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Abstract

Even as policy makers seek to encourage economic development by addressing
misallocation due to frictions in labor markets, the associated production externalities
– such as air pollution – remain entirely unexplored. Using a regression discontinu-
ity design we show access to rural roads doubles the count of agricultural fires and
causes a 1.25% increase in local PM2.5. Rural roads cause movement of workers out of
agriculture, and induce farmers to use fire – a labor-saving but polluting technology –
to clear agricultural residue or to make harvesting less labor-intensive.
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1 Introduction

The persistence of the agricultural productivity gap – a stylized fact that marginal prod-

uct of labor is substantially lower in agriculture than in other sectors, especially in low-

and middle-income countries – suggests that labor is greatly misallocated across sectors

(Gollin, Lagakos and Waugh, 2014; Kuznets, 1955; Lewis, 1954). Understanding the causes

of this labor misallocation, and identifying policies that enable structural transformation

away from low productivity agriculture has been a central focus of development eco-

nomics (Banerjee and Newman, 1998; Bryan, Chowdhury and Mobarak, 2014; Restuccia

and Rogerson, 2017). However, these policies largely ignore production externalities as-

sociated with labor reallocation across sectors; by focusing exclusively on private produc-

tivity, these policies may over- or under-correct the extent of labor misallocation. In this

paper we examine whether policies designed to reallocate labor across sectors generate

environmental externalities.

The substitution between environmental quality – a form of capital that is ‘depreci-

ated’ by the addition of pollutants – and factor inputs like labor has long been part of the

concept of sustainability in environmental economics (Arrow et al., 1995; Solow, 1993). If

sector-specific emission intensities are a function of labor inputs, then reallocation of labor

across sectors can have important implications for local and aggregate emissions (Barrett,

Ortiz-Bobea and Pham, 2020), for example, through the adoption of labor-saving tech-

nologies (Acemoglu, 2010; Allen, 2009; Davis, 2017; Habakkuk, 1962). By ignoring the

effects of structural change to labor allocation on the environment, economists miss cen-

tral relationships that are increasingly relevant to contemporary policy in environmentally

vulnerable lower-income countries. We address this gap by providing evidence that move-

ment of workers out of agriculture compels farmers to use a labor-saving but polluting

technology – fire – resulting in increased particulate matter.

We exploit a natural experiment in rural road construction in India that singularly

increased labor exits from agriculture while leaving most other economic outcomes unaf-

fected (Asher and Novosad, 2020).1 Using a regression discontinuity design that leverages
1Asher and Novosad (2020) find rural roads constructed under the Pradhan Mantri Gram Sadak Yojana (PMGSY) increased the

availability of transportation services and led to a substantial reallocation of workers out of agriculture. They find no evidence for
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a sharp increase in the likelihood of road construction at population thresholds, we show

rural roads increase agricultural fires and particulate emissions. A new road results in a

70% increase in the number of fires (or 2.6 additional fires) within 10 km of the village and

a 1.25% (0.5 µg/m3) increase in PM2.5 levels in the village. The effect of rural roads on par-

ticulate pollution is driven almost entirely by increase in emissions from biomass burning,

and concentrated in the winter harvest and post-harvest months. This is consistent with

the explanation that agricultural fires (as opposed to, for example, vehicular emissions)

are the primary mechanism linking rural roads to increased local PM2.5 levels.

Sub-sample analyses further bolster our primary result that agricultural labor exits

increase crop fires. First, rural roads facilitate movement of workers out of agriculture, and

increase agricultural fires and particulate emissions in districts where relative agricultural

wage is lower (below median) at baseline, but not in districts where relative agricultural

wage is higher (above median). Second, the effect of rural roads on agricultural fires and

particulate emissions is concentrated in districts with a higher (above median) production

of crops that benefit from use of fires in the face of agricultural labor exits at baseline,

either to clear harvest residue off fields within a narrow time window before planting

in the next season (rice) or to make harvest less labor-intensive (sugarcane). Together,

precisely as one might expect, we find the increase in agricultural fires and particulate

emissions is concentrated in districts with a higher production of rice or sugarcane and

where relative agricultural wage is lower at baseline, with comparatively modest effects

in other districts.

Our work provides the first evidence on the effects of labor reallocation from farm

to non-farm sectors on environmental quality. Environmental economists have a keen

interest in studying the implications of environmental policies for sectoral labor reallo-

cation (Hafstead, Williams III and Chen, 2018; Walker, 2013). However, even as policy

makers seek to encourage economic development by addressing misallocation due to fric-

tions in labor markets, the environmental effects remain entirely unexplored. The issue is

particularly salient in many low- and middle-income countries that are undergoing rapid

increases in assets or income. Farmers do not own more agricultural equipment, move out of subsistence crops, or increase agricultural
production. We replicate their results in our sample.
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structural transformation while simultaneously experiencing dangerously high levels of

air pollution (Greenstone and Jack, 2015).

Our results also contribute to a broad literature examining trade-offs and synergies

between economic development and environmental quality (Andreoni and Levinson, 2001;

Arrow et al., 1995; Dasgupta et al., 2002; David I, Michael and Edward, 1996; Den Butter

and Verbruggen, 1994; Grossman and Krueger, 1995; Stern, 2004). Within this literature,

we join a small set of papers that examine the effects of anti-poverty programs on envi-

ronmental quality (Alix-Garcia et al., 2013; Asher, Garg and Novosad, 2020; Behrer, 2020;

Ferraro and Simorangkir, 2020; Gertler, Martinez and Rubio-Codina, 2012).2,3

The rest of the paper is organized as follows. Section 2 provides a brief background

on agricultural fires in India and discusses how rural roads may affect agricultural fires.

Section 3 describes the empirical analysis. Section 4 concludes.

2 Background

Air pollution remains one of the leading causes of mortality, accounting for 9 million pre-

mature deaths annually or roughly 16% of all deaths worldwide and a staggering 268 mil-

lion disability-adjusted-life-years (Landrigan et al., 2018). Nowhere is the problem more

pronounced than in India, which is home to 14 of 20 most polluted cities in the world. In

fact, if the city of New Delhi, the capital of India, were to meet World Health Organiza-

tion air quality standards, average life expectancy would increase by 10 years (Greenstone

and Fan, 2019), roughly equivalent to the gains in life expectancy made by the country on

average in the 21st century (Max Roser and Ritchie, 2013). Of course, a number of factors

– both moderate but perpetual and seasonal but acute – contribute to the poor air qual-

ity in India. In this section we discuss use of agricultural fires in India that contribute to
2Previous work examining the relationship between rural road construction and environmental quality has focused on the effects

on deforestation through increased demand for commercial timber (Asher, Garg and Novosad, 2020). They find rural roads do not
affect local deforestation, but national highways cause substantial forest loss. In contrast, we provide evidence that even smaller-scale
transportation infrastructure (rural roads) – by facilitating the movement of labor out of agriculture – increase agricultural fires and
worsen local environmental quality.

3Our findings complement Behrer (2020) in particular; the author uses a differences-in-differences design to show India’s Mahatma
Gandhi National Rural Employment Guarantee Act (NREGA), which increased wages, induced farmers to invest in labor-saving tech-
nologies like combine harvesters, which leave more crop residue, increasing use of agricultural fires. We find evidence for a more
direct channel: rural roads induce movement of workers out of agriculture, inducing farmers to use fire – a labor-saving technology –
to clear agricultural residue.
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as much as half of the particulate pollution in many parts of the country during winter

months (Bikkina et al., 2019; Cusworth et al., 2018; Shyamsundar et al., 2019), and how

rural roads may affect agricultural fires.

2.1 Agricultural Fires in India

Why do farmers use fire? Agricultural fires serve many purposes including (i) clearing

harvest residue off fields in preparation for planting in the next season, (ii) making sug-

arcane harvesting less labor-intensive, and (iii) clearing undergrowth on fields left fallow

between cropping seasons. Figure 1 shows wide spatial distribution of agricultural fires

across districts in India.4 We use satellite-based measures of agricultural fires based on

detections of infrared radiation typical of biomass fires. Figure A.1 shows the increasing

trend in the number of fires annually between 2003 and 2013, the period of study. In 2003,

there were roughly 55,000 fires whereas in 2012 there were over 90,000 fires.

The use of fire is particularly prevalent in a coupled rice-wheat cropping arrangement

– a system of agriculture widespread across India (Jain, Bhatia and Pathak, 2014; Prasad,

Gangaiah and Aipe, 1999). In this system farmers grow rice during the monsoon season

(kharif ) from June to November, and wheat immediately following rice harvest during

the winter season (rabi) from January to May. A narrow window of time between the

harvest of rice (in October-November) and the planting of wheat (in December-January)

requires large-scale and quick removal of crop residue and setting fire to crop residue is

particularly helpful in this process.5

Fire also plays a role in the production process for sugarcane - an important crop

across the country (Fair Labor Association, 2012). Farmers light sugarcane fields to re-

move the outer leaves around the cane stalk before harvesting the cane to make the process

easier and require less manual labor (Jain, Bhatia and Pathak, 2014).

Finally, the use of fire is widespread alongside forest lands in central and north-east
4In Figure A.2 we report state-wise annual average number of fires between 2003 and 2013.
5Farmers have an average of only 13 days between the harvesting of rice and the sowing of wheat. On the other hand, in the case of

the wheat harvest, farmers report a window of 46-48 days between wheat harvest and planting of rice. Consistent with time availability
being a significant factor, nearly 90% of the farmers report that they engage in burning after the rice harvest. In contrast, with a longer
interval available after the wheat harvest, only around 11% of the farmers use burning to clear residue after the wheat harvest (Kumar,
Kumar and Joshi, 2015).
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India that follow shifting cultivation, where fields are left fallow for more than a year, and

farmers switch between alternate plots of land (Ramakrishnan, 1992; Venkataraman et al.,

2006). Fallow fields are often overtaken by undergrowth, which need to be cleared before

subsequent season’s planting.

