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Abstract

While the mechanism design paradigm emphasizes notions of efficiency based
on agent preferences, policymakers often focus on alternative objectives. School
districts emphasize educational achievement; and transplantation communities
focus on patient survival. This paper evaluates the assignment mechanism for
allocating deceased donor kidneys on the basis of the additional patient life-
years from transplantion (LYFT). Our approach combines a model of choice and
outcomes in order to study how selection induced in the mechanism produces
the outcome of interest, LYFT. We show how to identify and estimate the model
using quasi-experimental variation resulting from the mechanism. The estimates
suggest that the design in use selects patients with better survival prospects
after a transplant and matches them well. It results in an average LYFT of
7.97, which is 0.88 years higher than a random assignment. However, there is
scope for increasing the aggregate LYFT to 12.07. While some of this increase
can be achieved by assigning transplanted patients to different donors, realizing
the majority requires transplanting relatively healthy patients, who would have
longer life-expectancy even without a transplant. Therefore, a policymaker faces
a dilemma between transplanting patients that are sicker and those for whom life
will be extended the longest.
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1 Introduction

Assignment mechanisms are commonly used to allocate scarce resources without using

monetary transfers. Examples include public schools, public housing and organ alloca-

tion. An influential theoretical and a growing empirical literature studies the design of

these mechanisms. In this literature, notions of efficiency derived from choices are cen-

tral to evaluating a design. This desideratum often differs from objectives emphasized

by policymakers. School districts emphasize student achievement and organ transplant

systems emphasize patient survival.

Because canonical mechanisms are not designed with these outcomes in mind, it is

unclear whether the resulting equilibrium assignments perform well on this dimension.

Choices made by agents who may not be well-informed about the benefits of various

options, and co-ordination failures may undercut this objective.1 If so, a planner who

can dictate assignments based on benefits estimated using extensive administrative data

on outcomes may be able to do better. On the other hand, agents may also have private

information about the outcomes that result and using a choice-based mechanism may

serve the policymaker’s objective.

This paper takes a first-step in addressing these issues by evaluating the assignment

mechanism used to assign kidneys from deceased donors on the basis of the survival

outcomes. We make several methodological and empirical contributions. First, we build

on the literature on Roy selection to analyze a joint model of choices and outcomes in

an assignment mechanism. We show how to identify and estimate the effects of coun-

terfactual assignments by using variation generated by the mechanism and instruments

that only affect choices but are excluded from outcomes. Second, we estimate the Life-

Years from Transplantation (LYFT), defined as the median difference between survival

with and without a transplant, as a function of patient-donor specific observed and

unobserved characteristics. Third, using these estimates we compare the mechanism

used in practice to alternative benchmarks to assess its performance and to identify the
1Moreoever, in the kidney allocation context that we study below, surgeons that advise patients

may suffer from agency problems that can misalign decisions relative to maximizing survival outcomes.
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scope for further improvements.

Organs from deceased donors are a scarce and valuable resource. Approximately 100,000

patients suffering from kidney failure are currently waiting for a life-saving transplant.

In 2018, only 14,725 patients were transplanted through this waitlist, while thousands

died and more than 35,000 new patients were added to the list.2 The best estimates

suggest that the average transplant extends a patient’s life by several years while also

saving the healthcare system $270,000 or more due to reduced expenditures on dialysis

(Irwin et al., 2012; Held et al., 2016).

When a kidney becomes available, patients on the waitlist are offered the organ in a

priority order. They are informed about the organ’s attributes and may choose to reject

an offer in order to wait for a more preferable one. This decision may therefore depend

on the perceived benefits of a transplant from the offered organ, which may differ from

actual benefits. We jointly consider the decision to accept or refuse an offer along with

the potential survival outcomes, and incorporate the potential for selection.

Our model has three components. The first component models the choices made by

patients as a function of the patients’ and the organs’ attributes; the second governs the

survival of the patient without a transplant; and the third governs the post-transplant

surivival with the offered organ. Our method allows for unobserved attributes that are

correlated across the equations.

The model has the potential to generate selection into transplantation along three

margins. Transplanted patients could be selected on untransplanted survival, post-

transplant survival from an average kidney, or patient-kidney match specific survival.

Selection on these margins can be induced due to two reasons. First, the priority

types and waiting times built into the mechanism induces selection. For example,

the mechanism gives priority to patients who have waited longer, thereby selecting

patients with high untransplanted survival into transplantation. Second, selection may

be induced by patient choice. Organs that are particularly well-suited to a patient may

be more likely to be accepted by that patient.
2Source: https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/

https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/
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These sources of selection create an identification challenge because they may be driven

by unobservables.

We prove that our model is non-parametrically identified if two sources of variation are

available. The first source of variation is due to randomness in the offers made to a

given patient, conditional on the patient’s priority-type in the mechanism. This source

of variation allows us to compare the outcomes of patients whose final assignments

differed due to variation in which organs were offered to the patient. Therefore, it

identifies a local-average treatment effect – a difference between the expected survival

outcomes for the select group of patients whose assignment is affected an offer.

An important limitation of using only this first source of variation is that it does

not readily allow us to predict survival from counterfactual assignments. Doing so is

necessary in order to consider changes in the set of patients that are transplanted or

changes in the kidneys to which a patient is matched. To fill this gap, we show that

an instrument that shifts decisions while holding the (distribution of) outcomes fixed

can be used to identify the model. A similar approach to correct for selection has been

used in Geweke et al. (2003), Lewbel (2007), Hull (2018) and van Dijk (2019). For our

application, we use variation in scarcity across geography and time after showing that

our measures are balanced on patient-specific observables. We estimate this using a

Gibbs’ sampler.

Our estimates suggest that choices and assignments are positively correlated with sur-

vival outcomes, both due to observed and unobserved factors. Patients are more likely

to accept kidneys that result in longer survival and those with match-specific benefits.

These patterns are also reflected in the final transplants – transplanted patients have a

higher LYFT from the average organ as compared to untransplanted patients. Taken

together, these results suggest that prior approaches that do not account for selection

on unobservable factors (e.g. Wolfe et al., 2008, 2009) yield biased estimates. While

our estimates suggest that the mechanism used during our sample period resulted in

an average LYFT of 8.63 years, an approach that does not use a quasi-experimental

research design places this estimate at 7.68 years.
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Next, we benchmark this assignment from the perspective of a planner interested in

maximizing LYFT. We compare the observed assignment to alternatives ranging from

a random assignment to one that maximizes LYFT by reallocating patients and donors.

The latter represents the maximum LYFT achievable by an assignment of patients to

organs. Because distributional constraints may limit the ability to select which patients

get a transplant, we also consider alternatives that assigns organs to different patients

while fixing the set of transplanted patients.

Our results suggest that the mechanism does better than a random allocation, but that

there is significant scope for improvement. A random assignment yields an average

LYFT of 7.09, much lower than an average of 7.97 in the mechanism used during

our sample period. Compared to a random assignment, the equilibrium assignment

transplants patients that have a higher than average LYFT from the average transplant.

It also matches these patients to donors that are more suitable for them. However, there

is scope for further increasing LYFT to 12.07 by changing the assignment. Realizing

some of these gains also requires conditioning on patients’ unobserved types – the

aggregate number falls to 9.12 if only observables can be used. This result suggests

that choice may not be dispensible if the unobserved types are private information.

These improvements in LYFT have important distributional consequences that may

present real-world challenges. Specifically, we find that realizing the increase in LYFT

requires transplanting patients that are relatively healthy and will live longer without

a transplant. Such re-distribution is necessary because we find that survival with and

without a transplant is strongly correlated, and most of the heterogeneity in LYFT is

across patients. Therefore, the planner faces a dilemma between maximizing survival

benefits and transplanting urgently sick patients.

Related Literature

This paper contributes to several literatures. We contribute an alternative perspective

for evaluating assignments relative to the literature studying assignment mechanisms

(Abdulkadiroglu and Sönmez, 2003; Pathak, 2017). This literature typically takes the



5

preferences of students as the welfare relevant object. For example, the empirical lit-

erature, which has focussed on school choice problems, uses a willingness to travel

measure for welfare comparisons (see Agarwal and Somaini, 2020, for a survey). The

most closely related paper is on the assignment of deceased donor organs (Agarwal et

al., 2019), which uses a decision-theoretic notion of welfare by comparing a change in

the mechanism to an equivalent increase in donor supply.

Our paper is also related to recent approaches that leverage quasi-experimental variation

in school choice mechanisms to estimate school quality (e.g. Abdulkadiroglu et al.

2011; Abdulkadiroglu et al., 2017). The focus of this literature has been to estimate a

local average treatment effect. In our context, this estimand would preclude analyzing

outcomes from alternative assignments because the set of compliers would change. Our

model explicitly incoporates choices in the mechanism as a means to correct for the

induced selection.

The techniques we use build on a large literature studying selection models (Roy, 1951;

Heckman and Honore, 1990). Our methods are most closely related to Hull (2018),

van Dijk (2019)and Geweke et al. (2003). Hull (2018) studies hospital quality in a

generalized Roy-selection model in which assignments may be based on comparative

advantage. Much like our techniques, Geweke et al. (2003) uses Gibbs’ sampling to

study hospital quality in a model that allow for selection on gains. van Dijk (2019)

studies selection on gains in a waitlist for public housing. The use of a Bayesian

approach, to our knowledge, is new in the literature on estimating survival models with

quasi-experimental variation (e.g. Abbring and Van den Berg, 2003).

This paper contributes to a medical literature that constructs measures of LYFT (Wolfe

et al., 2008). These measures are commonly used to guide organ policy design3 and to

calculate cost savings from transplantation. To the best of our knowledge, this prior

literature does not incorporate quasi-experimental variation in the analysis. We find a

significant selection bias that could ultimately influence these analyses.
3The U.S. considered a priority system based on LYFT in the past, and the U.K. uses a “transplant

benefit score” for allocating kidneys (Watson et al., 2020).
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Overview

Section 2 describes the institutions, the data, and presents descriptive evidence. Section

3 presents the model. Section 4 describes the instruments. Section 5 presents our

identification results and specifies the empirical model that we take to the data. Section

6 describes our estimates. Section 7 presents our results on LYFT generated by the

mechanism, and section 8 compares it to alernatives. Section 9 concludes.

2 Background, Data and Descriptive Evidence

This section begins with the basics of kidney transplation before describing the alloca-

tion system. We then detail our data and present key descriptive facts to motivate our

study.

2.1 Institutional Features

2.1.1 Basics of Kidney Transplantation

Approximately 750,000 patients are afflicted with End-Stage Renal Disease (ESRD) in

the United States (USRDS, 2018). Medicare provides near universal coverage to these

patients for costs related to ESRD, irrespective of age. This program cost the federal

government $35.4 billion in 2016, accounting for 7.2 percent of overall Medicare paid

claims (USRDS, 2018) or approximately 1 percent of the federal budget.

Transplantation is considered to be the best treatment for ESRD – it is estimated

to increase the length of an average patient’s life by seven years (Wolfe et al., 2008;

USRDS, 2018) and also save on expensive dialysis treatment. Current estimates suggest

that each transplant is expected to save between $195,000 – $400,000 over the life of

a transplanted patient depending on insurance status (Irwin et al., 2012; Held et al.,

2016; USRDS, 2018). These estimates are based on survival models that control for

patient and donor characteristics and a comparison of healthcare costs for patients

with and without a transplant. Our methods improve the estimates of the former set
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of components by relying on quasi-experimental variation.

There are a number of other factors that influence compatibility and survival effects are

organ- and patient-specific. To receive a kidney transplant, the patient must not have

a pre-existing immune response to proteins on the organ’s cells. After transplantation,

medications can limit new immune response. Even conditional on biological compat-

ibility, the perceived benefits from various patient-donor matches substantially differ.

The circumstances of the donor’s death, kidney function, and the donor’s heath prior to

death are considered important determinants of organ quality. Size and weight match,

and similarity of tissue-protein between the patient and the donor, are also considered

important. Our methods will aim to estimate the effects of these factors on life-year

benefits.

While these details are not important for the purposes of this study, we hold medical

practices related to the determination of compatibility and post-transplant management

as constant when we measure survival benefits.4

2.1.2 The Allocation of Deceased Donor Kidneys

The allocation of organs from deceased donors is organized using a prioritized waiting

list in which patients receive offers when an organ becomes available and may choose

to accept or reject it. This allocation system is co-ordinated using a system called

UNet. It collects detailed information about the donor’s medical history and organ

characteristics, and transmits it to biologically compatible patients who are being of-

fered the kidney. Each donor’s kidneys are allocated to the highest priority patients on

the waitlist that are willing to accept the organs.

Prior to 2014, patient priority in the kidney assignment system was based primarily

on waiting time and tissue-type similarity between the patient and the donor. Specif-

ically, each kidney is first offered to patients with a perfect tissue-type match, then to

patients from the local area in which the organs were recovered, then regionally, and

finally nationally. Within each priority group, the points system is based on tissue type
4Danovitch (2009) provides further details about kidney biology and medical practices.
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similarity, whether or not the patient is pediatric, patient sensitization, and waiting

time (see OPTN, 2014, for details).

A new kidney allocation system aimed at improving survival benefits was implemented

on December 4, 2014. The most important change gives greater priority to the healthiest

patients for the highest quality organs because these patients are believed to have the

largest survival benefit from these organs. In addition, the system also increases priority

for extremely hard to match patients and reduces emphasis on wait time. We refer the

reader to OPTN (2017) for a detailed description of the priorities and points used.

Using survival models that control for patient and donor covariates, Israni et al. (2014)

predict that this change should increase post-transplant survival and improve access

for highly sensitized candidates.

There are two features of the kidney allocation system that are worth highlighting.

First, unlike the assignment systems for some other organs (for example, livers), the

kidney assignment system does not use patient urgency to determine priority. Second,

patients who reject an offer remain on the list and may choose to accept the next offer

with no penalty in priority for refusing an offer.

2.2 Data and Descriptive Analysis

2.2.1 Data Sources

This study uses data from the Organ Procurement and Transplantation Network (OPTN).

The OPTN data system includes data on all donors, wait-listed candidates, and trans-

plant recipients in the US, submitted by the members of the OPTN. The Health Re-

sources and Services Administration (HRSA), U.S. Department of Health and Human

Services provides oversight to the activities of the OPTN contractor.

The data includes detailed information on patient and donor characteristics, survival

and graft failure outcomes from the Standard Transplantation Analysis and Research

dataset. They also include all offers made by the system and accept/reject decisions

from the Potential Transplant Recipient dataset. These data are populated using in-
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formation gathered in UNet and forms submitted by transplant centers from patient

follow-ups after a transplant is performed.

We restrict attention to patients that first joined the kidney waiting list between Jan-

uary 1st, 2000 and December 31st, 2010.5 From this set, we exclude patients that needed

multiple organ transplants and those that received a living donor kidney. Correspond-

ingly, we only use data on donor offers and acceptance decisions for these patients.

The data allow us to measure survival outcomes using information on patient death

merged from social security records and transplant center reports. These records are

consistently populated until December 31st, 2015. For patients without death records,

we use information from the waitlist for untransplanted patients and from annual post-

transplant follow-ups for transplanted patients to construct a censored measure of pa-

tient survival.

2.2.2 Descriptive Analysis

Patients and Donors

Patients on the waiting list face extreme scarcity, with a significant portion of patients

dying while waiting for a transplant. Table 1 describes the sample of patients, and

their transplant and survival outcomes. An average of 15956 patients from our sample

registered each year on the kidney waiting list. Panel A shows that 27.4% of patients

that join the list die within five years of registering, while only 47.2% receive a transplant

during this time-period. The chances of receiving a transplant decline after the first

five years as only 54% of the full sample of patients ultimately receive a deceased donor

kidney. The remaining patients either still await a kidney or leave the list.

Panel B shows that patients receiving a transplant from a deceased donor are younger

and appear to have been in better health at the time of registration. Transplanted

patients are less likely to be on dialysis at the time of registration, less likely to be

diabetic and have a lower body mass index. These observations are consistent with
5For patients with multiple listings, we keep the earliest registration if the patients never received

a transplant; we keep the earliest registration with transplant record otherwise.
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Table 1: Patient Characteristics
Table 1: Patient Characteristics and Outcomes

All Patients

Mean S.D. Mean S.D.

New Patients per Year 15956 8393

Panel A: Outcomes

Died by Year Five (%) 27.4 44.6 9.3 29.1

Survived Five Years (%) 64.2 47.9 86.2 34.4

Censored by Year Five (%) 8.4 27.7 4.4 20.6

Transplanted by Year Five (%) 47.2 49.9 89.7 30.4

Panel B: Characteristics

Age at Registration 51.4 14.2 48.9 15.2

On Dialysis at Registration (%) 77.3 41.9 75.1 43.2

Diabetic Patient (%) 42.9 49.5 33.4 47.2

BMI at Registration 28.2 5.9 27.6 5.7

Received Deceased 
Donor Transplant

Notes: 202,364 patients registered their first wait list listing between 2000 and 2010. 
Transplant records and survival data are available through 12/31/2015. Patients from whom 
we do not observe death are censored, which observed survival duration computed differently 
for each patient based on the dates and status when we last observe the patient. Outcomes 
presented in Panel A are measured by time are since registration. 

Notes: Sample includes 175518 patients who registered between 2000 and 2010. Transplant and survival data are

available through 12/31/2015. Patients for whom we do not observe death are censored. Theobserved survival duration

is computed based on the date and status of the patient when we last observe her. See A.4 for detailed computation of

observed survival. Durations presented in Panel A are time since registration.

high waiting times and the hypothesis that differences in these characteristics correlate

with longer survival without a transplant.

Despite this scarcity, undesirable organs have to be offered to many patients in an at-

tempt to allocate them. Table 2 shows that across donors, the mean number of biolog-

ically compatible offers that met the pre-set screening criteria is 543.5, but the median

is much lower, at 51. This skewed distribution arises because undesirable kidneys are

rejected by many patients, while desirable kidneys are accepted quickly. Indeed, 18.9%

of donors have at least one of their viable kidneys discarded. Organs from these donors

were refused by an average of 1890.5 patients.

Our observable donor covariates, which should predict organ quality, are correlated with

number of offers and discards in the expected ways. Table 2 summarizes selected donor

characteristics by the allocation outcome for a donor’s kidneys. Donors whose kidney(s)

were discarded are older, less likely to die of head trauma, more likely to be diabetic

or hypertensive, have a higher creatinine level (an indicator of lower kidney function),

and more likely to have donated after cardiac death. The transplantation community
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Table 2: Donor Characteristics
Table 2: Donor Characteristics and Kidney Recipient Outcome

All Donors Any Kidney Discarded

Yes No

Mean S.D. Mean S.D. Mean S.D.

Number of Donors per Year 6181 1169 5012

Median Number of Offers per Donor 51 482 40

Average Number of Offers per Donor 543.5 1927.9 1890.5 3684.3 229.3 946.7

Donor Age 39.2 18.4 52.0 16.6 36.2 17.5

Cause of Death -- Head Trauma (%) 39.7 48.9 19.5 39.6 44.5 49.7

Hypertensive Donor (%) 28.6 45.2 55.4 49.7 22.4 41.7

Donor Creatinine 1.2 1.0 1.4 1.1 1.1 0.9

Non-Heart Beating Donor (%) 7.9 26.9 10.4 30.6 7.3 26.0
KDPI 0.5 0.3 0.8 0.2 0.4 0.3

Notes: Panel A contains statistics for donors whose kidneys were recovered between 2000 and 2010.

Notes: Sample includes deceased donors offered between 2000 and 2010 to patients in the sample.

aggregates these and other indicators of quality into the Kidney Donor Profile Index

(KDPI), which is the percentile of the estimated quality of a donor’s organ. 6

Survival

Our study will focus on survival as the primary outcome of interest for several reasons.

