, zi1, .., xiT , ziT )

= fAi|Xi1,Zi1,..,XiT ,ZiT
(ai|xit1 , zit1 , .., xitT , zitT ) , (15)

where (t1, ..., tT ) is any permutation of (1, ..., T ). It is worth noting that the inclusion
of Zit’s in the conditioning set in (15) is necessary for the change of variable argument
to go through. The exogeneity of Zit is also crucial for the argument. Then, following
Altonji and Matzkin (2005) one can construct a vector-valued function Wi symmetric
in the elements of (Xi,Zi), using the Weierstrass approximation theorem and the
fundamental theorem of symmetric functions, such that (14) hold.

Lemma 1 serves as the key device in obtaining the identification of moments of the
random coefficients βit. In the following analysis, we first construct a feasible control
variable for Uit given Ai in Step 2. Then, we exploit the exogenous variation in Xit

using the exclusion condition (14) to identify moments of βit in Step 3.

Step 2: Feasible Control Variable for U it

Given the nonseparable feature of the first-step g (·) function in (3), one may wish to
use the method proposed in Imbens and Newey (2009) to construct a control variable
for Uit and subsequently identify moments of βit by exploiting the residual variation
in Xit given the control variable. However, one cannot directly apply their technique
in the current setting because the model considered in this paper has two unobserved
heterogeneity terms Ai and Uit, whereas in their setting there is only one.

To see this more clearly, for brevity of exposition let Xit be a scalar that satis-
fies Assumption 1. Suppose one naively follows Imbens and Newey (2009) to exploit
the strict monotonicity of g (·) in U given (Z,A) and constructs a conditional CDF
FXit|Zit,Ai

(Xit|Zit, Ai), which under Assumption 1 equals FUit|Ai
(Uit|Ai), as the con-

trol variable for Uit. Then, two issues arise. First, FXit|Zit,Ai
(Xit|Zit, Ai) is not fea-

sible because Ai is unknown. Thus, one cannot consistently estimate it from data.
Second, unlike the unconditional CDF FUit

(Uit) in their setting which is a one-to-one
mapping of Uit, the conditional CDF FUit|Ai

(Uit|Ai) is a function of both Ai and Uit.
Therefore, one can not uniquely pin down Uit using FUit|Ai

(Uit|Ai) if Ai is unknown.
For example, given a fixed value c that FUit|Ai

(Uit|Ai) takes, there can be many Uit’s
that satisfies FUit|Ai

(Uit|Ai) = c, exactly because Ai is not fixed. Therefore, one
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needs to explicitly deal with unknown Ai when constructing a control variable for
Uit.

In this step, we deal with the first issue that FXit|Zit,Ai
(Xit|Zit, Ai) is infeasible

and show how to construct a feasible variable that can be used later on to form a
one-to-one mapping of Uit. The idea is to use the sufficient statisticWi in Lemma 1 to
get rid of Ai from the conditioning set of the conditional CDF FXit|Zit,Ai

(Xit|Zit, Ai).
More specifically, the sufficiency condition (14) implies Ai ⊥ (Xit, Zit)|Wi, which fur-
ther implies Xit ⊥ Ai| (Zit,Wi), i.e.,

fXit|Zit,Ai,Wi
(xit| zit, ai, wi) = fXit|Zit,Wi

(xit| zit, wi) . (16)

The key observation here is the right hand side (rhs) of (16) is feasible since it only
involves known or estimable objects from data. Suppose the first coordinate of Xit

denoted by X(1)
it satisfies Assumption 1. Then, one can construct

Vit := F
X

(1)
it

∣∣∣Zit,Wi

(
X

(1)
it

∣∣∣Zit,Wi

)
(17)

and use (16) to deduce that

Vit = F
X

(1)
it

∣∣∣Zit,Ai,Wi

(
X

(1)
it

∣∣∣Zit, Ai,Wi

)
. (18)

Next, we use Assumption 1 and the next assumption to prove

F
X

(1)
it

∣∣∣Zit,Ai,Wi

(
X

(1)
it

∣∣∣Zit, Ai,Wi

)
= FUit|Ai,Wi

(Uit|Ai,Wi) , (19)

the rhs of which plays an essential role to the subsequent identification analysis.

Assumption 4 (Conditional Independence). Zit ⊥ Uit|Ai,Wi.

Assumption 4 requires that the exogenous instrument Zit is independent of Uit
given Ai and Wi. Since one may view Wi as summarizing all the time-invariant in-
formation about Ai in the data, the assumption is, loosely speaking, requiring Zit
to be independent of Uit given Ai by the rules of conditional independence, which
is already implied by the unconditional exogeneity assumption of Zit ⊥ (Ai, Uit) in
Assumption 3. When Assumption 4 is satisfied depends on which Wi is used in prac-
tice. For example, if X and Z are both scalars and one uses Wi = T−1∑

t (Xit, Zit),
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then Assumption 4 is satisfied when g (Zit, Ai, Uit) is separable in Zit. Assumption 4
is used to ensure that the residual variation in Xit given Vit and Wi is exogenous to
(Ai, Uit).

Lemma 2 (Feasible Control Variable Vit). Suppose Assumptions 1–4 hold. Then,
the random variable Vit satisfies

Vit := F
X

(1)
it

∣∣∣Zit,Wi

(
X

(1)
it

∣∣∣Zit,Wi

)
= FUit|Ai,Wi

(Uit|Ai,Wi) , (20)

where X(1)
it denotes the first coordinate of Xit that is known to satisfy Assumption 1.

The important part of Lemma 2 is that Vit is feasible. As a result, it can be con-
sistently estimated from data. The feasibility of Vit solves the first issue discussed at
the beginning of this identification step. Note that one coordinate of Xit that satisfies
Assumption 1 is sufficient to construct Vit. When there are multiple coordinates of
Xit that are known to satisfy Assumption 1, one can choose whichever coordinate of
Xit to construct Vit because by (20), a single variable Vit suffices to control for Uit
given (Ai,Wi). We provide an extension when Uit is a vector towards the end of the
identification section.

However, the conditional CDF FUit|Ai,Wi
(Uit|Ai,Wi) on the rhs of (20) is not

a one-to-one function of Uit because Ai is unknown. If Ai is known, then one can
condition on (Ai, Vit,Wi), which by (20) is equivalent to conditioning on (Ai, Uit,Wi),
and use the residual variation in Xit to identify moments of βit as in (13). In the next
step, we deal with unknown Ai using the sufficiency argument from the first step and
the law of iterated expectations (LIE).

Step 3: Identify the First-Order Moments of βit

We impose the next two regularity assumptions on FUit|Ai,Wi
(Uit|Ai,Wi) and the

support of Xit given (Vit,Wi), respectively.

Assumption 5 (Strict Monotonicity of CDF of Uit). The conditional CDF
FUit|Ai,Wi

(Uit|Ai,Wi) is strictly increasing in Uit for all (Ai,Wi).

Assumption 6 (Residual Variation in Xit). The support of Xit given Vit and Wi

contains some ball of positive radius a.s. wrt (Vit,Wi).
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Assumption 5 requires that the conditional CDF of Uit given (Ai,Wi) cannot have
flat areas, i.e., for each possible realization c ∈ [0, 1] of FUit|Ai,Wi

(Uit|Ai,Wi) and fixed
(Ai,Wi), there is one and only one value of Uit such that FUit|Ai,Wi

(Uit|Ai,Wi) = c.
Consequently, fixing the level of FUit|Ai,Wi

(Uit|Ai,Wi) as well as (Ai,Wi) is equivalent
to fixing the level of Uit. Assumption 6 is like the rank condition that is familiar from
the linear simultaneous equations model. It requires that conditional on Vit and
Wi, there is residual variation in Xit to identify moments of βit. Assumption 6 is
imposed to facilitate a partial derivative based identification argument and thus rules
out discrete Xit’s. One can include discrete Xit’s by using the within group variation
among Xit’s given Vit and Wi. Then, the required support condition is there are at
least dX linearly independent points in the support of Xit given Vit and Wi.

It is worth mentioning that we do not require the conditional support of the control
variable Vit given Xit is equal to the unconditional support of Vit, i.e., Assumption
2 of Imbens and Newey (2009), because we take advantage of the linear structure of
the model and separately identify the unconditional mean of βit without integrating
over the marginal distribution of Vit, which identifies the average structural function.

Suppose Ai is known for now, we have

E [βit|Xit, Ai, Vit,Wi]

= E
[
β (Ai, Uit)| g (Zit, Ai, Uit) , Ai, FUit|Ai,Wi

(Uit|Ai,Wi) ,Wi

]
= E [β (Ai, Uit)|Ai, Vit,Wi] =: β̃ (Ai, Vit,Wi) , (21)

where the first equality holds by the definition of Vit and (3), and the second equality is
true because the sigma algebra generated by

(
Ai, FUit|Ai,Wi

(Uit|Ai,Wi) ,Wi

)
is equal

to that generated by (Ai, Uit,Wi) by Assumption 5, which contains all the information
necessary to calculate the first-order moment of βit as a function of Ai and Uit. As a
consequence, the variation in Xit does not contain any additional information given
(Ai, Vit,Wi).

Next, to deal with unknown Ai appearing in (21), we use the LIE together with
the sufficiency condition of (14). More specifically, taking the conditional expectation
of β̃ (Ai, Vit,Wi) wrt Ai given (Xit, Vit,Wi) gives

E
[
β̃ (Ai, Vit,Wi)

∣∣∣Xit, Vit,Wi

]
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= E
[
E
[
β̃ (Ai, Vit,Wi)

∣∣∣Xit, Zit,Wi

]∣∣∣Xit, Vit,Wi

]
= E

[∫
β̃ (a, Vit,Wi) fAi|Wi

(a|Wi)µ (da)
∣∣∣∣Xit, Vit,Wi

]
=: β (Vit,Wi) , (22)

where the first equality holds by the LIE and the fact that Vit is a function of
(Xit, Zit,Wi) and the second equality holds by (14). The measure µ (·) in the third
line of (22) represents the Lebesgue measure.

Given (22), taking the conditional expectation of both sides of (1) given
(Xit, Vit,Wi) leads to

E [Yit|Xit, Vit,Wi] = X
′

itβ (Vit,Wi) . (23)

From (23), the “cv” appearing in (13) are (Vit,Wi). The result is intuitive because
Vit is a feasible control variable for Uit given (Ai,Wi) and Wi is a sufficient statistic
for Ai. Therefore, fixing (Vit,Wi) effectively controls for (Ai, Uit), thus the residual
variation in Xit is exogenous.

When Assumption 6 holds, one can identify β (Vit,Wi) by

β (Vit,Wi) = ∂E [Yit|Xit, Vit,Wi] /∂Xit. (24)

With β (Vit,Wi) identified, one can then identify E [βit|Xit] and Eβit via the LIE. For
example,

Eβit = Eβ (Vit,Wi) = E (∂E [Yit|Xit, Vit,Wi] /∂Xit) , (25)

where the expectation is taken wrt the joint distribution of (Vit,Wi), an identifiable
object from data.

Theorem 1 (Identification). If Assumptions 1–6 are satisfied, then E [βit|Vit,Wi],
E [βit|Xit], and Eβit are identified.

Theorem 1 presents the main identification result following the steps above. The
idea is simple: find the feasible variables denoted by “cv” in (13) such that condi-
tioning on these variables, the residual variation in Xit is exogenous to that in βit.
We have shown that the feasible variables are (Vit,Wi). The sufficient statistic Wi

for Ai constructed in the first step plays an important role. It not only enables the
construction of the feasible control variable Vit for Uit given (Ai,Wi) in the second
step, but also manages to control for Ai in the last step. By exploiting the panel data
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structure, the proposed method extends the traditional control function approach
where only one unknown scalar affects the regressors to the setting with a fixed effect
of arbitrary dimension and a random shock, both of which affect the choice of Xit in
a nonseparable way as in (3).

Higher-Order Moments of βit

We have shown the identification of the first-order expectation of the vector of the
random coefficients. Higher-order moments such as variance of the random coefficients
can also be of interest to researchers to answer policy-related questions. For example,
policy makers may be interested in how fast labor-augmenting technology is being
diffused among firms. In this section, we briefly discuss how to identify the second-
order moments under regularity conditions.

For simplicity of exposition, we consider the case when the vector of regressors
(Xit, 1) is two-dimensional. With a slight abuse of notation, let (βit, ωit) ∈ R2 where
βit is the random coefficient corresponding to the scalar Xit and ωit is the random
coefficient associated with the constant 1. The ex-post shock εit is omitted from
the analysis for brevity of exposition. If εit is present, one may follow the approach
proposed in Arellano and Bonhomme (2012) and impose a structure such as ARMA
on the inter-temporal dependence among εit’s to identify the second-order moments
of βit and ωit.

Since (22) holds with β2
it or ω2

it in place of βit, one has

E
[
β2
it

∣∣∣Xit, Vit,Wi

]
= E

[
β2
it

∣∣∣Vit,Wi

]
,

E
[
ω2
it

∣∣∣Xit, Vit,Wi

]
= E

[
ω2
it

∣∣∣Vit,Wi

]
,

E [ωitβit|Xit, Vit,Wi] = E [ωitβit|Vit,Wi] . (26)

Thus, taking the conditional expectation of the squares of both sides of (1) given
(Xit, Vit,Wi) gives

E
[
Y 2
it

∣∣∣Xit, Vit,Wi

]
= X2

itE
[
β2
it

∣∣∣Vit,Wi

]
+2XitE [βitωit|Vit,Wi]+E

[
ω2
it

∣∣∣Vit,Wi

]
. (27)

Then, the identification of E [β2
it|Vit,Wi], E [ω2

it|Vit,Wi], and E [ωitβit|Vit,Wi] follows
similarly to (24). More precisely, one can identify E [β2

it|Vit,Wi] by exploiting the
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second-order derivative of E [Y 2
it |Xit, Vit,Wi] wrt Xit:

E
[
β2
it

∣∣∣Vit,Wi

]
=
(
∂2E

[
Y 2
it

∣∣∣Xit, Vit,Wi

]
/∂X2

it

)
/2. (28)

Then, one can identify E [βitωit|Vit,Wi] by

E [βitωit|Vit,Wi] =
(
∂E

[
Y 2
it

∣∣∣Xit, Vit,Wi

]
/∂Xit − 2XitE

[
β2
it

∣∣∣Vit,Wi

])
/2 (29)

and finally identify E [ω2
it|Vit,Wi] by

E
[
ω2
it

∣∣∣Vit,Wi

]
= E

[
Y 2
it

∣∣∣Xit, Vit,Wi

]
−X2

itE
[
β2
it

∣∣∣Vit,Wi

]
− 2XitE [βitωit|Vit,Wi] . (30)

By induction, the analysis can be extended to identify any order of moments
of βit, which under regularity conditions (Stoyanov, 2000) uniquely determines the
distribution function of βit.