The Private Costs of Agricultural Fires: Although, fires offer an easy and inexpen-

sive means of clearing agricultural residue, they also impose private costs on agricultural

households. First, burning crop residue carries civil and criminal penalties under Section

188 of the Indian Penal Code and the Air and Pollution Control Act of 1981. While en-

forcement is not perfect, it is far from absent. For example, in 2016 alone, the Government

of Punjab handed out a total of roughly USD 100,000 in fines.6

Second, crop residue burning decreases the productivity of agricultural land by de-

stroying micro-nutrients in the soil, removing valuable fertilizer including nitrogen and

phosphorus, and killing soil-borne deleterious pests and pathogens (Prasad, Gangaiah

and Aipe, 1999; Smil, 1999; Stan, Fı̂ntı̂neru and Mihalache, 2014; Swayer, 2019). Prior work

has demonstrated that burning of rice and wheat residue can result in the loss of about

80% of nitrogen, 25% of phosphorus, 21% of potassium and 4 to 60% of sulphur from the

soil (Mandal et al., 2004).

Third, source-apportionment studies suggest pollution from agricultural fires can

raise local concentrations of PM2.5 to more than 1,000% above the WHO 24-hour guide-

line of 25ug/m3 (Balakrishnan et al., 2019; Bikkina et al., 2019; Liu et al., 2018).7 Exposure

to pollution from crop fires decreases birth weight, gestational length, and in utero sur-

vival (Rangel and Vogl, 2019), increases infant mortality (Pullabhotla, 2019), decreases

child height for age and weight for age scores (Singh et al., 2019), decreases cognitive

performance (Graff Zivin et al., 2020) and increases risk of acute respiratory infections

(Chakrabarti et al., 2019).8 Unsurprisingly, local households incur significant expenses to
6See e.g., https://www.downtoearth.org.in/blog/agriculture/stubble-burning-a-problem-for-the-environment-agriculture-and-

humans-64912
7Local PM2.5 concentrations in almost all Indian villages are above the WHO 24-hour guideline of 25 ug/m3 (Figure A.3).
8More broadly, air pollution has been shown to increase infant mortality (Arceo, Hanna and Oliva, 2016; Barrows, Garg and Jha,

2019; Heft-Neal et al., 2018; Jayachandran, 2009), reduce cognitive function (Ebenstein, Lavy and Roth, 2016), increase dementia
(Bishop, Ketcham and Kuminoff, 2018), reduce labor productivity (Graff Zivin and Neidell, 2012) and labor supply (Hanna and Oliva,
2015), and increase elderly mortality (Deryugina et al., 2019). See Schraufnagel et al. (2019), for an exhaustive medical review.
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mitigate the consequences of burning-induced air pollution: for example, people in ru-

ral Punjab spend roughly USD 1 million every year on treatment for ailments caused by

stubble burning (Kumar, Kumar and Joshi, 2015).

Fourth, residue collected from the fields is of substantial economic value (Berazneva

et al., 2018). Crop residue generated from the coupled rice-wheat cropping system can

be used as livestock feed, which is in short supply across India, by roughly 40% (Kumar,

Kumar and Joshi, 2015). Moreover, soil treated with crop residues can hold 5 to 10 times

more aerobic bacteria and 1.5 to 11 times more fungi than soil from which residues were

burnt, providing higher yields (Beri et al., 1992; Sidhu, Beri and Gosal, 1995).

2.2 Agricultural Fires and Rural Roads

Pradhan Mantri Gram Sadak Yojana (PMGSY) In 2000, an estimated 330,000 of In-

dia’s 825,000 rural villages lacked any all-weather road access. The Pradhan Mantri Gram

Sadak Yojana (PMGSY) – the Prime Minister’s Village Road Program – was launched in

2000 with the goal of providing all-weather road access to unconnected villages across

India. Importantly, the national program guidelines prioritized larger villages according

to arbitrary thresholds based on the 2001 Population Census (Asher and Novosad, 2020).

The guidelines aimed to connect all villages with populations greater than 1,000 by 2003,

all villages with population greater than 500 by 2007, and villages with population over

250 after that.9 These rules were to be applied on a state-by-state basis, meaning that states

that had connected all larger villages could proceed to smaller localities; for instance, states

with few unconnected villages with over 1,000 people used the 500-person threshold im-

mediately.10 Rural road construction under PMGSY began in 2000 and continued steadily

through the end of the sample period in 2013 (Figure A.4).
9The unit of targeting in the PMGSY is the habitation, defined as a cluster of population whose location does not change over time.

Revenue villages, which are used by the Economic and Population Censuses, are comprised of one or more habitations (National Rural
Roads Development Agency, 2005). In this paper, we aggregate all data to the level of the revenue village.

10Some states did not comply with the threshold guidelines. Some states included several other prioritization guidelines and it is
possible that political patronage played a role. See Asher and Novosad (2020) for more details. In the empirical exercise that follows
we limit our analysis to states that complied with these guidelines and where we can show that there was a clear discontinuity in the
probability of receiving a rural road around the relevant population thresholds.
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How do rural roads affect agriculture? Asher and Novosad (2020) leverage the discon-

tinuous increase at the aforementioned population thresholds for complying states using

a fuzzy regression discontinuity design to show rural roads – constructed under PMGSY

– cause a substantial increase in the availability of transportation services, but do not in-

crease assets or income. We replicate the results from Asher and Novosad (2020) in Ap-

pendix B.11 Farmers do not own more agricultural equipment, move out of subsistence

crops, or increase agricultural production. They do find that rural roads lead to a large

reallocation of workers out of agriculture. These impacts are most pronounced among

the groups likely to have the lowest costs and highest potential gains from participation

in labor markets: households with small landholdings and working age men. They find

suggestive evidence that the growth in non-agricultural workers is due to greater access

to jobs outside the village. Finally, they decisively rule out small changes in permanent

migration, implying that their results are not the product of compositional changes to the

village population. Overall, the main effect of rural roads is to facilitate the movement

of workers out of agriculture with no major changes in agricultural outcomes, income or

assets.12

How could rural roads affect agricultural fires? Labor exits from agriculture follow-

ing rural road construction may decrease availability of farm labor or increase local costs

of hiring labor. Decreased availability of farm labor or increased labor costs could lead

farmers to use fires as a labor saving technology to clear rice harvest residue off fields in

preparation for the subsequent season’s wheat planting or to make sugarcane harvesting

less labor-intensive. Indeed, the Government of India has long speculated that decreased

availability of labor is one important reason for increase in agricultural fires over the last

two decades (Department of Agriculture & Cooperation, 2014). This explanation is also
11Our sample is slightly smaller than the analysis sample in Asher and Novosad (2020) since we were unable to identify geographic

coordinates – required to generate satellite-based measures of fire activity at the village level – for about 280 (2%) villages.
12In contrast, other studies that estimate the impacts of PMGSY use difference-in-differences design, finding rural roads improve

agricultural outcomes: Shamdasani (2016) finds PMGSY increases use of expensive, productivity-enhancing inputs, such as fertilizer,
hybrid seeds, manure, and hired labor. Similarly, Aggarwal (2018) finds districts with greater road construction under PMGSY observe
an increase in use of fertilizer and hybrid seeds. However, consistent with Asher and Novosad (2020), these studies find no evidence
that improvements in rural road infrastructure increases purchase of mechanized farm equipment (tractors/harvesters/threshers);
Shamdasani (2016) also finds improvements in road connectivity induce movement of workers out of agriculture. We inform our
discussion on how rural roads may affect agricultural fires based on findings from Asher and Novosad (2020) since other studies are
limited in their ability to address the endogeneity of road placement.
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consistent with results from a survey conducted with 150 agricultural households in ru-

ral Punjab that asked rice farmers why they burn crop residue (Kumar, Kumar and Joshi,

2015). Roughly 49% farmers indicated that burning was more economical; approximately

8% farmers were more specific and opined they were burning crop residue because they

were unable to hire labor for manual removal of residue.

Other possibilities that would link road construction to fire use are changes in plant-

ing dates and adoption of technologies such as combine harvesters. While these are plau-

sible pathways, we find no evidence to support these mechanisms.

First, rural roads may decrease the already short turn-around time between rice har-

vest and wheat planting even further. One, rural-road-induced labor exits may delay rice

harvest, leaving little time to clear the residue before subsequent season’s wheat plant-

ing. Two, road drainage and excavation may lower the water table in surrounding areas

(Tsunokawa and Hoban, 1997). Therefore, rice planting might be delayed, and farmers

may be rushed to harvest and clear the monsoon season’s crop (rice) and plant winter

season’s crop (wheat) on time. In Appendix C, we examine the effect of rural roads on

satellite-based measures of harvest (end-)date and planting date for the monsoon season

crop (rice). We fail to find evidence that access to rural roads affect harvest or planting

dates for rice.

Second, rural-road-induced labor reallocation out of agriculture may also affect num-

ber of agricultural fires by increasing adoption of technologies like combine harvesters.

Behrer (2020) uses a difference-in-differences design to show India’s Mahatma Gandhi

National Rural Employment Guarantee Act (NREGA), which guaranteed rural employ-

ment, increased the incidence of agricultural fires. The author’s results suggest wage

growth associated with NREGA induced farmers to invest in labor-saving technologies

like combine harvesters, which leave more crop residue, increasing use of agricultural

fires. Given aforementioned evidence that rural roads do not increase ownership of mech-

anized farm equipment, such an indirect mechanism is unlikely to be operational in our

study. Nevertheless, farmers often do not own their own combines but rather rent a com-

bine (Shyamsundar et al., 2019). Therefore, we use the 1999 and 2006 Rural Economic and

Demographic Survey to examine the effect of rural roads on village-level stock of agricul-
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tural machinery (Appendix D). We find no evidence to suggest that rural roads increase

local stock of combines. We also fail to find evidence that rural roads increase household

use of hired mechanized agricultural equipment (tractors, combine harvesters, threshers

etc.).