First, this outcome is arguably the most important one from the perspective of the

patient and also the policy-makers. As we will show below, ESRD patients that do

not receive a transplant have a life-expectancy of about half of those that do. Second,

moving an ESRD patient from dialysis to transplantation saves on expensive dialysis

treatment. While we do not directly evaluate this component, future research can use

our estimates to revisit cost-benefit analyses. Third, this outcome can be measured

relatively easily. The other most commonly discussed effect is on quality of life, which

is hard to quantify.

Figure 1 shows the survival curves for patients that receive a transplant and those that

do not using the (non-parametric) Kaplan-Meier estimator. We separate the survival

curves for young and old patients (above/below the median age of 54), and for donors

that had at least one of their kidneys discarded, which indicates that the transplanted
6See https://optn.transplant.hrsa.gov/resources/guidance/

kidney-donor-profile-index-kdpi-guide-for-clinicians/.

https://optn.transplant.hrsa.gov/resources/guidance/kidney-donor-profile-index-kdpi-guide-for-clinicians/
https://optn.transplant.hrsa.gov/resources/guidance/kidney-donor-profile-index-kdpi-guide-for-clinicians/
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organ was likely undesirable. The vertical dashed lines depict the average waiting time

for organs from the two types of donors. Donors with at least one of their kidneys

discarded are much more likely to have undesirable organs as compared to those that

did not. Indeed, the average waiting time for a patient that receives a kidney from a

donor without a discard is higher than that for a donor with a discard.

Figure 1: Patient Survival
Notes: The figure shows Kaplan-Meier survival curve for young and old patients (above/below the median age of 54)

who registered on the waitlist between 2000 and 2010. Survival with transplant is measured as time since registration.

These survival curves show that transplanted patients live significantly longer than pa-

tients that do not receive a transplant. Moreover, these survival curves are substantially

different for young and old patients, and also for patients transplanted with a desirable

versus undesirable organ. Only about half of the young patients who do not received

a transplant survive more than 7.9 years. But, more than half of the young patients
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that receive a transplant from a donor with desirable organs live past 16 years. These

statistics are 5.4 and 11.3 years respectively for older patients, indicating that older pa-

tients have shorter half-lifes both with and without a transplant. In fact, some young

patients survive more than eighteen years, which is rare for an older patient.7 For both

groups of patients, a transplant using an undesirable organ is associated with half-lifes

that are shorter by about a year or more.

Taken together, these observations point to the potential for choices and assignments

to be correlated with survival outcomes. Choices are important because discards occur

only when many patients have refused the organ. Next, we turn to a model that

incorporates these sources.

3 A Model of Decisions and Outcomes

Our model considers assignment mechanisms in which object, indexed by j, are assigned

to agents, indexed by i. When an object arrives, offers are made to agents on a waiting

list who must decide to accept or reject it. These decisions translate into an assignment,

and an outcome is realized. We now describe the mechanism, observed outcomes and

the primitives of our model in further detail.

3.1 Assignment Mechanism and Observed Outcomes

Objects arrive sequentially and the mechanism assigns each one as follows. It orders

agents on the waiting list according to a priority score that may be object specific

and depend on the time that an agent has waited. Offers are made in priority order

and each agent may decide to accept or reject the object. We denote acceptance with

Dij = 1. Objects are assigned to the highest priority agents that accepts the offer.
7In our sample, 61.2% young patients and 21.0% old patients that received a desirable organ survived

more than 16 years. We cannot track survival outcomes for any longer than sixteen years because the
earliest cohort in our study registered in the year 2000, and our survival data are up to date as
of December 31, 2015. This fact also motivates our focus on median survival half-lifes instead of
expected life-years – the former does not depend on the right-tail of survival outcomes. This focus is
also consistent with prior work measuring the life-year benefits from transplantation (see Wolfe et al.,
1999, 2008, for example).
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The mechanism may ellicit multiple decisions at once, but agents may not be skipped.

Finally, agents that have been assigned an object are removed from the list. Other

agents may also leave the list.

Now consider the set of objects that are feasible for a given agent. Holding fixed the

decisions of the other agents, define Ji to be the sequence of objects offered to agent i if

the agent refuses all the offers made to her and the agent participated in the mechanism

indefinitely. Because we allow agents to depart from the list prior to assignment due to

death or for other reasons, an agent may only receive a subset of offers. Let J̃i be this

subset. That is, J̃i is an ordered set of objects that the agent would have been offered

prior to departure from the list if she refused all objects.

The object that an agent is assigned depends both on the feasible set of objects and

her decisions. Specifically, let Tij = 1 denote agent i being assigned object j. Indexing

objects in sequence of arrival, we have that

Tij =
∏

j′<j, j′∈J̃i

(1−Dij′)Dij,

where Dij = 1 if agent i accepts object j. Therefore, each agent i is assigned to the

first object that they accept from the set J̃i.

The outcomes we observe are determined by whether or not, and which object an agent

is assigned. Let the observed outcome be given by

Yi =
∑
j∈J̃i

TijYij +
1−

∑
j∈J̃i

Tij

Yi0,
where Yij is the outcome of agent i from being assigned object j, and Yi0 is the outcome

for agent i if the agent is not assigned any object.

This formulation, for the moment, abstracts away from potential truncation of the

observed survival outcome. That is, if agent i is assigned to object j then we observe

Yij. Otherwise, we observe Yi0. In our empirical context, we observe a censored survival

outcome for some set of patients. For these patients, we will be able to deduce that
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Yi > Ȳi, where Ȳi is the censoring time. Throughout, we will make the standard

assumption that the duration for censoring is independent of the true duration (see

equation 20.22 in Wooldridge, 2010).

3.2 Latent Outcomes and Decisions

There are three key sets of primitives in our model:

Unassigned Outcome: The outcome for agent i if the agent is not assigned any object

is given by

Yi0 = g0 (xi, νi,0) , (3.1)

where, with some abuse of notation, xi ∈ Rdx are agent-specific observables;

νi,0 ∈ R denotes a vector of agent-specific unobservables; and Yi0 ∈ R.

Assignment Outcome: The outcome of agent i from being assigned object j is given

by

Yij = g1 (qj, xi, νi,1, εij,1) , (3.2)

where xi ∈ Rdx is a vector of agent-specific observed characteristics; qj ∈ Rdq

denotes the type for each object j; νi,1 ∈ R denotes a vector of agent-specific

unobservables; εij,1 ∈ R denotes unobservables that are agent- and object-specific;

and Yij ∈ R.

Since Yij and Yi0 denote survival outcomes in our application, they can be written

as arising from survival models with time-varying hazard rates given by λij,1 (t) =

λ1 (t;xi, qj, ν1
i ) and λi,0 (t) = λ1 (t;xi) respectively. In this formulation, νi,1 and νi,0 yield

the distribution of the resulting survival times. The main restriction for the purposes of

our application is that the survival curve for a given patient does not evolve over time.

That is, the agent-level unobserved heterogeneity terms νi1 and νi0 do not vary with

time. It is difficult to relax this restriction because we only observe a single survival

outcome for each patient (see Unkel et al., 2014).
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Decision Equation: We model the acceptance decision as

Dij = gD (qj, xi, zi, νi,D, εij,D) ∈ {0, 1} (3.3)

where Dij = 1 denotes accept; νi,D ∈ R denotes unobserved selectivity of agent i;

εij,D ∈ R is a shock that is specific to the agent and the object; and zi ∈ Rdz are

observables that influence the decision on an agent. Without loss of generality,

we assume that gD is non-increasing in vi,D and non-decreasing in εij,D.

The primary restriction in the choice model is that an agent’s decision does not depend

directly on the specific decisions of other agents or on the feasible set J̃i. Nonetheless,

it accomodates agents refusing an offer in expectation of the future offers that the

agent may receive in equilibrium. Although we do not need to commit to a specific

equilibrium model of choice, Agarwal et al. (2019) provide a micro-foundation based on

optimal stopping that is consistent with the present formulation. Specifically, an offer

is accepted if the (perceived net present) value from accepting the organ exceeds the

option value of waiting. In this formulation, zi could include variables that influence this

decision, say through the distribution of future offers, but is unrelated to the benefits

of accepting the given organ.

The main difference between xi and zi is that the latter is excluded from the outcome

equations described above. This exclusion restriction, combined with Assumption 1(i)

below introduces instruments in the model that we will use in the empirical strategy and

identification results developed in Section 4. This section also introduces the specific

instruments zi used in our application.

Throughout the paper, we will make the following assumptions:

Assumption 1. (i) {εij}j, νi and zi are mutually independent conditional on xi and

(qj)j.

(ii) The random vector νi = (νi,0, νi,1, νi,D) is distributed iid across i.

(iii) The random vector εij = (εij,1, εij,D) is distributed iid across i and j.
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Assumption 1(ii) and 1(iii) above are currently without loss of generality, but will imply

restrictions when we restrict the functions g0 (·), g1 (·), and gD (·). In our specifications,

dependence between the components of νi and the components of εij will allow Yij and

Yi0 to be correlated with each other and with Dij.

3.3 Sources of Selection

The model allows for selection on three dimensions: untransplanted survival Yi0; sur-

vival from the average transplant Ȳi = 1
J

∑
j Yij, and selection on match-specific survival

Yij − Ȳi. There may be selection on these dimensions either due to choice or due to the

mechanism.

Selection due to choice occurs if agents’ choices Dij are correlated with survival out-

comes Yi0 or Yij. For example, such selection occurs if patients with higher expected

survival without a transplant are more selective. This type of selection can occur due to

either observables or unobservables. For example if E (Yi0|νi,D, xi) varies with xi or νi,D
there is selection on untransplanted outcomes,. Similarly, patients may be more likely

to accept an organ with an idiosyncratic survival benefit. These sources of selection are

generalized versions of Roy (1951) selection.

Selection due to the mechanism occurs for two reasons, even after we have conditioned

on decisions Dij. First, an organ that arrives after the patient’s survival outcome

without a transplant is not feasible. Therefore, J̃i can only include organs that arrive

prior to the untransplanted survival duration, Yi0. This fact results in selection on

untransplanted survival via both xi and νi0 because these attributes may be correlated

with transplanted survival. Second, J̃i depends on the priorities and the set of patients

on the waiting list, which also affects which transplants occur. For example, priority is

given to patients who have a perfect tissue-type match with the kidney who may have

idiosyncratically large survival benefits.8

Because these sources of selection can be driven by unobservables, comparing survival
8Organs with a perfect tissue-type match are significantly less likely to cause a adverse immune

response, resulting in greater survival benefits.



18

with and without a transplant can yield biased estimates of the causal effect of a

transplant. Both sources result in Tij being correlated with unobserved factors that

determine outcomes. The aim of the instruments discussed in Section 4 is to address

the resulting endogeneity concerns.

4 Instruments

Our solution to the selection problems discussed above will require two sources of vari-

ation. We describe each of these in turn. Section 5 will formally prove identification

under these two sources of variation.

4.1 Conditionally Independent Potential Offers

The first source of variation we will exploit arises from randomness in the objects offered

to an agent. Recall that Ji is the sequence of offers to agent i if the agent refuses all

the offers made to her and participated in the mechanism indefinitely. We will impose

the following assumption on Ji:

Assumption 2. The sequence of offers Ji is conditionally independent of (νi, εi) given

xi.

This assumption is satisfied if xi controls for a sufficiently rich set of agent types such

that the remaining variation in the offers that the agent could have received is indepen-

dent of unobserved determinants of outcomes and decisions. The assumption parallels

the exclusion restriction required for the validity of an instrument.

We now argue that this assumption is plausible in our setting on theoretical and empir-

ical grounds. Our theoretical justification is based on the mechanism used to allocate

deceased donor kidneys and the assumptions on the model made above. The set Ji
depends only on the kidneys that arrive after a patient registers on the waiting list, the

decisions of other patients on the waiting list and determinants of the agent’s priority

and points on the list. It does not depend on the realized decisions made by agent
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i. Our knowledge of the mechanism allows us to construct rich controls xi for each

patient’s priority. Conditional on these controls, the remaining variation in Ji is only

due to the stochastic arrival of organs and the decisions of agents other than i. It is

plausible to assume that the former is independent of (νi, εi) because organ availability

depends primarily on deaths in the local area. And, as we argued in Section 3 above,

the latter is independent of (νi, εi) in a natural equilibrium model of the the waiting

list.

While we will use the full set of offers to estimate the model, we now use a specific

function of Ji to investigate this source of variation. To do this, we construct a set of

desirable donors that are achievable for patient i in the two years following the patient’s

registration. Specifically, we calculate whether a patient, denoted i, would be placed

above the patient on the 10th position on the list for a given donor. A patient is highly

likely to receive an offer for an organ from such a donor because only 22.7% of deceased

donors are offered to fewer than ten patients. We then calculate the number of donors

in a given category that satisfy this criteria for each patient in the two years following

the registration date of the patient.9

The variation in this variable comes from two sources: variation in the organs that

arrived in the two years following patient i’s registration and variation in the patients

on the waiting list when the organ arrived. Moreover, the results below control for

differences in a patient’s priority, geographical area and time trends using fixed effects.

We therefore need to argue that Assumption 2 is satisfied for this variable conditional

on these controls. We claim that the first source of variation is independent of patient

i’s decisions because specific patients are not considered in organ donation decisions.

The second source of variation is also plausibly exogenous because a given patient’s

decision is unlikely to affect the priority of the patient ranked in the tenth position.10

9We include a donor in the calculation irrespective of whether the patient accepted a prior offer or
departed from the list during the period. Throughout, we restrict attention to blood type compatible
donors that arrived in the same donor area and assume a fixed waiting time of two years.

10The only potential effect is if patient i, in our sample, accepts a kidney that would otherwise have
been accepted by another patient who would been pivotal in determining whether i would be in the
top ten positions for a different donor.
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Consistent with these claims, Table D.5 in the appendix shows that our measures are

not significantly correlated with the vast majority of various patient characteristics (age,

diabetes, female, height and weight).

Given this exclusion restriction, we now turn to showing how this measure of a patient’s

potential offers is related to transplant and survival. These correspond to the first-stage

and reduced-form relationships in an instrumental variables model. Columns (1) to (4)

in Table 3 present estimates from linear probability models to examine the relationship

between the number of potential top 10 offers from donors that are either above or

below median quality (as measured by KDPI) and transplant outcomes. Columns

(5) and (6) show the survival effects of these potential offers using estimates from a

Cox proportional hazards model. All models include fixed effects for the patient’s

donor service area (DSA), year of registration, blood type and determinants of priority

(pediatric status and calculated panel reactive antibody (CPRA) categories).

The first conclusion from Table 3 is that potential offers strongly influence whether or

not a patient receives a transplant as well as the type of organ transplanted. Columns

(1) and (2) show that the number of offers in both donor categories are positively related

with the probability of a transplant, whether or not we control for a rich set of patient

characteristics. Columns (3) and (4) show that the type of organ transplanted depends

on the number of potential offers from the corresponding type of donor. Specifically, a

patient with a greater number of potential offers from above median quality organs is

more likely to receive a transplant from such an organ. Conversely, the probability of

a transplant from a below median organ decreases with more offers from above median

quality organs. An analogous relationship holds for offers from below median quality

donors. The F-statistic is large and much higher than the conventional cutoff of 10

used to assess whether an instrument is strong (Stock and Watson, 2012). Therefore,

the evidence points to a strong first-stage relationship.

The second conclusion from Table 3 is that having a high potential number of offers

from organs that are above median quality, as measured by KDPI, improves survival.

Column (5) shows results that do not control for patient characteristics. Offers from a
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Table 3: Top 10 offers: First StageKDPI log(1+num) cond FS+RF

Transplant Hazard Rate

Any Kidney Any Kidney KDPI <= 50%

(1) (2) (3) (4) (5) (6)

log(1 + # Top 10 Offers in 2 Years)

KDPI <= 50% 0.0322*** 0.0334*** 0.0439*** -0.0105*** -0.0163* -0.0321***

(0.00441) (0.00441) (0.00306) (0.00287) (0.00730) (0.00736)

KDPI > 50% or Missing 0.0303*** 0.0297*** -0.0128*** 0.0425*** 0.0000307 -0.00321

(0.00475) (0.00478) (0.00314) (0.00294) (0.00711) (0.00715)

Patient Characteristics x x x x

F-statistic 93.20 92.23 108.0 130.6

Number of Observations 132715 131105 131105 131105 132715 131105

R-Squared 0.210 0.219 0.171 0.065

KDPI > 50% or 
Missing

Notes: * p<0.05, ** p<0.01, *** p<0.001. The sample restricts to patients who registered between 2000 and 2008

because the instrument is calculated using offers in the two years post registration. Columns (5) and (6) use the Cox

proportional hazards model. Survival duration is measured since the date of registration. All regressions control for

donor service area (DSA) fixed effect, registration year fixed effect, blood type fixed effect, an indicator for pediatric

at registration, and indictors for CPRA = 0, 20 <= CPRA < 80, CPRA >= 80, and CPRA missing at registration.

Patient characteristics include an indicator for female, indicators for age 18-35, 35-50, and 50-65, indicators and linear

controls for dialysis time 1-3, 3-5, 5-10, and >10 years, and an indicator for diabetes. Standard errors, clustered by

DSA, registration year, and blood type in Columns (1) through (4), are in parentheses. F-test tests against the null

hypothesis that the coefficients on the instruments are zero.

higher quality organ reduces the hazard rate of departure, thereby increasing survival.

Column (6) shows that this relationship is robust to controlling for patient character-

istics. However, both columns suggest that potential offers from a lower than median

quality organ do not affect survival. Under Assumption 2, this relationship can only

occur through the transplant a patient ultimately receives. Therefore, together with

the results in columns (1) to (4), the results suggest that patients that receive an above

median quality kidney have improved survival outcomes.

While we demonstrated this instrument using a particular measure of potential offers,

our empirical approach will not directly use a specific measure. Instead, we will make

use of all variation in offers conditional on the patient’s geographical area, registration

year, blood type and priority type.
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4.2 Scarcity Instrument

The second source of variation that we leverage is based on instruments that alter an

agent’s acceptance decision, but are independent of latent outcomes. In the model,

the variables zi affect the decisions, Dij, but are excluded from the functions g1 (·) and

g0 (·). Moreover, Assumption 1(i) required that, conditional on xi, (νi, εi) is distributed

independently of zi. Therefore, these instruments are useful in identifying the model

as they can be used to vary the selectivity of patients while holding survival outcomes

fixed.

The instruments that we construct for our setting are motivated by the observation

that patients face an optimal stopping problem. Therefore, two otherwise identical pa-

tients that have different beliefs about their option value of waiting will make different

acceptance decisions even when offered the same type of organ. In particular, patients

who expect greater transplant opportunities in the future (lower scarcity) should be

less willing to accept a given kidney than otherwise identical patients with fewer op-

portunities (higher scarcity). The scarcity instruments we need to construct must be

correlated with decisions, but independent of latent outcomes.

We construct two types of scarcity instruments. The first is a proxy for the offers a

patient can expect in the future. Fix an offer o made to patient i in the calendar

quarter t. Consider the set of offers made in the four quarters after t to other patients

in a comparison group. This comparison group consists of other patients with the same

blood type as i that registered in the same DSA as i. We count the subset of offers

made to this group of patients when they had the same number of waiting time priority

points as the offer o. The second is a proxy for donor supply, which is constructed

analogously to the first but counts the number of donors instead.

Our analysis will include fixed effects for the DSA, blood-type and the calendar year of

the assignment. Therefore, both instruments exploit variation in the relative scarcity

of organs in a patient’s location while controlling for secular trends across locations.