The flexible identification argument can also be used to identify intertem-
poral correlations of the random coefficients. For example, one can iden-
tify E [βitβis|Xit, Xis, Vit, Vis,Wi] from E [YitYis|Xit, Xis, Vit, Vis,Wi] for any t, s ∈
{1, .., T} following an almost identical argument as in (26)–(30).

Other Extensions

The identification argument is flexible and can adapt to several extensions. First,
when there is a vector of Uit (say two dimensional) in (1) while each coordinate of Uit
appears in only one of (3), i.e.,

Yit = X
′

itβ
(
Ai, U

(1)
it , U

(2)
it

)
+ εit

X
(1)
it = g(1)

(
Zit, Ai, U

(1)
it

)
X

(2)
it = g(2)

(
Zit, Ai, U

(2)
it

)
,

one can construct

V
(1)
it := F

X
(1)
it

∣∣∣Zit,Wi

(
X

(1)
it

∣∣∣Zit,Wi

)
and V (2)

it := F
X

(2)
it

∣∣∣Zit,Wi

(
X

(2)
it

∣∣∣Zit,Wi

)
,
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and follow Step 1–3 to obtain

E
[
Yit|Xit, V

(1)
it , V

(2)
it ,Wi

]
= X

′

itβ
(
V

(1)
it , V

(2)
it ,Wi

)
.

Then, the identification follows identically to (24).

Second, to allow more flexible or even arbitrary inter-temporal correlation than
(7) among the Uit’s, one may replace the individual fixed effect Ai with a group fixed
effect Aj when i belongs to group j (Cameron, Gelbach, and Miller, 2012; Cameron
and Miller, 2015). More precisely, we modify the model (1)–(3) to be

Yijt = X
′

ijtβ (Aj, Uijt) + εijt,

Xijt = g (Zijt, Aj, Uijt) , (31)

where i is individual, j is group, and t is time. One may want to use this model instead
of (1)–(3) if she desires to relax the restriction on the inter-temporal correlations
between Uit’s and finds the evidence of a group fixed effect, e.g., location or sector or
age fixed effect. Let Uij = (Uij1, ..., UijT )

′
. Then, one can use a “group” version of

the exchangeability condition

fU1j ,...,UIj|Aj
(u1j, ..., uIj| aj) = fU1j ,...,UIj|Aj

(ui1j, ..., uiIj| aj) , (32)

where (i1, ..., iI) is any permutation of (1, ..., I), to construct a sufficient statistic Wj

for Aj and proceed as in Step 2–3 to identify moments of the random coefficients.

Third, to deal with persistent shocks to Xit or deterministic time trend in Xit, one
may model the inter-temporal change in Xit, or ∆Xit := Xit −Xit−1, as a function g
of (Z,A, U) instead of modeling Xit as a function g of (Z,A, U). The identification
is mostly the same as before, except that Wi is now a symmetric function in the
elements of ∆Xit rather than Xit and Vit := F∆Xit|Zit,Wi

. Then, one can identify the
moment of βit by taking partial derivative wrt ∆Xit on both sides of

E [Yit|Xit−1,∆Xit, Vit,Wi] = (Xit−1 + ∆Xit)
′
β (Xit−1, Vit,Wi) . (33)
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The last extension concerns exogenous shocks. We maintain model (1) and (3)
and follow Graham and Powell (2012) to replace (2) with βit = β (Ai, Uit) + dt (U2,it),
where dt is an unknown time-varying vector-valued function and U2,it is an exogenous
shock independent of all other variables in the system. For example, U2,it can capture
the effect of the pandemic on the mental/physical health of the employees of firm i

in period t after the employees have been hired. Then, following the argument as
before, we have

E [βit|Xit, Vit,Wi] = E [β (Ai, Uit)|Vit,Wi] + E [dt (U2,it)] =: β (Vit,Wi) + δ0t, (34)

which implies
E [Yit|Xit, Vit,Wi] = X

′

it [β (Vit,Wi) + δ0t] . (35)

Taking the partial derivative wrt Xit on both sides of (35) gives

∂E [Yit|Xit, Vit,Wi] /∂Xit = β (Vit,Wi) + δ0t. (36)

Repeating the same process for a different period s 6= t leads to

∂E [Yis|Xis, Vis,Wi] /∂Xis = β (Vis,Wi) + δ0s. (37)

Then, one identifies δ0t − δ0s for any t 6= s by

δ0t − δ0s = {∂E [Yit|Xit, Vit,Wi] /∂Xit − ∂E [Yis|Xis, Vis,Wi] /∂Xis}|Vit=Vis
. (38)

Using the same normalization of δ01 = 0 as in Graham and Powell (2012), one iden-
tifies δ0t for all t. Finally, the identification of β (Vit,Wi) follows from (36).

4 Estimation and Large Sample Theory

The identification argument is constructive and leads to a feasible estimator for the
first-order moment of βit. In this section, we first estimate the conditional and uncon-
ditional moments of the random coefficients using multi-step series estimators. Then,
we obtain the convergence rates and asymptotic normality results for the proposed
estimators.
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4.1 Estimation

The parameters of interest in this paper are

β (v, w) := E [βit|Vit = v,Wi = w] , β (x) := E [βit|Xit = x] , and β := Eβit. (39)

We propose to estimate them using three-step series estimators. In the first step, we
estimate V (x, z, w) = FXit|Zit,Wi

(x| z, w) and denote Vit := V (Xit, Zit,Wi). Then, for
s = (x, v, w) we estimate G (s) := E [Yit|Xit = x, Vit = v,Wi = w] using V̂ obtained
in the first step and denote Git := G (Sit) = G (Xit, Vit,Wi). Finally, we estimate
β (v, w), β (Xit) and β, all of which are identifiable functionals of G (s). For brevity
of exposition, we provide definitions of all of the symbols appearing in this section in
Appendix C.

More specifically, we first estimate V (x, z, w) by regressing 1 {Xit ≤ x} on the
basis functions qL (·) of (Zit,Wi) with trimming function τ (·):

V̂ (x, z, w) = τ
(
F̂Xit|Zit,Wi

(x| z, w)
)

= τ

qL (z, w)
′
Q̂−1

n∑
j=1

qj1 {Xjt ≤ x} /n


=: τ

(
qL (z, w)

′
γ̂L (x)

)
. (40)

We highlight two properties of V̂ (x, z, w). First, unlike traditional series estimators,
the regression coefficient γ̂L (x) in (40) depends on x because the dependent variable
in V is a function of x. This fact makes the convergence rate of V̂ slower than the
standard rates for series estimators (Imbens and Newey, 2009). Second, a trimming
function τ is applied to qL (z, w)

′
γ̂L (x) because we estimate a conditional CDF which

by definition lies between zero and one. One example of τ is τ (x) = 1 {x ≥ 0} ×
min (x, 1).

Next, we estimate G (s) by regressing Yit on the basis functions pK (·) of(
Xit, V̂it,Wi

)
:

Ĝ (s) = pK (s)
′
P̂−1p̂

′
y/n =: pK (s)

′
α̂K . (41)

Following Newey, Powell, and Vella (1999), we construct the basis function pK (s) =
x⊗pK1 (v, w) by exploiting the index structure of the model (1). The index structure
enables a faster convergence rate for Ĝ (s). Note that in (41) V̂it from the first-step

29



is plugged in wherever Vit appears.
Finally, we estimate β (v, w) by exploiting the index structure of the model (1)

and calculate it as

β̂ (v, w) = ∂Ĝ (s) /∂x =
(
IdX
⊗ pK1 (v, w)

)′

α̂K =: p (s)
′
α̂K , (42)

where the second equality holds by the chain rule. To estimate β (x) and β, we use
the LIE and regress β̂

(
V̂it,Wi

)
on the basis function rM (·) of Xit and the constant

1, respectively :

β̂ (x) = rM (x)
′
R̂−1r

′
B̂/n =: rM (x)

′
η̂M ,

β̂ = n−1
n∑
i=1

β̂
(
V̂it,Wi

)
. (43)

One may consider β̂ as a “special case” of β̂ (x) by letting rM (·) ≡ 1, which simplifies
the asymptotic analysis in the next section.

The objects of interest in this paper are β (v, w), β (x), and β. β (v, w) is the
conditional expectation of βit given (Vit,Wi) = (v, w), and can be interpreted as
the average of the partial effects of Xit on Yit among the individuals with the same
(Vit,Wi) = (v, w). If one loosely considers Vit to be Uit and Wi to be Ai, then β (v, w)
is the same as βit. In this sense, β (v, w) provides the “finest” approximation of βit
among the three objects in (39). β (x) measures the average partial effect averaged
over the conditional distribution of the unobserved heterogeneity (Ai, Uit) when Xit

equals x. It provides useful information about the partial effects of Xit on Yit for a
subpopulation characterized by Xit = x. For example, if one asks about the average
output elasticity with respect to labor for firms with a certain level of capital and
labor, then β (x) contains relevant information to answer such questions. β is the
APE that has been studied extensively in the literature (Chamberlain, 1984, 1992;
Wooldridge, 2005b; Graham and Powell, 2012; Laage, 2020). It is interpreted as
the average of the partial effect of Xit on Yit over the unconditional distribution of
(Ai, Uit). Depending on the scenario and application, all three objects can be useful
to answer policy-related questions.

The multi-step series estimators proposed in this section cause challenges for infer-
ence due to their multi-layered nature. To obtain large sample properties of β̂ (v, w),
β̂ (x) and β̂, one needs to analyze the estimators step by step as the estimator from
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each step is plugged in and thus affects all subsequent ones. For asymptotic analysis,
there is a key difference between β (v, w) and β (x) or β: β (v, w) is a known functional
of G (s), whereas both β (x) and β are unknown but identifiable functionals of G (s).
We present in the next session how to deal with these challenges for the purpose of
inference.

4.2 Large Sample Theory

Before proving convergence rates and asymptotic normality results for the three-step
series estimators defined in (42)–(43), we first briefly review the related literature.
Andrews (1991) analyzes the asymptotic properties of series estimators for nonpara-
metric and semiparametric regression models. His results are applicable to a wide
variety of estimands, including derivatives and integrals of the regression function.
This paper builds on his results and shows asymptotic normality for a vector-valued
functional of regression functions. Newey (1997) also studies series estimators and give
conditions for obtaining convergence rates and asymptotic normality for the estima-
tors of conditional expectations. Newey, Powell, and Vella (1999) present a two-step
nonparametric estimator for a triangular simultaneous equation model with a separa-
ble first-step equation. They derive asymptotic normality for their two-step estimator
with the first-step plugged in. Imbens and Newey (2009) also analyze a triangular si-
multaneous equation model, but with a nonseparable first-step equation. They show
mean-squared convergence rates for the first-step estimator, and prove asymptotic
normality for known functionals of the conditional expectation of the outcome vari-
able given regressors and control variables. We build on and extend their asymptotic
results to unknown but estimable functionals of the conditional expectations.

More recently, Hahn and Ridder (2013) derive a general formula of the asymptotic
variance of the multi-step estimators using the pathwise derivative method by Newey
(1994). They only consider the case that the first-stage model is a regression model
with a separable error. Hahn and Ridder (2019) consider a setting with a nonseparable
first step similar to the one in this paper. They focus on the full mean process instead
of the partial mean process and show how to obtain influence functions for known
functionals of the average structural functions rather than unknown functionals of the
conditional expectation functions. Thus, their results do not directly apply to our
setting. Mammen, Rothe, and Schienle (2012, 2016) study the statistical properties
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of nonparametric regression estimators using generated covariates. They focus on
kernel estimators in these two papers. Lee (2018) considers partial mean process with
generated regressors, where the average is over the generated regressors while fixing
the treatment variable at a certain level. She proposes a nonparametric estimator
where the second step consists of a kernel regression on regressors that are estimated in
the first step. Her assumptions and method are quite different from those considered
in this paper.

Alternatively to these papers, one may use sieve methods to establish large sample
properties for the multi-step estimators considered in this paper. Ai and Chen (2007)
consider the estimation of possibly misspecified semiparametric conditional moment
restriction models with different conditioning variables, which include many control
variable models similar to the one discussed in this paper. See Ackerberg, Chen, and
Hahn (2012) for more details on how to apply the methods proposed in Ai and Chen
(2007). Chen and Liao (2014) derive point-wise normality for slower than root-n
functionals for general sieve M estimation. Chen and Liao (2015) consider semi-
parametric multi-step estimation and inference with weakly dependent data, where
unknown nuisance functions are estimated via sieve extremum estimation in the first
step. They show that the asymptotic variance of the multi-step estimator can be well
approximated by sieve variances that have simple closed-form expressions. We refer
interested readers to these papers for more details.

We now derive convergence rates and asymptotic normality results for the pro-
posed estimators. Since we let n → ∞ for each t in the asymptotic analysis, the
t-subscript is suppressed for notational simplicity. First, we obtain convergence rates
for β̂ (v, w), β̂ (x), and β̂, respectively. For β̂ (v, w), we adapt the results of Imbens
and Newey (2009) to the TERC model considered in this paper. For β̂ (x) and β̂, the
effects from first- and second- step estimations need to be taken into consideration.
We present both mean squared and uniform rates for all three estimators.

Then, we prove asymptotic normality for the estimators, and show that the cor-
responding variances can be consistently estimated to construct valid confidence in-
tervals. Asymptotic normality for β̂ (v, w) is established by applying the results of
Andrews (1991) and Imbens and Newey (2002) to cover vector-valued functionals. For
β̂ (x) and β̂, the main difference from the existing literature is that both estimators
are unknown functionals of G (·) that are only estimable from the data. Therefore,
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one needs to correctly account for the additional estimation error and adjust the
asymptotic variance.

Convergence Rates

Recall that the conditional and unconditional moments of the random coefficients
are estimated via the three-step estimators (42)–(43). The convergence rates for
the first- and second- step estimators V̂ and Ĝ have been obtained in Imbens and
Newey (2009). We adapt their results to our TERC model and impose the following
regularity assumption.