Overall, this discussion suggests the primary mechanism through which rural roads

may increase agricultural fires is reallocation of workers out of agriculture: burning crop

residue and lighting sugarcane fields on fire becomes relatively economical compared to

manual removal of crop residue and outer leaves around cane stalk.

3 Effect of Rural Roads on Agricultural Fires

3.1 Data Sources

Our primary analysis combines information on village-level rural road construction un-

der PMGSY with satellite-based measures of agricultural fires and PM2.5 collapsed at the

village level.

Rural Roads: We use the Socioeconomic High-resolution Rural-Urban Geographic

Dataset (SHRUG) for information on village-level rural road construction dates under

PMGSY (Asher et al., 2019). We merge data on roads with village-level shapefiles (Meiyap-

pan et al., 2018, 2017). We follow Asher and Novosad (2020), who worked closely with

the National Rural Roads Development Agency to identify the state-specific thresholds

that were followed, to define our sample: our sample is comprised of villages from the

following states, with the population thresholds used in parentheses: Chhattisgarh (500,

1,000), Gujarat (500), Madhya Pradesh (500, 1,000), Maharashtra (500), Orissa (500), and

Rajasthan (500). We restrict our analysis to these states since these were the states that

reasonably adhered to the population priority criterion set forth by the national govern-

ment.

Agricultural Fires: We merge data on roads with satellite-detected fire activity data

from NASA’s Earth Observing System Data and Information System (EOSDIS) to cap-
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ture annual agricultural fires within 10 kilometers of each village. The fire activity data

are based on detections of infrared radiation that are a signature of biomass fires (Giglio,

Csiszar and Justice, 2006). The underlying MODIS algorithm identifies a pixel (approx-

imately one square kilometer area) with fire activity if at least one thermal anomaly is

detected within that pixel. These data on thermal anomalies have been used extensively

by atmospheric scientists to study the effects of agricultural fires on pollution in India and

elsewhere (Liu et al., 2018). The MODIS data provides us with a daily, geocoded record of

fire pixels from 2003 - 2013. We estimate annual counts of fires at the 10-kilometer radial

buffer around the centroid of each village polygon.

Air Pollution: To generate pollution indicators at the village level, we rely on modeled

PM2.5 pollution estimates from Van Donkelaar et al. (2016). These gridded data are de-

rived from satellite measures of aerosol density, combined with chemical transport models

and calibrated to global ground-based observations of PM2.5. The Van Donkelaar et al.

(2016) data provide annual average PM2.5 values at 0.01◦×0.01◦ resolution for 1998-2015.

Furthermore, to examine seasonal impacts on air pollution, we complement these annual

PM2.5 data with monthly data on black carbon and organic carbon emissions (precursors

to particulate pollution) from the Modern-Era Retrospective analysis for Research and

Applications, Version 2 (MERRA-2) (Gelaro et al., 2017). The MERRA-2 model appor-

tions these emissions into those arising from biomass burning alone (which are driven by

agricultural fires) and all other anthropogenic sources such as transportation, industrial

emissions, or other combustion sources. This allows us to separately examine the impact

of roads on total emissions and those arising from agricultural fires alone. The MERRA-

2 data are gridded (0.50◦ × 0.625◦ resolution) estimates of emissions based on satellite

and climate reanalysis measurements. We interpolate both biomass emissions and total

emissions gridded values to each village’s geolocation in our sample.

3.2 Empirical Strategy

To estimate the effect of rural roads on agricultural fires and PM2.5, we employ a fuzzy

regression discontinuity design. Due to imperfect compliance of rural road construction
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with rules (population threshold) that determine award of rural roads under PMGSY, we

use a two stage least squares specification with optimal bandwidth local linear regression

(Gelman and Imbens, 2019; Imbens and Kalyanaraman, 2012):

Roadvdst = γ0 + γ11(popvds ≥ T ) + γ2(popvds − T )+ (1)

+ γ3(popvds − T ) ∗ 1(popvds ≥ T ) + θXvds + µd,h + ρt + νvdst

Yvdst = β0 + β1Roadvdst + β2(popvds − T )+ (2)

+ β3(popvds − T ) ∗ 1(popvds ≥ T ) + δXvds + ηd,h + ωt + εvdst

Roadvdst takes the value 1 if village v in district d in state s receives a PMGSY road

by year t. Yvdst is outcome of interest (number of agricultural fires, PM2.5) for village

v in district d in state s in year t. The population of the village in 2001 is popvds, while

T is the treatment threshold (either 500 or 1000, depending on the state). µd,h and ηd,h

are district-population threshold fixed effects - that is, an interaction of district dummies

with an indicator variable that takes the value 1 if village is in a state where the treatment

threshold is equal to 1, 000, and 0 otherwise. ρt and ωt are year fixed effects. Thus, the RD

estimates compare outcomes for villages within the same district but on opposite sides of

the PMGSY population threshold in year t.

To ensure that our design follows closely with Asher and Novosad (2020), we include

a vector of baseline (2001) village characteristics, Xvds, as controls although excluding

these controls does not alter our results appreciably. Specifically, we control for village

amenities (primary school, medical center, electrification), agricultural characteristics in-

cluding total agricultural land area, (log) share of irrigated agricultural land, and share

of workers in agriculture, and village-level measures of socio-economic status and con-

nectivity like literacy rate, share of inhabitants that belong to a scheduled caste, share of

households owning agricultural land, share of households who are subsistence farmers,

share of households earning over 250 INR cash per month (approximately 4 USD), and

distance in km from the closest census town. We also control for count of fires or PM2.5

levels in 2001 when the outcome variable is count of fires or PM2.5 levels, respectively.

We estimate equation (1) using an optimal bandwidth (84) with a triangular kernel that
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provides higher weights to observations close to the threshold (Calonico, Cattaneo and

Titiunik, 2014). Standard errors are clustered at the village level.

In Appendix B, we present the mean values for various village baseline characteristics,

including the set of controls that we use in all regressions; we find no significant differ-

ences when we use the RD specification to test for discontinuous changes at the threshold.

We also show that the density of the village population distribution is also continuous

across the treatment threshold; the McCrary test statistic is −0.010 (s.e. 0.048) (McCrary,

2008).

Figure A.5 shows the share of villages that received new roads between 2003 and

2013 at the treatment threshold. Roads built before 2008 were not prioritized according

to the population threshold rule. However, there is a sharp discontinuous increase in the

probability of treatment at the threshold from 2008. Crossing the treatment threshold

raises the probability of treatment (rural road construction) by 10 percentage points in

2008; the probability of treatment at the threshold increases to 20 percentage points in

2013. Therefore, we will restrict our primary analysis to the period between 2008 and

2013.

3.3 Results

Figure 2 shows the graphical representation of the reduced form effect; i.e., the change

in likelihood of rural road construction under PMGSY (Figure 2(a)) and count of agri-

cultural fires at the (treatment) population threshold (Figure 2(b)). We observe a large

and statistically significant increase in likelihood of rural road construction and number

of fires for villages at the treatment threshold. Table 1 shows the corresponding point es-

timates. Column (1) presents the first stage result. Villages above the PMGSY population

threshold observe a 23 percentage point increase in the likelihood of receiving a road. Col-

umn (2) shows the instrumental variable (IV) or local average treatment effects (LATE);

we instrument access to rural roads with the PMGSY population threshold. Villages with

rural road access observe a 70% increase (2.6 additional fires) in the annual number of

fires, compared to villages that do not have access to a rural road.
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We corroborate our results by examining the consequent effect of rural roads on lo-

cal air quality. Our outcome is a satellite-based estimate of the annual average ambient

PM2.5 concentrations for each village (Van Donkelaar et al., 2016). Figure 2(c) shows the

graphical representation of the reduced form effect of rural roads on PM2.5. We observe

a statistically significant increase in PM2.5 for villages at the population threshold that

determines rural road construction under PMGSY. Table 1 Column (3) shows the IV or

LATE point estimates where we instrument access to rural roads with PMGSY population

threshold; villages with rural road access observe a (0.5 µg/m3) 1.3% increase in annual

average PM2.5, compared to villages that do not have access to a rural road.13

How large are these effects? The effects of rural roads on fires are economically mean-

ingful. A global study finds that an increase of 10 µg/m3 in the two-day moving average

of PM2.5 concentrations is associated with increases of 0.68% in daily all-cause mortality

(Liu et al., 2019). Extrapolated to our paper, the estimated increase of 0.5 µg/m3 in local

PM2.5 concentrations increases daily all-cause mortality by 0.03%.

Are increased local PM2.5 levels driven by vehicular emissions? Given that rural roads

increased the availability of transportation services such as government buses (Appendix

B), it is plausible that vehicular traffic and not agricultural fires relate rural roads to local

particulate emissions. We directly test for this possibility by comparing the effects of rural

roads on fires and particulate pollution in the winter harvest and post-harvest months

– months in which access to rural roads increases agricultural fires (October through

March) – with the effects of rural roads on particulate pollution during the rest of the

year (April through September).14 If agricultural fires and not vehicular emissions are

the primary mechanism linking rural roads to increased local PM2.5 levels, one would

expect to see the effects of rural roads on particulate pollution concentrated from October
13These results are robust to excluding baseline controls (Figure A.6; Table A.1).
14Decreased availability of farm labor or increased labor costs – following rural road construction – could lead farmers to use fires as

a labor saving technology to clear rice harvest residue off fields in preparation for the subsequent season’s wheat planting or to make
sugarcane harvesting less labor-intensive. Crop fires associated with burning of rice residue occur between October and December
(Jain, Bhatia and Pathak, 2014; Kumar, Kumar and Joshi, 2015; Prasad, Gangaiah and Aipe, 1999). Crop burning associated with the
sugarcane harvest takes place between December and March (Directorate of Economics & Statistics, 2019). Therefore, we examine the
effects of rural roads on agricultural fires and particulate pollution between October and March and compare it to the effects of rural
roads on agricultural fires and particulate pollution in the rest of the year.
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through March, with comparatively modest effects in the rest of the year. Indeed, we find

rural roads increase both agricultural fires and particulate pollution from all sources in the

winter harvest and post-harvest months of October to March, with comparatively modest

to zero effects in the rest of the year (Figure A.7; Table 2).15

If however, use of transportation services is concentrated in the harvest months, the

above test would not rule out vehicular emissions as a cause for increased local PM2.5 level.