In order to evaluate the assumption that (νi, εi) are distributed independently of zi,
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conditional on xi, we investigated whether variations in our measures of scarcity are

significantly correlated with the characteristics of patients that register in a given year.

Reassuringly, table D.6 in the appendix shows that our scarcity instruments are not

significantly correlated with our patient characteristics (age, diabetes, female, height

and weight).

These instruments are relevant to decisions if these ex-post measures are correlated

with beliefs, even if they are not precisely known to the agents at the time the decision

is being made. Columns (1) to (6) of Table 4 show the results from a linear probability

model that regresses a dummy on whether an offer is accepted on two measures of

scarcity and a variety of controls. The sample is restricted to the first one hundred offers

made for a donor. Both measures of scarcity are negatively correlated with acceptance.

Columns (3) and (4) show that the number of donors or number of offers to patients

in the comparison group in the four quarters is negatively correlated with acceptance

rates, controlling for patient characteristics, and fixed effects for DSA, allocation year

and years waited. This relationship is strong and is robust to adding an extensive set

of controls for donor and match-specific characteristics. Figure D.1 in the appendix

shows a residualized binscatter plot suggesting that this relationship is monotonic.

These results suggest that our measure of scarcity has the expected relationship with

patient acceptance decisions while satisfying the required exclusion restrictions.

5 Identification and Estimation

The previous section introduced two sources of variation that are orthogonal to an

agent’s latent outcomes Yi0 and Yij – the potential offers that an agent could receive

and the scarcity faced by an agent, zi. This section shows that these two sources of

variation can be used to identify the decision model and the components of the value

of choice defined in Section 3. Our results condition on the agent type xi and omits it

for simplicity of notation.

The argument proceeds in three parts. First, we show that variation in the offers
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Table 4: Scarcity Instruments: First Stageall KDPI FS+RF

Page 1

Acceptance Hazard Rate

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log(1 + No. Donors) -0.0694*** -0.0548*** -0.0395*** -0.0618*** -0.0767***

(0.00406) (0.00357) (0.00331) (0.0188) (0.0189)

Log(1 + No. Offers) -0.0592*** -0.0479*** -0.0358*** -0.0283** -0.0461***

(0.00226) (0.00199) (0.00185) (0.0110) (0.0111)

Offer Year FE x x x x x x

Registration Year FE x x x x

Patient Characteristics x x x x x x x x

Donor Characteristics x x x x

Match Characteristics x x x x

F-statistic 292.4 683.8 235.2 578.2 142.5 375.9

Number of Observations 788939 788939 788939 788939 778026 778026 57786 57786 57083 57083

R-Squared 0.105 0.112 0.174 0.178 0.276 0.278

Notes: * p<0.05, ** p<0.01, *** p<0.001. For Columns (1) through (6), we use the first 100 offers from each donor

between 2000 and 2009, and the dependent variable is accpetance of an offer. For Columns (7) through (10), we use

patients who received a transplant through deceased donor offers between 2000 and 2009. All regressions control for DSA

fixed effect, blood type fixed effect, and a fixed effect for the number of years waited at the offer. Patient characteristics

include Calculated Panel Reactive Antibody (CPRA) via indicators for CPRA=0, 0.8>CPRA>=0.2, CPRA>=0.8,

and CPRA missing, an indicator for female, indicators for age <=18, 18-35, 35-50, and 50-65, indicators and linear

controls for dialysis time 1-3, 3-5, 5-10, >10 years, and an indicator for diabetes. Donor characterstics include linear age,

indicators and linear controls for donor creatinine > 0.6 and >1.8, and indicators for diabetes, donation after cardiac

death, and expanded criteria donor. Match characteristics include the number of Human Leukocyte Antigen (HLA)

mismatches via indicators for 0 HLA mismatch, 0 and 1 DR antigen mismatch, identical blood type, local offers, and

linear controls for (+) and (-) age difference, interactions between CPRA indicators and # HLA mismatches, donor age

over 40 and pediatric patient, donor age over 55 and patient age 18-35, donor age over 60 and patient age 35-50, and

donor age below 60 and patient age 50-65. Columns (1) through (6) report standard errors clustered by DSA, offer year,

number of years waited at offer, and blood types in parentheses.

received by an agent can be used to learn the expected outcomes conditional the value

of scarcity, assignment status, and the sequence of offer types. Second, we show that the

choice model described in equation (3.3) is identified conditional on scarcity. Finally,

we use the variation in scarcity to identify selection on unobservables. All proofs are in

Appendix C.
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5.1 Identification of Conditional Expected Outcomes

The first result shows what can be learned about expected outcomes using variation in

offers. For agent i with the realized sequence of offers Ji, let ji,n denote the n-th offer,

and let qJi =
(
qj1 , . . . , qj|Ji|

)
be the associated sequence of offer types. We have the

following result:

Lemma 1. Suppose that Assumption 2 is satisfied, and (qj1 , . . . , qjn) and
(
qj1 , . . . , qjn−1

)
belong to the support of the distribution of offer-types induced by the distribution of Ji. If

P
[
Tiji,n = 1|qJi , z

]
> 0, then the quantities E

[
Yiji,n|Tiji,n = 1, qJi , z

]
and E

[
Yi0|Tiji,n = 1, qJi , z

]
are identified.

This result shows that we can identify the expected outcomes with and without as-

signment for agents with an offer-type sequence qJi who were assigned to the n−th

offer. Note that the assignments of agents with the offer sequence qJi allows us to ob-

serve P
[
Tiji,n = 1|qJi , z

]
. Additionally, since we observe the outcome Yiji,n for agents

with Tijn = 1, we also observe E
[
Yiji,n|Tiji,n = 1, qJi , z

]
. The challenge is to recover

the expected value of Yi0 for the group of agents that would have been assigned

the n−th offer had they received the offer sequence qJi . We construct this quan-

tity using the expected outcomes of unassigned agents with an offer-type sequences

(qj1 , . . . , qjn) and
(
qj1 , . . . , qjn−1

)
. The former group only includes agents with Tijn = 0

while the latter group includes agents with both values of Tijn with known probability

P
[
Tiji,n = 1|qJi , z

]
.

This result shows identification of outcomes for a selected set of agents. In particular,

the assignment status, the types of offers an agent receives, and the scarcity introduce

selection on the distribution of νi,D. For example, two agents with the same sequence

of offers that are assigned to the n−th and the (n+ 1)−st offers likely differ in their

selectivity. This result is similar in spirit to those in the treatment effects literature

(e.g. Imbens and Angrist 1994; Heckman et al., 2010). A similar estimand has been

the target in Abdulkadiroglu et al. (2017) where offers in a school choice mechanism

are used as instruments to estimate treatment effects.
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Although our formal result is stated for the conditional expectations of the outcome

variables, we can identify the whole distribution of Y . This follows from Lemma 1

because we can identify the conditional expectation of ψ (Y ) for any function ψ as long

as the appropriate expectations exists.

5.2 Identification of the Choice Model

Our next result shows that we can use the variation in offers also to identify the function

gD (·).11 To state this result, we normalize the marginal distributions of νi,D and εij,D to

be uniform and assume that z is supported in the unit interval. These assumptions are

without loss of generality because we have not yet placed restrictions on the functional

form of gD (·).

We need to introduce some notation in order to develop this result. For each value of z

and donor type qj, consider two sets of pairs (νD, εD) such that one of these sets yield

gD (qj, z, νD, εD) = 0 and the other yields gD (qj, z, νD, εD) = 1. Figure 2 illustrates

the regions for two representative values of z ∈ {zlow, zhigh}. The functions v (εD; z, qj)

separate these two sets.12 Therefore, identifying the function v (εD; z, qj) is equivalent

to identifying gD (·).

Our results make the following assumptions on v (·; z, qj):

Assumption 3. (i) For each qj, the function v (εD; z, qj) is differentiable and non-

decreasing in εD.

(ii) For each qj and z, the image of the function v (·; z, qj) is the unit interval.

The monotonicity assumptions in the first part are motivated by the interpretation of

νD as selectivity and εD as idiosyncratic preferences. Weak monotonicity is implied, for

example, if gD (qj, z, νD, εD) is non-increasing in νD and non-decreasing in εD because

v (·) is implicitly defined as the solution to the restriction gD (qj, z, v (εD; z, qj) , εD) = 0.

In addition, part (i) places a weak smoothness restriction on v (·; z, qj).
11The function gD(·) can be derived from micro-funded binary choice models with mean utilities

that depend on (qj , xi, zi, νi,D) and additive errors (Cosslett, 1983; Matzkin, 1991).
12Formally, define v (εD; z, qj) = sup

{
νD ∈

[
0, 1
]

: gD (qj , z, νD, εD) = 1
}
, where we adopt the con-

vention that the supremum of the empty set is 0.
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Figure 2: Acceptance and Rejection Regions

The second part of the assumption implies that extreme values of εD move any agent’s

decision from accept to reject or vice-versa given a fixed value of zi and νD ∈ (0, 1). To

interpret this assumption, observe that v (εD; z, qj) is the fraction of agents that reject

an offer of type qj with probability at least εD when faced with scarcity z. Therefore, the

assumption requires that agent selectivity cannot overwhelm the effects of idiosyncratic

preferences. If it did, then there would be (interior) values of νD that would yield a

degenerate acceptance probability for a given value of z.

With these assumptions, we show that variation in offers can be used to identify the

function gD (·):

Lemma 2. Let qnj be a sequence composed by n offers of type qj, and let vn−1 (·; z, qj)

be the (n− 1)-st order Fourier-Legendre approximation of v (·; z, qj). If Assumptions 2

and 3 are satisfied, and qnj is in the support of the distribution of offer-types induced

by Ji, then vn−1 (·; z, qj) is identified for each z ∈ (0, 1) and qj. In particular, if the

hypotheses hold for all n, then v (·; z, qj) is identified.
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The main challenge for identification is that there are two latent reasons that drive an

agent’s decisions, namely νi,D and εij,D. We must also identify how each of these map to

acceptance decisions. For any n, we observe the probability P
(
Di1 = Di2 = . . . = Dijk = 0|qnj , z

)
for all k ≤ n. Because v (εD; z, qj) is equal to the fraction of agents that reject an offer

of type qj with probability at most εD when faced with scarcity z, we can write

P
(
Di1 = Di2 = . . . = Dijk = 0|qnj , z

)
=
∫ 1

0
εkDdv (εD; z, qj) .

Therefore, the quantity P
(
Di1 = Di2 = . . . = Dijn = 0|qnj , z

)
is the k-th moment of a

random variable with cumulative distribution function v (·; z, qj). The problem of re-

covering this function is therefore equivalent to solving the Hausdorff moment problem

(Casella and Berger, 2002). That is, we need to learn the CDF v (·; z, qj) with informa-

tion on its moments. This can be done if infinitely many moments are known.

In fact, our result is stronger – it shows that observing decisions of finite n is informative

even without variation in the number of offers. Formally, it implies that v (·) can be

well-approximated by observing decisions from a given sequence of offer-types qnj . We

accomplish this by showing that the moments described above determine the n-th order

Fourier-Legendre approximation of v (·). As shown in Talenti (1986), as n become large,

this approximation converges to the true function v (·; z, qj) uniformly over εD ∈ (0, 1).

5.3 Identification of Selection on Unobservables

Finally, we turn our attention to identifying the components that determine selection

on unobservables. This result requires an additional regularity assumption:

Assumption 4. (i) For each z ∈ (0, 1) and qj, the derivative v′ (·; z, qj)= ∂
∂εD

v (·; z, qj)

is a continuous, bounded and strictly positive function of εD ∈ (0, 1).

(ii) For each z and qj, the functions E (Yi0|νD) and E (Yij|νD, εij,D ≥ εD, qj) are con-

tinuous, and the first and second moments of Yi0 and Yij exist.

The first part strengthens the monotonicity and differentiability of v (z, εD; qj) imposed

in Assumption 3(i) slightly by requiring a strictly positive and bounded derivative.
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Given our interpretation of v (·), observe that v′ (·; z, qj) is the density function of the

distribution of the probability with which an agent rejects an offer of type qj. Therefore,

the assumption requires that this density function bounded and is non-zero for all

interior values of εD and z. The second part imposes weak regularity assumptions on

conditional expectations and the moments of Yi0 and Yij.

With this assumption, we can identify the components resulting in selection:

Theorem 1. Suppose that Assumption 4 and the hypotheses for Lemma 2 hold for all n.

Then, the quantities E [Yi0|νi,D = νD] and E [Yij|νi,D = νD, εij,D ≥ εD] are identified for

all εD ∈ (0, 1) and νD ∈ (0, 1) such that there exists z in the support of its distribution

with νD = v (εD; z, qj).

This result shows non-parametric identification of the expected value of outcomes con-

ditional on values of selectivity and idiosyncratic preferences. The proof begins by using

results in Lemma 1 to identify the conditional expectations given scarcity z, offer-types

and assignment. It then rewrites these quantities in terms of the primitives and uses

arguments similar to those in Lemma 2 to recover quantities that depend on both the

model of outcomes and the model of choices. Next, we use the identification results

for v (·) in Lemma 2 to recover the objects of interest. For example, Lemma 1 implies

that E
(
Yi0 × Ti = 0|qkj , zi

)
is identified from variation in offers. This quantity can be

re-written as

E
(
Yi0 × Ti = 0|qkj , zi

)
=
∫ 1

0
E (Yi0|νD = v (εD; zi, qj)) εkDdv (εD; zi, qj) .

If we observe this quantity for all k ≤ n, then we can recover the n-th order Fourier-

Legendre approximation of E (Yi0|νD = v (εD; z, qj)) v′ (εD; z, qj) when viewed as a func-

tion of εD. Under the maintained assumptions, results in Talenti (1986) and Freud

(1971) imply that this series converges uniformly to the true function. Finally, since

v′ (εD; z, qj) > 0 and bounded and the function v (εD; z, qj) is identified (Lemma 2), we

can identify E (Yi0|νD) for all νD ∈ (0, 1) if we can find values of z and εD such that

v (εD; z, qj) = νD. The intuition for identifying E (Yij|νD, εij,D ≥ εD) is similar in spirit,
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although a little more notationally involved.13

In this way, the scarcity instrument is used to “trace-out” (see Lewbel, 2007) the ex-

pected values of Yi0 and Yij conditional on νD and εD. Notice that our results do not

rely on values of z that push choice probabilities to degenerate values that obviate the

selection problem. Therefore, we do not rely on an “identification at infinity” argu-

ment. But, as is common, we can only identify the expected outcomes conditional on

the latent variable νD for values of νD that are spanned by variation in the observable

z. Moreover, it is easy to see if the image of v (εD; ·, qj) across values in the support

of z is the unit interval, then we can identify the unconditional values of the latent

outcomes, namely E [Yi0] and E [Yij].

5.4 Estimation

Non-parametric estimation is cumbersome because we would like to use a rich set of

observables when estimating the model.

We therefore estimate a parametrized version of equations (3.1) – (3.3).

yi0 = B (Yi0; ρ0) = xiβx + νi0 (5.1)

yij = B (Yij; ρ1) = χ (xi, qj)αx,q + αηηj + νi,1 + εij,1 (5.2)

Dij = 1 {χ (xi, qj) γx,q + ziγz + ηj + νi,D + εij,D > 0} , (5.3)

where Yi0 is survival since registration without a transplant; Yij is survival since trans-

plantation if patient i is transplanted organ j; B (·; ρ) denotes a Box-Cox transformation

of the argument with parameter ρ (Box and Cox, 1964);14 χ (xi, qj) is a flexible func-
13Again, Lemma 1 implies that E

(
Yij × Tijk = 1|qkj , zi

)
is identified. It can be re-written as∫ 1

0 E (Yij |νD = v (εD; zi, qj) , εij,D ≥ εD) (1− εD) εk−1
D dv (εD; zi, qj) . As done above, we use this ex-

pression to identify E (Yij |νD = v (εD; zi, qj) , εij,D ≥ εD) (1− εD) v′ (εD; z, qj) and finally recover
E (Yij |νD, εij,D ≥ εD) by finding a value of z such that νD = v (εD; z, qj). One qualitative differ-
ence is that identification of E (Yi0|νD) allows us to use variation in either z or εD to trace-out νD,
whereas the result for E (Yij |νD, εij,D ≥ εD) must condition on εD.

14The Box-Cox transformation of y with parameter ρ is given by B (Y ; ρ) = Y ρ−1
ρ . A special case

when ρ = 0 is B (Y, ρ) = log Y . Our initial guess of ρ is based on comparing an estimated survival
curve using the non-parametric Kaplan-Meier estimator to those implied by assuming that B (Y, ρ) is
normally distributed.
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tion of agent observables xi and object types qj; ηj is distributed N
(
0, σ2

η

)
with the

parameter σ2
η to be estimated; εij = (εij,D, εij,1)′ is distributed N (0,Σε) where Σε,11 is

normalized to 1 without loss of generality; and νi is a mean-zero multi-variate normal

with a distribution via the following factor structure:

νi,1 = δ1,Dνi,D + νi,f (5.4)

νi,0 = δ0,Dνi,D + δ0,fνi,f + ν̃i,0, (5.5)

where νi,D, νi,f and ν̃i,0 are independently distributed mean-zero normal random vari-

ables with variances to be estimated. This factor stucture is without loss given the

normality of νi.

The main departure from the baseline model outlined in Section 3 is in the inclusion

of ηj, which represents unobserved heterogeneity in organ quality. This term can be

seen as capturing the cumulative effect of organ characteristics observed to patients and

surgeons, but not included in the empirical specifications.15

This choice of functional form is motivated by several considerations. First, we wish to

allow for and interpret the correlations between νi,0, νi,1 and νi,D, and between εij,1 and

εij,D. For example, the factor νi,f captures the component of a patient’s unobserved

frailty that is not correlated with decisions. If δ0,f is small or negative, then, all else

equal, transplanting a patients with lower fraility (higher νi,f ) results in lower survival

benefits.

Second, the decision model is similar to the probit binary choice used in Agarwal et al.

(2019) for the kidney waitlist. These two considerations point us to using multivariate

normals to model the distributions of νi and εij.

Third, we are interested in analyzing (censored) survival data, and appropriately fit-

ting the shape of the survival curve is important for obtaining meaningful estimates.

Box-Cox transformations yield a tractable likelihood function while generalizing the
15Agarwal et al. (2019) argue, using an analogy to measurment error models (see Kotlarski’s Theorem

in Rao, 1992; Hu and Schennach, 2008), that the distribution of this variable can be identified based on
the correlation between acceptances between a given donor’s first and second kidney. For consistency
with the formal results presented in this paper, we will also estimate models that exclude this term.
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functional form (see Spitzer 1982, for example). We hold the Box-Cox transformations

ρ0 and ρ1 fixed and conduct robustness analysis to alternative choices.

Estimating this model via maximum likelihood is difficult because the likelihood for

each patient’s data depends on the decisions over many donors as well as (potentially

censored) survival outcomes. Computing it requires integrating a nonlinear function

over a high dimensional space. Instead, we estimate the parameters of the model using

a Gibbs’ sampler (McCulloch and Rossi, 1994; Geweke et al., 2003; Gelman et al.,

2014). This method generates a sequence of draws of the parameters of the model,

collected in θ, and the latent variables νi, εij and ηj given the parameters from their

respective posterior distributions. Our chosen parametrization is ammenable to this

approach because the latent variables can be partitioned so that each group has a

posterior distributions given the draws of the other groups that can be solved in closed-

form.16 The distribution this method generates is asymptotically equivalent to that of

the maximum likelihood estimator (see van der Vaart, 2000, Theorem 10.1 (Bernstein-

von-Mises)). Details on the method are provided in Appendix B.1.