Assumption 7. Suppose the following conditions hold:

1. There exist d1, C > 0 such that for every L there is a L × 1 vector γL (x)
satisfying

sup
x∈X ,z∈Z,w∈W

∣∣∣FX|Z,W (x| z, w)− qL (z, w)
′
γL (x)

∣∣∣ ≤ CL−d1 .

2. The joint density of (X, V,W ) is bounded above and below by constant multiples
of its marginal densities.

3. There exist C > 0, ζ (K1), and ζ1 (K1) such that ζ (K1) ≤ Cζ1 (K1) and for each
K1 there exists a normalization matrix B such that p̃K1 (v, w) = BpK1 (v, w)
satisfies λmin

(
Ep̃K1 (Vi,Wi) p̃K1 (Vi,Wi)

′)
≥ C, supv∈V,w∈W

∥∥∥p̃K1 (v, w)
∥∥∥ ≤

Cζ (K1), and supv∈V,w∈W
∥∥∥∂p̃K1 (v, w) /∂v

∥∥∥ ≤ Cζ1 (K1). Furthermore,
K1ζ1 (K1)2

(
L/n+ L1−2d1

)
is o (1).

4. G (s) is Lipschitz in v. There exist d2, C > 0 such that for every K = dX ×K1

there is a K × 1 vector αK satisfying

sup
s∈S

∣∣∣G (s)− pK (s)
′
αK
∣∣∣ ≤ CK−d2 .

5. V ar (Yi|Xi, Zi,Wi) is bounded uniformly over the support of (Xi, Zi,Wi).

Assumption 7(1) and (4) specify the approximation rates for the series estimators.
It is well-known that such rates exist when FX|Z,W (x| z, w) and G (s) satisfy mild
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smoothness conditions and regular basis functions like splines are used. See Imbens
and Newey (2009) for a detailed discussion.

Assumption 7(2) is imposed to guarantee that the smallest eigenvalue of
EpK (Si) pK (Si)

′
is strictly larger than some positive constant C. It is imposed be-

cause in the analysis we exploit the index structure of our TERC model by choosing
pK (s) = x ⊗ pK1 (v, w). The usual normalization (Newey, 1997) on the second mo-
ment of basis functions can only be done on x and pK1 (v, w) separately. Thus, we
need Assumption 7(2) to make sure the second moment of pK (s) is well-behaved. A
similar assumption is imposed in Imbens and Newey (2002) as well.

Assumption 7(3) is a normalization on the basis function pK1 (·), which ensures
that one can normalize EpK1 (Vi,Wi) pK1 (Vi,Wi)

′
to be the identity matrix I as in

Newey (1997). Finally, the conditional variance of Y given (X, V,W ) is assumed to
be bounded in Assumption 7(5), which is common in the series estimation literature.

With Assumption 7 in position, we prove the following lemma.

Lemma 3 (First- and Second-Step Convergence Rates). Suppose the condi-
tions of Theorem 1 and Assumption 7 are satisfied. Then, we have

n−1∑
i

(
V̂i − Vi

)2
= OP

(
L/n+ L1−2d1

)
=: OP

(
∆2

1n

)
∫ [

Ĝ (s)−G (s)
]2
dF (s) = OP

(
K1/n+K−2d2

1 + ∆2
1n

)
=: OP

(
∆2

2n

)
sup
s∈S

∣∣∣Ĝ (s)−G (s)
∣∣∣ = OP (ζ (K1) ∆2n) .

Lemma 3 states that the mean squared convergence rate for Ĝ is the sum of the
first-step rate ∆2

1n, the variance term K1/n, and the squared bias term K−2d2
1 . Both

d1 and d2 are the uniform approximation rates that govern how well one is able to
approximate the unknown functions V and G with qL (·) and pK (·), respectively.
Note that even though the order of the basis function for the second-step estimation
is K, by the TERC structure K = dX × K1 and dX is a finite constant. Thus, the
effective order that matters for the convergence rate results is K1.

We now obtain the convergence rates for β̂ (v, w), β̂ (x) and β̂. We impose the
following assumption.

Assumption 8. Suppose the following conditions hold:

34



1. There exist d3, C > 0 such that for every M there is a M × dX matrix ηM

satisfying
sup
x∈X

∥∥∥β (x)− rM (x)
′
ηM
∥∥∥ ≤ CM−d3 .

2. There exist C > 0 and ζ (M) such that for each M there exists a normalization
matrix B such that r̃M (x) = BrM (x) satisfies λmin

(
Er̃M (Xi) r̃M (Xi)

′)
≥ C

and supx∈X
∥∥∥r̃M (x)

∥∥∥ ≤ Cζ (M) .

3. Let ξi = β (Vi,Wi)− β (Xi) and ξ = (ξ1, ..., ξn)
′
. Then, E

[
ξξ

′
∣∣∣X] ≤ CI in the

positive definite sense.

4. β (v, w) is Lipschitz in v, with the Lipschitz constant bounded from above.

Assumption 8 imposes conditions on the approximation rate of β (x), the normal-
ization of basis functions rM (x), and the boundedness of the second moment of ξi,
similarly to those in Assumption 7.

Theorem 2 (Third-Step Convergence Rates). Suppose the conditions of Lemma
3 and Assumption 8 are satisfied. Then, we have

∫ ∥∥∥β̂ (v, w)− β (v, w)
∥∥∥2
dF (v, w) = OP

(
∆2

2n

)
,∫ ∥∥∥β̂ (x)− β (x)

∥∥∥2
dF (x) = OP

(
∆2

2n +M/n+M−2d3
)

=: Op

(
∆2

3n

)
,∥∥∥∥β̂ − β∥∥∥∥2

= OP

(
∆2

2n

)
,

sup
v∈V,w∈W

∥∥∥β̂ (v, w)− β (v, w)
∥∥∥ = OP (ζ (K1) ∆2n) , and

sup
x∈X

∥∥∥β̂ (x)− β (x)
∥∥∥ = OP (ζ (M) ∆3n) .

The first three equations in Theorem 2 give mean squared convergence rates, while
the last two show uniform ones. For β̂ (v, w), the convergence rate is the same as Ĝ
because they share the same regression coefficient α̂K and only differ in the basis
functions used. More precisely, for β̂ (v, w) we use IdX

⊗ pK1 (v, w), while for Ĝ (s)
we use x⊗ pK1 (v, w). Meanwhile, the same regression coefficient α̂K is used for both
estimators. Therefore, under Assumption 7 and 8, the convergence rate result on
Ĝ (s) applies directly to β̂ (v, w).
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For β̂ (x) and β̂, further analysis is required because both estimators involve an
additional estimation step. Specifically, for β̂ (x), we estimate it with

β̂ (x) = rM (x)
′ (
R̂−1r

′
B̂/n

)
=: rM (x)

′
η̂M . (44)

To obtain the convergence rate for β̂ (x), the key steps include expanding

η̂M − ηM = R̂−1r
′ [(

B̂ − B̃
)

+
(
B̃ −B

)
+
(
B −BX

)
+
(
BX − rηM

)]
/n, (45)

where ηM is defined in Assumption 8(1), and deriving the rate for each component.
We show the proof in the Appendix B.

For β̂, we estimate it with

β̂ = n−1∑
i

β̂
(
V̂i,Wi

)
. (46)

It is possible to analyze β̂ in a similar way as β̂ (x) by expanding β̂
(
V̂i,Wi

)
− β

stochastically and deriving the convergence rate component by component. However,
with the convergence results established for β̂ (x), one can let rM (·) ≡ 1 in (44) and
directly obtain the rate for β̂. We follow this simpler approach in the proof.

Asymptotic Normality

In this section, we prove asymptotic normality for the estimators of β (v, w), β (x)
and β, and show that the corresponding covariance matrices can be consistently
estimated for use in confidence intervals. Imbens and Newey (2002) have obtained
asymptotic normality for estimators of known and scalar-valued linear functionals of
G (s). However, β (v, w) is a known but vector-valued functional of G (s). To apply
their results, we use Assumption J(iii) of Andrews (1991) together with a Cramér–
Wold device to show asymptotic normality for β̂ (v, w).

Assumption 9. Suppose the following conditions hold:

1. There exist C > 0 and ζ (L) such that for each L there exists
a normalization matrix B such that q̃L (z, w) = BqL (z, w) satisfies
λmin

(
Eq̃L (Zi,Wi) q̃L (Zi,Wi)

′)
≥ C and supz∈Z,w∈W

∥∥∥q̃L (z, w)
∥∥∥ ≤ Cζ (L).
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2. G (s) is twice continuously differentiable with bounded first and second deriva-
tives. For functional a (·) of G and some constant C > 0, it is true that
|a (G)| ≤ C sups |G (s)| and either (i) there is δ (s) and α̃K such that Eδ (Si)2 <

∞, a
(
pKk
)

= Eδ (Si) pKk (Si) for all k = 1, ..., K, a (G) = Eδ (Si)G (Si), and

E
(
δ (Si)− pK (Si)

′
α̃K
)2
→ 0; or (ii) for some α̃K, E

[
pK (Si)

′
α̃K
]2
→ 0 and

a
(
pK (·)

′
α̃K
)
is bounded away from zero as K →∞.

3. E
[
(Y −G (s))4

∣∣∣X,Z,W ]
<∞ and V ar (Y |X,Z,W ) > 0.

4. nL1−2d1, nK−2d2, Kζ1 (K)2 L2/n, ζ (K)6 L4/n, ζ1 (K)2 LK−2d2, and
ζ (K)4 ζ (L)4 L/n are o (1).

5. There exist d4 and αK such that for each element sj of s = (x, v, w)
′
:

max
{

sup
s∈S

∣∣∣G (s)− pK (s)
′
αK
∣∣∣ , sup

s∈S

∣∣∣∂ (G (s)− pK (s)
′
αK
)
/∂sj

∣∣∣} = O
(
K−d4

)
.

6. (As’ J(iii) of Andrews (1991)) For a bounded sequence of constants {b1n : n ≥ 1}
and constant pd matrix Ω1, it is true that b1nΩ1

p−→ Ω1.

Assumptions 9(1)–(5) are imposed in Imbens and Newey (2002) and are regularity
conditions required for the asymptotic normality of β̂ (v, w). See Newey (1997) for
a detailed discussion of these assumptions. Assumption 9(6) is used in Andrews
(1991) and guarantees that the normality result of Imbens and Newey (2002) applies
to vector-valued functionals of G (s). Essentially, it requires all the coordinates of
β̂ (v, w) to converge at the same speed, which is a mild assumption under our settings
because ex-ante we do not distinguish one coordinate of βit from the others.

Theorem 3 (Asymptotic Normality for β̂ (v, w)). Suppose the conditions of
Theorem 2 and Assumption 9 are satisfied. Then, we have

√
nΩ̂−1/2

1

(
β̂ (v, w)− β (v, w)

)
d−→ N (0, I) .

It is worth noting that Ω̂1 in Theorem 3 is a function of (v, w), which is omitted
for simplicity of exposition. Theorem 3 concerns β (v, w), a known functional of G (s).
However, the result does not directly apply to β (x) and β, because they are unknown
functionals of G (s) and both require an additional estimation step. More specifically,
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by the LIE one has

β (x) = E [∂G (Si) /∂X|Xi = x] , β = E [∂G (Si) /∂X] , (47)

both of which involve integrating over the unknown but estimable distribution of
(Vi,Wi). Therefore, one need estimate these unknown functionals and correctly ac-
count for the bias arising from this additional estimation step in asymptotic analysis.

Assumption 10. Suppose the following conditions hold:

1. There exists C > 0 such that for each M and K there exist normal-
ization matrices B1 and B2 such that r̃M (x) = B1r

M (x) and p̃
K (s) =

B2p
K (s) satisfy λmin

(
Er̃M (Xi) r̃M (Xi)

′)
≥ C, λmin

(
Ep̃K (Si) p̃

K (Si)
′)
≥

C, λmin

(
Er̃M (Xi) p̃

K (Si)
′ (
EpK (Si) pK (Si)

′)−1
Ep̃K (Si) r̃M (Xi)

′
)
≥ C,

supx∈X
∥∥∥r̃M (x)

∥∥∥ ≤ Cζ (M), and sups∈S
∥∥∥p̃K (s)

∥∥∥ ≤ Cζ (K).

2. The fourth order moment of ξi := β (Vi,Wi)− β (Xi) satisfies E [ξ4
i |Xi] <∞.

3. For a sequence of bounded constants {b2n : n ≥ 1} and some constant pd matrix
Ω2, b2nΩ2

p−→ Ω2 holds.

Assumption 10(1) is a normalization on basis functions rM (·) and pK (·). The
substantial part is

λmin

(
Er̃M (Xi) p̃

K (Si)
′ (
EpK (Si) pK (Si)

′)−1
Ep̃K (Si) r̃M (Xi)

′
)
≥ C, (48)

which is needed to show that the asymptotic covariance matrix Ω2 of
√
n
(
β̂ (x)− β (x)

)
is positive definite. Assumption 10(2) is a regularity condition

imposed for the Lindeberg–Feller Central Limit Theorem (CLT). Assumption 10(3)
is similar to Assumption 9(6) and is needed to show the asymptotic normality result
holds for vector-valued functionals of G (s).

Theorem 4 (Asymptotic Normality for β̂ (x) and β̂). Suppose the conditions
of Theorem 3 and Assumption 10 are satisfied. Then, we have

√
nΩ̂−1/2

2

(
β̂ (x)− β (x)

)
d−→ N (0, I) .
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Furthermore, if E
∥∥∥β (v, w)− β

∥∥∥4
<∞ , we have

√
nΩ̂−1/2

3

(
β̂ − β

)
d−→ N (0, I) .

Theorem 4 gives the asymptotic normality results that can be used to construct
confidence intervals and test statistics for both β (x) and β. To see why the results
of Imbens and Newey (2002) are not directly applicable, suppose β is a scalar and let
â
(
β̂, V̂

)
:= β̂ (x) and a (β, V ) := β (x). Then, we have

â
(
β̂, V̂

)
− a (β, V )

= â
(
β̂, V̂

)
− â

(
β, V̂

)
︸ ︷︷ ︸
known functional of G(s)

+ â
(
β, V̂

)
− â (β, V )︸ ︷︷ ︸

estimation of V

+ â (β, V )− a (β, V )︸ ︷︷ ︸
estimation of a

. (49)

From (49), it is clear that because one needs to estimate both unknown functional
a and unknown random variable V , in addition to the first term in (49) that concerns
a known functional of G (s), there are two more terms that affects the asymptotic
normality of β (x). In Appendix B, we show how to correctly account for the effects
from both estimation steps on influence functions. It is worth mentioning that for
β̂ one can significantly simplify the analysis by observing that β̂ can be viewed as a
“special case” of β̂ (x), that is, choosing rM (·) ≡ 1 in the definition of β̂ (x) gives β̂.
Therefore, with slight modifications to the proof for β̂ (x) one proves normality for β̂.