Therefore, we further show the impact on particulate pollution is driven almost entirely by

the increase in emissions from biomass burning (Figure A.8; Table 2, Columns 4-5) with

no effect on emissions from other (non-biomass burning) anthropogenic sources (Figure

A.9; Table 2, Columns 6-7). These results suggest that agricultural fires as opposed to, for

example, vehicular emissions are the primary mechanism linking rural roads to increased

local PM2.5 levels.

Do agricultural labor exits increase crop fires? We support our primary result – agricul-

tural labor exits from road construction lead to increases in crop fires – with heterogeneity

analyses.

First, rural roads facilitate movement of workers out of agriculture and increase agri-

cultural fires in districts where relative agricultural wage is lower (below median) at base-

line, but not in districts where relative agricultural wage is higher (above median) at base-

line.16 The effects of rural roads on labor exits from agriculture and the increase in non-

agricultural manual labor share is driven by districts with lower relative agricultural wage

rates at baseline (Figure E.1; Table E.1). Correspondingly, the increase in agricultural fires

(Figure E.2; Table E.2) and particulate emissions (Figure E.2; Table E.2) is concentrated in

districts with lower relative agricultural wage rates at baseline, with comparatively modest

effects in districts with higher relative agricultural wage rates at baseline.
15The PM2.5 data is available only at the annual level. Therefore, to examine seasonal effects, we use monthly emissions data from

the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) (Gelaro et al., 2017). We focus on black
carbon and organic carbon, the two major pollutants commonly associated with biomass burning, and which form precursor elements
that lead to PM2.5 particles’ formation in the atmosphere (Cusworth et al., 2018).

16The employment and unemployment surveys conducted by the National Sample Survey Organization (NSSO) of India collect data
on the daily activities for the past seven days for all household members above four years of age. We use the 55th round of the NSSO
(1999 - 2000) and compute the average earnings per day worked in casual labor for individuals aged 18-60 residing in rural areas by
dividing the weekly earnings by the number of days worked. We then calculate the district-level relative agricultural labor wage rate as
the sample-weighted average of the ratio of the daily wage rate for casual labor in the agricultural sector to the non-agricultural sector.
For districts in our sample, this ratio ranges from 0.1 to 1.3, with a median of 0.46. We split the sample into higher and lower relative
agricultural wage rate districts based on the sample median.
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Second, the effect of rural roads on agricultural fires is concentrated in districts with

a higher (above median) baseline production of crops that benefit from use of fires in the

face of agricultural labor exits, either to clear harvest residue off fields within a narrow

time window before planting in the next season (rice) or to make harvesting less labor-

intensive (sugarcane).17 Figure F.1 presents the spatial distribution of average annual fire

activity and of the share of rice and sugarcane grown across districts in our analysis sam-

ple. A simple eyeball test suggests fire counts are higher in districts where the share of rice

or sugarcane area are above the median at baseline compared to districts where the share

of rice or sugarcane area are below the median. More formally, indeed, the effects of rural

roads on agricultural fires (Figure F.2; Table F.1) and particulate emissions (Figure F.2;

Table F.1) is driven by districts with higher share of rice or sugarcane acreage at base-

line, with comparatively modest effects in districts with lower share of rice and sugarcane

acreage at baseline.

Together, precisely as one might expect, we find the increase in agricultural fires (Fig-

ure G.1; Table 3) and particulate emissions (Figure G.1; Table 3) is concentrated in districts

that observe a higher production of rice or sugarcane and where relative agricultural wage

is lower at baseline, with comparatively modest effects in other districts. Agricultural la-

bor exists are higher in districts where relative agricultural wage rate is lower; therefore,

presumably, farmers in these districts face higher labor costs due to rural road construc-

tion. Consequently, farmers in districts within this sub-sample where rice or sugarcane

production is higher will drive the of adoption fire as a labor saving technology to clear

rice residue – within a short time window – before planting next season’s crop or to make

sugarcane harvesting less labor-intensive.18

17We match districts in the analysis sample to agricultural data obtained from the ICRISAT District Level Database. The ICRISAT
District Level Data are available online from the following website: http://data.icrisat.org/dld/src/crops.html. We use data for the
year 2001 to classified higher/lower rice or sugarcane districts based on the sample median of acreage share for the respective crops.

18One concern we haven’t addressed thus far is whether rural-road-induced movement of labor out of agriculture and associated
impacts on agricultural fires are driven by farm labor pulled into rural road construction in the short-run. As evidence against such
an explanation, in Appendix H we show the effects of rural roads on crop fires are undiminished in the longer-run, observed in time
periods following completion of rural roads.
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4 Conclusion

In this paper, we leverage a natural experiment in rural road construction to show that

resulting labor exits lead to an increase in agricultural fires and particulate matter in barely

treated relative to barely untreated villages. In effect, labor exits motivate the adoption of

fire as a labor-saving but polluting technology to clear agricultural residue or to make

harvesting less labor-intensive.

The persistence of the agricultural productivity gap has generated considerable in-

terest amongst governments and international agencies to devise policies that reduce fric-

tions in labor reallocation across sectors. Our research does not imply such efforts are

misguided or should be discouraged. Instead, our results underscore the need to com-

plement these policies with strategies to mitigate their potential negative environmental

externalities. In our context, future research could investigate the design and implemen-

tation of monetary and non-monetary incentives to alter farmers’ decisions to engage in

using fire in agriculture in the face of soaring labor costs (Jack and Jayachandran, 2019;

Jack, Kousky and Sims, 2008; Jayachandran et al., 2017).
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Figures and Tables

Figure 1: Spatial distribution of fire activity across districts

Notes: Figure shows the mean annual number of fire pixels detected in each district over India from MODIS satellite data for the period
2003 to 2013. States in our analysis sample are highlighted via white borders. The mean fire counts range from a minimum of 0 to a
maximum of 1968, with mean of 108.6. The legend shows the values at the 25th, 50th, 75th and 90th percentiles of the average annual
fire counts.
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Figure 2: Impact of roads on fire activity and emissions: regression discontinuity plots

(a) Rural Roads (b) Annual Fires

(c) Annual PM2.5
Notes: Graphs show regression discontinuity estimates by plotting the residualized values of the outcomes (after controlling for
all variables in the main specification other than population) as a function of the normalized 2001 village population relative to
the threshold. Figure (a) shows the probability of a village receiving a new road between 2008 to 2013. Each point represents the
mean of all villages in a given population bin. Figure (b) plots the residualized annual number of fires between 2008 - 2013. Figure
(c) plots the residualized average annual PM2.5 from 2008-2013. Estimates in all figures control for district-threshold fixed effects,
year fixed effects, and baseline village characteristics in 2001. Figures (b) and (c) also include baseline 2001 fire counts and baseline
PM2.5 respectively as controls. Population is centered around the state-specific threshold used for road eligibility - either 500 or 1000
depending on the state.
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Table 1: Regression discontinuity results: 1st stage and IV estimates for impact of rural
road construction on agricultural fires and pollution

New road Annual fire activity Annual average PM2.5
(1) (2) (3)

First stage IV IV
Above threshold pop. 0.230***

(0.017)

Road built 2.587*** 0.468**
(0.988) (0.214)

N 66,894 66,894 66,894
Control group mean 0.19 3.86 44.85

Notes: Table shows regression discontinuity treatment estimates of the the first stage (probability of receiving a new road) and theeffect
of new village roads on agricultural fire activity and PM 2.5. The sample consists of the panel of villages for the 5 year period from
2008 - 2013 “Above threshold pop.” is an indicator for a village population being above the treatment threshold. Column (1) shows
the first stage, with the dependent variable taking the value one if the village received a new road during 2008-2013. Columns (2) and
(3) present the IV estimates of the treatment effects of new roads on annual fire counts around each village measured within a 10 km
radius and annual average PM 2.5 (µg/m3), respectively. Regressions include district-threshold fixed effects, year fixed effects and
baseline control variables. Standard errors in parentheses are clustered at village level. Significance at 1%, 5% and 10% are indicated
by ∗∗∗, ∗∗ and ∗, respectively.
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Table 2: Regression discontinuity results: impact of rural road construction on fire activity
and emissions - winter harvest and post-harvest months vs. rest of the year

Panel A: Winter harvest and post-harvest months
(1) (2) (3) (4) (5) (6) (7)

Fires All sources Biomass burning Other sources

Black
carbon

Organic
carbon

Black
carbon

Organic
carbon

Black
carbon

Organic
carbon

Road built 1.826*** 0.223* 2.863* 0.221** 2.869** -0.0001 -0.0007
(0.583) (0.115) (1.509) (0.112) (1.450) (0.0002) (0.0008)

N 66,894 66,894 66,894 66,894 66,894 66,894 66,894
Control group mean 1.96 30.69 123.41 1.29 15.61 29.400 107.802

Panel B: Rest of the year
(1) (2) (3) (4) (5) (6) (7)

Fires All sources Biomass burning Other sources

Black
carbon

Organic
carbon

Black
carbon

Organic
carbon

Black
carbon

Organic
carbon

Road built 0.424 0.112 -0.371 -0.013 -1.932 -0.0002 -0.0008
(0.665) (0.297) (3.393) (0.282) (3.178) (0.0002) (0.0008)

N 66,894 66,894 66,894 66,894 66,894 66,894 66,894
Control group mean 1.83 31.28 129.72 1.88 21.92 29.399 107.796