An advantage of our approach is that it allows for a rich set of patient-level covariates

xi and organ types qj, to be included in the model. This richness is important for

understanding the extent to which observables can capture the selection on outcomes

induced by choices. The cost of this approach is the somewhat heavier reliance on

parametric assumptions and computational burden. For example, Hull (2018) studies a

semi-parametric model and proposes a indirect inference method that targets a subset

of quasi-experimental moments that can be identified directly in a first-step. The main

drawback of this alternative for our purposes is that the number of moments that need

to be estimated in the first step increase with the dimension of the parameter space,

making it hard to include the covariates xi and types qj.
16These considerations also motivate Geweke et al. (2003) to also use a similar parametrization and

estimation approach when studying hospital quality in a selection model.
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6 Survival and Choice Estimates

We present estimates from four different specifications. The first specification only relies

on the randomness of offers, and does not employ the scarcity instruments. The second

specification, which is our preferred one, includes both the number of future offers and

the number of future donors as scarcity instruments. The third and fourth specifications

employ one of the two scarcity instruments each in order to assess robustness. All

specifications include a rich set of patient and donor covariates to capture medical

history and match quality. They include all of the characteristics used in the leading

models for predicting pre- and post-transplant survival for patients with kidney failure

(see Wolfe et al., 2008, for example) as well as characteristics used to determine patient

priority on the transplant list.

6.1 Choice

Table 5 presents the marginal effects of select characteristics on the probability of

acceptance, equation (3.3). The table reports the effects for a one standard deviation

increase in a continuous characteristic or a unit change in an indicator.

Our results suggest that proxies for donor quality and for match-specific benefits are

positively correlated with acceptance. Patients are significantly more likely to accept

kidney offers from younger donors and donors who died of head trauma, and less likely to

accept offers from donors with a history of hypertension. Patients are also significantly

more likely to accept kidneys with which they have a perfect tissue type match. Note

that patients are also significantly more likely to accept offers of kidneys which have

higher unobservable quality, ηj, suggesting that decisions respond to information that

is not perfectly captured by the observable organ characteristics included in the model.

This information can include results from a battery of medical tests and the report

from a physical examination of the kidney.

The last two rows record the effects of the scarcity instruments on the probability of

acceptance. Consistent with the results in Table 4, each of the two instruments has a
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significant negative effect on the probability of acceptance. Because these instruments

are correlated, the marginal effect of scarcity as measured by future donors is positive

but marginally significant when both instruments are included. Other parameter esti-

mates are similar across the three instrumented specifications. The robustness of these

co-efficients across the last three columns suggests that the choice between these two

instruments is unlikely to be an important driver of our final results.

6.2 Survival

Panels A and B of Table 6 respectively present estimates for survival without and

with a transplant, equations (3.1) and (3.2). They show the marginal half-life effects

associated with select characteristics.

Observable proxies for baseline patient health predicts survival both with and without

a transplant. A patient who is older, diabetic, or on dialysis at registration has a

significantly shorter half-life without a transplant. These patient characteristics also

have lower survival with a transplant, with effects that are slightly larger in magnitude.

For example, a diabetic patient’s half-life without transplant is lower than a non-diabetic

patient by 1.38 years, and a half-life with a transplant that is lower by 3.20 years.

We also find that the proxies for donor quality, waiting time and tissue-type similarity

are predictive of post-transplant survival, but donor characteristics have lower estimated

effects as compared to tissue-type matching and patient characteristics. For example,

a donor with a history of hypertension results in a lower half-life by 0.42 years, which

is much smaller than the patient effects described above. Receiving a kidney with a

perfect tissue-type match has a large effect of half-life, which is consistent with the fact

that they are less likely to result in an adverse immune reaction post-transplantation.

These estimates are quite stable across our instrumented specifications.

A comparison of estimates in Tables 5 and 6 indicates that many of the measures of

organ quality have positive effects on both choice and survival. Tissue type match

and donor death by head trauma are both strongly associated with both choice and

survival. That said, the association is not perfect: organs from younger donors are more
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likely to be accepted even though the survival effects are not significant. Likewise, the

kidney unobservable characteristic, ηj, has a significant effect on choice, but a small,

insignificant effect on survival.

6.3 Selection on Unobservables

An advantage of our framework is that it can be used to measure the correlation be-

tween survival and choice induced by unobservable characteristics. The correlation

on observable characteristics discussed above suggests that this channel may also be

important.

Table 7 presents these effects for the three specifications that use the scarcity instru-

ments. The top panel shows the effects of an increase in selectivity on acceptance and

on survival. We measure these effects by increasing νi,D in equation (3.3) by one stan-

dard deviation. The effects on survival are measured by computing the changes on

unobserved frailties νi,0 and νi,1 induced by their estimated correlation with νi,D. The

bottom panel shows the correlation between unobserved match-specific determinants of

choice and survival. We present these effects by reporting the impact of a one standard

deviation increase in εij,D on choices and post-transplant half-lifes.

We find that selective patients typically survive longer without a transplant and benefit

less from the typical transplant. A one standard deviation increase in νi,D selectivity

decreases the probability of acceptance by 4.4 percentage points. This magnitude is of

a similar order as the effect of a kidney from a donor that had a history of hypertension.

The net effect on survival due to a typical transplant is therefore negative. This patient

would need a sufficiently high quality or well-matched donor in order to benefit from a

transplant. Therefore, there is positive selection into treatment on the patient-specific

component of survival benefits. A comparison of the specifications shows that our

conclusion is not sensitive to the choice of instrument.

In contrast to selectivity, patient-donor specific factors do not induce significant se-

lection via choices. While we estimate the covariance between εij,D and εij,1 to be

positive, the effect is not statistically significant. This suggests that there is limited



36

positive selection into specific treatments based on unobservable match-level benefits.

7 LYFT in the Current Mechansism

7.1 Calculating Life Years from Transplant

Our model allows us to measure survival benefits for every potential transplant. For

each patient-donor pair, we compute the difference between the median survival time

with a transplant and median survival time without a transplant, measured from the

date of transplant. This measure is widely used in the literature on organ transplanta-

tion (Wolfe et al., 2008).

Specifically, for each pair (i, j), we define LYFT conditional on a set of covariates

Iij = {xi, qj, Dij, ηj, νi,D, νi,f} in our model as follows:

LY FT (Iij) = M(Yij|Iij)−M(Yi0 − tij(xi, qj)|Iij, Yi0 > tij), (7.1)

where M(Y |X) is the median of random variable Y conditional on X and tij(xi, qj) is

the time between patient i’s registration and the arrival of kidney j. We then compute

the expectation of LY FT (Iij) by drawing ηj, νi,D and νi,f from their conditional dis-

tributions given observables, decisions and observed survival outcomes using a Gibbs’

sampler.17 Therefore, this measure accounts for selection on unobservables induced by

the mechanism.

In order to assess the role of selection on choices and on unobservables, we also be

interested the expectation of LY FT (Iij) given only the observables xi and qj. In this

case, we integrate LY FT (Iij) over the unconditional distributions of ηj, νi,D, νi,f and

Dij.
17The sampler provides us with simulated draws of LY FT (Iij) from its distribution. To do this, we

generate a chain that fixes the parameters at the estimate θ̂. We generate 200,000 draws, burn-in the
first half and take one every 1,000 draws.
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7.2 Life Years from Transplant in the Mechanism

Table 8 presents the average estimated LYFT over all realized transplants. The first row

presents the average LYFT accounting for patient- and kidney-specific unobservables

and the decision to accept. The second row presents the results conditioning only

on the observables. The columns correspond to the specifications in Tables 5 and 6.

The average LYFT from our preferred specification is 8.63 years (column 2). Ignoring

selection on unobservables yields an an average LYFT of 7.68 years. This difference

suggests that there is positive selection on LYFT of patients into transplantation based

on unobservables. Column (1) reports analogous estimates from a specification that

does not use quasi-experimental variation from our scarcity instruments. The estimated

LYFT is biased and about one year smaller than our preferred estimate. This suggests

that observational studies such as Wolfe et al. (1999) may underestimate gains from

transplantation.

The second pair of rows of Table 8 report average survival without a transplant, sepa-

rately for the all patients and the subset of patients who received a transplant. Across

specifications, the untransplanted survival for patients that are transplanted is higher

than the patients thar are not. This postive selection on untransplanted survival ag-

gregates both selection due to choice and due to the mechanism.

7.3 Selection and LYFT

The positive selection on LYFT and on untransplanted survival reported in Table 8

above can take place along two margins: the patients that are transplanted and the

kidneys to which they are matched. This subsection further investigates these sources.

7.3.1 Patient Selection

To understand the importance of patient selection, we present the relationship between

(median) untransplanted survival and the average (median) transplanted survival from

all potential donors for each patient. Figure 3(a) presents the joint density between



38

2 4 6 8 10 12 14 16
Untransplanted Survival

0

5

10

15

20

25

30

35

40

45
S

ur
vi

va
l f

ro
m

 A
ve

ra
ge

 T
ra

ns
pl

an
ts

Binned Average Survival from 
Average Transplants
25th to 75th Percentile
1st to 99th Percentile

(a) Transplanted and Untransplanted Survival

-5 0 5 10 15 20 25
LYFT from Potential Transplants

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Untransplanted Patients
Transplanted Patients

(b) LYFT by Transplant Status

Figure 3: Patient Selection

these two quantities overlayed with a binscatter plot. Transplant and untransplanted

survival are strongly correlated with a slope of the conditional mean that is larger than

one. Therefore, patients that are expected to live long without a transplant also have the

highest life-year gains from a transplant. This result implies strong complementarities

between baseline health and transplantation.

When combined with the observation in Table 8 that transplanted patients have a higher

baseline survival, this complementarily suggests that patients that are transplanted are

likely to have higher LYFT due to selection on baseline health. However, there are

additional components of patient selection, from choice and from the priorities in the

mechanism.

The overall selection on LYFT by observed transplant status is presented in Figure

3(b). This figure plots the distribution of predicted LYFT across all of these potential

transplants. This distribution is shifted to the right for transplanted patients. The

mean LYFT for this group is 1.6 years higher than the untransplanted group.

Taken together, we find that the mechanism selects patients with higher average LYFT
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Figure 4: Patient-Kidney Matching

and that some of this selection comes from transplanting patients that are relatively

healthy at baseline. One way in which the mechanism achieves this is by making

patients wait.

7.3.2 Patient-Kidney Matching

The realized allocation also matches patients to kidneys from which they have greater

survival benefits as compared to the average kidney. Figure 4(a) plots the joint distri-

bution of LYFT from the realized donor for a transplanted patient against the LYFT

from all potential donors. The binscatter is below the 45-degree line, indicating that

the realized transplants generate greater than the average LYFT for a patient. This

finding that matches are selected advantageously complements the finding described by

Figure 3 which showed that the mechanism selects patients with higher than average

gains from transplantation.

The estimates of the choice and survival equations reported in Section 6 suggest that
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part of this advantageous matching comes from the correlation of patients’ acceptance

decisions with LYFT. Figure 4(b) summarizes this relationship in binscatter plots of

kidney-patient acceptance probability against LYFT for all potential transplants. It

shows two features. First, transplanted patients have a higher predicted probability of

acceptance than untransplanted patients. This pattern is expected given that accep-

tance is necessary for a transplant to occur.

Second, the predicted probability of accepting an offer is increasing in LYFT. As our

estimates suggest, patients are more likely to accept kidneys with greater life-year

benefits (based on both observable and unobservable characteristics). A regression

of acceptance probability on average LYFT, controlling for patient and donor fixed

effects, underlines this point.18 A one standard deviation increase in the match-specific

component of LYFT icreases the probability of acceptance by 1.10 percentage point.

Taken together, we find that the allocation matches kidneys to patients based on LYFT,

and that at least some of this selection is induced by choices in the mechanism.

7.3.3 Patient Selection vs Rematching

Figure 4(b) also provides insight into which of these two margins of assignment dom-

inates. The heterogeneity in survival across patients swamps the heterogeneity across

donors within a patient. In fact, a decomposition of the total variance in LYFT into a

patient-specific, donor-specific and a match-specific component (the remainder) shows

that the patient-specific component constributes to 5.80 years of the standard deviation

in LYFT. The donor-specific and the match-specific components account for 1.00 years

and 0.42 years respectively.19

These results suggest that the potential for increasing life-years by improving the match

between patients and donors without changing which patients are transplanted (re-

matching) is limited. Therefore, distributional constraints may limit the potential
18Specifically, we regressed the expected value of LY FTij conditional on {xi, qj , ηj , νi,D, νi,f} on the

probablility of acceptance given these same covariates, controlling for patient- and donor-specific fixed
effects.

19The standard deviation in LYFT is 5.91 years, which is the pythagorean sum of the three compo-
nents.
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gains from improved matching. In particular, maximizing life-year gains may mean

reallocating transplants away from the most urgent cases towards patients with longer

expected survival without a transplant, suggesting a potential trade-off between equity

and efficiency.

8 Potential for Further Increasing LYFT

We now turn to evaluating the performance of the mechanism on LYFT and quantifying

the importance of patient selection versus rematching. We do this by comparing the

average LYFT achieved by the realized assignment to alternatives, ranging from a

random assignment to one that maximizes LYFT. Throughout this exercise, we restrict

the sample to the set of patients that registered in 2000 to ease computation.

We focus on LYFT because extending patients’ lives is a prima facie objective of the

medical profession. Predicted LYFT from prior models was explicitly used by the

Kidney Transplantation Committee to guide the design.20 However, it may differ from

the objective of a planner. For example, the planner may place a larger weight on

life-year gains for urgently sick patients as compared to others.

A byproduct of our exercise will be a comparison of the types of patients that are trans-

planted under the alternative assignments. These results provide insight into the trade

off between maximizing LYFT and distributional or ethical motivations for evaluating

an assignment.

8.1 Comparison with Benchmark Assignments

We start with two extremal benchmarks – random assignment, and optimal assignment:

• The random assignment is simulated by sorting patients in a random order,

and successively assigning patients to kidneys at random from the set of feasible
20Our claim is based on an examination of the committee’s meetings prior to the 2014 reforms. In

fact, a mechanism that explicitly based waitlist priorities on LYFT was considered, but rejected on the
grounds of being complicated to implement. The final mechanism chosen retains several qualitative
features, including priority for patients high expected post-transplant survival for low-risk kidneys.
Details are available upon request.
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kidneys. For a kidney to be feasible for a patient, it must be biologically com-

patible and should arrive between the patient’s registration date and a simulated

death date without a transplant. The latter is drawn from that patient’s predicted

survival distribution.

• The optimal assignment is computed by maximizing the total LYFT from all

transplants. This benchmark considers an omniscient planner who knows xi, qj,

νi,D, νi,f , ηj, the patient’s death and each kidney’s arrival date. The planner

computes LYFT conditional on these characteristics and can dictate assignments.

Only feasible transplants are allowed and each patient can receive at most one

transplant.21

Comparison to the random assignment allows us to measure the increase in LYFT

achieved by the mechanism. Both selection of patients and advantageous matching of

kidneys to patients drive the difference. To decompose these sources, we evaluate two

alternatives that only reassign kidneys to other transplanted patients:

• The random amongst transplanted assignment is simulated by sorting trans-

planted patients in a random order, and successively assigning only these patients

to a kidney at random from the set of feasible kidneys.

• The optimal rematching assignment is computed by maximizing the total

LYFT from all transplants under the same information set as in the optimal

assignment. In addition to the feasibility constraint, a patient in this assignment

can be transplanted only if she was transplanted in the data.22

21Specifically, we simulate the unobservables νi,D, νi,f , ηj from the distribution of these random
variables conditional on the estimated parameters and the decisions observed in the data.We also
draw a death date from the estimated untransplanted survival distribution. Call a simulated draw
for each patient/donor pair LY FT sij . Let aij = 1 if i is assigned j and aij = 0 otherwise. Let
cij = 1 if i is feasible for j and cij = 0 otherwise. We solve the problem maxa

∑
i,j aijLY FTij subject

to aij (1− cij) = 0,
∑
i aij ≤ kj , where kj is the number of kidneys available from donor j, and∑

j aij ≤ 1.
22As in calculations of average LY FT (Iij), we simulate the unobservables from their conditional

distributions given the data of these random variables to generate draws LY FT sij . We then solve the
problem in footnote 21 above with the additional constraint aij = 0 if i was not transplanted in the
data.
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Figure 5: LYFT Under Counterfactual Allocations

The theoretical bounds based on optimal assignments use information on factors that

induce selection, νi,D, νi,f and ηj. However, the factors νi,D and νi,f may not be observed

by the planner and may be hard to ellicit in a mechanism. Similarly, ηj may be hard to

condition on. These observations motivate a benchmark that uses only the information

in the current set of observables:

• The optimal assignment based on observables is computed by maximizing

the total expected LYFT conditional on xi and qj by assigning patients to a

feasible kidney. The planner has foresight on when patients depart and kidneys

arrive.23

Figure 5 presents the results. The average LYFT for the realized assignment amongst

patients who registered in 2000 is 7.97 years. This is analogous to the results in Table

8 above.

The realized assignment achieves about a 0.88 year or 12.4% improvement in average

LYFT over random assignment. Both selection of patients and the matching of patients

to kidneys are important. If the transplanted patients were assigned a random kidney,

then the increase would only be 4.6 months. This quantity represents the increase rel-
23We modify the problem in footnote 21 by replacing LY FT sij with its expectation given xi and qj .

The factors νi,D, νi,f and ηj are drawn from their unconditional distributions.
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ative to random assignments that is accounted for by patient selection. The remainder

is due to patient-kidney matching.

Although the mechanism does better than a random assignment, there is significant

scope for further increasing LYFT. Under the optimal assignment, average LYFT is

12.07 years, about 4.1 years higher than the LYFT achieved in the realized assignment.

A significant fraction, 14.3%, of these potential gains can be achieved by rematching

patients and kidneys while keeping the set of transplanted patients fixed. However,

consistent with Figure 4(a), most of the potential gains from the optimal allocation

come from changing the set of patients that are transplanted.

Finally, we find that using the observables to determine assignments achieves a signifi-

cant fraction, but not all of the potential increase. The average LYFT under the optimal

assignment based on observables is 9.12 years. Although this is 2.9 years less than the

theoretical maximum, it is about 1.2 year higher than the average LYFT achieved by

the mechanism. Therefore, in principle, average LYFT could be substantially increased

by targeting transplants using observed characteristics rather than choices.

8.2 The Planner’s Dilemma

An important conclusion from Figure 5 is that LYFT could be increased by up to

51.4%. But, this requires changing the set of patients that are transplanted. We

now show that this change creates shifts in the demographics and health conditions of

transplanted patients, creating a potential barrier due to distributional considerations

and the need to weigh patient urgency.

Table 9 presents the distribution of patient age, share diabetic, and share on dialysis at

registration for patients transplanted under the random assignment, the actual assign-

ment and the optimal assignment. Patients who are transplanted under the realized

assignment are younger, less likely to be diabetic, and less likely to be on dialysis than

patients selected at random. Similarly, transplanted patients are younger and healthier

under the optimal assignment than under the realized assignment. The final row shows

the average predicted survival without a transplant among the patients who are trans-
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planted. The average untransplanted survival for patients transplanted in the optimal

assignment is 0.7 years longer than under the random assignment and 0.6 years longer

than under the realized assignment.

These shifts highlight the distributional effects of optimizing LYFT. The realized out-

come increases LYFT over random assignment in part by selecting younger, health-

ier patients to transplant. The optimal assignment exacerbates these distributional

changes. These results are driven by the strong correlation between survival with and

without a transplant illustrated in Figure 3(b). Therefore, in order to maximize LYFT

given the scarcity of kidneys available, the planner must transplant healthier patients

and let sicker patients go untransplanted.