5 Simulation

In this section, we examine the finite-sample performance of the method via a Monte
Carlo simulation study. A discussion of the data generating process (DGP) motivated
by production function applications is first provided. Then, we show the baseline
results and compare the distribution of the estimated random coefficients with the
simulated ones. Finally, several robustness checks are conducted to investigate how
the proposed method performs when one varies the number of periods and firms, as
well as orders of basis functions used for series estimation, and when one includes
ex-post shocks to the DGP.
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5.1 DGP

The baseline DGP we consider is

Yit = ωit +XK
it β

K
it +XL

itβ
L
it , (50)

where the random coefficients
(
ωit, β

K
it , β

L
it

)
are functions of (Ai, Uit), XK

it and XL
it

are input choices of (natural log of) capital and labor, and Yit is the (log of) output.
Following the functional form of C-D production functions,

(
XK
it , X

L
it , Yit

)
can be

thought of already taking natural log. To allow correlation between Ai and Uit, an
important feature in empirical applications, we draw Ai ∼ U [1, 2] and let Uit =
Ai × ηIit + ηIIt where ηIit ∼ U [1, 3/2] and ηIIt ∼ U [1, 3/2] capture idiosyncratic and
macro shocks, respectively. Then, we construct the random coefficients as ωit = Uit,
βKit = Ai + Uit, and βLit = Ai × Uit and let βit =

(
ωit, β

K
it , β

L
it

)′

. Thus, we have a
total of N × T × B βit’s where N , T and B are total number of firms, periods, and
simulations, respectively. Based on the DGP, the true ω := Eωit = 25/8 and APEs
of βK := EβKit = 37/8 and β

L := EβLit = 115/24 are calculated and define β :=(
ω, β

K
, β

L
)′

. Finally, we draw each element of the instrument Zit = (Rit,Wit, Pit)
′

independently from U [1, 3], and calculate capital XK
it and labor XL

it by solving a
representative firm’s profit maximization problem

XK
it =

[(
1− βLit

)
ln
(
Rit/β

K
it

)
+ βLit ln

(
Wit/β

L
it

)
− ln (ωitPit)

]
/
(
βKit + βLit − 1

)
,

XL
it =

[(
1− βKit

)
ln
(
Wit/β

L
it

)
+ βKit ln

(
Rit/β

K
it

)
− ln (ωitPit)

]
/
(
βKit + βLit − 1

)
.

Note that we do not include the ex-post shocks εit for the baseline scenario, but will
add it later on to investigate how it affects the performance.

In the simulations, the observable data are (X, Y, Z). We use these data to es-
timate β (v, w), β (x), and β via the three-step estimation outlined in Section 4.1.
Then, the performance of the estimated β̂ (v, w), β̂ (x), and β̂ is evaluated against
the truth.

5.2 Baseline Results

For the baseline configuration, we set N = 1000 and T = 3, and use basis functions
of degree two splines with knot at the median. We run B = 100 simulations and

40



summarize the performance of ω̂, β̂
K

and β̂
L

in Table 1.

Table 1: Performance of ω̂, β̂
K

and β̂
L

Formula ω̂ β̂
K

β̂
L

Bias B−1∑
b

(
β̂

(d)
b − β

(d)
)
/
∣∣∣∣β(d)

∣∣∣∣ 0.0119 0.0144 0.0066

rMSE
√
B−1∑

b

(
β̂

(d)
b − β

(d)
)2
/

∣∣∣∣β(d)
∣∣∣∣ 0.0318 0.0257 0.0323

Table 1 shows that the proposed method can accurately estimate the APE β.
Specifically, the first row evaluates the performance based on the normalized average
bias for each coordinate of β across B rounds of simulations. The bias is small for
all three coordinates, with a magnitude between 0.66% and 1.44% of the length of
corresponding β(d). The second row measures the normalized rMSE of β̂ against true
β for each coordinate, and shows that the method is able to achieve a low rMSE
between 2.57% and 3.23% of the length of corresponding β(d). By the standard bias-
variance decomposition of MSE, the results in Table 1 show that the bias of the
estimator for the APE is dominated by its variance.

Figure 1: Histogram of ω̂b and ωb

To provide more granular evidence on how well the proposed method can estimate
the APE β, we compare the histogram of the estimated β̂

(d)
b against the simulated

APE β
(d)
b = (NT )−1∑

i,t β
(d)
it,b, where β

(d)
it,b is the dth dimension of the it-specific βit
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for the bth round of simulation, across all B simulations. Figure 1 compares the
distribution of ω̂b with ωb across those B simulations. It shows that the proposed
method can capture the dispersion of the true ωb reasonably well. The distribution of
ω̂b centers around Eωit = 25/8, echoing the findings in Table 1. It is also worthwhile
mentioning that the majority of ω̂b lies in [2.95, 3.4], a short interval relative to the
size of Eωit. Note that the distribution of ω̂b appears to be slightly right-skewed
across B simulations.

We conduct the same comparison for βK and βL and present the results in Figure
2 and 3, respectively. The results are similar to that obtained for ω. Once again, the
method can capture the distributional characteristics of the true APE well, with the
estimated coefficients located in a tight interval centered around the true APE.

Figure 2: Histogram of β̂
K

b and βKb

Figure 3: Histogram of β̂
L

b and βLb

Finally, since β (Vit,Wi) can be thought of as the “finest” approximation of βit, one
may wonder how closely the distribution of β̂

(
V̂it,Wi

)
mimics that of true βit. The
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distributional characteristics such as the variance of βLit can be important to answering
policy-related questions. For example, policymakers may want to know the extent
to which new labor augmenting technology is being diffused among firms. In the
following analysis, we compare the distribution of each coordinate of β̂

(
V̂it,Wi

)
with

that of true βit to show how accurately the method can capture the distributional
properties of the random coefficients.

Figure 4–6 show the histogram of each coordinate of the estimated (brown)
β̂
(
V̂it,Wi

)
versus that of true (blue) βit. In all three figures, the distribution of

each coordinate of β̂
(
V̂it,Wi

)
centers around the corresponding population mean.

It is worth mentioning that the distribution of each coordinate of β̂
(
V̂it,Wi

)
seems

more centered around its mean with slightly thinner tails than the corresponding co-
ordinate of the simulated βit, which is possibly caused by the fact that β̂

(
V̂it,Wi

)
is

an estimator of E [βit|Vit,Wi] and thus already involves averaging across individuals
with the same (Vit,Wi). Nonetheless, it is evident in Figure 4–6 that there is signif-
icant overlap between the distribution of each coordinate of β̂

(
V̂it,Wi

)
and that of

βit, implying that the proposed method can accurately estimate both the mean and
the dispersion of the random coefficients.

Figure 4: Histogram of ω̂it versus ωit
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Figure 5: Histogram of β̂Kit versus βKit

Figure 6: Histogram of β̂Lit versus βLit
Figure 6 is especially interesting because the true βLit follows a non-standard dis-

tribution that is right-skewed. Nonetheless, the histogram of β̂Lit looks very similar
to the non-standard distribution of βLit , providing further evidence that the method
works well even under irregular DGPs.
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5.3 Robustness Checks

To show how robust the method is in estimating the APE, we conduct another set
of exercises in this section. We evaluate the performance of the proposed method

using both rMSE defined as
√
B−1∑

b

∥∥∥∥β̂b − β∥∥∥∥2
/
∥∥∥β∥∥∥2

, and mean normed deviation

(MND) defined as B−1∑
b

∥∥∥∥β̂b − β∥∥∥∥ / ∥∥∥β∥∥∥.
First, we vary the size of N and T , and summarize the results in Table 2. As ex-

pected, a larger N is good for overall performance. We also find the proposed method
benefit from the increase in T for each fixed N , possibly due to better controlling for
the fixed effect Ai with more periods of data available for each individual.

Table 2: Performance under Varying N and T

rMSE MND
N = 500 N = 1000 N = 500 N = 1000

T = 3 0.0305 0.0298 0.0251 0.0242
T = 5 0.0241 0.0223 0.0206 0.0191

Second, we vary the order of the basis functions used to construct the series es-
timators, and present the results in Table 3. We find that increasing the orders of
basis functions generally improves estimation accuracy. With that said, by using
higher-order basis functions, one puts more pressure on the data because there are
more regressors in each step of estimation, which may explain why the improvement
in performance from increasing the order of basis functions from two to three is sig-
nificantly smaller than that from going from one to two. Motivated by the simulation
result, we use a basis function with an order of two in the empirical illustration in
the next section.

Table 3: Performance under Varying Orders of Basis Functions

Order of Basis Functions rMSE MND
1 0.0607 0.0562
2 0.0298 0.0242
3 0.0290 0.0237

Lastly, we examine how including εit, interpreted as measurement error or ex-
post shock, into the model affects finite sample performance. Specifically, εit ∼
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U [−1/2, 1/2] is drawn independently from all other variables. Results are presented
in Table 4. It is clear that adding εit negatively affects the performance of the proposed
estimator, however the impact is mild. When εit is included, rMSE increases from
0.0298 to 0.0391 and MND rises from 0.0242 to 0.0318. The magnitude in the change
in performance is small, showing that the proposed method is robust to the inclusion
of measurement error.

Table 4: Performance with and without Ex-Post Shock

Ex-Post Shock? rMSE MND
No 0.0298 0.0242
Yes 0.0391 0.0318

6 Production Function Application

In this section, we apply the procedure to comprehensive production data for Chinese
manufacturing firms. Specifically, for each firm in the data we estimate a valued-
added production function, where output elasticities and the intercept are allowed to
vary across firms and periods, and, more importantly, input choices are allowed to
depend on time-varying output elasticities and the random intercept in each period
in a nonseparable way.

Output elasticity is an essential object of interest in the study of production
functions as it quantifies how output responds to variations of each input, e.g., labor,
capital, or material. It also helps answer important policy-related questions such as
what returns to scale faced by a firm are, how the adoption of a new technology
affects production, how the allocation of firm inputs relates to productivity, among
others. Using the estimation method proposed in this paper, we find larger capital,
but smaller labor, elasticities on average within each sector than those obtained by
applying Olley and Pakes (1996)’s method (henceforth OP96) to the same data. The
new estimates of average output elasticities in this paper are consistent with the
literature on the measurement of factor income shares among manufacturing firms
in China (Bai, Qian, and Wu, 2008; Jia and Shen, 2016). Then, a summary of the
dispersions of the estimated output elasticities both across firms and through time is
provided. Results show that there is substantial variation in the output elasticities
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in both dimensions, leading to a different interpretation of the data than in the
misallocation literature pioneered by Hsieh and Klenow (2009).

The random intercept, usually considered as TFP in the C-D production func-
tion estimation literature, is another object of primary interest in the literature of
firm innovation, R&D, trade openness, among others. We investigate the dispersion
of the random intercept within each sector and compare them with those derived
using OP96’s method. Echoing recent results reported by Fox, Haddad, Hoderlein,
Petrin, and Sherman (2016), we find larger dispersion in the random intercept among
firms than those obtained using OP96’s method. We provide an economic justifica-
tion and investigate it empirically. Results show that the larger dispersion in the
random intercept may be caused by its negative correlations with each of the output
elasticities.

6.1 Data and Methodology

We use China Annual Survey of Industrial Firms, a comprehensive longitudinal micro-
level data for the period of 1998–2007 that include information for all state-owned
industrial firms and non-state-owned firms with annual sales above 5 million RMB.
The data provide detailed information on ownership, production, and balance sheet
of the firms surveyed. It is collected by National Bureau of Statistics of China and
discussed in detail in Brandt, Van Biesebroeck, and Zhang (2014). Containing over 2
million observations, the data are representative of the industrial activity in China.
According to Brandt, Van Biesebroeck, Wang, and Zhang (2017), they account for 91
percent of the gross output, 71 percent of employment, 97 percent of exports, and 91
percent of total fixed assets for the sampled periods. Many research on topics such
as firm behavior, international trade, foreign direct investment, and growth theory
use this data. See, for example, Hsieh and Klenow (2009), Song, Storesletten, and
Zilibotti (2011), Brandt, Van Biesebroeck, Wang, and Zhang (2017), and Roberts,
Yi Xu, Fan, and Zhang (2018).

This paper focuses on the manufacturing sector and follows Brandt, Van Biese-
broeck, Wang, and Zhang (2017) to deal with the change in the Chinese Industry
Classification codes occurred in 2003, which results in a total of 27 two-digit sectors.
We choose to focus on two-digit sectors to ensure a large enough sample size for the
robustness of the estimation results. The simulation results in Section 5 suggest the
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method can benefit from a larger T . Thus, firms that appear in the data for at least
6 years, with strictly positive amount of capital, employment, value-added output,
wage expense and real interests are used for estimation. There are other sanity checks
such as total assets should be no smaller than current assets. See Nie, Jiang, and
Yang (2012) for a detailed discussion.

The final data is an unbalanced panel with the total number of firms increasing
from 160K in 1998 to 330K in 2007. Only around 40K firms appear throughout the
whole period, indicating a large amount of entry and exit behaviors in the data. The
main variables include year, firm id, industry code, value-added output, capital, labor,
and interest payments. Following Brandt, Van Biesebroeck, and Zhang (2014), ap-
propriate price deflators for inputs and outputs are applied separately. The summary
statistics are presented in Table 5.