Notes: Table shows regression discontinuity IV treatment estimates of the effect of new village roads on levels of agricultural fire
activity, black carbon and organic carbon emissions in the winter harvest and post-harvest months (Panel A) and the rest of the year
(Panel B). Winter harvest and post-harvest period comprises the months from October - March. Fire activity is measured in counts
and emissions measured are in nano-gram per square meter per second (ng/m2/s). Columns (2) and (3) show impact on emissions
from all sources, columns (4) and (5) are emissions from biomass burning only, and columns (6) and (7) are emissions from other
(non-biomass burning) sources. All regressions control for district-threshold FE, year FE and baseline controls. Standard errors in
parentheses are clustered at village level. Significance at 1%, 5% and 10% are indicated by ∗∗∗, ∗∗ and ∗, respectively.
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Table 3: Regression discontinuity results: impact of rural road construction on annual
agricultural fire activity and pollution across high versus low relative agricultural wage
rate districts and rice/sugar cropped areas

Low rel. ag. wage
with high rice or high sugar

High rel ag. wage
or low rel. ag wage with

low rice & low sugar
(1) (2) (3) (4)

Fires PM 2.5 Fires PM 2.5
Road built 6.828** 1.382*** 1.185 0.320

(3.083) (0.507) (0.882) (0.236)
N 26,538 26,538 37,290 37,290
Control group mean 4.57 40.80 3.39 47.86

Notes: Table shows regression discontinuity IV estimates of receiving a new road on village-level annual fire activity and village-level
annual average PM 2.5 (µg/m3). The sample consists of the panel of villages for the 5 year period from 2008 - 2013. “Low rel. ag.
labor wage with high rice or high sugar” sample consists of districts which had low (below sample median) agricultural labor wages
relative to non-agricultural labor wage rates in rural areas and had high (above sample median) share of cropped area under rice or
sugarcane at baseline (2001). “High rel ag. wage or low rel. ag wage with low rice & low sugar” consists of villages within districts
which had either (i) high (above median) relative agricultural wage rates or (ii) low relative agricultural wage rates with low rice and
sugar cropped areas. Rural agricultural and non-agricultural daily labor wage rates are based on the 1999 - 2000 NSSO survey data
(Round 55). Rice and sugar cropped areas are based on ICRISAT district level data for 2001. Regressions include district-threshold
fixed effects, year fixed effects and baseline control variables. Standard errors in parentheses are clustered at village level. Significance
at 1%, 5% and 10% are indicated by ∗∗∗, ∗∗ and ∗, respectively.
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Supplementary Appendices

A Appendix: Figures and Tables

Figure A.1: Annual number of fires detected over India

Notes: Figure shows the number of fire pixels detected each year over India from MODIS satellite data.
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Figure A.2: Annual average fire counts per state

Notes: Figure shows the annual average fire counts for 2003 - 2013 for each state. States in the analysis sample are highlighted in darker
shaded bars. Note that the value for Punjab is truncated at 6000 for ease of visual representation. The average fire counts per year for
Punjab is ≈ 16,000 fires.
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Figure A.3: Distribution of annual average PM2.5 at the village level

Notes: Figure plots the distribution of average PM 2.5 (µg/m3) between 2003 and 2013 at the village level. The vertical line indicates
the WHO 24-hour guideline of 25 µg/m3.
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Figure A.4: Roads constructed per year under the PMGSY

Notes: Figure shows the total number of roads constructed per year under the PMGSY for all of India. The road construction data is
drawn from Asher and Asher and Novosad (2020) and Asher et al., (2019).
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Figure A.5: Regression discontinuity first stage: likelihood of road construction at popu-
lation threshold

Notes: Figure shows the first stage effect of being above the population threshold on the likelihood of receiving a new road. It shows
regression discontinuity estimates from a separate regression run for each year in the sample. Estimates control for district-threshold
fixed effects and baseline village characteristics in 2001. Standard errors are clustered at village level.
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Figure A.6: Impact of roads on fire activity and emissions: regression discontinuity plots
(without baseline controls)

(a) Rural Roads (b) Annual Fires

(c) Annual PM2.5
Notes: Graphs show regression discontinuity estimates by plotting the residualized values of the outcomes as a function of the
normalized 2001 village population relative to the threshold. Figure (a) shows the probability of a village receiving a new road
between 2008 to 2013. Each point represents the mean of all villages in a given population bin. Figure (b) plots the residualized
annual number of fires between 2008 - 2013. Figure (c) plots the residualized average annual PM2.5 from 2008-2013. Estimates in all
figures control for district-threshold fixed effects and year fixed effects. Population is centered around the state-specific threshold
used for road eligibility - either 500 or 1000 depending on the state.
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Figure A.7: Impact of roads on fire activity and emissions - winter harvest and post-harvest
months vs. rest of the year (2008 - 2013): regression discontinuity graphs

(a) Agricultural fires: Oct - Mar (b) Agricultural fires: Apr - Sep

(c) Black carbon: Oct - Mar (d) Black carbon: Apr - Sep

(e) Organic carbon: Oct - Mar (f) Organic carbon: Apr - Sep

Notes: Graphs show regression discontinuity estimates by plotting the residualized values of the outcomes as a function of the
normalized 2001 village population relative to the threshold. Panels (a) and (b) show the reduced form RD plot for agricultural fires
across during the winter harvest and post-harvest months vs. the rest of the year, respectively. Panels (c) and (d), similarly, show
the reduced form effect on total black carbon emission rates (biomass burning and other anthropogenic sources) (in ng/m2/s) .
Panels (e) and (f) portray the same for total organic carbon emissions from all sources (Figure A.8 shows corresponding plots for
emissions from biomass burning alone). Winter harvest and post-harvest period comprises the months from October - March. Each
point represents the mean of all villages in a given population bin. All estimates control for district-threshold fixed effects, year fixed
effects, and baseline characteristics. Population is centered around the state-specific threshold used for road eligibility - either 500 or
1000, depending on the state.
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Figure A.8: Impact of roads on emissions from biomass burning - winter harvest and post-
harvest months vs. rest of the year (2008 - 2013): regression discontinuity graphs

(a) Black carbon: Oct - Mar (b) Black carbon: Apr - Sep

(c) Organic carbon: Oct - Mar (d) Organic carbon: Apr - Sep

Notes: Graphs show regression discontinuity estimates by plotting the residualized values of the outcomes as a function of the
normalized 2001 village population relative to the threshold. Panels (a) and (b) show the reduced form RD plot for black carbon
emissions from biomass burning (in ng/m2/s) across during the winter harvest and post-harvest months vs. the rest of the year,
respectively. Panels (c) and (d), similarly, show the reduced form effect on organic carbon emissions from biomass burning. Winter
harvest and post-harvest period comprises the months from October - March. Each point represents the mean of all villages in a given
population bin. All estimates control for district-threshold fixed effects, year fixed effects, and baseline characteristics. Population is
centered around the state-specific threshold used for road eligibility - either 500 or 1000, depending on the state.
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Figure A.9: Impact of roads on emissions from non-biomass burning sources - winter
harvest and post-harvest months vs. rest of the year (2008 - 2013): regression discontinuity
graphs

(a) Black carbon: Oct - Mar (b) Black carbon: Apr - Sep

(c) Organic carbon: Oct - Mar (d) Organic carbon: Apr - Sep

Notes: Graphs show regression discontinuity estimates by plotting the residualized values of the outcomes as a function of the
normalized 2001 village population relative to the threshold. Panels (a) and (b) show the reduced form RD plot for black carbon
emissions from sources other than biomass burning (in ng/m2/s) across during the winter harvest and post-harvest months vs.
the rest of the year, respectively. Panels (c) and (d), similarly, show the reduced form effect on organic carbon emissions from
non-biomass sources. Winter harvest and post-harvest period comprises the months from October - March. Each point represents the
mean of all villages in a given population bin. All estimates control for district-threshold fixed effects, year fixed effects, and baseline
characteristics. Population is centered around the state-specific threshold used for road eligibility - either 500 or 1000, depending on
the state.
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Table A.1: Regression discontinuity results without baseline controls: 1st stage and IV
estimates for impact of rural road construction on agricultural fires and pollution

New road Annual fire activity Annual average PM2.5
(1) (2) (3)

First stage IV IV
Above threshold pop. 0.229***

(0.017)

Road built 2.503** 0.457**
(0.998) (0.217)

N 66,894 66,894 66,894
Control group mean 0.19 3.86 44.85

Notes: Table shows regression discontinuity treatment estimates of the effect of new village roads on agricultural fire activity and PM
2.5. The sample consists of the panel of villages for the 5 year period from 2008 - 2013 “Above threshold pop.” is an indicator for a village
population being above the treatment threshold. Column (1) shows the first stage, with the dependent variable taking the value one
if the village received a new road during 2008-2013. Columns (2) and (3) present the IV estimates of the treatment effects of new
roads on annual fire counts around each village measured within a 10 km radius and annual average PM 2.5 (µg/m3), respectively.
Regressions include district-threshold fixed effects and year fixed effects. Standard errors in parentheses are clustered at village level.
Significance at 1%, 5% and 10% are indicated by ∗∗∗, ∗∗ and ∗, respectively.
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B Appendix: Replication of Asher and Novosad (2020)

Table B.1: Regression discontinuity sample: summary statistics and balance

Variable Full Below Over Difference p-value on RD p-value on
sample threshold threshold of means difference estimate RD estimate

Primary school 0.959 0.955 0.964 0.01 0.02 -0.018 0.59
Medical center 0.166 0.155 0.177 0.02 0.00 -0.098 0.13
Electrified 0.430 0.414 0.447 0.03 0.00 -0.015 0.86
Distance from nearest town (km) 26.490 26.378 26.613 0.24 0.58 -3.445 0.34
Land irrigated (share) 0.281 0.276 0.287 0.01 0.05 -0.025 0.59
Ln land area 5.152 5.094 5.215 0.12 0.00 -0.110 0.30
Literate (share) 0.457 0.454 0.461 0.01 0.01 -0.012 0.61
Scheduled caste (share) 0.143 0.141 0.145 0.00 0.24 -0.020 0.51
Land ownership (share) 0.733 0.733 0.732 -0.00 0.75 0.013 0.71
Subsistence ag (share) 0.435 0.438 0.432 -0.01 0.26 0.024 0.57
HH income > INR 250 (share) 0.754 0.752 0.757 0.00 0.37 -0.022 0.65
N 11149 5857 5292

Notes: This table replicates results from Asher and Novosad (2020) showing the mean values for village characteristics, measured in
the baseline period. The first eight variables come from the 2001 Population Census, while the final three (below the line) come from
the 2002 BPL Census. Columns 1-3 show the unconditional means for all villages, villages below the treatment threshold, and villages
above the treatment threshold, respectively. Column 4 shows the difference of means across Columns 2 and 3, and Column 5 shows the
p-value for the difference of means. Column 6 shows the regression discontinuity estimate, following the main estimating equation, of
the effect of being above the treatment threshold on the baseline variable (with the outcome variable omitted from the set of controls),
and Column 7 is the p-value for this estimate, using heteroskedasticity robust standard errors.