This stark trade-off represents a moral dilemma for several reasons. First, society

may have a moral imperative to transplant sick patients who may soon die, even if

doing so implies reducing total life years gained from transplantation. Second, concerns

about discriminating based on patient characteristics stand in the way. In particular,

our results suggest that an optimal assignment should target transplants at younger

patients. Proposed priorities based on age have came into conflict with concerns about

age discrimination when previous reforms were being considered.

9 Conclusion

An hitherto overlooked goal in the design of assignment mechanisms is to produce

matches that improve associated outcomes such as patient survival or student achieve-

ment. We take a first step towards an empirical analysis that incorporates these out-

comes by studying the LYFT generated using the pool of deceased donor organs. To do

this, we show how to use variation generated in an assignment mechanism to estimate

and identify a model that jointly considers choices and outcomes.

We find that the waitlist mechanism used to allocate deceased donor kidneys does

better than a random allocation, but leaves much scope for improvement. As compared

to the average patient, the mechanism transplants patients for whom life would be
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extended longer and matches them to more suitable than average kidneys. However,

there is scope for increasing the average LYFT by a total of 4.1 years per kidney. The

potential economic value of realizing these gains is enormous. Approximately 14.3% of

these benefits could be realized if dictating assignments based on observed patients and

donors were possible. Aldy and Viscusi (2007) place the value of a statistical life year

at $300,000. At even half this value and ignoring costs savings on dialysis, the potential

benefits from an increase of 1 year of life from the approximately 13,000 deceased donor

kidneys transplanted each year accrues to almost $2 billion per year.

Realizing most of these gains will require confronting important distributional consid-

erations. Specifically, we find that survival with and without a transplant is strongly

correlated, and that most of the heterogeneity in the benefits from a transplant is

across patients rather than match-specific. Therefore, the planner faces a dilemma be-

tween transplanting the sick and transplanting those for whom life will be extended the

longest.

We open several important avenues for further research. First, our current approach

evaluates benchmark assignments, rather than the equilibria of alternative mechanisms

that allow agents to express choice. It would be useful to combine recent approaches

for analyzing equilibria of alternative mechanisms with a model of outcomes. Such a

model would allow us to consider the selection induced via choices in a counterfactual

environment. Second, we focus on an aggregate measure of LYFT that abstracts away

from distributional considerations. Formalizing these constraints and incorporating

them into the design problem is valuable. Solving these two challenges would allow a

design approach that better speaks to the considerations central to policymaking. The

trade-off between equity and efficiency, which is central to the exercise of designing

mechanisms particularly when outcomes are the target, deserves further research in

other contexts as well.
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Table 5: Choice Estimates
Acceptance Model (lambda = 0.6 for Y1 and 0.5 for Y0)

(1) (2) (3) (4)

Patient Characteristics

Diabetic -0.004 -0.006 -0.006 -0.006

(0.000) (0.001) (0.001) (0.001)

CPRA -0.012 -0.013 -0.013 -0.013

(0.000) (0.001) (0.001) (0.001)

On Dialysis at Registration 0.001 0.003 0.004 0.004

(0.001) (0.001) (0.001) (0.001)

Age at Registration 0.002 0.003 0.003 0.003

(0.001) (0.001) (0.001) (0.001)

Donor Characteristics

Age < 18 0.135 0.153 0.152 0.152

(0.008) (0.009) (0.009) (0.009)

Age 18-35 0.111 0.134 0.134 0.134

(0.009) (0.010) (0.009) (0.009)

Age 50+ -0.058 -0.071 -0.073 -0.072

(0.002) (0.003) (0.003) (0.003)

Cause of Death - Head Trauma 0.057 0.066 0.068 0.067

(0.006) (0.007) (0.008) (0.008)

History of Hypertension -0.024 -0.029 -0.030 -0.029

(0.001) (0.001) (0.002) (0.002)

0.217 0.220 0.218

(0.002) (0.002) (0.002)

Offer Characteristics

Perfect Tissue Type Match 0.118 0.116 0.113 0.115

(0.008) (0.009) (0.009) (0.009)

Log Waiting Time (Years) 0.005 0.016 0.025 0.017

(0.000) (0.001) (0.001) (0.001)

Scarcity

Log(1+#Future Donors) 0.002 -0.009

(0.001) (0.001)

Log(1+#Future Offers) -0.016 -0.015

(0.001) (0.001)

Instruments No Instruments # Future Donors # Future Offers

Unobservable (ηj)

# Future Donors, 
# Future Offers

Notes: Selected estimates of the marginal effect on the probability of acceptance of a one standard deviation increase in

each continuous covariate and a unit increase in each binary covariate Marginal effects are computed at the median value

of observable covariates, integrating over the distribution of all unobservables. We generate 250000 draws and burn-in

the first 50000 draws. We thin the chain by taking every 10 draws. All columns control for DSA fixed effects, blood type

fixed effects, and registration year fixed effects. Other patient characteristics include dialysis time at registration, BMI at

departure, patient serum albumin, indicators for female, diabetic, CPRA=0 and prior transplant. Donor characteristics

include indicators for other causes of death, expanded criteria donor, donation after cardiac death and male, and bins of

creatinine levels. Other offer characteristics include indicators for 2 A, 2 B, 2 DR mismatches, not the same blood type but

compatible, regional offer, and local offer, indicator and interactions between several patient and donor characteristics.

See Appendix Table D.11 through D.13 for detailed estimates.
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Table 6: Survival Estimates
Survival Model (lambda = 0.6 for Y1 and 0.5 for Y0)

(1) (2) (3) (4)

Panel A: Survival without Transplant

Patient Characteristics

Diabetic -1.391 -1.377 -1.378 -1.378

(0.031) (0.030) (0.030) (0.030)

CPRA 0.081 0.082 0.082 0.082

(0.031) (0.030) (0.030) (0.030)

On Dialysis at Registration -0.903 -0.901 -0.902 -0.902

(0.040) (0.039) (0.039) (0.039)

Age at Registration -1.059 -1.052 -1.052 -1.052

(0.025) (0.025) (0.025) (0.025)

Panel B: Survival with Transplant

Patient Characteristics

Diabetic -3.114 -3.201 -3.207 -3.205

(0.098) (0.109) (0.114) (0.114)

CPRA -0.052 -0.062 -0.058 -0.062

(0.096) (0.096) (0.095) (0.095)

On Dialysis at Registration -2.041 -2.079 -2.081 -2.077

(0.110) (0.114) (0.115) (0.115)

Age at Registration -3.379 -3.409 -3.418 -3.413

(0.113) (0.120) (0.123) (0.123)

Donor Characteristics

Age < 18 0.730 0.798 0.769 0.790

(0.826) (0.830) (0.832) (0.832)

Age 18-35 -0.564 -0.531 -0.550 -0.531

(0.936) (0.931) (0.938) (0.937)

Age 50+ 0.761 0.637 0.640 0.610

(1.881) (1.857) (1.858) (1.854)

Cause of Death - Head Trauma 0.623 0.681 0.662 0.675

(0.310) (0.320) (0.315) (0.314)

History of Hypertension -0.391 -0.420 -0.413 -0.420

(0.121) (0.124) (0.124) (0.124)

0.227 0.191 0.225

(0.175) (0.180) (0.178)

Offer Characteristics

Perfect Tissue Type Match 1.924 1.930 1.910 1.930

(0.893) (0.895) (0.900) (0.899)

Log Waiting Time (Years) -0.432 -0.638 -0.653 -0.647

(0.061) (0.167) (0.178) (0.177)

Instruments No Instruments # Future Donors # Future Offers

Unobservable (ηj)

# Future Donors, 
# Future Offers

Notes: Select estimates of the marginal effect on half-life of a one standard deviation increase in each continuous covariate

and a unit increase in each binary variable. Marginal effects are computed at the median value of observable covariates,

integrating over the distribution of all unobservables. The specifications have the same patient, donor and offer covariates

as in Table 5 other than the scarcity instruments. Standard errors are in parentheses. See Appendix Table D.7 through

D.10 for detailed estimates.
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Table 7: Correlation Table
Unobservables Table (lambda = 0.6 for Y1 and 0.5 for Y0)

(1) (2) (3)

Probability of Acceptance -0.044 -0.044 -0.044

(0.001) (0.001) (0.001)

Post-Transplant Survival -0.141 -0.120 -0.141

(0.134) (0.137) (0.134)

Survival without a Transplant 0.235 0.232 0.230

(0.053) (0.056) (0.055)

Probability of Acceptance 0.067 0.068 0.068

(0.001) (0.001) (0.001)

Post-Transplant Survival 0.126 0.081 0.120

(0.264) (0.265) (0.263)

Instruments # Future Donors # Future Offers

Selectivity (ν i,D)

Match value (ε ij,D)

# Future Donors, 
# Future Offers

Notes: Estimates of the effects of one standard deviation increases in choice unobservables on probability of acceptance

and survival. Survival durations are calculated using half-lifes. Survival effects from changes in εij,D are computed using

the expected change in εij,1 from a one standard deviation increase in εij,D from zero, given the estimated covariance

between εij,D and εij,1. Likewise, survival effects from changes in νi,D are computed using the expected changes in

νi,1 and νi,0 from a one standard deviation increase in νi,D from zero, given the estimated covariances between νi,D,

νi,1, and νi,0. All effects are computed at the median value of observable covariates. Columns (1) through (3) use

specifications corresponding to columns (2) through (4) in Tables 6 and 5.
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Table 8: Life-Years from Transplantation
lambda = 0.6 for transplanted survival; lambda = 0.5 for untransplanted survival

(1) (2) (3) (4)

Life Years from Transplant

Accounting for Unobservables 7.98 8.63 8.64 8.64

Observables Only 7.95 7.68 7.73 7.68

Untransplanted Survival

All Patients 6.89 6.86 6.86 6.86

Transplanted Patients 7.24 7.16 7.16 7.16

Post-Transplant Survival 15.22 15.79 15.81 15.81

Instruments No Instruments # Future Donors Future Offers# Future Donors, 
# Future Offers

Notes: Life years from transplant and survival durations presented in the table are calculated using half-lifes. Future
donors (offers) is defined as the number of donors (offers) in the next 4 quarters (see Table 4 for detailed definition). All
columns control for patient, donor and offer characteristics, which are defined analogously as in Table 6 Panel B and
Table 5.

Table 9: Characteristics of Transplanted Patients

All Patients

Random Assignment Realized Assignment Optimal Assignment

LYFT LYFT LYFT

(1) (2) (3) (4) (5) (6) (7)

Age < 18 2.3% 2.7% 11.53 3.4% 12.99 3.7% 12.96

Age 18 - 35 12.8% 14.0% 9.09 16.0% 11.32 18.6% 10.49

Age 36 - 59 59.3% 59.9% 6.36 60.9% 7.94 62.2% 7.85

Age >= 60 25.7% 23.4% 3.45 19.7% 4.45 15.5% 4.32

Diabetic 36.8% 33.9% 4.27 28.6% 5.42 26.8% 5.48

On Dialysis at Registration 87.9% 87.9% 6.13 86.2% 7.78 85.9% 7.89

Untransplanted Survival 6.16 6.37 - 6.51 - 7.09 -

 Transplanted 
Patients

 Transplanted 
Patients

 Transplanted 
Patients



1

Appendix for “An Empirical Framework for Sequential Assignment:

The Allocation of Deceased Donor Kidneys”

Nikhil Agarwal, Itai Ashlagi, Michael Rees, Paulo Somaini, Daniel Waldinger.

A Data Appendix

A.1 Obtainting Original Data Files

The data reported here have been supplied by UNOS as the contractor for the Organ

Procurement and Transplantation Network (OPTN). The interpretation and reporting

of these data are the responsibility of the author(s) and in no way should be seen as an

official policy of or interpretation by the OPTN or the U.S. Government.

We will retain copies of the data until permitted by our Data Use Agreement with the

Organ Procurement and Transplantation Network (OPTN). Further, we plan to send

OPTN a copy of our replication archive if and when we are required to destroy our

dataset. Researchers interested in using our dataset should directly contact OPTN to

obtain permission: https://optn.transplant.hrsa.gov/data/request-data/ We are happy

to provide copies of our data to researchers with permission and a data use agreement

with the OPTN.

A.2 Data Description

Our data on patients, donors, transplants, and offers are based on information submit-

ted to the Organ Procurement and Transplant Network (OPTN) by its members. The

main datasets are the Potential Transplant Recipient (PTR) dataset and the Standard

Transplantation Analysis and Research (STAR) dataset.

The PTR dataset contains offers made to patients on the deceased donor kidney wait-

list that were not automatically rejected based on pre-specified criteria. Information

includes identifiers for the donor, patient, and patient history record that generated

the offer; the order in which the offers were made; each patient’s acceptance decision;
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and if the offer was not accepted, a reason of rejection. Each offer record also contains

certain characteristics of the match, including the number of tissue type mismatches.

The STAR dataset contains separate files on deceased donor characteristics, patient

histories, patient characteristics and transplant outcomes, and follow-up data, which

are collected at six months and then annually, for kidney transplants. The patient and

donor characteristics from these datasets are used to estimate our models of acceptance

behavior and patient survival. The patient characteristics and transplant outcomes

dataset contains patient death information. For patients who received a transplant

through the deceased kidney donor waitlist, the follow-up dataset records whether the

patient is still alive at the follow-up point. This information allows us to compute

a survival duration for each patient. UNOS also provided supplemental information,

including the ordering of distinct match runs conducted for the same deceased donor;

the transplant centers of donors and patients in our dataset; and dates of birth for

pediatric candidates, who joined the waitlist before turning 18 years of age.

The data contain identifiers that allow us to link the offer and acceptance data to pa-

tient and donor characteristics. Each deceased donor has a unique identifier. Similarly,

each patient registration generates a unique patient waitlist identifier. Because patients

may move to different transplant centers or be registered in multiple centers simulta-

neously, some individual patients have multiple waitlist identifiers. For this study, we

focus on the earliest registration of each patient. The follow-up data contain a unique

identifier for each transplant, allowing us to connect the follow-up information to each

transplanted patient. The patient history file contains a unique patient record identifier

corresponding to a particular state of the patient on the waitlist, including the patient’s

CPRA, activity status, and pre-set screening criteria. Each offer in the PTR dataset

contains the identifiers for the donor, the patient registration, and the patient history

record that were used in the match run. When appropriate, we de-duplicate offers so

that each patient can receive at most one offer from each donor.
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A.3 Sample Selection

We consider the first waiting period for patients who were actively waiting for a deceased

donor kidney between January 1, 2000 and December 31, 2010. This restriction is to

avoid selection arising from patients that remain on the list at the begining of the

sample period. We omit patients who received a living donor transplant as their first

transplant or were cross-registered for other organs simultaneously. Most patients that

can receive a living donor receive one within the first year of registration and would

prefer such a transplant to a deceased donor transplant. The latter restriction is made

to focus on a more homogeneous group of patients.

In addition, we made a number of other more minor adjustments to work with a more

cohesive sample of patients. The number of patients that survive each step of the

sample selection process is described in Table A.1.

A small minority of patients are simultaneously registered in multiple donor service

areas – our analysis keeps only one waitlist record from each patient. If the patient

received a kidney transplant through the deceased donor waitlist before December 31,

2015, we keep the waitlist record with the earliest transplant date; if the patient re-

mained untransplanted as of December 31, 2015, we keep the waitlist record with the

earliest registration date.24 Next, we exclude a small number of patients who received

a prior kidney transplant to focus on survival effects from the first transplant. We also

exclude patients removed for administrative reasons. These are patients who were listed

on the waitlist by error, who departed because transplant took place but no transplant

was recorded in the STAR dataset, and who could no longer be contacted while waiting

on the waitlist. These departure reasons are recorded in the STAR patient and the

transplant outcome dataset.

Then, we keep the waitlist records with registration dates between Janurary 1, 2000 and

December 31, 2010 because we do not have data on offers prior to 2000. For example,

an untransplanted patient active between 2000 and 2010 may not be included in the
24We use transplant data through December 31, 2015 to be consistent with the sample period during

which we observe patient survival.
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final sample because said patient’s first waitlist registration is before 2000. This step

amounts to be one of the largest cuts.

Finally, we exclude patients who received a transplant through non-standard allocations

rules. This can occur, for example, if the donor is an armed service member; if the donor

specified a particular recipient (directed donation); if there is a medical emergency or

expedited placement attempt; if the kidney is not offered due to operational issue.

We identify these cases by analyzing the PTR data as a large number of offers will

be bypassed with a code indicating one of these reasons. In some cases, there is also

text specifying specific circumstances justifying a rejection, which we parse to identify

invalid offers in cases where the refusal code does not provide a specific reason.

Table A.1: Sample Selection: Patients

Patient's first waiting period that intersects the period 2000-2010 308,370 372,681 

Exclude patients who received living donor transplants in their first waiting period 241,209 295,075 

Exclude patients were waiting for other organs in their first waiting period 213,685 244,580 

Keep one kidney waitlist record for each patient 213,685 213,685 

Patients with multiple waitlist records 32,191 32,191 

Patients with single waitlist record 181,494 181,494 

Exclude patients who had a previous kidney transplant 212,258 -

Exclude patients with administrative waitlist removal reason 207,316 -

Restrict to patients whose remaining waitlist registration is between 2000 and 2010 178,944 -

Exclude patients who received non-standard kidney allocations 175,518 --

Number of 
Patients

Number of Wait 
List Records

Our sample of deceased kidney donors comes from the intersection of the STAR deceased

donor dataset and the PTR dataset. These are deceased donors whose kidneys were

allocated between January 1, 2000 and December 31, 2010 to patients on the waitlist.

We further exclude donors allocated using non-standard rules and restrict to donors

who were offered to patients in the sample.

Table A.2 details the number of donors that survive each filter. The largest cuts come

from the last step. This is because the priority for waiting time implies that many offers

are only given to patiens that registered prior to 2000.

We consider a sample of offers made betwee January 1, 2000 and December 31, 2010

that could have resulted in transplants between our patient and donor samples. The
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Table A.2: Sample Selection: Donors

Number of Donors

Deceased donors offered to any kidney waitlist patients between 2000 and 2010 71,738 

Exclude deceased donors offered through non-standard kidney allocations 67,993 

Restrict to deceased donors offered to patients in the sample 61,453 

PTR dataset includes records of all initial patient contacts and patients skipped due to

administrative reasons irrespective of whether an offer was made. This happens mainly

for three reasons. First, some patients that were contacted have lower priority than the

patients that accepted and were transplanted the kidneys from a donor. In this case, we

determine the cutoff point for each donor, and exclude all offers made after the cutoff.

Second, some match runs were abandoned due to logistical reasons, and were re-run.

We only keep the offers from the last match run for a donor. Third, in some cases,

the PTR dataset records administrative or logistical reasons for skipping patients in

the offer sequence. This can occur, for example, if the kidney has antigens that would

result in an immune response; a patient was bypassed due to logistical reasons; or if the

kidney does not meet the patient’s minimum criteria. We also exclude non-responsive

offers, for example, because either the surgeon or the patient is unavailable or because

the patient is temporarily inactive/unsuitable for transplantation. Finally, we restrict

to offers made to the patients in the sample. This step cuts the offer sample by 41%

because many offers are made to patients that were not in our sample, for example, to

patients that registered prior to 2000. Table A.3 describes how we arrive at the final

sample of offers.