Table 5: Summary Statistics

Variables N mean sd min max
ln(value-added output) 415,333 9.155 1.441 -6.163 16.960
ln(capital) 415,215 9.352 1.644 0.077 18.560
ln(labor) 415,336 5.306 1.131 2.079 12.050
ln(interest) 415,336 5.960 1.741 0.012 14.350
Year 10 - - 1998 2007
Firm ID 55,093 - - - -
Industry Code 27 - - - -

The value-added production function under consideration is

Yit = ωit + βKitKit + βLitLit,

βKit = βK (Ai, Uit) , βLit = βL (Ai, Uit) , ωit = ω (Ai, Uit) ,

Kit = gK (Zit, Ai, Uit) , Lit = gL (Zit, Ai, Uit) , Zit = ln (interest) , (51)

where Yit and Kit are the natural log of inflation-adjusted real value-added output
and capital measured in dollars as in Brandt, Van Biesebroeck, Wang, and Zhang
(2017), respectively. There are two key features in the production function (51).
First, the output elasticities wrt to capital βKit and labor βLit are both allowed to be
time-varying and different across firms. Traditional methods (Olley and Pakes, 1996;
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Levinsohn and Petrin, 2003; Ackerberg, Caves, and Frazer, 2015) do not allow for such
heterogeneity. Second, and more importantly, the choices of capitalK and labor L are
modeled as nonparametric functions of fixed effect Ai interpreted as manager ability
and idiosyncratic shock Uit interpreted as R&D outcome, both of which determine
βK and βL. Therefore, model (51) allows input choices to depend on time-varying
output elasticities in each period, a feature that naturally arises due to firm’s profit
maximization behavior.

It is worth noting that the output measure is the total revenue in dollars, not phys-
ical quantities in pieces due to lack of individual output prices in the data. When firms
operate in distinct imperfectly competitive output markets, this may cause issues as
pointed out by Klette and Griliches (1996). To allow for unobserved labor quality
heterogeneity, we measure labor input in dollars. As a consequence, firm level average
wages cannot be used as an instrument because it is already included in the labor in-
put in the baseline case. The instrument Zit is the log of real interests, which is likely
to be exogenous because its fluctuation is mostly driven by exogenous policy in China.
For robustness purposes, we use the inter-temporal difference in log of real interests
and both interests and wages as instruments, and find the results are quite similar.
There are other possible choices of instruments including local minimum wage, lagged
inputs (De Loecker and Warzynski, 2012; Shenoy, 2020), demand instruments (Gold-
berg, Khandelwal, Pavcnik, and Topalova, 2010), and product/firm characteristics of
direct competitors within the same sector and location (Berry, Levinsohn, and Pakes,
1995).

We estimate conditional and unconditional expectations of the individually unique
and time-varying output elasticities βit :=

(
βKit , β

L
it

)
as well as random inter-

cept ωit within each two-digit sector. More specifically, first we construct Wi :=(
Ki, Li, Zi, K

2
i , L

2
i , Z

2
i

)
, where the means are through time. Then, we estimate

Vit := FKit|Zit,Wi
(Kit|Zit,Wi) using second-order polynomial basis functions. The

choice of the order of basis functions is motivated by simulation results in Section
5. Next, the conditional expectation of Yit given (Kit, Lit, Vit,Wi) , defined as Git, is
estimated with a series estimator where V̂it from the previous step is plugged in. Fi-
nally, we estimate β (Vit,Wi) := E [βit|Vit,Wi] by taking the partial derivative of Git

with respect to (Kit, Lit). With moments of βit obtained, we estimate the moments
of ωit by exploiting the index structure in (51).
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6.2 Results

Applying the proposed method on the data for Chinese manufacturing firms, we
obtain estimates of the conditional expectation of output elasticities β (Vit,Wi) and
random intercept ω (Vit,Wi) for each firm in each year. Yang (2015) applies OP96’s
method to the same data used in this paper to estimate a value-added production
function. Therefore, the results are directly comparable. First, we compare the
mean of β̂

(
V̂it,Wi

)
within each sector through time with that obtained using OP96’s

method. Second, the dispersions of β̂
(
V̂it,Wi

)
both across firms and through time

are presented. Lastly, we compare the dispersion of ω̂
(
V̂it,Wi

)
across firms within

each sector with that derived using OP96’s method.

Average Output Elasticities

In this section, we compare the mean of β̂
(
V̂it,Wi

)
within each sector through time

with that obtained using OP96’s method. Output elasticity is an essential object of
interest in economics because it quantifies how responsive output is to variations of
each input. Moreover, by the solution to the canonical firm’s profit maximization
problem (PMP) given C-D production functions in a perfectly competitive market,
the output elasticities equal the input cost share of total outputs, i.e., βK = rK/pY

and βL = wL/pY where (w, r, p) stand for wage, interest rate and output price, re-
spectively. If firms maximize their profits when choosing inputs, the estimated output
elasticities should in theory be close to input income shares. Therefore, one may be
interested in comparing the estimated elasticities with input income shares measured
from the data. Note that the result that the output elasticity equals the corresponding
input income share obtained by solving the PMP holds for C-D production functions
regardless of whether the inputs and output are measured using quantities or dollars.

First, we average β̂K
(
V̂it,Wi

)
across firms and through time within each sector,

and compare it with those obtained using OP96’s method on the same data. Results
are summarized in Figure 7. Our estimates of the average capital elasticities are
larger than that obtained using OP96’s method for all but one sectors. The average
capital elasticity across all sectors is 49% using our method, whereas the number is
35% by applying OP96’s method to the same data. We repeat the same analysis for
β̂L
(
V̂it,Wi

)
and find that the pattern is reversed for labor elasticities. Figure 8 shows

that our estimates of the average labor elasticities are consistently smaller than that
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obtained by applying OP96’s method to the same data for each of the 27 sectors. Our
estimate of average labor elasticities across all sectors is 43%, which is significantly
smaller than 62% obtained using OP96’s method.
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Figure 7: Comparison of Average Capital Elasticities
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Figure 8: Comparison of Average Labor Elasticities

Based on the theoretical result that output elasticities equal corresponding factor
income shares, we compare the estimated elasticities with the factor income shares

51



measured in the literature. Bai, Qian, and Wu (2008) estimates the average capital
income shares to be 55–65% for manufacturing sectors between 1998–2005 in China.
A more recent result by Jia and Shen (2016) shows that on average 50–60% of total
output is distributed to capital. Hsieh and Klenow (2009) briefly mentioned that
roughly half of output is distributed to capital according to the Chinese input-output
tables and the national accounts. As can be seen from Figure 7, the average estimated
capital elasticity is 49%, which by the solution to firm’s PMP means about half of
total output is distributed to capital. Therefore, our estimates are consistent with the
factor income shares documented in the literature. In contrast, the average capital
elasticity using OP96’s method for Chinese manufacturing firms is only 35%.

The results show that the proposed method in this paper is able to obtain estimates
of elasticities that are closer to those found in the factor income share literature.
One possible explanation for the results is that it is firm’s optimization behavior
that leads to the first-order condition of βK = rK/pY and βL = wL/pY . When
βit’s are random, it is natural that the elasticities affect the choice of each input in
each period, leading to time-varying endogeneity through the random coefficients.
Our TERC model explicitly takes firm’s optimization behavior into account, whereas
traditional fixed coefficients models do not allow for this feature. As a consequence,
the correlations between βit and Xit are not captured in traditional fixed coefficients
models, leading to a potential omitted variable bias.

Dispersions of the Output Elasticities

Next, we examine the variations of the output elasticities with respect to each input.
More specifically, because the elasticities are not comparable across sectors, we calcu-
late the standard deviation of β̂

(
V̂it,Wi

)
within each sector for each year, excluding

top and bottom 1% extreme values for robustness purposes. These standard devi-
ations are then normalized by the absolute value of the mean of β̂

(
V̂it,Wi

)
within

each sector for each year. The dispersion of the normalized standard deviations across
sectors is summarized in Figure 9.
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Figure 9: Dispersions of Elasticities across Firms

Results show that there are substantial variations in each coordinate of β̂
(
V̂it,Wi

)
among firms within each sector for each year. More precisely, the normalized standard
deviation of β̂K

(
V̂it,Wi

)
in 1998 has a median of around 0.7 and a maximum of about

2.9, which implies that the median sector and the maximum sector have a standard
deviation that is about 70% and 2.9 times of the absolute value of their means of
β̂K

(
V̂it,Wi

)
, respectively. A similar pattern is also found for β̂L

(
V̂it,Wi

)
, with the

magnitude of the standard deviations slightly smaller than that of β̂K
(
V̂it,Wi

)
.

Another important feature of the model in this paper is that the random coef-
ficients are allowed to be time-varying. To show how dispersed the elasticities are
through time, we first calculate the standard deviation of β̂

(
V̂it,Wi

)
through time

for each firm. Then, the standard deviations are normalized by the absolute value
of the means of β̂

(
V̂it,Wi

)
for the same firm through time. As a consequence, the

normalized standard deviations are directly comparable across firms. We pool the
normalized standard deviations together and summarize the results in Figure 10.

According to Figure 10, there are significant variations in output elasticities with
respect to both capital and labor through time. The majority of the normalized
standard deviations of β̂K

(
V̂it,Wi

)
lies around 0.5, implying that for these firms

the standard deviation of the output elasticity with respect to capital through time
is about 50% of its mean through time. The normalized standard deviation of the
output elasticity with respect to labor through time also centers around 0.5, however
with a smaller maximum of about 2 times compared to that of 5.5 times for capital.
Note that if one uses fixed coefficient linear models, the standard deviations of the
elasticities both across firms and through time will be constant zero by definition.
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Figure 10: Dispersions of Elasticities through Time

The dispersions of the output elasticities across firms and periods provide an ex-
planation to the observed variation in input cost shares across firms that is different
from the misallocation theory pioneered by Hsieh and Klenow (2009). Hsieh and
Klenow (2009) model the elasticities as constants and attribute the variation the
marginal revenue product of inputs to external distortions that the firm faces. They
further identify the distortions using firm’s first-order condition shown as equation
(17)–(18) in their paper, assuming the elasticities are constant across firms and pe-
riods. However, there is no obvious reason why the output elasticities should be the
same for intrinsically heterogeneous firms. In addition to distortions, the firms may
also have different elasticities driven by their fixed effect and idiosyncratic shocks in
each period. Therefore, the dispersions shown in Figure 9–10 provide an alterna-
tive explanation to the observed variation in input cost shares across firms than the
misallocation theory.

Dispersion of the Random Intercept

Lastly, we compare the estimated dispersion of the random intercept within each
sector with that obtained by applying OP96’s method on the same data. OP96
allow the intercept to be both time-varying and correlated with input choices, but
require the output elasticities to be constants. Using OP96’s method, Yang (2015)
obtains estimates of intercepts for each firm and year. We compare the estimated
ω̂
(
V̂it,Wi

)
with his results. For robustness purposes, we exclude the top and bottom
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1% of the estimated ω̂
(
V̂it,Wi

)
within each sector for each year. Then, we compute

the standard deviations of ω̂
(
V̂it,Wi

)
for each sector and year, normalized by the

absolute value of the mean of ω̂
(
V̂it,Wi

)
for the corresponding sector and year. We

do the same trimming and normalization for the estimates based on OP96’s method.
Results for all years and sectors are pooled together and summarized in Figure 11.
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Figure 11: Comparison of Dispersion of the Random Intercept

In Figure 11, the horizontal axis represents the normalized standard deviation of
the random intercept within each sector obtained using this paper’s method while
the vertical axis stands for the normalized standard deviation derived using OP96’s
method. Each blue circle corresponds to a sector and year. When the circle is located
to the right of the 45 degree line, the normalized standard deviation of the random
intercept using our method is larger than that obtained using OP96’s method. As
is evident from Figure 11, the majority of the dispersions of the random intercept
calculated using our method are larger than that obtained using OP96’s method.
The results of this paper echo the findings of Fox, Haddad, Hoderlein, Petrin, and
Sherman (2016), who model the output elasticities as random walk processes and
apply their model to Indian production data. They find a larger dispersion of random
intercept than that derived using OLS regression with fixed coefficients.
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One of the possible explanations to why making the coefficients random increases
the dispersion of the random intercept is that it is negatively correlated with output
elasticities. In a linear production function, the random intercept contains all the
latent factors used in the production process that are not explicitly included as re-
gressors in the model. When, for example, the output elasticity with respect to labor
is large for a certain period due to a positive shock, the firm can take advantage of
it and hire more workers, reducing the contribution to output from the latent factors
because the firm may have a limited budget to spend on all factors. Therefore, it
can be the substitution effect between the observed and latent inputs that causes the
negative correlation between the random intercept and output elasticities.
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Figure 12: Estimated Correlation between the Random Intercept and Elasticities

We take this idea to the data, and run estimation based on the identification of
second-order moments of the random coefficients in (29). More specifically, we esti-
mate Ĉorr

(
ωit, β

L
it

)
and Ĉorr

(
ωit, β

K
it

)
for each sector, and summarize the results

in Figure 12. The estimated correlation coefficients between the random intercept
and capital elasticity are negative consistently across all sectors. A similar pattern is
found for labor elasticity with only three sectors reporting small positive correlation
coefficient around zero. The results provide empirical evidence that the larger disper-
sion of the random intercept is likely to be caused by a negative correlation between
the random intercept and the output elasticities.
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7 Conclusion

This paper proposes a flexible random coefficients panel model where the regressors
are allowed to depend on the time-varying random coefficients in each period, a critical
feature in many economic applications such as production function estimation. The
model allows for a nonseparable first-step equation, a nonlinear fixed effect of arbitrary
dimension, and an idiosyncratic shock that can be arbitrarily correlated with the fixed
effect and that affects the choice of the regressors in a nonlinear way. A sufficiency
argument is used to control for the fixed effect, which enables one to construct a
feasible control function for the random shock and subsequently identify the moments
of the random coefficients. We provide consistent series estimators for the moments
of the random coefficients and prove a new asymptotic normality result. Applying
the estimation procedure to panel data for Chinese manufacturing firms, we obtain
three main findings. First, larger capital, but smaller labor, elasticities are derived
than those obtained using traditional methods. Our estimates are consistent with the
findings in the factor income share literature. Second, there are substantial variations
in the output elasticities across firms and periods, providing a different explanation to
the observed variation in input cost shares from the well-known misallocation theory.
Third, the dispersion of the random intercept is larger than that obtained using
classical methods, caused by negative correlations between the random intercept and
each of the output elasticities.