Table B.2: Regression discontinuity results: impact on indices of major outcomes

(1) (2) (3) (4) (5)
Transportation Ag. occupation index Firms Agriculture Consumption

Road built 0.432** -0.376** 0.239 0.041 0.016
(0.190) (0.162) (0.160) (0.127) (0.138)

N 11,149 11,149 10,403 11,149 11,149
Control group mean -0.02 -0.00 0.01 0.00 -0.00
R2 0.17 0.28 0.30 0.54 0.50

Notes: This table replicates results from Asher and Novosad (2020) showing regression discontinuity treatment estimates of the effect
of new village roads on effect of a new road on indices of the major outcomes in each of the five families of outcomes: transportation,
occupation, firms, agriculture, and welfare. Regressions include district-threshold fixed effects and baseline control variables. Standard
errors in parentheses are clustered at village level. Significance at 1%, 5% and 10% are indicated by ∗∗∗, ∗∗ and ∗, respectively.
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Figure B.1: Distribution of running variable

(a) Histograph of Village Population

(b) McCary Test

Notes: The graph replicates results from Asher and Novosad (2020) showing the distribution of village population around the pop-
ulation thresholds. The top panel is a histogram of village population as recorded in the 2001 Population Census. The vertical lines
show the program eligibility thresholds at 500 and 1,000. The bottom panel uses the normalized village population (reported popula-
tion minus the threshold, either 500 or 1,000). It plots a non-parametric regression to each half of the distribution following McCrary
(2008), testing for a discontinuity at zero. The point estimate for the discontinuity is −0.010, with a standard error of 0.048.
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Table B.3: Regression discontinuity results: impact of rural road construction on trans-
portation

(1) (2) (3) (4) (5)
Govt. bus Pvt. bus Taxi Van Autorickshaw

Road built 0.131** 0.131* 0.012 -0.015 0.068
(0.056) (0.076) (0.049) (0.055) (0.044)

N 11,149 11,149 11,149 11,149 11,149
Control group mean
R2 0.30 0.09 0.09 0.43 0.26

Notes: This table replicates results from Asher and Novosad (2020) showing regression discontinuity treatment estimates of the effect
of new village roads on availability of transportation services at the village level. Columns (1) - (5) estimate the impact of new roads
on five categories of transport services available at the village level. Regressions include district-threshold fixed effects and baseline
control variables. Standard errors in parentheses are clustered at village level. Significance at 1%, 5% and 10% are indicated by ∗∗∗, ∗∗
and ∗, respectively.

Table B.4: Regression discontinuity results: impact of rural road construction on occupa-
tion and income source

Occupation Income source
(1) (2) (3) (4)

Agriculture Manual labor Agriculture Manual labor
Road built -0.101** 0.087** -0.046 0.002

(0.044) (0.044) (0.045) (0.044)
N 11,149 11,149 11,149 11,149
Control group mean
R2 0.28 0.26 0.31 0.28

Notes: This table replicates results from Asher and Novosad (2020) showing regression discontinuity treatment estimates of the effect
of new village roads on occupational choice and income source. Column (1) shows the effect on share of workers in agriculture.
Column (2) shows the effect on share of workers in non-agriculture manual labor. Columns(3) and (4) show the impact on share
of households in the village that report their main income source as agriculture and manual labor, respectively. Regressions include
district-threshold fixed effects and baseline control variables. Standard errors in parentheses are clustered at village level. Significance
at 1%, 5% and 10% are indicated by ∗∗∗, ∗∗ and ∗, respectively.
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Table B.5: Regression discontinuity results: impact of rural road construction on employ-
ment in village non-farm firms

Panel A: Log employment growth

Total Livestock Manufacturing Education Retail Forestry
Road built 0.242 0.228 0.246 0.124 0.320** -0.108

(0.162) (0.190) (0.197) (0.145) (0.157) (0.111)
N 10,403 10,403 10,403 10,403 10,403 10,403
Control group mean 2.95 0.69 0.91 1.50 1.23 0.17
R2 0.30 0.42 0.24 0.18 0.23 0.35

Panel B: Level employment growth

Total Livestock Manufacturing Education Retail Forestry
Road built 2.789 -1.940 2.441 0.258 1.812 2.475

(7.780) (3.402) (3.914) (0.994) (1.583) (4.148)
N 10,403 10,403 10,403 10,403 10,403 10,403
Control group mean 32.31 6.86 5.88 5.12 4.55 2.88
R2 0.30 0.46 0.18 0.13 0.16 0.36

Notes: This table replicates results from Asher and Novosad (2020) showing regression discontinuity treatment estimates of the effect
of new village roads on employment in village level non-farm firms. Panel A shows the impact on log employment in all non-farm
firms and Panel B present same estimates using levels. Regressions include district-threshold fixed effects and baseline control variables.
Standard errors in parentheses are clustered at village level. Significance at 1%, 5% and 10% are indicated by ∗∗∗, ∗∗ and ∗, respectively.

Table B.6: Regression discontinuity results: impact of rural road construction on agricul-
tural yields

NDVI EVI
(1) (2) (3) (4) (5) (6)

Max - June Cumulative Max Max - June Cumulative Max
Road built 0.025 0.001 0.014 0.040 -0.001 0.023

(0.027) (0.013) (0.014) (0.034) (0.016) (0.019)
N 11,052 11,051 11,052 11,052 11,051 11,052
Control group mean 8.24 10.52 8.81 7.96 10.17 8.48
R2 0.70 0.88 0.80 0.71 0.85 0.69

Notes: This table replicates results from Asher and Novosad (2020) showing regression discontinuity treatment estimates of the effect
of new village roads on village-level measures of agricultural activity using three different NDVI-based proxies for agricultural yields.
Regressions include district-threshold fixed effects and baseline control variables. Standard errors in parentheses are clustered at village
level. Significance at 1%, 5% and 10% are indicated by ∗∗∗, ∗∗ and ∗, respectively.
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Table B.7: Regression discontinuity results: impact of rural road construction on agricul-
tural inputs

(1) (2) (3) (4) (5)
Mech. Irri. Own ag. land Non-cereal/pulse Cult. land (log)

Road built -0.008 -0.009 0.004 0.001 -0.063
(0.013) (0.029) (0.040) (0.076) (0.117)

N 11,148 11,149 11,149 8,000 10,884
Control group mean 0.04 0.14 0.57 0.40 5.04
R2 0.24 0.40 0.29 0.45 0.46

Notes: This table replicates results from Asher and Novosad (2020) showing regression discontinuity treatment estimates of the effect
of new village roads on the impact of roads on agricultural inputs. Column 1 estimates the impact on the share of households owning
mechanized farm equipment, Column 2 the share of households owning irrigation equipment, Column 3 the share of households
owning agricultural land, Column 4 an indicator for whether a village lists a non-cereal and non-pulse crop as one of its three major
crops, and Column 5 the log total cultivated land (sample restricted to villages reporting non-zero values). Regressions include district-
threshold fixed effects and baseline control variables. Standard errors in parentheses are clustered at village level. Significance at 1%,
5% and 10% are indicated by ∗∗∗, ∗∗ and ∗, respectively.

Table B.8: Regression discontinuity results: impact of rural road construction on consump-
tion and asset ownership

Panel A: Consumption indicators and asset index

Consumption per Night lights (log) Share of HH Asset index
capita (log) earning ≥ 5k

Road built 0.013 0.036 -0.008 0.122
(0.040) (0.169) (0.032) (0.135)

N 11,149 10,826 11,149 11,149
Control group mean 9.56 1.58 0.15 -0.01
R2 0.42 0.66 0.25 0.52

Panel B: Individual asset ownership

Solid house Refrigrator Any vehicle Phone
Road built 0.038 0.005 -0.007 0.020

(0.030) (0.013) (0.024) (0.041)
N 11,149 11,149 11,149 11,149
Control group mean 0.22 0.04 0.14 0.44
R2 0.66 0.26 0.38 0.48