Table A.3: Sample Selection: Offers

Number of Offers

Offers made between 2000 and 2010 from donors in the sample 14,888,539 

Exclude non-responsive offers 14,239,214 

Restrict to offers made to patients in the sample 8,444,106 
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A.4 Patient Survival

The patient characteristics and transplant outcomes dataset collects patient death dates

from the waitlist record and periodically from the social security master file. In a small

minority of cases, death dates are inconsistent across multiple waitlist records for a

patient, in which case we assume that earlier death dates take precedence over later

ones. Transplant dates and death dates are truncated on December 31, 2015, because

death records after this date are inconsistently populated. For patients who received a

transplant or died after December 31, 2015, we treat them as untransplanted or alive,

respectively, as of December 31, 2015.

Among 175518 patients in the sample, we observe death dates before December 31,

2015 for 80168 of them. Of these, 55476 are untransplanted patients and 24692 are

transplanted. Patients from whom we do not observe death are censored with an

observed survival duration needs to be computed. The rules differ for transplanted

and untransplanted patients. For transplanted patients, we censor on the date of the

second transplant if a second transplant took place before December 31, 2015; on the

day after transplant if there is no follow-up information for the patient corresponding

to the transplant; on the date when the patient is lost to follow-up if the patient is lost

to follow-up prior to December 31, 2015; and on Decmeber 31, 2015 if the patient is

known to be alive as of December 31, 2015. For untransplanted patients, we censor on

December 31, 2015 if the patient is known to be alive as of December 31, 2015; and on

the date when the patient exits the waitlist if no death date is available and the exit

day is prior to December 31, 2015.

Table A.4 presents a break down of censor reasons and their corresponding censor dates

for the patient sample. Nearly one half of the patient sample is uncensored, and among

censored patients, the vast majority (73%) are censored on December 31, 2015. Since

December 31, 2015 is an exogenously determined date, patients censored on the date

should be similar to uncensored patients in terms of potential outcomes. We expect

that this censoring date does not induce selection bias that might confound our survival

analysis.
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Table A.4: Censor Reason

Censor Reason Censor Date # Patients

Transplanted Patients

Retransplant before Dec 31, 2015 Retransplant date 3,581

No follow-up information One day after transplant 979

Lost to follow-up before Dec 31, 2015 Date lost to follow up 5,856

Known to be alive as of Dec 31, 2015 December 31, 2015 57,215

Untransplanted Patients

Known to be alive as of Dec 31, 2015 December 31, 2015 12,370

No death date and depart the waitlist before Dec 31, 2015 Date departing waitlist 15,349

B Estimation Appendix

B.1 Gibbs’ Sampler

Recall that our model is given by

yi0 = B (Yi0; ρ0) = xiβx + νi,0

yij = B (Yij; ρ1) = χ (xi, qj)αx,q + αηηj + νi,1 + εij,1

Dij = 1 {yij,D = χ (xi, qj) γx,q + ziγz + ηj + νi,D + εij,D > 0} ,

where we allow for νi = (νi,D, νi,1, νi,2) ∼ N (0,Σν) and εij = (εij,1, εij,D) ∼ N (0,Σε).

There are several challenges in estimating this model. First, we often observed censored

values of yi0 and yij. We perform a data augmentation step given the parameters and

the censoring point to solve this issue. For yij, the data augmentation step is necessary

only in cases for which Tij = 1.

Second, Dij is a binary variable. As is standard in discrete choice models, we perform

a data augmentation step to draw yij,D given the observed decisions. This step is

necessary for the observed values of Dij.

Third, the model incorporates rich correlations between the different observations via ηj,

νi and εij. In particular, due to these terms, the covariance matrix between {yi0}i {yij}ij
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and {yij,D}ij conditional on the obserables and the parameters does not have a simple

block-diagonal structure that would allow us to compute simple posterior distributions.

To solve this problem, we re-write these variables using a factor structure such that the

posterior distribution of the parameters of each equation is conditionally independent

of the others given the factors. Specifically, we rewrite νi as

νi,D = fi,1

νi,f = fi,2

νi,0 = βν1fi,1 + βν2fi,2 + ε̃i0

where fi,1, fi,2 and εi0 are each independently distributed mean-zero normal random

variables with variances σ2
1, σ2

2 and σ2
ε̃,0. This structure places no restrictions on the

covariance matrix Σν . Similarly, we write εij as

εij,1 = αεfij,3 + ε̃ij,1

εij,D = fij,3 + ε̃ij,D

where fij,3, ε̃ij,1 and ε̃ij,D are independently distributed mean-zero normal random vari-

ables with variances σ2
3, σ

2
ε̃,1 and σ2

ε̃,D. We normalize the variances σ2
3, and σ2

ε̃,D to 1.

Finally, we set

ηj = fj,4

with variance σ2
4. The main difference between f·and ε̃· is that it is sufficient to condition

on the former in order to render the models above as conditionally independent.

Therefore, the parameters we are interested estimating in are the co-efficients in each

equation, β = (βx, βν1, βν2), α = (αx,q, αη, αν1, αε), γ = (γx,q, γz), and the variances

σ2
ε̃,0 = V (ε̃i0), σ2

ε̃,1 = V (ε̃ij,1) and σ2
l = V (fl) where l ∈ {1, 2, 4} is the l-th factor.

For simplicity of notation, we will collect the coefficients in the vector θ and the stan-

dard deviations in the vector σ, with σε̃ and σf denoting the sub-vectors for ε̃ and f

respectively. And, with some abuse of notation, we collect yi0, yij and yij,D for all i and
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j in y.

Following standard practice, we assume diffuse conjugate and independent priors for

each of these parameters. Specifically, we model the priors α, β and γ using a mean-

zero independent normal distribution with variances equal to 1000 and the prior for

the variances σ2
ε̃,0, σ2

ε̃,1 and σ2
l using independent inverse-Wishart distributions with

parameters (3, 3). These priors are diffuse; thus, they have a negligible impact on our

estimates.

The Gibbs’ sampler starts with an initial draw y0, θ0, σ0 and f 0 and generates a chain

of length K by iterating through the following steps for each k ∈ {0, . . . , K − 1}:

1. Data Augmentation: Sample yk+1
i0 , yk+1

ij for censored observations and yk+1
ij,D for

observed decisions given θk, σk and fk from truncated normal distributions.

2. Sample Coefficients: Sample θk+1 given yk+1, fk, the standard deviations σk

and the prior distribution from a multi-variate normal distribution.

3. Sample Variances: Sample σ2,k+1
ε̃,0 and σ2,k+1

ε̃,1 given yk+1, fk, the parameters

θk+1 and the prior distribution from a inverse-Wishart distribution.

4. Sample Factors: For each l ∈ {1, 2, 3, 4}, sample fk+1
·,l given yk+1, the parame-

ters θk+1, σk+1
ε̃ , σkf , and the remaining factors fk+1

·,1 , . . . , fk+1
l−1 and fk·,l+1, . . . , f

k
4 .

5. Sample Factor Variances: Sample σ2,k+1
l for l ∈ {1, 2, 4} given fk+1 and the

prior distribution from an inverse-Wishart distribution.

We draw a chain of length K =200,000 and burn 50,000 draws to allow the chain to

convergence. We only keep one every 10 draws to save some computation time and

reduce the autocorrelation in the resulting chain. We visually inspect the chains and

ensure that the potential scale reduction factor is below 1.1 for each of the parameters.

The distributions in each step can be solved for in closed-form as detailed below:

1. Conditional distributions for yi0, yij and yij,D given θ, f and σ:
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(a) For each i, j pair such that Dij is observed, the distribution of yij,D condi-

tional on γ, f and Dij is a one-sided truncated with mean E [gij,D|γ, fij] and

unit standard deviation. The distribution is truncated below at 0 if Dij = 1

and above at 0 otherwise.

(b) For each i such that yi0 is censored, the distribution of yi0 conditional on

β and f is a one-sided truncated normal with mean E [yi0|β, fi1, fi2] and

standard deviation σε̃,0. The distribution of yi0 is truncated below at the

censoring duration.

(c) For each observed transplant such that yij is censored, the distribution of yij
conditional on αk, fk is a one-sided truncated normal with mean E [yij|α, f ]

and standard deviation σε̃,1. The distribution of yij is truncated below at

the censoring duration.

2. Posterior distributions of the co-efficients α, β and γ given y, f , σ and the priors.

Since yi0, yij and yij,D are mutually independent conditional on f , the parame-

ters α, β and γ are each co-efficients in a linear regression model with normally

distributed errors. Therefore, the posterior distributions of each of these terms is

given by a multivariate normal distribution with closed-form means and variances

(see Gelman et al., 2014, Chapter 14.2).

3. Posterior distributions of σ2
ε̃,0 and σ2

ε̃,1 given y, f , σ and the priors. As argued

above, yi0, yij are mutually independent conditional on f . Therefore, the distri-

butions of σ2
ε̃,0 and σ2

ε̃,1 are inverse-Wishart with parameters given in Chapter 14.2

of Gelman et al. (see 2014).

4. Posterior distributions of f given y, θ and σ:

(a) The distribution of fi,1 conditions on the residual fi,1+ 1
βν1
ε̃i0 = 1

βν1
(yi0 − (xiβx + βν2fi,2))

and σ1 throughout; on the residual fi,1+ε̃ij,D = yij,D−[χ (xi, qj) γx,q + ziγz + ηj + fij,3]

for all j such that Dij is observed; and on the residual fi,1 + 1
αν1
ε̃ij,1 =

1
αν1

[yij − (χ (xi, qj)αx,q + αηηj + +fi,2 + αεfij,3)] if Tij = 1. These residuals
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have prior mean zero and variances σ2
1 + σ2

ε̃,0
β2
ν1
, σ2

1 +σ2
ε̃,1 and σ2

1 + σ2
ε̃,1
α2
ν1

repectively.

The mean is the precision-weighted average of the residuals conditioned on,

and the variance is the inverse of the sum of σ−2
1 and the precisions of each

residual.

(b) The distribution of fi,2 is analogous, where we condition on the residual
1
βν2

(yi0 − (xiβx + βν1fi,1)) and σ2 throughout; and on the residual yij −

[χ (xi, qj)αx,q + αηηj + αν1fi,1] if Tij = 1.

(c) The distribution of fij,3 is analogous, where we conditions on αε throughout;

on yij,D− [χ (xi, qj) γx,q + ziγz + ηj + fi,1] for all j such that Dij is observed;

and on 1
αε

(yij − [χ (xi, qj)αx,q + αηηj + fi,2]) if Tij = 1. Observe that σ3 is

normalized to 1.

(d) The distribution of fj,4 is analogous, where we condition on σ4 throughout;

on yij,D−[χ (xi, qj) γx,q + ziγz + fi,1 + fij,3] for all i such that Dij is observed;

and on 1
αη

(yij − [χ (xi, qj)αx,q + fi,2 + αεfij,3]) if Tij = 1.

5. The variances σ2
l for l ∈ {1, 2, 4} follow an inverse-Wishart distributions given the

prior and respectively, {fi,1}, {fi,2} and {fj,4}.

C Theoretical Appendix

C.1 Proof of Lemma 1

For simplicity of notation, denote qn = (qj1 , . . . , qjn), qn−1 =
(
qj1 , . . . , qjn−1

)
, and

the vector D̃in =
(
Diji,1 , . . . , Dijn

)
. Assumption 2 implies that P

[
Tiji,n = 1|qJi , z

]
=

P
[
D̃in−1 = 0, Diji,n = 1|qJi , z

]
is equal to the observed quantity P

[
Tiji,n = 1|qn, z

]
, and

is therefore identified. Similarly, if P
[
Tiji,n = 1|q, z

]
> 0, then Assumption 2 implies

that

E
[
Yiji,n|Tiji,n = 1, qJi , z

]
= E

[
Yiji,n|D̃in−1 = 0, Diji,n = 1, qJi , z

]
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is identified because it is equal to E
[
Yiji,n|Tiji,n = 1, qn, z

]
. Therefore, it remains to

show that E
[
Yi0|Tiji,n = 1, qJi , z

]
is identified. First, re-write

E
[
Yi0|Tiji,n = 1, qJi , z

]
Pr
[
Tiji,n = 1|qJi , z

]
=E

[
Yi0|Tiji,n = 1, qn, z

]
Pr
[
Tiji,n = 1|qn, z

]
=E

[
Yi0|D̃in−1 = 0, Dijn = 1, qn, z

]
Pr
[
D̃in−1 = 0, Dijn = 1|qn, z

]
=E

[
Yi0|D̃in−1 = 0, qn, z

]
Pr
[
D̃in−1 = 0|, qn, z

]
− E

[
Yi0|D̃in = 0, qn, z

]
Pr
[
D̃in = 0|qn, z

]
=E

[
Yi0|D̃in−1 = 0, qn−1, z

]
Pr
[
D̃in−1 = 0|, qn−1, z

]
− E

[
Yi0|D̃in = 0, qn, z

]
Pr
[
D̃in = 0|qn, z

]

where the last expression is observed. The first equality above follows from Assumption

2, the second equality is definitional, the third equality follows from set inclusion and

the last from Assumption 2. Thefore, since Pr
[
Tiji,n = 1|qJi , z

]
is identified and strictly

positive, E
[
Yi0|Tiji,n = 1, qJi , z

]
is identified.

C.2 Proof of Lemma 2

For any k ≤ n, Assumptions 1 and 2 imply that the observed probability that Di1 =

Di2 = . . . = Dijk = 0 can be re-written as follows:

P
(
Di1 = Di2 = . . . = Dijk = 0|qnj , zi

)
=
∫ 1

0
εkDdv (εD; zi, qj) .

Observe that ak =
∫ 1

0 ε
k
Ddv (εD; zi, qj) is identified for k ∈ {1, . . . , n}. Moreover, 3(i)

and (ii) together imply that

a0 =
∫ 1

0
1dv (εD; zi, qj) = 1.

Therefore, to complete the proof, we need to show that vn+1 (·; zi, qj) is determined

by the values of ak =
∫ 1

0 ε
k
Ddv (εD; zi, qj) for k ≤ n where vn+1 (·; zi, qj) is the (n+ 1)-

st order Fourier-Legendre approximation of v (·; z, qj). In what follows, we will drop

conditioning on zi and qnj for simplicity of notiation.
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To complete the proof, we write the co-efficients of (n− 1)−st Fourier-Legendre series

of v (·) in terms of ak. Let Γm (x) be the m-th shifted Legendre Polynomial. Observe

that each Γm (·) is given by

Γm (x) =
m∑
l=0

γm,lx
l,

with known co-efficients γm,l.25The m−th co-efficient in the (shifted) Fourier-Legendre

series of v (x) is given by

cm = (2m+ 1)
∫ 1

0
Γm (x) v (x) dx

= (2m+ 1)
[
v′ (1)

∫ 1

0
Γm (x) dx−

∫ 1

0

∫ x

0
Γm (y) dydv (x)

]
,

where the second equality follows from integration by parts. Observe that
∫ 1

0 Γm (x) dx =∫ 1
0 Γm (x) Γ0 (x) dx = 0 for m > 0. Therefore, for m > 0,

cm = − (2m+ 1)
∫ 1

0

∫ x

0
Γm (y) dydv (x)

= − (2m+ 1)
∫ 1

0

∫ x

0

m∑
l=0

γm,ly
ldydv (x)

= − (2m+ 1)
∫ 1

0

m∑
l=0

γm,l
1

l + 1x
l+1dv (x)

= − (2m+ 1)
m∑
l=0

γm,l
1

l + 1

∫ 1

0
xl+1dv (x)

= − (2m+ 1)
m∑
l=0

γm,l
1

l + 1al+1. (C.1)

And, finally, we have

c0 =
∫ 1

0
Γ0 (x) v (x) dx

=
∫ 1

0
v (x) dx

= v (1)−
∫ 1

0
xdv (x) , (C.2)

25The shifted Legendre-Polynomials on [0, 1] satisfy the orthogonality relationship∫ 1
0 Γm (x) Γn (x) dx = 1

2n+1δm,nwhere δm,n is the Kronecker delta. The first few polynomials
are Γ0 (x) = 1, Γ1 (x) = 2x− 1, Γ2 (x) = 6x2 − 6x+ 1.
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where the last equality follows from integration by parts. The term v (1) = 1 since

v (·) is non-decreasing with image [0, 1]. Equations (C.1) and (C.2) imply that all cm
for m < n can be written in terms of the observed quantities a0, . . . , an−1. Therefore,

vn−1 (·) is identified.

Let −̃m (y) be them-th unshifted Legendre Polynomial defined over [−1, 1] satisfying−̃m (y) =

−m
(
y+1

2

)
.26 The (n− 1)-st order Fourier-Legendre approximation of ṽ (y) = v

(
y+1

2

)
is

ṽn−1 (y) = ∑n−1
k=0 c̃m−̃m (y) where,

c̃m = (2m+ 1)
2

∫ 1

−1
Γ̃m (y) ṽ (y) dy = cm,

where the last equality follows after a change of variables x = y+1
2 . Since the function

ṽ (·) has a compact domain and image, we have that
∫ 1
−1 ṽ (y)2 dy is bounded. Theorem

8.1 in Pollard (1947) shows that the Legendre polynomials form a basis in L2 (−1, 1),

or equivalently, that ṽn (y) converges in the L2norm to ṽ (y) as n → ∞. Therefore,

‖vn−1 (·)− v (·)‖2 → 0 as n→∞. Therefore, v (·) is identified if the hypotheses of the

Lemma are satisfied for all n.

C.3 Preliminaries for Theorem 1

Lemma 3. Let fn and gn be sequences of functions such that fn → f and gn → g.

Assume that f is continuous.

(i) If fn converges to f uniformly in [a, b] and gn (x) ∈ (a, b) for all x, then fn (gn (x))

converges to f (g (x)) for each x in the domain of g.

(ii) If fn and gn respectively converge to f and g uniformly in [a, b] and infx∈[a, b] |g (x)| =

k > 0, then fn(x)
gn(x) converges to f(x)

g(x) uniformly in [a, b].

(iii) If fn converges to f uniformly in [a, b] and f is strictly increasing on [a, b], and the

function f−1
n (y) is defined as inf{x : fn (x) > y}, then for all x ∈ (a, b), f−1

n (f (x))→

x.
26The unshifted Legendre-Polynomials on [−1, 1] satisfy the orthogonality relationship∫ 1

0 Γ̃m (y) Γ̃n (y) dy = 2
2n+1δm,nwhere δm,n is the Kronecker delta. The first few polynomials are

Γ̃0 (y) = 1, Γ̃1 (y) = y, Γ̃2 (x) = 1
2
(
3x2 − 1

)
.
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Proof. Part (i). By the triangle inequality, we have that

|fn (gn (x))− f (g (x))| ≤ |fn (gn (x))− f (gn (x))|+ |f (gn (x))− f (g (x))|

≤ sup
x∈[a,b]

|fn (y)− f (y)|+ |f (gn (x))− f (g (x))| .

The first term converges to zero since fn converges to f uniformly in [a, b]. The argument

of f in the second term, gn (x), converges to g (x). Since f is continuous, the sequential

definition of continuity implies that the second term also converges to zero. Therefore,

|fn (gn (x))− f (g (x))| → 0 as n→∞.

Part (ii). By the triangle inequality, we have that

sup
x∈[a,b]

∣∣∣∣∣fn (x)
gn (x) −

f (x)
g (x)

∣∣∣∣∣ ≤ sup
x∈[a,b]

|fn (x)− f (x)| sup
x∈[a,b]

∣∣∣∣∣ 1
gn (x) −

1
g (x)

∣∣∣∣∣ .
+ sup

x∈[a,b]
|f (x)| sup

x∈[a,b]

∣∣∣∣∣ 1
gn (x) −

1
g (x)

∣∣∣∣∣
+ sup

x∈[a,b]

∣∣∣∣∣ 1
g (x)

∣∣∣∣∣ sup
x∈[a,b]

|fn (x)− f (x)| .