We mention several extensions to this paper for future research. First, although
we have briefly discussed how to identify second-order moments of the random coef-
ficients in Section 3, it remains an open question how to separate the variance of the
exogenous ex-post shocks from that of the random intercept. One may follow Arellano
and Bonhomme (2012) to impose time-dependence assumptions such as moving aver-
age process on the ex-post shock. Second, one may prefer to include lagged regressors
in the first-step equation (3). We have provided a group exchangeability condition
(32) that can allow first-step function g (Z,A, U) in (3) to also depend on lagged
regressors Xit−1. Nonetheless, it can be challenging to obtain asymptotic properties
for the estimators with group fixed effects. Another related question is whether one
can incorporate the timing assumptions widely used in the proxy variable based ap-
proaches to make lagged inputs valid instruments. Third, it can be useful to construct
a test of whether the coefficients vary across individuals and/or through time.
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Appendix

A Proofs in Section 3

Proof of Lemma 1. The proof is divided into two parts. First, we establish the ex-
changeability condition (15) using Assumption 2. Then, we show that there exist Wi

such that (14) holds. For simplicity of notations, we assume Xit and Zit are both
scalars. The proof goes through when Xit and Zit are vectors. We prove (15) for
T = 2, which is wlog because T is finite and thus any permutation of (1, ..., T ) can
be achieved by switching pairs of (ti, tj) finite number of times. For example, one can
obtain (t3, t1, t2) from (t1, t2, t3) by (t1, t2, t3) → (t1, t3, t2) → (t3, t1, t2). We suppress
i subscripts in all variables in this proof.

By Assumption 2, we have

fU1,U2|A (u1, u2| a) = fU1,U2|A (u2, u1| a) , (52)

which implies

fA,U1,U2 (a, u1, u2) = fA,U1,U2 (a, u2, u1) . (53)

Let g−1 (X,Z,A) denote the inverse function of g (Z,A, U) with respect to U . De-
fine u1 = g−1 (x1, z1, a) and u2 = g−1 (x2, z2, a). Calculate the determinants of the
Jacobians as

J1

:=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂A

∂X1

∂A

∂X2

∂A

∂A
∂g−1 (X1, Z1, A)

∂X1

∂g−1 (X1, Z1, A)
∂X2

∂g−1 (X1, Z1, A)
∂A

∂g−1 (X2, Z2, A)
∂X1

∂g−1 (X2, Z2, A)
∂X2

∂g−1 (X2, Z2, A)
∂A

∣∣∣∣∣∣∣∣∣∣∣∣∣ (X1, X2, Z1, Z2, A)
= (x1, x2, z1, z2, a)
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=

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 1
∂g−1 (X1, Z1, A)

∂X1
0 ∂g−1 (X1, Z1, A)

∂A

0 ∂g−1 (X2, Z2, A)
∂X2

∂g−1 (X2, Z2, A)
∂A

∣∣∣∣∣∣∣∣∣∣∣∣ (X1, X2, Z1, Z2, A)
= (x1, x2, z1, z2, a)

= ∂g−1 (X,Z,A) /∂X
∣∣∣
(X,Z,A)=(x1,z1,a)

× ∂g−1 (X,Z,A) /∂X
∣∣∣
(X,Z,A)=(x2,z2,a)

, (54)

and

J2

:=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂g (Z1, A, U1)
∂A

∂g (Z1, A, U1)
∂U1

∂g (Z1, A, U1)
∂U2

∂g (Z2, A, U2)
∂A

∂g (Z2, A, U2)
∂U1

∂g (Z2, A, U2)
∂U2

∂A

∂A

∂A

∂U1

∂A

∂U2

∣∣∣∣∣∣∣∣∣∣∣∣∣ (Z1, Z2, A, U1, U2)
= (z2, z1, a, u2, u1)

=

∣∣∣∣∣∣∣∣∣∣∣∣

∂g (Z1, A, U1)
∂A

∂g (Z1, A, U1)
∂U1

0
∂g (Z2, A, U2)

∂A
0 ∂g (Z2, A, U2)

∂U2
1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣ (Z1, Z2, A, U1, U2)
= (z2, z1, a, u2, u1)

= ∂g (Z,A, U) /∂U |(Z,A,U)=(z2,a,u2) × ∂g (Z,A, U) /∂U |(Z,A,U)=(z1,a,u1) . (55)

Then, we have

fX1,X2,A|Z1,Z2 (x1, x2, a| z1, z2)

= fA,U1,U2|Z1,Z2

(
a, g−1 (x1, z1, a) , g−1 (x2, z2, a)

∣∣∣ z1, z2
)
|J1|

= fA,U1,U2|Z1,Z2

(
a, g−1 (x2, z2, a) , g−1 (x1, z1, a)

∣∣∣ z2, z1
)
|J1|

= fX1,X2,A|Z1,Z2 (x2, x1, a| z2, z1) |J2J1|

= fX1,X2,A|Z1,Z2 (x2, x1, a| z2, z1) , (56)

where the first equality holds by change of variables, the second equality uses (53)
and Z ⊥ (A,U), the latter of which enables one to switch the order of (z1, z2) in the
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conditioned set, the third equality holds again by change of variables and

X1 = g
(
z2, a, g

−1 (x2, z2, a)
)

= x2

X2 = g
(
z1, a, g

−1 (x1, z1, a)
)

= x1, (57)

and the last equality uses the fact that the product of derivatives of inverse functions
is 1, i.e.,

J1J2

= ∂g−1 (X,Z,A) /∂X
∣∣∣
(X,Z,A)=(x1,z1,a)

× ∂g−1 (X,Z,A) /∂X
∣∣∣
(X,Z,A)=(x2,z2,a)

× ∂g (Z,A, U) /∂U |(Z,A,U)=(z2,a,u2) × ∂g (Z,A, U) /∂U |(Z,A,U)=(z1,a,u1)

=
[
∂g−1 (X,Z,A) /∂X

∣∣∣
(X,Z,A)=(x1,z1,a)

× ∂g (Z,A, U) /∂U |(Z,A,U)=(z1,a,u1)

]
×
[
∂g−1 (X,Z,A) /∂X

∣∣∣
(X,Z,A)=(x2,z2,a)

× ∂g (Z,A, U) /∂U |(Z,A,U)=(z2,a,u2)

]
= 1× 1 = 1. (58)

Given (56), we have

fX1,X2|Z1,Z2 (x1, x2| z1, z2) =
∫
fX1,X2,A|Z1,Z2 (x1, x2, a| z1, z2)µ (da)

=
∫
fX1,X2,A|Z1,Z2 (x2, x1, a| z2, z1)µ (da)

= fX1,X2|Z1,Z2 (x2, x1| z2, z1) . (59)

which implies

fA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2)

= fX1,X2,A|Z1,Z2 (x1, x2, a| z1, z2) /fX1,X2|Z1,Z2 (x1, x2| z1, z2)

= fX1,X2,A|Z1,Z2 (x2, x1, a| z2, z1) /fX1,X2|Z1,Z2 (x2, x1| z2, z1)

= fA|X1,X2,Z1,Z2 (a|x2, x1, z2, z1) , (60)

where the second equality holds by (56) and (59).
Next, we follow Altonji and Matzkin (2005) to show that the conditional density

fA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2) can be approximated arbitrarily closely by a function of
the form fA|W (a|W ), whereW is a vector-valued function symmetric in the elements
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of X and Z. By Assumption 3, the supports of X and Z are compact. By Assumption
1–3, fA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2) is continuous in (X1, X2, Z1, Z2). Therefore, from
the Stone-Weierstrass Theorem one can find a function fwA|X1,X2,Z1,Z2

(a|x1, x2, z1, z2)
that is a polynomial in (X1, X2, Z1, Z2) over a compact set with the property that for
any fixed δ that is arbitrarily close to 0,

max
xt∈X ,zt∈Z,∀t

∣∣∣fA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2)− fwA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2)
∣∣∣ ≤ δ. (61)

Let

f A|X1,X2,Z1,Z2 (a|x1, x2, z1, z2)
:=
[
fA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2) + fA|X1,X2,Z1,Z2 (a|x2, x1, z2, z1)

]
/2! (62)

denote the simple averages of fA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2) over all T ! (here T = 2)
unique permutations of (xt, zt), and similarly for fwA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2). By
(60), we have

f A|X1,X2,Z1,Z2 (a|x1, x2, z1, z2) = fA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2) . (63)

Also note that by construction, we have

f
w

A|X1,X2,Z1,Z2 (a|x1, x2, z1, z2) = f
w

A|X1,X2,Z1,Z2 (a|x2, x1, z2, z1) . (64)

By (60) and T, it is true that
∣∣∣fA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2)− fwA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2)

∣∣∣
=
∣∣∣f A|X1,X2,Z1,Z2 (a|x1, x2, z1, z2)− fwA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2)

∣∣∣
≤ T !× (δ/T !) = δ. (65)

Since fw can be chosen to make δ arbitrarily small, (65) implies that
fA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2) can be approximated arbitrarily closely by a polyno-
mial fw that is symmetric in (xt, zt) for t = 1, 2. Thus, by the fundamental theorem
of symmetric functions, fw can be written as a polynomial function of the elemen-
tary symmetric functions of ((x1, z1) , (x2, z2)) . We denote this function by W and
obtain that fA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2) can be approximated arbitrarily closely by
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fA|W (a|W ). Let δ → 0 in (61). Then, for any t ∈ {1, .., T} and (Xt, Zt, A,W ) on its
support we have

fA|Xt,Zt,W (a|xt, zt, w) = fA|W (a|w) . (66)

To see why Assumption 1 only requires one coordinate of Xt to be strictly
monotonic in Ut, suppose Xt = (Kt, Lt)

′
= (gK (Zt, A, Ut) , gL (Zt, A, Ut))

′
and only

gK is strictly monotonic in Ut. Then, to establish a similar result as (56), for
(k1, l1, k2, l2, z1, z2, a) on the support of (K1, L1, K2, L2, Z1, Z2, A) we have

fK1,L1,K2,L2,A|Z1,Z2 (k1, l1, k2, l2, a| z1, z2)

= fU1,L1,U2,L2,A|Z1,Z2

(
g−1
K (k1, z1, a) , l1, g−1

K (k2, z2, a) , l2, a
∣∣∣ z1, z2

) ∣∣∣J̃1

∣∣∣
= fA,U1,U2|Z1,Z2

(
a, g−1

K (k1, z1, a) , g−1
K (k2, z2, a)

∣∣∣ z1, z2
) ∣∣∣J̃1

∣∣∣
= fA,U1,U2|Z1,Z2

(
a, g−1

K (k2, z2, a) , g−1
K (k1, z1, a)

∣∣∣ z2, z1
) ∣∣∣J̃1

∣∣∣
= fU1,L1,U2,L2,A|Z1,Z2

(
g−1
K (k2, z2, a) , l2, g−1

K (k1, z1, a) , l1, a
∣∣∣ z2, z1

) ∣∣∣J̃1

∣∣∣
= fK1,L1,K2,L2,A|Z1,Z2 (k2, l2, k1, l1, a| z2, z1)

∣∣∣J̃2

∣∣∣ ∣∣∣J̃1

∣∣∣
= fK1,L1,K2,L2,A|Z1,Z2 (k2, l2, k1, l1, a| z2, z1) , (67)

where the first and second to last equality holds by change of variables, the second
and fourth equality holds because L is a function of (Z,A, U), the third equality holds
by (53) and the exogeneity of Z ⊥ (A,U), and the last equality holds by

∣∣∣J̃2

∣∣∣ ∣∣∣J̃1

∣∣∣ = 1
which is derived similarly to (58). The rest of the proof follows similarly as in the
scalar X case above.

Proof of Lemma 2. Let g−1 (x, z, a) denote the inverse function for g (z, a, u) in its
first argument, which exists by Assumption 1. Assume Xit is a scalar for brevity of
exposition. For any (x, z, a, w) in the support of (X,Z,A,W ), we have

FXit|Zit,Wi
(x| z, w)

= FXit|Zit,Ai,Wi
(x| z, a, w)

= P (Xit ≤ x|Zit = z, Ai = a,Wi = w)

= P (g (z, a, Uit) ≤ x|Zit = z, Ai = a,Wi = w)

= P
(
Uit ≤ g−1 (x, z, a)

∣∣∣Ai = a,Wi = w
)
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= FUit|Ai,Wi

(
g−1 (x, z, a)

∣∣∣ a, w) , (68)

where the first equality holds by (16), the third uses (3), the fourth holds by Assump-
tion 1 and 4, and the last equality holds by definition of the conditional CDF of Uit
given (Ai,Wi).

By (3), Uit = g−1 (Xit, Zit, Ai), so that plugging in gives

Vit := FXit|Zit,Wi
(Xit|Zit,Wi) = FUit|Ai,Wi

(Uit|Ai,Wi) . (69)

B Proofs in Section 4

The proof of Lemma 3 follows directly from that of Theorem 12 in Imbens and Newey
(2009). Thus, it is omitted for brevity. First, we prove Theorem 2. Note that by T,
we obtain the mean squared and uniform convergence results if we can prove it for
each coordinate of β. Therefore, wlog we assume β is a scalar throughout the proof.
Then, we prove Theorem 3 and 4. The proof of Theorem 3 follows from Imbens and
Newey (2002), Andrews (1991), and a Cramér–Wold device. The proof of Theorem
4 requires more efforts. As discussed before, for β one can obtain its normality by
choosing the basis function rM (·) ≡ 1 and applying the results for β (x).

Proof of Theorem 2. As discussed before, the convergence rate for β̂ (v, w) is the same
as Ĝ (s) because they share the same series regression coefficients α̂K . Under Assump-
tion 7 and 8, the convergence rate result on Ĝ (s) applies directly to β̂ (v, w) and the
proof is thus omitted.

We focus on β̂ (x), since the result for β̂ follows by setting rM (·) ≡ 1. Following
Newey (1997), we normalize Erir

′
i = I and have λmin

(
R̂
)
≥ C > 0. By (45), we have

∥∥∥R̂1/2
(
η̂M − ηM

)∥∥∥2

≤
(
B̂ − B̃

)′

rR̂−1r
′ (
B̂ − B̃

)
/n2 +

(
B̃ −B

)′

rR̂−1r
′ (
B̃ −B

)
/n2

+
(
B −BX

)′

rR̂−1r
′ (
B −BX

)
/n2 +

(
BX − rηM

)′

rR̂−1r
′ (
BX − rηM

)
/n2.