Notes: This table replicates results from Asher and Novosad (2020) showing regression discontinuity treatment estimates of the effect
of new village roads on indicators of consumption and asset ownership. Panel A, Column (1) shows the impact on imputed log
consumption per capita (see Asher and Novosad (2020), Data Appendix for details). Column (2) estimates the effect on log of mean
total night light luminosity in 2011-13. Column (3) is the share of households whose highest earning member earns more than INR
5000 per month. Column (4) is village-level average of the primary component of indicator variables for all household assets. Panel
B shows the impact on the share of households owning major assets. Regressions include district-threshold fixed effects and baseline
control variables. Standard errors in parentheses are clustered at village level. Significance at 1%, 5% and 10% are indicated by ∗∗∗, ∗∗
and ∗, respectively.
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C Appendix: Harvest and Planting Dates
In this section, we evaluate the effect of rural roads on harvest and planting dates. We
procure satellite-based measures of harvest (end-)dates and planting dates for the kharif
season, aggregated up to the village level from 250 m pixel data. The planting and harvest
dates are estimated using Enhanced Vegetation Index (EVI) data from MODIS and were
validated using ground data 19. Harvest (planting) date is measured as the median pixel
value of the harvest (planting) dates within a 10 km buffer around the village. Unfortu-
nately, these data are not available for states that followed population thresholds to deter-
mine rural road construction under PMGSY. Therefore, we are not able to use a regression
discontinuity design. Instead, we estimate the following event study specification:

∆Datev,d,y =
∑

τ,τ 6=−1

δτDt0+τ + λv + µd,y + αyXv + εv,d,y (3)

where ∆Datev,d,y is the change in harvest or sowing date for village v, located in dis-
trict d in year y from the baseline (2002). Dt0+τ are event time indicator variables that
capture the average treatment effect, where τ indicates the year relative to when a village
receives access to a rural road, with the year prior to treatment being the excluded cate-
gory. λv are village fixed effects and µd,y are district-by-year fixed effects. Village fixed ef-
fects control for time-invariant unobservables at the village level (e.g., soil type). District-
by-year fixed effects control for time-varying district-specific confounders. For instance,
the National Rural Employment Guarantee Scheme was rolled-out in a staggered manner
across India between 2006 and 2008. Lastly, we include an interaction of baseline village
characteristics Xv with year fixed effects αy. Standard errors are clustered at the village
level.

The identifying assumption here is that there exist no village-specific time-varying
confounders that are correlated with both access to rural roads as well as local agricul-
ture. E.g., if rural roads are placed in villages where agricultural activities are changing,
our estimates would be biased. While lack of pre-trends would bolster our confidence in
said assumption, if change in local agriculture and rural road construction were to occur
simultaneously, our estimates will still be biased.

Figures C.2 and C.1 present our results. First, we don’t find evidence for any pre-
trends. Second, and more importantly, we fail to find evidence that access to rural roads
affects either harvest or planting dates. The point estimates are small and statistically
insignificant.

19We are grateful to Meha Jain, School for Environment and Sustainability, University of Michigan, for sharing these data.
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Figure C.1: Event study estimates: Effect of access to rural roads on monsoon (kharif)
harvest date

Notes: The graph shows event study estimates for the effect of new roads on monsoon harvest dates. Sample is limited to the states of
Punjab, Haryana, Uttar Pradesh, and Bihar for which satellite-based sowing date measures are available. The sample period is 2003-
2013. The dependent variable is the change in harvest completion day from the baseline (2002). The horizontal axis shows the event
year relative to the year of road completion. Each point shows the coefficient and confidence interval on each event-time fixed effect
relative to the omitted category which is the year before road completion (t = −1). All regressions include village FE, district × year
fixed effects and the interactions of year fixed effects with baseline village characteristics and harvesting date/week in 2002. Standard
errors in parentheses are clustered at village level. Significance at 1%, 5% and 10% are indicated by ∗∗∗, ∗∗ and ∗, respectively.
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Figure C.2: Event study estimates: Effect of access to rural roads on monsoon (kharif)
sowing date

Notes: The graph shows event study estimates for the effect of new roads on monsoon sowing dates. Sample is limited to the states
of Punjab, Haryana, Uttar Pradesh, and Bihar for which satellite-based sowing date measures are available. The sample period is
2003-2013. The dependent variable is the change in day of sowing from the baseline (2002). The horizontal axis shows the event year
relative to the year of road completion. Each point shows the coefficient and confidence interval on each event-time fixed effect relative
to the omitted category which is the year before road completion (t = −1). All regressions include village FE, district × year fixed
effects and the interactions of year fixed effects with baseline village characteristics and sowing date/week in 2002. Standard errors in
parentheses are clustered at village level. Significance at 1%, 5% and 10% are indicated by ∗∗∗, ∗∗ and ∗, respectively.
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D Appendix: Rural Economic and Demographic Survey (REDS)
We use village- and household-level surveys from the 1999 and 2006 rounds of the Rural
Economic and Demographic Survey (REDS), administered by the National Council of Ap-
plied Economic Research (NCAER), to estimate the effect of rural roads on the local stock
of combine harvesters and use of hired mechanized agricultural equipment. REDS is a
nationally representative survey of rural households in India spanning 221 villages across
100 districts in 17 major states. It includes a village survey that collects information on
the village-level stock of agricultural machinery. The household questionnaire provides
detailed information on the use of agricultural inputs, including the use and cost of hired
mechanized equipment.

Since rural roads constructed under PMGSY were not determined by population thresh-
old before 2008, we cannot use a regression discontinuity design. Instead, we estimate
simple difference-in-difference specifications. ‘Treat’ is an indicator variable that takes
the value 1 if a village receives a rural road between 1999 and 2006, 0 otherwise. ‘Post’ is
an indicator variable that takes the value 1 if the year is 2006, 0 otherwise. ‘TreatXPost’
captures the effect of the construction of a rural road between 1999 and 2006.

Table D.1 estimates the effect of rural roads on the village-level stock of combine har-
vesters. Using a village-panel regression with village and year fixed effects, we fail to find
an economically or statistically significant impact on the village-level stock agricultural
machinery across a variety of agricultural implements either on the extensive (Panel A)
or the intensive margin (Panel B). In particular, we see no effect on the presence or num-
ber of combine harvesters. Next, using a household-panel regression with household and
year fixed effects, we fail to detect an impact on the use of hired mechanized agricultural
equipment at the household level (Table D.2).
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Table D.1: Impact of roads on village-level stock of agricultural machinery - REDS village
panel

Panel A: Present (Yes = 1)

Combines Threshers Tractors Power tillers
Treat X Post 0.001 0.005 0.016* 0.021

(0.009) (0.015) (0.010) (0.014)
Sample mean 0.08 0.61 0.88 0.24
N 442 442 442 442
R2 0.58 0.77 0.80 0.59

Panel B: Log count

Combines Threshers Tractors Power tillers
Treat X Post 0.007 0.017 0.033 0.029

(0.023) (0.045) (0.026) (0.030)
Sample mean 0.10 1.40 2.48 0.42
N 442 442 442 442
R2 0.54 0.76 0.90 0.54

Notes: Table reports regression estimates showing the impact of receiving a PMGSY road in agricultural machinery stock at the village
level. Sample used is village level panel from REDS 1999 - 2006. The coefficient “Treat X Post” takes the value 1 in the post (2006) year
for villages that receive a road by 2006. Regressions include village and year fixed effects. Standard errors in parentheses clustered at
village level. Significance at 1%, 5% and 10% are indicated by ∗∗∗, ∗∗ and ∗, respectively.

Table D.2: Impact of roads on household use of mechanized agricultural equipment -
REDS household panel

(1) (2) (3) (4)
Used? (Yes=1) Log cost Log cost per acre Share of total cost

Treat X Post 0.002 -0.048 -0.046 -0.004
(0.010) (0.081) (0.070) (0.004)

Sample mean 0.67 4.77 3.91 0.15
N 6090 5548 5548 5474
R2 0.57 0.60 0.62 0.69

Notes: Table reports regression estimates showing the impact of receiving a PMGSY road on household use of tractors, harvester,
threshers or other mechanized equipment. Sample used is household panel from REDS 1999 and 2006. The coefficient “Treat X Post”
takes the value 1 in the post (2006) year for households in villages that receive a road by 2006. Regressions include household and
year fixed effects. Columns (1), (2) and (4) also control for cropped area. Standard errors in parentheses clustered at village level.
Significance at 1%, 5% and 10% are indicated by ∗∗∗, ∗∗ and ∗, respectively.
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E Appendix: Heterogeneity by relative agricultural labor
wage at baseline

Figure E.1: Heterogeneity by relative agricultural labor wages at baseline: Impact on share
of village labor in agriculture and non-agricultural sectors across – regression discontinu-
ity graphs

Notes: Graphs show regression discontinuity estimates by plotting the residualized values of village-level share of manual labor in
agriculture (Panel A) and non-agricultural sectors (Panel B), after controlling for all variables in the main specification other than
population, as a function of the normalized 2001 village population relative to the threshold. Figure (i) of each panel plots the
RD relationship for the sample consisting of districts which had high (above sample median) agricultural labor wages relative to
non-agricultural labor wage rates in rural areas at baseline. Figure (ii) of each panel shows the same for villages within districts with
below median relative agricultural wage rates. The outcome variables are based on the Socioeconomic and Caste Census 2011-2012
(see (Asher and Novosad, 2020) for details). Baseline rural agricultural and non-agricultural daily labor wage rates are based on the
1999 - 2000 NSSO survey data (Round 55). Each point represents the mean of all villages in a given population bin. Estimates in both
panels control for district-threshold fixed effects, year fixed effects, and baseline village characteristics in 2001. Population is centered
around the state-specific threshold used for road eligibility - either 500 or 1000, depending on the state.
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Figure E.2: Heterogeneity in impact on annual agricultural fire activity across high versus
low relative agricultural wage rates at baseline: regression discontinuity graphs