By assumption, supx∈[a,b] |fn (x)− f (x)| converges to zero and supx∈[a,b]

∣∣∣ 1
g(x)

∣∣∣ = k−1 is

finite. Further, supx∈[a,b] |f (x)| if finite because f is continuous and [a, b] is a compact

set. Therefore, the left-hand side converges to zero as required if supx∈[a,b]

∣∣∣ 1
gn(x) −

1
g(x)

∣∣∣
converges to zero.

To show this, observe that

sup
x∈[a,b]

∣∣∣∣∣ 1
gn (x) −

1
g (x)

∣∣∣∣∣ ≤ sup
x∈[a,b]

∣∣∣∣∣ 1
gn (x)

∣∣∣∣∣ sup
x∈[a,b]

∣∣∣∣∣ 1
g (x)

∣∣∣∣∣ sup
x∈[a,b]

|gn (x)− g (x)|

converges to zero. Since limn→∞ supx∈[a,b] |gn (x)− g (x)| = 0 and supx∈[a,b]

∣∣∣ 1
g(x)

∣∣∣ = k−1

exists by assumption, it is sufficient to show that supx∈[a,b]

∣∣∣ 1
gn(x)

∣∣∣ exists. Let N be such

that for all n > N , we have that supx∈[a,b] |g (x)− gn (x)| ≤ k
2 . Such a value of N exists

because gn converges to g uniformly in [a, b] and infx∈[a,b] |g (x)| = k > 0. Hence, for all

n > N , supx∈[a,b]

∣∣∣ 1
gn(x)

∣∣∣ < (
k
2

)−1
, which is finite.
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Part (iii). Define f−1
n (y) = inf {x : fn (x) > y}. Fix x ∈ (a, b). For any ε > 0, define

ε̃ = min
{
ε
2 , x− a, b− x

}
and δε̃ = min {f (x+ ε̃)− f (x) , f (x)− f (x− ε̃)} . Observe

that ε̃ > 0 and δε̃ > 0 because and f is strictly increasing. Pick N such that for

all n > N supx′∈[a,b] |fn (x′)− f (x′)| < δε̃. Such an N exists because fn converges

to f uniformly in [a, b]. To complete the proof, we will show that for all n > N ,

f−1
n (x) > x− ε and f−1

n (x) < x+ ε.

Since f is strictly increasing, for all x′ < x − ε̃, f (x′) + δε̃ < f (x). Therefore, for all

n > N and x′ < x− ε̃,fn (x′)+δε̃ < f (x). Hence, f−1
n (x) ≥ x− ε̃ > x−ε for all n > N .

Similarly, for all x′ > x+ ε̃, f (x′)− δε̃ > f (x). Therefore, for all n > N and x′ > x+ ε̃,

fn (x′)− δε̃ > f (x). Hence, f−1
n (x) ≤ x+ ε̃ < x+ ε for all n > N.

Lemma 4. Let g ∈ L2 (0, 1) be continuous and sn (g;x) be its Fourier-Legendre ap-

proximation of degree n evaluated at x. For any [a, b] ∈ (0, 1), the partial average

Sn (g;x) = 1
n

∑n−1
k=0 sk (g;x) converges to g (x) uniformly in [a, b].

Proof. The result is a corollary of Theorem IV.3.2 in Freud (1971). To apply this result,

we will use the cumulative distribution function of the uniform distribution on [0, 1] as

the function α (x).

Let pn (dα;x) for n = 0, 1, 2... be the sequence of orthogonal polynomials defined in

Theorem I.1.2 of Freud (1971). It is straightforward to check that, for our chosen α (x),

pn (dα;x) =
√

2m+ 1Γm (x) ,

where Γm (x) be the m-th shifted Legendre Polynomial on [0, 1],27

satisfied the conditions in Theorem I.1.2 because (i) each Γm (x) is a polynomial, (ii) the

leading co-efficient of Γm (x) is positive and (iii)
∫

Γn (x) Γm (x) dx = δmn where δmn
is the Kronecker-delta. Moreover, pn (dα;x) is unique as noted in the remark below

Theorem I.1.2 in Freud (1971).
27The shifted Legendre-Polynomials on [0, 1] satisfy the orthogonality relationship∫ 1

0 Γm (x) Γn (x) dx = 1
2n+1δm,nwhere δm,n is the Kronecker delta. The first few values are

Γ0 (x) = 1, Γ1 (x) = 2x− 1, Γ2 (x) = 6x2 − 6x+ 1.
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Therefore, it remains to show that pn (dα;x) satisfies requirement (3.2) in Chapter IV

of Freud (1971). As noted following this requirement, it is sufficient to show that for

every pair x2 and x1 in a neighborhood of x0 ∈ [a, b] ⊂ (0, 1),

α (x2)− α (x1)
x2 − x1

≥ m > 0,

for some constant m. This the case because for our chosen α (x), because the left hand

side is identically equal to 1 for every x1, x2 ∈ (0, 1) .

Finally, sk (g;x), as defined in equations IV(1.1) and IV(1.2) of Freud (1971) is the

k−th order shifted Fourier-Legendre approximation of g. Therefore, by Theorem IV.3.2

in Freud (1971), Sn (g;x) converges to g (x) uniformly in [a, b] ⊂ (0, 1).

Lemma 5. Let v′n (·; z, qj) be the (n− 1)-st order Fourier-Legendre approximation of

v′ (·; z, qj). If the hypotheses of Lemma 2 are satisfied, then v′n (·; z, qj) is identified for

each z ∈ (0, 1) and qj.

Proof. We drop the parameters z, qj for simplicity of notation as they are held fixed.

As argued in the proof of Lemma 2, Assumptions 1 and 2 imply that the quantities

ak =
∫ 1

0
εkDdv (εD; zi, qj)

are identified for all k ≤ n. Let bm be the (shifted) m−th Fourier-Legendre co-efficient

of v′ (·) defined on [0, 1]

bm = (2m+ 1)
∫ 1

0
Γm (x) v′ (x) dx

where Γm (·) is the m−th shifted Legendre polynomial on [0, 1]. Observe that each

Γm (·) is given by

Γm (x) =
m∑
l=0

γm,lx
l,
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with known co-efficients γm,l. Therefore, the co-efficients

bm = (2m+ 1)
m∑
l=0

γm,l

∫ 1

0
xlv′ (x) dx

= (2m+ 1)
m∑
l=0

γm,lal,

are identified. The second equality follows from the definition of al.

C.4 Proof of Theorem 1

Identification of E (Yi0|ν). Define y0 (ν) = E (Yi0|ν). For a given ν, fix z such that

there exists εD ∈ (0, 1) with v (εD; z, qj) and drop the conditioning on z in what follows,

for simplicity of notation.

Let s and s̃ be a pair of models satisfying the hypotheses of Theorem 1, and let

{y0 (·) , v (·)} and {ỹ0 (·) , ṽ (·)} be features that are associated with s and s̃ respec-

tively. We will show that if {y0 (·) , v (·)} 6= {ỹ0 (·) , ṽ (·)}, then there exists n, such that

if qkj is in the support of the distribution of offer types for all k ≤ n, then the joint

distribution of Yi0, {Ti1, . . . , Tik} conditional on qkj differs for some k ≤ n under models

s and s̃.

Consider a value of ν̄ ∈ (0, 1) such that y0 (ν̄) 6= ỹ0 (ν̄) and ν̄ = v (x̄) for some x̄ ∈ (0, 1).

Lemmas 2 and 5 imply that if either v (x̄) 6= ṽ (x̄) or v′ (x̄) 6= ṽ′ (x̄) for some x̄ ∈ (0, 1),

then there exists N such that for all n > N the joint distribution of {Ti1, . . . , Tin}

conditional on qkj for some k ≤ n differs for models s and s̃. Therefore, it is sufficient

to focus on the case when v (x̄) = ṽ (x̄) and v′ (x̄) = ṽ′ (x̄). Moreover, since x̄ ∈ (0, 1),

we have that v′ (x̄) > 0 (Assumption 4(i)) implying that it is sufficient to show that

that if y0 (v (x̄)) v′ (x̄) 6= ỹ0 (v (x̄)) v′ (x̄), then the joint distribution of Yi0, {Ti1, . . . , Tik}

conditional on qkj differs for some k ≤ n under models s and s̃.

We prove this by showing that if y0 (v (x̄)) v′ (x̄) 6= ỹ0 (v (x̄)) v′ (x̄), then there exists n

such that if qkj is in the support of the distribution of offer types for all k ≤ n, then

Yi0, {Ti1, . . . , Tik} conditional on qkj differs for some k ≤ n under models s and s̃.
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To do this, we first show that the Fourier-Lebesgue approximation of the function

u (x) = y0 (v (x)) v′ (x) can be determined from observables. Assumptions 1 and 2

imply that for each k ≤ n, we can re-write

E
(
Yi0 × Ti = 0|qkj

)
=
∫ 1

0
E (Yi0|νD = v (x; qj))xkdv (x; qj)

=
∫ 1

0
xky0 (v (x; qj)) v′ (x; qj) dx.

Lemma 1 implies that this expression is a known function of observables for each k ≤ n.

Therefore, the argument in the proof of Lemma 5 shows identification of the co-efficients

bm of the (shifted) Fourier-Legendre series implies that the n−th order Fourier-Legendre

approximation of u (x; qj) = y0 (v (x; qj)) v′ (x; qj), denoted un (x; qj), is a function of the

observables
{
E
(
Yi0 × Ti = 0|qkj

)}n
k=1

. Similarly, let ũn (x; qj) be the (shifted) Fourier-

Lebesgue series associated with model s̃ with associated feature {ỹ0 (·) , ṽ (·)} such that

ṽ = v.

Lemma 4 implies that for any subinterval [a, b] ⊂ (0, 1), 1
n

∑n−1
k=0 uk (x; qj) converges

uniformly to u (x; qj) if u (x; qj) is square-integrable and continuous. Assumption 4(i)

and (ii) imply continuity of u (x) since the product of continuous functions is continuous.

To show square-integrability of y0 (v (x; qj)) v′ (x; qj) observe that

∫ 1

0
y0 (v (x; qj))2 v′ (x; qj)2 dx =

∫ 1

0
E (Yi0|v (x; qj))2 v′ (x; qj)2 dx

≤ sup
x
|v′ (x; qj)|

∫ 1

0
E (Yi0|v (x; qj))2 v′ (x; qj) dx

= sup
x
|v′ (x; qj)|

∫ 1

0
E (Yi0|ν)2 dν,

where the second equality follows from a change of variables. Observe that Assumption
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4(i) holds that supx |v′ (x; qj)| is finite. The term
∫ 1

0 E (Yi0|ν)2 dν is finite since

∫ 1

0
E (Yi0|ν)2 dν = V (E [Yi0|ν]) + E (E (Yi0|v))2

= V (E [Yi0|ν]) + E (Yi0)2

≤ V (Yi0) + E (Yi0)2 ,

where the inequality follows from the law of total variance. 4(ii) implies that the right

hand side is bounded. Therefore, ūn (x) converges uniformly to u (x). An identical

argument implies that 1
n

∑n−1
k=0 ũn (x; qj) converges uniformly to ũ (x; qj) over x ∈ [a, b].

Since x̄ ∈ (0, 1), we can pick [a, b] such that x̄ ∈ [a, b].

Now, let δ = |y0 (v (x̄)) v′ (x̄)− ỹ0 (v (x̄)) v′ (x̄)| > 0. Pick n such that

∣∣∣∣∣y0 (v (x̄)) v′ (x̄)− 1
n

n−1∑
k=0

uk (x̄)
∣∣∣∣∣ < δ

2

and ∣∣∣∣∣ỹ0 (v (x̄)) v′ (x̄)− 1
n

n−1∑
k=0

ũk (x̄)
∣∣∣∣∣ < δ

2 .

Such an n exists because Lemma 4 implies that 1
n

∑n−1
k=0 uk (x̄) and 1

n

∑n−1
k=0 ũk (x̄) con-

verge to y0 (v (x̄)) v′ (x̄) and ỹ0 (v (x̄)) v′ (x̄) respectively. Therefore, if qkj is in the sup-

port of the distribution of offer types for all k ≤ n, then

∣∣∣∣∣ 1n
n−1∑
k=0

uk (x̄)− 1
n

n−1∑
k=0

ũk (x̄)
∣∣∣∣∣ > 0.

Because each un (x̄) and ũn (x̄) is determined by the conditional expectations
{
E
(
Yi0 × Ti = 0|qkj

)}n
k=1

,

we have shows that the joint distribution of Yi0, {Ti1, . . . , Tik} conditional on qkj differs

for some k ≤ n under models s and s̃.

Identification of E (Yij|νD, εij,D ≥ εD, qj). Define y1 (νD, εD; qj) = E (Yij|νD, εij,D ≥ εD, qj).

Consider a pair of models s and s̃. As argued above, we can restrict to pairs such that

v (x; z) = ṽ (x; z) for all x ∈ (0, 1) and all z. For a given ν ∈ (0, 1) and x̄ ∈ (0, 1),

and let z̄ be such that ν = v (x̄; z̄). We will show that if y1 (v (x̄; z̄) , x̄; qj) v′ (x̄; z̄) 6=



21

ỹ1 (v (x̄; z̄) , x̄; qj) v′ (x̄; z̄), then there exists n such that if qkj is in the support of the

distribution of offer types for all k ≤ n, then Yij, {Ti1, . . . , Tik} conditional on qkj and

z̄differs for some k ≤ n under models s and s̃.

Assumptions 1 and 2 imply that for each k ≤ n, we can re-write the observed quantity

E
(
Yijk × Tijk = 1|qkj , z̄

)
=
∫ 1

0
E (Yijn|νD = v (x; qj, z̄))xk−1 (1− x) dv (x; qj, z̄)

=
∫ 1

0
xk−1 (1− x) y1 (v (x; qj, z̄) , x) v′ (x; qj, z̄) dx.

Arguments similar to those above imply that for any [a, b] ⊂ (0, 1), we can uniformly

approximate the function

u (x; z̄) = (1− x) y1 (v (x; z̄) , x) v′ (v (x; z̄) , z̄)

over x ∈ [a, b] ⊂ (0, 1) with 1
n

∑n−1
k=0 un (x; z̄), where un (x; z̄) is determined as a function

of observed conditional distributions given z̄ and qkj for k ≤ n. This claim required

continuity and square-integrability of u (v (x; z̄) , z̄) in x. Continuity follows because

y1 (ν, x), v (x; z̄) and v′ (x; z̄) are assumed to be continuous (Assumption 4) and the

composition and product of continuous functions is continuous. Square integrability

follows similarly to the argument above because

∫ 1

0
(1− x)2 y1 (v (x; z̄) , x)2 v′ (x; z̄)2 dx

≤ sup
x
|v′ (x; qj)|

∫ 1

0
((1− x)E (Yij|v (x; z̄) , εij,D ≥ x))2 v′ (x; z̄) dx

= sup
x
|v′ (x; qj)|

∫ 1

0

∫ 1

0
E (Yij|v (x; z̄) , ε)2 1 {ε ≥ x} v′ (x; z̄) dxdε

= sup
x
|v′ (x; qj)|

∫ 1

0

∫ 1

0
E (Yij|ν, ε)2 1 {v (ε, z̄) < ν} dνdε

≤ sup
x
|v′ (x; qj)|

∫ 1

0

∫ 1

0
E (Yij|ν, ε)2 dνdε,

where the second equality follows from a change of variables and the fact that v (x; z) is

strictly monotonic in x. As above, Assumption 4(i) implies that supx |v′ (x; qj)| is finite
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and

∫ 1

0
E (Yij|ν, ε)2 dν = V (E [Yij|ν, ε]) + E (E (Yij|v, ε))2

= V (E [Yij|ν, ε]) + E (Yij)2

≤ V (Yij) + E (Yij)2 ,

Therefore, if δ = |(1− x̄) y1 (v (x̄; z̄) , x̄; qj) v′ (x̄; z̄)− (1− x̄) ỹ1 (v (x̄; z̄) , x̄; qj) v′ (x̄; z̄)|,

then, as argued above, Lemma 4 implies that there exists n such that
∣∣∣ 1
n

∑n−1
k=0 un (x̄; z̄)− 1

n

∑n−1
k=0 ũn (x̄; z̄)

∣∣∣ >
0. Because each un (x̄) and ũn (x̄) is determined by the conditional expectations

{
E
(
Yij × Ti = 0|qkj

)}n
k=1

,

we have shows that the joint distribution of Yi0, {Ti1, . . . , Tik} conditional on qkj differs

for some k ≤ n under models s and s̃.

D Additional Figures and Tables

Table D.5: Top 10 offers: BalanceKDPI Balance log(1+num) cond

Age Diabetes Female Weight Height

(1) (2) (3) (4) (5)

log(1 + # Top 10 Offers in 2 Years)

KDPI <= 50% -0.0479 0.00134 -0.00158 -0.269* 0.0253

(0.0772) (0.00302) (0.00277) (0.108) (0.0732)

KDPI > 50% or Missing -0.0233 -0.00427 0.000269 0.104 0.0137

(0.0683) (0.00294) (0.00276) (0.101) (0.0819)

F-test p-Value 0.499 0.267 0.787 0.037 0.828

Number of Observations 128949 127414 128949 127363 126619

R-Squared 0.026 0.022 0.074 0.038 0.034

Notes: * p<0.05, ** p<0.01, *** p<0.001
The sample for all regressions is patients who registered between 2000 and 2008. Dependent variables are as indicated
in the column headers. All regressions control for DSA fixed effect, registration year fixed effect, blood type fixed effect,
an indicator for pediatric at registration, and indictors for CPRA = 0, 20 <= CPRA < 80, CPRA >= 80, and CPRA
missing at registration. Standard errors, clustered by DSA, registration year, and blood type, are in parentheses. F-test
tests against the null hypothesis that the coefficients on the instruments are zero.
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Figure D.1: Scarcity Instrument: First Stage
Notes: Figures are plotted using binsreg (Cattaneo et al., 2019) with the same specification as Columns (5) and (6) in

Table 4. Dependent variable is acceptance of an offer. Independent variables include DSA fixed effect, offer year fixed

effect, number of years waited at offer fixed effect, blood type fixed effect, patient characteristics, donor characteristics,

and match characteristics.
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Table D.6: Scarcity Instruments: Balance
all KDPI Balance

Age Diabetes Female Weight Height

(1) (2) (3) (4) (5)

Log(1 + No. Donors)

Patients Waited 0-1 years -0.272 -0.00450 -0.00371 0.817 0.0309

(0.350) (0.0135) (0.0127) (0.530) (0.323)

Patients Waited 1-2 years 0.544 0.0140 -0.00807 -0.0103 0.205

(0.346) (0.0125) (0.0117) (0.484) (0.277)

Patients Waited 2-3 years -0.639* -0.00981 -0.00526 -0.0132 0.104

(0.280) (0.0103) (0.00983) (0.421) (0.249)

Patients Waited 3-4 years 0.322 0.00251 -0.00615 0.00742 0.131

(0.237) (0.00894) (0.00837) (0.373) (0.204)

Patients Waited 4-5 years -0.280 -0.0112 0.0144* -0.480 -0.298

(0.161) (0.00608) (0.00560) (0.245) (0.154)

Log(1 + No. Offers)

Patients Waited 0-1 years 0.0245 0.00934 0.000217 -0.187 -0.00359

(0.227) (0.00856) (0.00799) (0.325) (0.226)

Patients Waited 1-2 years -0.159 -0.00773 0.00605 0.130 -0.197

(0.230) (0.00890) (0.00780) (0.319) (0.200)