(70)
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Following the proof for Theorem 1 of Newey (1997), Lemma A1 and Lemma A3
of Imbens and Newey (2002), under Assumption 7 we have

∥∥∥∥∥n−1∑
i

p̂ip̂
′

i − Epip
′

i

∥∥∥∥∥ = oP (1) and Epip
′

i ≤ CI. (71)

Then, we have

(
B̂ − B̃

)′

rR̂−1r
′ (
B̂ − B̃

)
/n2

≤ C
(
B̂ − B̃

)′ (
B̂ − B̃

)
/n

= Cn−1∑
i

(
β̂
(
V̂i,Wi

)
− β

(
V̂i,Wi

))2

= Cn−1∑
i

(
p̂

′

i

(
α̂K − αK

)
+
(
p̂

′

iα
K − β

(
V̂i,Wi

)))2

≤ C
∥∥∥α̂K − αK∥∥∥2

+ sup
s∈S

∥∥∥pK (s)
′
αK − β (v, w)

∥∥∥2
= OP

(
∆2

2n

)
(72)

where the first inequality holds because rR̂−1r
′
/n is idempotent, the last inequality

holds by (71), and the last equality uses Lemma 3.
Next, we have

(
B̃ −B

)′

rR̂−1r
′ (
B̃ −B

)
/n2

≤ Cn−1∑
i

(
β
(
V̂i,Wi

)
− β (Vi,Wi)

)2

≤ Cn−1∑
i

(
V̂i − Vi

)2
= OP

(
∆2

1n

)
, (73)

where the last inequality holds by Assumption 8(4) and the equality holds by Lemma
3.

Finally, for the last two terms in (70), we have

E
[(
B −BX

)′

rR̂−1r
′ (
B −BX

)
/n2

∣∣∣∣X]
= tr

{
E
[
ξ

′
rR̂−1r

′
ξ
∣∣∣X]} /n2

= tr
{
E
[
ξξ

′
∣∣∣X] rR̂−1r

′}
/n2

≤ tr
{
CIrR̂−1r

′}
/n2 = Ctr

{
R̂−1R̂

}
/n = CM/n. (74)
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and

(
BX −RηM

)′

rR̂−1r
′ (
BX −RηM

)
/n2

≤
(
BX −RηM

)′ (
BX −RηM

)
/n = OP

(
M−2d3

)
. (75)

Collecting terms and using λmin
(
R̂
)
≥ C, we have

∥∥∥η̂M − ηM∥∥∥2
= OP

(
∆2

2n +M/n+M−2d3
)

=: OP

(
∆2

3n

)
, (76)

which implies
∫ ∥∥∥β̂ (x)− β (x)

∥∥∥2
dF (x)

≤
∫ (

rM (x)
′ (
η̂M − ηM

)
+
(
rM (x)

′
ηM − β (x)

))2
dF (x)

≤ C
∥∥∥η̂M − ηM∥∥∥2

+ sup
x∈X

∣∣∣β (x)− rM (x)
′
ηM
∣∣∣2 = OP

(
∆2

3n

)
, (77)

and

sup
x∈X

∥∥∥β̂ (x)− β (x)
∥∥∥ ≤ sup

x∈X

∥∥∥rM (x)
∥∥∥ ∥∥∥η̂M − ηM∥∥∥+ sup

x∈X

∣∣∣β (x)− rM (x)
′
ηM
∣∣∣

= OP (ζ (M) ∆3n) .

Proof of Theorem 3. Recall that the analysis of Imbens and Newey (2002) applies to
scalar functionals of G (s). By Cramér–Wold device and Imbens and Newey (2002),
for any constant vector c with c′

c = 1 we have

c
′√
nΩ−1/2

1

(
β̂ (v, w)− β (v, w)

)
→d N (0, 1) and(

c
′Ω1c

)−1 [
c

′ (Ω̂1 − Ω1
)
c
]

p−→ 0. (78)

By (78) and Assumption 9(6), it is true that

c
′ (
b1nΩ̂1 − b1nΩ1

)
c

p−→ 0, (79)
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which implies
b1nΩ̂1

p−→ Ω1. (80)

Combining (78) – (80), we have

√
nΩ̂−1/2

1

(
β̂ (v, w)− β (v, w)

)
=
(
b1nΩ̂1

)−1/2
(b1nΩ1)1/2√nΩ−1/2

1

(
β̂ (v, w)− β (v, w)

)
d−→ Ω−1/2

1 Ω1/2
1 N (0, I) = N (0, I) , (81)

where the convergence holds by (78), (80), and Assumption 9(6).

Proof of Theorem 4. Following the proof of Theorem 3, one can extend the results
to vector-valued functionals using Cramér–Wold device and the proofs of Andrews
(1991). Therefore, wlog we assume β (x) is a scalar in this proof. First, we derive the
influence functions that correctly account for the effects from estimating β (x) and
prove asymptotic normality using Lindeberg–Feller CLT. Then, we show consistency
for the estimator of the variance, which can be used to construct feasible confidence
intervals. We write rM (x) as r (x) and suppress t subscript when there is no confusion.

By Assumption 10(1), we normalize Erir
′
i = I and obtain

∥∥∥R̂− I∥∥∥ = oP (1) using
a similar argument as in the proof of Theorem 1 of Newey (1997). Recall that β̂ (x) =
rM (x)

′
R̂−1r

′
B̂/n. Let

â
(
β̂, V̂

)
= rM (x)

′
R̂−1r

′
B̂/n, and a (β, V ) = E [βi|X = x] (82)

and define

Ω21 = E
(
A1P

−1piui
) (
A1P

−1piui
)′

Ω22 = E


(
A1P

−1µIi − A2
(
µIIi + ri (β (Vi,Wi)− β (Xi))

))
×
(
A1P

−1µIi − A2
(
µIIi + ri (β (Vi,Wi)− β (Xi))

))′

 . (83)

Then, we have Ω2 = Ω21 + Ω22.
Let F = Ω−1/2

2 , which is well-defined because

Ω21 = A1P
−1
(
Epip

′

iu
2
i

)
P−1A

′

1

= A1P
−1
(
Epip

′

iE
(
u2
i

∣∣∣Xi, Vi,Wi

))
P−1A

′

1
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≥ CA1P
−1A

′

1 = Cr (x)
′ (
Erip

′

i

) (
Epip

′

i

)−1 (
Epir

′

i

)
r (x) > 0, (84)

where the first inequality holds by Assumption 9(3) and the last inequality holds by
Assumption 10(1).

We expand

√
nF

(
â
(
β̂, V̂

)
− a (β, V )

)
=
√
nF

(
â
(
β̂, V̂

)
− â

(
β, V̂

)
+ â

(
β, V̂

)
− â (β, V ) + â (β, V )− a (β, V )

)
= n−1/2∑

i

(ψ1i + ψ2i + ψ3i) + oP (1) (85)

and show that

ψ1i = H1
(
piui − µIi

)
, ψ2i = H2µ

II
i , and ψ3i = H2riξi. (86)

First, for ψ1i we have

√
nF

(
â
(
β̂, V̂

)
− â

(
β, V̂

))
=
√
nFr (x)

′
R̂−1r

′ (
B̂ − B̃

)
/n

=
√
nFr (x)

′
R̂−1r

′ (
p̂P̂−1p̂

′
Y/n− B̃

)
/n

= n−1/2Fr (x)
′
R̂−1r

′ [
n−1p̂P̂−1p̂

′ (
Y −G+G− G̃+ G̃− p̂αK

)
+
(
p̂αK − B̃

)]
= n−1/2∑

i

Ĥ1p̂i [ui − (G (ŝi)−G (si))] + n−1/2Ĥ1p̂
′ (
G̃− p̂αK

)
+ n−1/2Ĥ2r

′ (
p̂αK − B̃

)
=: D11 +D12 +D13. (87)

We show D11 = n−1/2∑
i ψ1i + oP (1), D12 = oP (1), and D13 = oP (1).

The proof of
D11 = n−1/2∑

i

ψ1i + oP (1) (88)

is analogous to that of Lemma B7 and B8 of Imbens and Newey (2002), except that
we need to establish

∥∥∥Ĥ1 −H1

∥∥∥ = oP (1). To prove this claim, first we have

‖H1‖ = O (1) and ‖H2‖ = O (1) , (89)

because ‖H1‖2 ≤ CA1A
′
1/Ω2 ≤ C and ‖H2‖2 = A2A

′
2/Ω2 ≤ CA1A

′
1/Ω2 ≤ C. In addi-
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tion, we have
∥∥∥P̂ − P∥∥∥ = oP (1),

∥∥∥R̂− I∥∥∥ = oP (1), and
∥∥∥n−1∑

i ripi − Erip
′
i

∥∥∥ = oP (1)
as in the proof of Theorem 1 of Newey (1997). By Slutsky Theorem,

∥∥∥R̂−1 − I
∥∥∥ =

oP (1). Using CS and Lemma A3 of Imbens and Newey (2002), we have
∥∥∥∥∥n−1∑

i

ri
(
pi − p̂i

)′
∥∥∥∥∥

2

≤ n−1∑
i

‖ri‖2 × n−1∑
i

∥∥∥p̂i − pi∥∥∥2

= OP

(
Mζ1 (K)2 ∆2

n

)
= oP (1) . (90)

Therefore, by T we have with probability approaching 1
∥∥∥Ĥ1 −H1

∥∥∥2

=
∥∥∥FÂ1P̂

−1 − FA1P
−1
∥∥∥2

≤ 2
∥∥∥F (Â1 − A1

)
P̂−1

∥∥∥2
+ 2

∥∥∥FA1
(
P̂−1 − P−1

)∥∥∥2

= 2
∥∥∥F (r (x)

′
(I + oP (1))

(
Erip

′

i + oP (1)
)
− r (x)

′
Erip

′

i

)
P̂−1

∥∥∥2

+ 2
∥∥∥FA1P

−1
(
P − P̂

)
P̂−1

∥∥∥2

≤‖H2‖2 oP (1) + ‖H1‖2 oP (1) = oP (1) . (91)

and similarly
∥∥∥Ĥ2 −H2

∥∥∥ = oP (1). The result follows as in the proof of Lemma B7
and B8 of Imbens and Newey (2002).

Next, recall that

(
G̃− p̂αK

)′ (
G̃− p̂αK

)
/n = OP

(
K−2d2

)
(92)

by Assumption 7(4). Therefore,

∣∣∣n−1/2Ĥ1p̂
′ (
G̃− p̂αK

)∣∣∣2 ≤ n
[
Ĥ1P̂ Ĥ

′

1

] [(
G̃− p̂αK

)′ (
G̃− p̂αK

)
/n
]

≤
∥∥∥Ĥ1

∥∥∥2
OP

(
nK−2d2

)
= oP (1) . (93)

For D13, similarly to (93) we have

∣∣∣n−1/2Ĥ2r
′ (
p̂αK − B̃

)∣∣∣2 ≤ n
[
Ĥ2R̂Ĥ2

] [(
B̃ − p̂αK

)′ (
B̃ − p̂αK

)
/n
]

= OP

(
nK−2d

)
= oP (1) . (94)
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Summarizing (88)–(94), we obtain

ψ1i = H1
(
piui − µIi

)
. (95)

To obtain ψ2i, we have

√
nF

(
â
(
β, V̂

)
− â (β, V )

)
=
√
nFr (x)

′
R̂−1r

′ (
B̃ −B

)
/n

= Ĥ2n
−1/2∑

i

ri
(
β̃i − βi

)
= Ĥ2n

−1/2∑
i

riβv (Vi,Wi)
(
V̂i − Vi

)
+ Ĥ2n

−1/2∑
i

riβvv
(
Ṽi,Wi

) (
V̂i − Vi

)2
/2

=: D21 +D22. (96)

We prove D21 = n−1/2∑
iH2µ

II
i + oP (1) and D22 = oP (1). For D21, we have

D21 = Ĥ2n
−1/2∑

i

riβv (Vi,Wi)
(
V̂i − Vi

)
= H2n

−1/2∑
i

riβv (Vi,Wi) ∆I
i +

(
Ĥ2 −H2

)
n−1/2∑

i

riβv (Vi,Wi)
(
V̂i − Vi

)
+H2n

−1/2∑
i

riβv (Vi,Wi)
(
∆II
i + ∆III

i

)
=: D211 +D212 +D213, (97)

where

δij = F (Xi|Zj,Wj)− q
′

jγ
L (Xi) , ∆I

i = q
′

iQ̂
−1∑

j

qjvij/n,

∆II
i = q

′

iQ̂
−1∑

j

qjδij/n, and ∆III
i = −δii. (98)

Following the proof of Lemma B7 of Imbens and Newey (2002), we obtain

D211 = n−1/2∑
i

H2µ
II
i + oP (1) . (99)
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For D212, we have

|D212|2 ≤ Cn
[(
Ĥ2 −H2

)
R̂
(
Ĥ2 −H2

)′] [
n−1∑

i

(
V̂i − Vi

)2
]

= OP

{
n
(
ζ (M)2M/n

)
∆2

1n

}
= oP (1) . (100)

For D213, we have

|D213|2 ≤ Cn
[
H2R̂H

′

2

] [∑
i

((
∆II
i

)2
+
(
∆III
i

)2
)
/n

]
= OP

(
nL1−2d1

)
= oP (1) ,

(101)
where the first equality is established in the proof of Theorem 4 of Imbens and Newey
(2002).

Next, for D22, we have

|D22| ≤ C
√
n
∥∥∥Ĥ2

∥∥∥ sup
x∈X
‖r (x)‖

∣∣∣∣∣n−1∑
i

(
V̂i − Vi

)2
∣∣∣∣∣

= OP

(√
nζ (M) ∆2

n

)
= oP (1) . (102)

Combining the results for D21 and D22, we obtain

√
nF

(
â
(
β, V̂

)
− â (β, V )

)
= n−1/2∑

i

H2µ
II
i + oP (1) . (103)

To obtain ψ3i, first we expand

√
nF (â (β, V )− a (β, V ))

= n−1/2∑
i

Ĥ2riβi −
√
nFβ (x)

= n−1/2∑
i

H2ri (β (Vi,Wi)− β (Xi)) + n−1/2∑
i

(
Ĥ2 −H2

)
ri (β (Vi,Wi)− β (Xi))

+ n−1/2∑
i

Ĥ2ri
(
β (Xi)− r

′

iη
M
)
−
√
nF

(
β (x)− r (x)

′
ηM
)

=: D31 +D32 +D33 +D34. (104)

Recall that D31 = n−1/2∑
iH2riξi by definition of ξi. Thus, we show D32, D33, and

D34 are all oP (1).
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For D32, we have

E
[
|D32|2

∣∣∣X] =
(
Ĥ2 −H2

)
r

′E
[
ξξ

′
∣∣∣X] r (Ĥ2 −H2

)′

/n

≤ C
(
Ĥ2 −H2

)
R̂
(
Ĥ2 −H2

)′

≤ C
∥∥∥Ĥ2 −H2

∥∥∥2 (
1 +

∥∥∥R̂− I∥∥∥)
= OP

{∥∥∥Ĥ2 −H2

∥∥∥2
}

= OP

(
ζ (M)2M/n

)
= oP (1) , (105)

where the first inequality holds by Assumption 8(3) and the fact that Ĥ2 and r are
functions of Xi only, the second equality holds by

∥∥∥R̂− I∥∥∥ = oP (1), and the third
equality follows similarly as in equation (A.1) and (A.6) of Newey (1997). Therefore,
D32 = oP (1) by CM.