(a) Fires: High relative ag. labor wage (b) Fires: Low relative ag. labor wage

(c) PM: High relative ag. labor wage (d) PM: Low relative ag. labor wage

Notes: Graphs show regression discontinuity estimates by plotting the residualized values of outcomes (after controlling for all
variables in the main specification other than population) as a function of the normalized 2001 village population relative to the
threshold. Panels (a) and (b) show results for the annual number of fires between 2008 - 2013 , while (c) and (d) show the same
annual average PM 2.5 (µg/m3). Panels (a) and (c) plots the RD relationship for the sample consisting of districts which had high
(above sample median) agricultural labor wages relative to non-agricultural labor wage rates in rural areas at baseline. Panels (b)
and (d) show the same for villages within districts with below median relative agricultural wage rates. Rural agricultural and
non-agricultural daily labor wage rates are based on the 1999 - 2000 NSSO survey data (Round 55). Each point represents the mean
of all villages in a given population bin. Estimates in both panels control for district-threshold fixed effects, year fixed effects, and
baseline village characteristics in 2001. Population is centered around the state-specific threshold used for road eligibility - either 500
or 1000, depending on the state.
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Table E.1: Regression discontinuity results: impact of rural road construction on share of
village labor in agriculture and non-agricultural sectors across relative agricultural labor
wage rates

Share of labor
in agriculture

Share of non-agricultural
manual labor

(1) (2) (3) (4)
High rel.
ag. wage Low rel.ag. wage

High rel.
ag. wage Low rel.ag. wage

Road built -0.029 -0.241*** 0.030 0.205**
(0.046) (0.093) (0.046) (0.092)

N 5,403 5,484 5,403 5,484
Control group mean 0.49 0.46 0.45 0.46

Notes: Table shows regression discontinuity IV estimates of the impact of receiving a new road on share of manual labor at village-
level in agriculture and non-agricultural sectors. The outcome variables are based on the Socioeconomic and Caste Census 2011-2012
(see (Asher and Novosad, 2020) for details). “High rel. ag labor wage” sample consists of districts which had high (above sample
median) agricultural labor wages relative to non-agricultural labor wage rates, while “Low rel. ag labor wage” sample are districts with
below median relative agricultural wage rates. Wage rates are based on the 1999 - 2000 NSSO survey data (Round 55). Regressions
include district-threshold fixed effects, year and baseline control variables. Standard errors in parentheses are clustered at village level.
Significance at 1%, 5% and 10% are indicated by ∗∗∗, ∗∗ and ∗, respectively.

Table E.2: Regression discontinuity results: impact of rural road construction on annual
agricultural fire activity and pollution across high versus low relative agricultural wage
rates at baseline

High rel. ag. wage Low rel. ag. wage
(1) (2) (3) (4)

Fires PM 2.5 Fires PM 2.5
Road built 1.428 0.372 4.765** 0.698*

(0.983) (0.240) (2.156) (0.388)
N 32,412 32,412 32,898 32,898
Control group mean 3.77 47.76 3.99 42.10

Notes: Table shows regression discontinuity IV estimates of receiving a new road on village-level annual fire activity and PM 2.5
(µg/m3). The sample consists of the panel of villages for the 5 year period from 2008 - 2013. “High rel. ag labor wage” sample consists
of districts which had high (above sample median) agricultural labor wages relative to non-agricultural labor wage rates, while “Low
rel. ag labor wage” sample are districts with below median relative agricultural wage rates. Wage rates are based on the 1999 - 2000
NSSO survey data (Round 55). Regressions include district-threshold fixed effects, year fixed effects and baseline control variables.
Standard errors in parentheses are clustered at village level. Significance at 1%, 5% and 10% are indicated by ∗∗∗, ∗∗ and ∗, respectively.
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F Appendix: Heterogeneity by crops grown

Figure F.1: Spatial distribution of average annual fire activity and baseline rice and sugar-
cane acreage shares

(a) Average annual fire counts across India (b) Average annual fire counts

(c) Rice area share (d) Sugarcane area share

Notes: Panels (a) and (b) show the mean annual number of fire pixels detected in each district from MODIS satellite data for
the period 2003 to 2013 for whole of India and within the sample districts, respectively. Panels (c) and (d) show districts with
above/below sample median share of cropland under rice and sugarcane, respectively, at baseline (2001).
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Figure F.2: Heterogeneity in impact on annual agricultural fire activity and pollution
across high rice or high sugarcane districts versus low rice and low sugar districts: re-
gression discontinuity plots

(a) Fires: High rice or high sugar (b) Fires: Low rice and low sugar

(c) PM 2.5: High rice or high sugar (d) PM 2.5: Low rice and low sugar

Notes: Graph shows regression discontinuity estimates by plotting the residualized values of outcomes as a function of the normalized
2001 village population relative to the threshold (after controlling for fixed effects and all baseline variables in the main specification
other than population). Panels (a) and (b) plot the regression discontinuity relationship for annual fire counts, while panels (c) and
(d) show the same for annual average PM 2.5 (µg/m3). The sample used is the panel of villages for the 5 year period from 2008 - 2013.
Panels (a) and (c) plot the RD relationship for the sample consisting of districts having high (above sample median) rice or sugarcane
acreage share at baseline. Panels (b) and (d) shows the same for sample of villages within districts with low (below sample median)
rice and sugarcane acreage share at baseline. Each point represents the mean of all villages in a given population bin. Estimates in all
panels control for district-threshold fixed effects, year fixed effects, and baseline village characteristics in 2001. Population is centered
around the state-specific threshold used for road eligibility - either 500 or 1000, depending on the state.
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Table F.1: Regression discontinuity results: impact of rural road construction on annual
agricultural fire activity and pollution across high rice or high sugarcane districts versus
low rice and low sugar districts

High rice or high sugar Low rice and low sugar
(1) (2) (3) (4)

Fires PM 2.5 Fires PM 2.5
Road built 5.228*** 1.074*** 0.276 0.301

(1.922) (0.327) (0.630) (0.308)
N 46,386 46,386 15,960 15,960
Control group mean 4.53 41.45 2.21 54.31

Notes: Table shows regression discontinuity IV estimates of receiving a new road on village-level annual fire activity and annual
average PM 2.5 (µg/m3). The sample consists of the panel of villages for the 5 year period from 2008 - 2013. “High rice or high sugar”
sample consisting of districts having high (above sample median) rice or sugarcane acreage share at baseline (2001). “Low rice and
low sugar” sample consists of districts with below median acreage share of rice and below median sugarcane acreage share at baseline.
Regressions include district-threshold fixed effects, year fixed effects and baseline control variables. Standard errors in parentheses are
clustered at village level. Significance at 1%, 5% and 10% are indicated by ∗∗∗, ∗∗ and ∗, respectively.
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G Appendix: Heterogeneity by relative agricultural wage
and crops grown

Figure G.1: Heterogeneity in impact on annual agricultural fire activity across high ver-
sus low relative agricultural wage rate districts and rice/sugar cropped areas: regression
discontinuity graphs

(a) Low ag. labor wage with high rice or sugar (b) High ag. labor wage or low wage with low rice & low sugar

(c) Low ag. labor wage with high rice or sugar (d) High ag. labor wage or low wage with low rice & low sugar

Notes: Graph shows regression discontinuity estimates by plotting the residualized values of outcomes as a function of the normalized
2001 village population relative to the threshold (after controlling for fixed effects and all baseline variables in the main specification
other than population). Panels (a) and (b) plot the regression discontinuity relationship for annual fire counts, while panels (c) and
(d) show the same for annual average PM 2.5 (µg/m3).. Panels (a) and (c) plots the RD relationship for the sample consisting of
districts which had low (below sample median) agricultural labor wages relative to non-agricultural labor wage rates in rural areas
and had high (above sample median) share of cropped area under rice or sugar at baseline. Panels (b) and (d) shows the same for
villages within districts which had either (i) high (above median) relative agricultural wage rates or (ii) low relative agricultural
wage rates with low rice and sugar cropped areas. Rural agricultural and non-agricultural daily labor wage rates are based on the
1999 - 2000 NSSO survey data (Round 55). Rice and sugar cropped areas are based on ICRISAT district level data for 2001. Each
point represents the mean of all villages in a given population bin. Estimates in both panels control for district-threshold fixed effects,
year fixed effects, and baseline village characteristics in 2001. Population is centered around the state-specific threshold used for road
eligibility - either 500 or 1000, depending on the state.
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H Appendix: Longer-run effect of roads on fires and pollu-
tion

Table H.1: Regression discontinuity results: longer-run impacts of roads on fires and pol-
lution

Panel A: Impact on fires in year: (IV estimates)
(1) (2) (3) (4) (5)

2009 2010 2011 2012 2013
Road completed by 2008 3.228* 3.688* 6.723** 5.338** 5.173*

(1.744) (2.005) (2.641) (2.260) (3.090)
Road completed by 2009 3.538* 6.450** 5.121** 4.963*

(1.922) (2.548) (2.173) (2.970)
Road completed by 2010 4.949*** 3.929** 3.807*

(1.919) (1.642) (2.262)
N 11,149 11,149 11,149 11,149 11,149
Control group mean 3.93 3.56 4.30 4.56 3.70

Panel B: Impact on PM 2.5 in year: (IV estimates)
(1) (2) (3) (4) (5)

2009 2010 2011 2012 2013
Road completed by 2008 0.855* 0.846* 1.108** 0.627 1.196***

(0.454) (0.434) (0.492) (0.396) (0.434)
Road completed by 2009 0.811* 1.063** 0.602 1.147***

(0.416) (0.475) (0.381) (0.420)
Road completed by 2010 0.815** 0.462 0.880***

(0.360) (0.291) (0.316)
N 11,149 11,149 11,149 11,149 11,149
Control group mean 45.12 43.19 42.36 43.15 46.72

Notes: Each cell in table shows regression discontinuity IV treatment estimates from a separate regression. The first row in Panel A
shows the effect of new village roads completed by 2008 on levels of agricultural fire activity in each subsequent year. Second and third
rows of Panel A similarly show the effect of roads completed by 2009 and 2010 on fires in each subsequent year, respectively. Panel B
similarly shows the impact of roads completed on pollution levels in each subsequent year. Road completion is instrumented using
an indicator for baseline (2001 Census) village population above the program threshold. All regressions control for district-threshold
FE, year FE and baseline controls. Standard errors in parentheses are clustered at village level. Significance at 1%, 5% and 10% are
indicated by ∗∗∗, ∗∗ and ∗, respectively.
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