For D33, by CS we have

|D33|2 ≤ n
(
Ĥ2R̂Ĥ

′

2

)∑
i

(
β (Xi)− r

′

iη
M
)2
/n

= OP

(
nM−2d3

)
= oP (1) , (106)

where the first equality holds by Assumption 8(1).
For D34, we have

|D34|2 = nF 2
(
β (x)− r (x)

′
ηM
)2

= OP

(
nM−2d3

)
= oP (1) . (107)

Summarizing (104)–(107), we obtain

√
nF (â (β, V )− a (β, V )) = n−1/2∑

i

H2riξi + oP (1) . (108)

In sum, we have shown

√
nF

(
â
(
β̂, V̂

)
− a (β, V )

)
= n−1/2∑

i

(ψ1i + ψ2i + ψ3i) + oP (1) , (109)

where
ψ1i = H1

(
piui − µIi

)
, ψ2i = H2µ

II
i , and ψ3i = H2riξi (110)
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and
H1piui ⊥

(
H1µ

I
i , H2µ

II
i , H2riξi

)
(111)

because E (ui|Xi, Vi,Wi) = 0 by construction.
Let Ψin = n−1/2 (ψ1i + ψ2i + ψ3i). We have EΨin = 0 and V ar (Ψin) = 1/n. For

any ε > 0, under Assumption 9 and 10, we have

nE
[
1 {|Ψin| > ε}Ψ2

in

]
≤ nε2E

[
1 {|Ψin| > ε} (Ψin/ε)4

]
≤ nε−2EΨ4

in

≤ CE
[
(H1piui)4 +

(
H1µ

I
i

)4
+
(
H2µ

II
i

)4
+ (H2riξi)4

]
/n

≤ C
(
ζ (K)2K + ζ (K)4 ζ (L)4 L+ ζ (M)4 ζ (L)4 L+ ζ (M)2M

)
/n→ 0, (112)

where the last inequality follows a similar argument as in the proof of Lemma B5 of
Imbens and Newey (2002). Then, by Lindeberg–Feller CLT we obtain

√
nΩ−1/2

2

(
â
(
β̂, V̂

)
− a (β, V )

)
d−→ N (0, 1) . (113)

To construct a feasible confidence interval, one needs a consistent estimator of the
covariance matrix. Thus, we show Ω̂2/Ω2 − 1 p−→ 0. Recall that

Ω2 = E
(
A1P

−1piui
)2

+ E
(
A1P

−1µIi − A2
(
µIIi + riξi

))2
= Ω21 + Ω22 (114)

and

Ω̂2 = n−1∑
i

(
Â1P̂

−1p̂iûi
)2

+ n−1∑
i

(
Â1P̂

−1µ̂Ii − Â2R̂
−1
(
µ̂IIi + riξ̂i

))2
=: Ω̂21 + Ω̂22.

(115)
The proof of Ω̂21/Ω2 − Ω21/Ω2

p−→ 0 follows the proof of Lemma B10 of Imbens
and Newey (2009), with the Â1 instead of A1 appearing in the definition of Ĥ1.
Nonetheless, we have shown that

∥∥∥Ĥ1 −H1

∥∥∥ = oP (1). Thus, the proof for Ω̂21 follows
similarly and is omitted for brevity.

For Ω̂22, we first show

n−1∑
i

(
Ĥ1µ̂

I
i −H1µ

I
i

)2
= oP (1)
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n−1∑
i

(
Ĥ2µ̂

II
i −H2µ

II
i

)2
= oP (1)

n−1∑
i

(
Ĥ2riξ̂i −H2riξi

)2
= oP (1) . (116)

The first two convergence results hold by following the argument of the proof of
Lemma B9 in Imbens and Newey (2002). For the last one, we have

Ĥ2riξ̂i −H2riξi

= Ĥ2ri
(
ξ̂i − ξi

)
+
(
Ĥ2 −H2

)
riξi

= Ĥ2ri
(
β̂
(
V̂i,Wi

)
− β̂ (Xi)− β (Vi,Wi) + β (Xi)

)
+
(
Ĥ2 −H2

)
riξi

= Ĥ2ri
(
β̂
(
V̂i,Wi

)
− β

(
V̂i,Wi

))
+ Ĥ2ri

(
β
(
V̂i,Wi

)
− β (Vi,Wi)

)
+ Ĥ2ri

(
β (Xi)− β̂ (Xi)

)
+
(
Ĥ2 −H2

)
riξi

=: D41i +D42i +D43i +D44i. (117)

For D41, we have

n−1∑
i

D2
41i ≤

∥∥∥Ĥ2

∥∥∥2
sup
x∈X
‖r (x)‖2 n−1∑

i

(
β̂
(
V̂i,Wi

)
− β

(
V̂i,Wi

))2

≤ Cζ (M)2 n−1∑
i

[(
p̂

′

i

(
α̂K − αK

))2
+
(
p̂

′

iα
K − β (v̂i, wi)

)2
]

= OP

(
ζ (M)2 ∆2

2n

)
= oP (1) , (118)

where the second inequality holds by
∥∥∥Ĥ2

∥∥∥ = OP (1) and Assumption 10(1) and the
first equality holds by (72).

For D42, we have

n−1∑
i

D2
42i ≤

∥∥∥Ĥ2

∥∥∥2
sup
x∈X
‖r (x)‖2 n−1∑

i

(
β
(
V̂i,Wi

)
− β (Vi,Wi)

)2

≤ Cζ (M)2 n−1∑
i

(
V̂i − Vi

)2
= OP

(
ζ (M)2 ∆2

1n

)
= oP (1) , (119)

where the first equality holds by Lemma 3.
The proof of n−1∑

iD
2
43i = oP (1) is completely analogous to (118) and is thus

omitted.
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For D44, we have

E
[
n−1∑

i

D2
44i

∣∣∣∣∣X
]

=
(
Ĥ2 −H2

)
n−1∑

i

rir
′

iE
(
ξ2
i

∣∣∣Xi

) (
Ĥ2 −H2

)′

≤ C
(
Ĥ2 −H2

)
R̂
(
Ĥ2 −H2

)′

≤ C
∥∥∥Ĥ2 −H2

∥∥∥2
= oP (1) , (120)

where the first equality holds by Ĥ2 and ri are both functions of X, the first inequality
holds by Assumption 8(3), and the last inequality uses

∥∥∥R̂− I∥∥∥ = oP (1). Then, by
CM, we have

n−1∑
i

D2
44i = oP (1) . (121)

Combining results for D41–D44, we have

n−1∑
i

(
Ĥ2riξ̂i −H2riξi

)2
= oP (1) . (122)

Therefore, we have proven (116), which implies

n−1∑
i

((
Ĥ1µ̂

I
i − Ĥ2µ̂

II
i − Ĥ2riξ̂i

)
−
(
H1µ

I
i −H2µ

II
i −H2riξi

))2

≤ Cn−1∑
i

(
Ĥ1µ̂

I
i −H1µ

I
i

)2
+ Cn−1∑

i

(
Ĥ2µ̂

II
i −H2µ

II
i

)2

+ Cn−1∑
i

(
Ĥ2riξ̂i −H2riξi

)2
= oP (1) . (123)

Since E
(
H1µ

I
i −H2µ

II
i −H2riξi

)2
= Ω22/Ω2 ≤ 1, by M and Lemma B6 of Imbens

and Newey (2002), we have
∣∣∣∣∣Ω̂22/Ω2 − n−1∑

i

(
H1µ

I
i −H2µ

II
i −H2riξi

)2
∣∣∣∣∣ = oP (1) . (124)

By LLN, we have∣∣∣∣∣n−1∑
i

(
H1µ

I
i −H2µ

II
i −H2riξi

)2
− Ω22/Ω2

∣∣∣∣∣ = oP (1) . (125)

81



Therefore, by T, we obtain

Ω̂22/Ω2 − Ω22/Ω2 = oP (1) . (126)

Combining results for Ω̂21 and Ω̂22, we have

Ω̂2/Ω2 − 1 p−→ 0. (127)

C Notation

Ai : individual fixed effect

A1, Â1, A2 : A1 = rM (x)
′
Erip

′

i, Â1 = rM (x)
′
R̂−1

(
n−1∑

i

rip̂
′

i

)
, A2 = rM (x)

B, B̃, B̂, BX : (β1, ..., βn)
′
,
(
β̃1, ..., β̃n

)′

,
(
β̂1, ..., β̂n

)′

, (β (X1) , ..., β (Xn))
′

dX : dimension of Xit

d1 : series approx rate for V (x, z, w)

d2 : series approx rate for G (s)

d3 : series approx rate for β (x)

F : Ω−1/2
2

G (S) , Ĝ (S) : E [Y |X, V,W ] , pK (S)
′
α̂K

H1, Ĥ1, H2, Ĥ2 : H1 = FA1P
−1, Ĥ1 = FÂ1P̂

−1, H2 = FA2, Ĥ2 = FA2R̂
−1

K : degree of basis functions pK (·) used to estimate G

K1 : degree of pK1 (·) , a component of pK (·) and pK (·)

L : degree of basis functions q (·) used to estimate V

M : degree of basis functions r (·) used to estimate β (x)

pK (s) : x⊗ pK1 (v, w) for s = (x, v, w) , a DK1 × 1 vector

pK (s) : ID ⊗ pK1 (v, w) , a DK1 ×D matrix

pK1 (v, w) : component basis function of (v, w)

qi, pi, p̂i, pi, p̂i, ri : qL (Xi, Zi,Wi) , pK (si) , pK (ŝi) , pK (si) , pK (ŝi) , rM (Xi)
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p, p, p̂, p̂ : (p1, ..., pn)
′
, (p1, ..., pn)

′
, (p̂1, ..., p̂n)

′
,
(
p̂1, ..., p̂n

)′

q, r : (q1, ..., qn)
′
, (r1, ..., rn)

′

P, P̃ , P̂ : Epip
′

i, n
−1∑ pip

′

i, n
−1∑ p̂ip̂

′

i

Q, Q̂ : Eqiq
′

i, n
−1∑ qiq

′

i

R, R̂ : Erir
′

i, n
−1∑ rir

′

i

s, S : (x, v, w) , (X, V,W )

U : random shock per period

V : FX|Z,W control function for U

W : sufficient statistic for A

X : regressors for Y, e.g. labor, capital

Yit, y : outcome variable e.g. value-added output, y = (Y1, ..., Yn)
′

Z : instruments for X, e.g. interest rate

X ,Z,W ,V ,S : the support of X,Z,W, V, S

s, x, z, w : realization of random variables

Xit, Zit : random vectors

Xi,Zi : random matrix (Xi1, ..., XiT )
′
, (Zi1, ..., ZiT )

′

αK , α̂K : series approx coefficient for G (s) , P̂−1p̂
′
y/n

βit : random coefficients

β : Eβit
β (x) : E [βit|Xit = x]

β (v, w) : E [βit|Vit = v,Wi = w]

βv (v, w) : ∂β (v, w) /∂v

βi, β̃i, β̂i : β (Vi,Wi) , β
(
V̂i,Wi

)
, β̂
(
V̂i,Wi

)
δ0t : E [dt (U2,it)]

γL (·) : series approx coefficient for V (x, z, w)

ηM : series approx coefficient for β (x)

λ : eigenvalue of a matrix

psd, pd : positive semi-definite, positive definite

µIi , µ
II
i : E

[
Gv (Sj) τ

′ (Vj) pjq
′

jqivji
∣∣∣ Ii] ,E [βv (Vj,Wj) rjq

′

jqivji
∣∣∣ Ii]
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Ω1 : pK (s)
′
P−1 (Σ + Σ1)P−1pK (s)

Σ,Σ1 : Epip
′

iu
2
i , EµIiµI

′

i

ui, ûi : Yi −G (Si) , Yi − Ĝ
(
Ŝi
)

vji : 1 {xi ≤ xj} − F (xj| zi, wi)

Ω̂1 : pK (s)
′
P̂−1

(
Σ̂ + Σ̂1

)
P̂−1pK (s)

Σ̂, Σ̂1 : n−1∑
i

p̂ip̂
′

iû
2
i , n

−1∑
i

µ̂Ii µ̂
I′

i

µ̂
I
i , µ̂

II
i : n−1∑

j

Ĝv

(
Ŝj
)
p̂jq

′

jQ̂
−qiv̂ji, n

−1∑
j

β̂v
(
Ŝj
)
rjq

′

jQ̂
−qiv̂ji

v̂ji : 1 {xi ≤ xj} − F̂ (xj| zi, wi) .

Ω21 : E
(
A1P

−1piui
) (
A1P

−1piui
)′

Ω22 : E
[(
A1P

−1µIi − A2
(
µIIi + riξi

)) (
A1P

−1µIi − A2
(
µIIi + riξi

))′]
ξi, ξ̂i : β (Vi,Wi)− β (Xi) , β̂

(
V̂i,Wi

)
− β̂ (Xi)

Ω2 : Ω21 + Ω22

Ω̂21 : Â1P̂
−1
(
n−1∑

i

p̂ip̂
′

iû
2
i

)
P̂−1Â

′

1

Ω̂22 : n−1∑
i

(
Â1P̂

−1µ̂
I
i − Â2

(
µ̂
II
i + riξ̂i

)) (
Â1P̂

−1µ̂
I
i − Â2

(
µ̂
II
i + riξ̂i

))′

In the proofs :

CM : Conditional Markov Inequality

CS : Cauchy–Schwarz Inequality

LLN : Law of Large Numbers

M : Markov Inequality

T : Triangle Inequality
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