Patients Waited 2-3 years 0.299 0.00295 -0.00734 0.233 0.171

(0.213) (0.00780) (0.00726) (0.323) (0.196)

Patients Waited 3-4 years -0.0693 -0.00115 0.00793 -0.0513 -0.259

(0.207) (0.00761) (0.00696) (0.331) (0.175)

Patients Waited 4-5 years 0.159 0.0123* -0.00982* 0.359 0.142

(0.145) (0.00544) (0.00460) (0.217) (0.132)

F-test p-Value 0.201 0.131 0.170 0.222 0.0526

Number of Observations 78416 78409 78416 77221 76576

R-Squared 0.024 0.020 0.070 0.035 0.040

Notes: * p<0.05, ** p<0.01, *** p<0.001
The sample for all regressions is adult patients who registered on the waitlist between 1999Q4 and 2005Q4. Each
regression is on patient level, where the dependant variable is the patient characteristics in the column header at
registration. Each regression has five regressors indexed by k = 0, 1, 2, 3, 4, where the kth regressor for patient i is
computed as the number of unique donors (offers) such that: the offer is made to patients who are in the same DSA as
i, have the same blood type as i, and have waited the same number of years as i; the offer is made between 4k + 1 and
4k + 4 quarters, inclusive, from the quarter when i registers (e.g. if i registers in 2002Q1, then the offer must be made
between 2003Q2 and 2004Q1 for k = 1. All regressions control for DSA fixed effect, registration year fixed effect, blood
type fixed effect, an indicator for pediatric at registration, and indictors for CPRA = 0, 20 <= CPRA < 80, CPRA >=
80, and CPRA missing at registration. Robust standard errors, clustered by DSA, registration year, and blood type, are
in parentheses. F-test tests against the null hypothesis that the coefficients on the five regressors are zero.
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Table D.7: Survival EstimatesSurvival Model
(All Covariates)

(1) (2) (3) (4)

Panel A: Survival without Transplant
Constant 0.244 0.241 0.241 0.241

(0.051) (0.050) (0.050) (0.050)
Patient Characteristics

Diabetic -0.055 -0.055 -0.055 -0.055
(0.001) (0.001) (0.001) (0.001)

CPRA 0.016 0.016 0.016 0.016
(0.006) (0.006) (0.006) (0.006)

CPRA >= 0.8 -0.003 -0.004 -0.004 -0.004
(0.008) (0.008) (0.008) (0.008)

CPRA = 0 0.002 0.002 0.003 0.003
(0.002) (0.002) (0.002) (0.002)

CPRA - 0.8 if CPRA >= 0.8 -0.039 -0.035 -0.035 -0.035
(0.051) (0.051) (0.051) (0.051)

Intial CPRA Missing -0.120 -0.120 -0.120 -0.120
(0.004) (0.004) (0.004) (0.004)

Prior Transplant -0.041 -0.040 -0.040 -0.040
(0.005) (0.005) (0.005) (0.005)

On Dialysis at Registration -0.035 -0.035 -0.035 -0.035
0.002 0.002 0.002 0.002

Blood Type A 0.004 0.005 0.005 0.005
0.004 0.004 0.004 0.004

Blood Type O 0.017 0.018 0.018 0.018
0.003 0.003 0.003 0.003

Blood Type B 0.026 0.027 0.027 0.027
0.004 0.004 0.004 0.004

Age at Registration 0.002 0.002 0.002 0.002
(0.001) (0.001) (0.001) (0.001)

Age - 18 if Age >= 18 -0.003 -0.003 -0.004 -0.004
(0.001) (0.001) (0.001) (0.001)

Age - 35 if Age >= 35 -0.002 -0.002 -0.002 -0.002
(0.000) (0.000) (0.000) (0.000)

Age - 50 if Age >= 50 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Age - 65 if Age >= 65 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

BMI at Departure 0.005 0.005 0.005 0.005
(0.003) (0.003) (0.003) (0.003)

BMI - 18.5 if BMI >= 18.5 0.000 0.000 0.000 0.000
(0.003) (0.003) (0.003) (0.003)

BMI - 25 if BMI >= 25 -0.004 -0.004 -0.004 -0.004
(0.001) (0.001) (0.001) (0.001)

BMI - 30 if BMI >= 30 -0.001 -0.001 -0.001 -0.001
(0.001) (0.001) (0.001) (0.001)

BMI Missing 0.075 0.074 0.075 0.075
(0.052) (0.052) (0.052) (0.052)

Serum Albumin 0.042 0.042 0.042 0.042
(0.002) (0.002) (0.002) (0.002)

Serum Albumin - 3.7 if >= 3.7 0.012 0.012 0.012 0.012
(0.005) (0.005) (0.005) (0.005)

Serum Albumin - 4.4 if >= 4.4 -0.061 -0.061 -0.061 -0.061
(0.005) (0.005) (0.005) (0.005)

Serum Albumin Missing 0.148 0.148 0.148 0.148
(0.008) (0.008) (0.008) (0.008)

Log Dialysis Time at Registration (Years) -0.015 -0.015 -0.015 -0.015
(0.001) (0.001) (0.001) (0.001)

Log Dialysis Time at Registration x 1{> 5 years} 0.006 0.006 0.006 0.006
(0.005) (0.005) (0.005) (0.005)

Unobservable Characteristics
Selectivity 0.009 0.009 0.009

(0.002) (0.002) (0.002)
Survival 0.067 0.067 0.068

(0.035) (0.040) (0.039)
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Table D.8: Survival Estimates (Continued)

Panel B: Survival with Transplant
Constant 0.646 0.623 0.628 0.625

(0.089) (0.091) (0.092) (0.092)
Patient Characteristics

Diabetic -0.097 -0.101 -0.100 -0.101
(0.003) (0.004) (0.004) (0.004)

CPRA -0.010 -0.011 -0.011 -0.012
(0.017) (0.017) (0.017) (0.017)

CPRA >= 0.8 0.004 0.004 0.004 0.004
(0.021) (0.021) (0.022) (0.022)

CPRA = 0 0.003 0.003 0.003 0.003
(0.005) (0.005) (0.005) (0.005)

CPRA - 0.8 if CPRA >= 0.8 -0.072 -0.076 -0.075 -0.076
(0.144) (0.145) (0.144) (0.144)

Intial CPRA Missing -0.008 -0.010 -0.011 -0.010
(0.009) (0.010) (0.010) (0.010)

Prior Transplant -0.013 -0.016 -0.016 -0.016
(0.015) (0.016) (0.016) (0.016)

On Dialysis at Registration -0.063 -0.064 -0.064 -0.064
(0.004) (0.004) (0.004) (0.004)

Blood Type A -0.007 -0.008 -0.008 -0.008
(0.007) (0.007) (0.007) (0.007)

Blood Type O 0.001 -0.001 0.000 -0.001
(0.007) (0.007) (0.007) (0.007)

Blood Type B -0.008 -0.009 -0.009 -0.009
(0.008) (0.008) (0.008) (0.008)

Age at Registration -0.007 -0.006 -0.006 -0.006
(0.002) (0.002) (0.002) (0.002)

Age - 18 if Age >= 18 0.006 0.005 0.005 0.005
(0.002) (0.002) (0.002) (0.002)

Age - 35 if Age >= 35 -0.006 -0.007 -0.007 -0.007
(0.001) (0.001) (0.001) (0.001)

Age - 50 if Age >= 50 -0.002 -0.002 -0.002 -0.002
(0.001) (0.001) (0.001) (0.001)

Age - 65 if Age >= 65 -0.001 -0.001 -0.001 -0.001
(0.001) (0.001) (0.001) (0.001)

BMI at Departure 0.010 0.010 0.010 0.010
(0.005) (0.005) (0.005) (0.005)

BMI - 18.5 if BMI >= 18.5 -0.007 -0.007 -0.007 -0.007
(0.005) (0.005) (0.005) (0.005)

BMI - 25 if BMI >= 25 -0.003 -0.003 -0.003 -0.003
(0.002) (0.002) (0.002) (0.002)

BMI - 30 if BMI >= 30 -0.003 -0.003 -0.003 -0.003
(0.001) (0.001) (0.001) (0.001)

BMI Missing 0.205 0.206 0.205 0.205
(0.091) (0.090) (0.090) (0.090)

Serum Albumin 0.026 0.028 0.028 0.028
(0.006) (0.006) (0.006) (0.006)

Serum Albumin - 3.7 if >= 3.7 0.028 0.029 0.029 0.029
(0.011) (0.011) (0.011) (0.011)

Serum Albumin - 4.4 if >= 4.4 -0.056 -0.059 -0.059 -0.059
(0.010) (0.010) (0.010) (0.010)

Serum Albumin Missing 0.105 0.112 0.112 0.112
(0.020) (0.021) (0.021) (0.021)

Log Dialysis Time at Registration (Years) -0.016 -0.016 -0.016 -0.016
(0.001) (0.001) (0.001) (0.001)

Log Dialysis Time at Registration x 1{> 5 years} -0.070 -0.069 -0.069 -0.069
(0.012) (0.012) (0.012) (0.012)
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Table D.9: Survival Estimates (Continued)

Donor Characteristics
Age < 18 0.021 0.024 0.023 0.023

(0.024) (0.025) (0.025) (0.025)
Age 18-35 -0.017 -0.016 -0.016 -0.016

(0.029) (0.029) (0.029) (0.029)
Age 50+ 0.020 0.017 0.017 0.016

(0.055) (0.055) (0.055) (0.055)
Cause of Death - Anoxia 0.003 0.004 0.004 0.004

(0.009) (0.010) (0.010) (0.010)
Cause of Death - Stroke 0.002 0.003 0.003 0.003

(0.009) (0.009) (0.009) (0.009)
Cause of Death - CNS 0.010 0.009 0.009 0.008

(0.019) (0.019) (0.019) (0.019)
Cause of Death - Head Trauma 0.018 0.020 0.020 0.020

(0.009) (0.010) (0.009) (0.009)
Creatinine 0.5-1.0 -0.005 -0.004 -0.004 -0.004

(0.007) (0.007) (0.007) (0.007)
Creatinine 1.0-1.5 -0.013 -0.011 -0.012 -0.011

(0.007) (0.007) (0.007) (0.007)
Creatinine >= 1.5 -0.012 -0.013 -0.013 -0.013

(0.008) (0.008) (0.008) (0.008)
Expanded Criteria Donor (ECD) -0.019 -0.021 -0.020 -0.021

(0.006) (0.006) (0.006) (0.006)
Donation After Cardiac Death (DCD) -0.003 -0.004 -0.004 -0.004

(0.005) (0.005) (0.005) (0.005)
Male 0.001 0.001 0.001 0.001

(0.003) (0.003) (0.003) (0.003)
History of Hypertension -0.012 -0.013 -0.013 -0.013

(0.004) (0.004) (0.004) (0.004)
Offer Characteristics

Perfect Tissue Type Match 0.053 0.055 0.054 0.055
(0.025) (0.026) (0.026) (0.026)

2 A Mismatches -0.002 -0.002 -0.002 -0.002
(0.016) (0.016) (0.016) (0.016)

2 B Mismatches 0.001 0.000 0.001 0.000
(0.017) (0.017) (0.017) (0.017)

2 DR Mismatches 0.000 0.000 0.000 0.000
(0.016) (0.017) (0.017) (0.017)

ABO Compatible -0.008 -0.010 -0.009 -0.010
(0.012) (0.012) (0.012) (0.012)

Regional Offer -0.007 -0.007 -0.007 -0.007
(0.014) (0.014) (0.014) (0.014)

Local Offer 0.035 0.039 0.038 0.039
(0.021) (0.022) (0.022) (0.022)

Log Waiting Time (Years) -0.003 -0.003 -0.003 -0.003
(0.002) (0.002) (0.002) (0.002)

Log Waiting Time x 1{Over 1 Year} -0.003 -0.005 -0.005 -0.005
(0.008) (0.008) (0.008) (0.008)

Log Waiting Time x 1{Over 2 Years} -0.021 -0.028 -0.027 -0.027
(0.011) (0.012) (0.013) (0.013)

Perfect Tissue Type Match x Prior Transplant -0.003 -0.003 -0.003 -0.003
(0.032) (0.032) (0.032) (0.032)

Perfect Tissue Type Match x Diabetic Patient -0.008 -0.007 -0.007 -0.007
(0.008) (0.008) (0.008) (0.008)

Perfect Tissue Type Match x Patient Age 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Perfect Tissue Type Match x CPRA -0.016 -0.014 -0.015 -0.015
(0.027) (0.027) (0.027) (0.027)

Perfect Tissue Type Match x 1{CPRA > 80%} -0.015 -0.015 -0.015 -0.015
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Table D.10: Survival Estimates (Continued)

(0.031) (0.031) (0.031) (0.031)
Perfect Tissue Type Match x ECD Donor 0.019 0.018 0.018 0.018

(0.011) (0.012) (0.011) (0.011)
Perfect Tissue Type Match x DCD Donor -0.014 -0.015 -0.014 -0.014

(0.020) (0.020) (0.020) (0.020)
Perfect Tissue Type Match x Local Offer -0.027 -0.028 -0.028 -0.028

(0.020) (0.020) (0.020) (0.020)
Perfect Tissue Type Match x ABO Compatible 0.023 0.024 0.024 0.024

(0.015) (0.015) (0.015) (0.015)
Local Offer x 1{2 A Mismatches} -0.001 -0.001 -0.002 -0.002

(0.016) (0.016) (0.016) (0.016)
Local Offer x 1{2 B Mismatches} 0.000 0.000 0.000 0.000

(0.017) (0.017) (0.017) (0.017)
Local Offer x 1{2 DR Mismatches} -0.010 -0.010 -0.010 -0.010

(0.017) (0.017) (0.017) (0.017)
Local Offer x 1{Donor Age < 18} -0.036 -0.037 -0.037 -0.038

(0.017) (0.018) (0.018) (0.018)
Local Offer x 1{Donor Age 18-35} -0.017 -0.018 -0.018 -0.018

(0.013) (0.013) (0.013) (0.013)
Local Offer x 1{Donor Age 50+} -0.010 -0.010 -0.010 -0.010

(0.014) (0.014) (0.014) (0.014)
Patient Age x 1{Donor Age < 18} 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)
Patient Age x 1{Donor Age 18-35} 0.001 0.002 0.002 0.002

(0.001) (0.001) (0.001) (0.001)
Patient Age x 1{Donor Age 50+} -0.001 -0.001 -0.001 -0.001

(0.002) (0.002) (0.002) (0.002)
Patient Age - 35 if Age >= 35 x 1{Donor Age 18-35} -0.001 -0.001 -0.001 -0.001

(0.001) (0.001) (0.001) (0.001)
Patient Age - 35 if Age >= 35 x 1{Donor Age 50+} 0.002 0.001 0.001 0.001

(0.002) (0.002) (0.002) (0.002)
Unobserved Covariates

Selectivity -0.004 -0.004 -0.004
(0.004) (0.004) (0.004)

Survival 1.000 1.000 1.000
(0.000) (0.000) (0.000)

Match Value 0.003 0.002 0.003
(0.008) (0.008) (0.008)

Donor Quality 0.002 0.003 0.002 0.002
(0.001) (0.002) (0.002) (0.002)

Instruments No Instruments # Future Donors # Future Offers
# Future Donors, 
# Future OffersNotes: Estimates of the survival equations are presented. The sample includes 6809293 offers made between 2000 and

2009 to patients in the sample. The chain length is 250000, which includes a burn-in of 50000 draws. We thin the chain

by taking every 10 draws. All columns control for dummies for DSA fixed effect, blood type fixed effect, and registration

year fixed effect. Future donors (offers) is defined as the number of donors (offers) in the next 4 quarters (see Table 4

for detailed definition). Standard errors are in parenthese.
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Table D.11: Choice EstimatesAcceptance Model
(All Covariates)

(1) (2) (3) (4)

Panel A: Coefficients on Observable Characteristics
Constant -4.148 -5.192 -5.233 -5.041

(0.177) (0.386) (0.383) (0.378)
Patient Characteristics

Diabetic -0.049 -0.112 -0.110 -0.112
(0.006) (0.013) (0.013) (0.014)

CPRA -0.971 -1.526 -1.509 -1.527
(0.033) (0.069) (0.067) (0.067)

CPRA >= 0.8 -0.133 -0.135 -0.165 -0.133
(0.044) (0.087) (0.088) (0.089)

CPRA = 0 0.046 0.106 0.111 0.108
(0.009) (0.020) (0.019) (0.019)

CPRA - 0.8 if CPRA >= 0.8 -1.363 -2.847 -2.803 -2.880
(0.282) (0.586) (0.594) (0.599)

Intial CPRA Missing 0.603 1.224 1.223 1.225
(0.022) (0.046) (0.045) (0.045)

Prior Transplant -0.395 -0.582 -0.574 -0.580
(0.027) (0.057) (0.056) (0.057)

On Dialysis at Registration 0.017 0.062 0.062 0.064
(0.007) (0.015) (0.015) (0.015)

Blood Type A -0.329 -0.164 -0.478 -0.175
(0.034) (0.064) (0.063) (0.065)

Blood Type O -0.544 -0.452 -0.870 -0.467
(0.036) (0.072) (0.067) (0.071)

Blood Type B -0.153 -0.402 -0.719 -0.439
(0.038) (0.073) (0.072) (0.071)

Age at Registration 0.055 0.082 0.082 0.081
(0.003) (0.006) (0.006) (0.006)

Age - 18 if Age >= 18 -0.053 -0.082 -0.082 -0.082
(0.003) (0.007) (0.007) (0.007)

Age - 35 if Age >= 35 0.001 0.008 0.008 0.008
(0.002) (0.004) (0.004) (0.004)

Age - 50 if Age >= 50 -0.004 -0.006 -0.006 -0.006
(0.001) (0.003) (0.003) (0.003)

Age - 65 if Age >= 65 -0.002 -0.003 -0.003 -0.003
(0.002) (0.004) (0.004) (0.004)

BMI at Departure 0.007 0.021 0.019 0.021
(0.009) (0.019) (0.019) (0.019)

BMI - 18.5 if BMI >= 18.5 -0.013 -0.035 -0.033 -0.035
(0.010) (0.021) (0.021) (0.021)

BMI - 25 if BMI >= 25 -0.003 -0.008 -0.008 -0.008
(0.003) (0.008) (0.007) (0.007)

BMI - 30 if BMI >= 30 -0.009 -0.012 -0.011 -0.012
(0.003) (0.006) (0.005) (0.005)

BMI Missing -0.200 -0.247 -0.281 -0.260
(0.162) (0.358) (0.354) (0.356)

Serum Albumin 0.012 0.019 0.018 0.018
(0.012) (0.025) (0.026) (0.026)

Serum Albumin - 3.7 if >= 3.7 0.072 0.111 0.111 0.111
(0.021) (0.048) (0.045) (0.046)

Serum Albumin - 4.4 if >= 4.4 -0.094 -0.159 -0.156 -0.157
(0.020) (0.045) (0.041) (0.041)

Serum Albumin Missing 0.119 0.224 0.220 0.223
(0.042) (0.088) (0.091) (0.092)

Log Dialysis Time at Registration (Years) 0.006 0.026 0.025 0.027
(0.002) (0.005) (0.005) (0.005)

Log Dialysis Time at Registration x 1{> 5 years} -0.020 0.020 0.028 0.019
(0.024) (0.051) (0.051) (0.051)

Donor Characteristics
Age < 18 1.118 1.932 1.911 1.921

(0.052) (0.088) (0.085) (0.085)
Age 18-35 0.961 1.745 1.732 1.743

(0.058) (0.099) (0.094) (0.094)
Age 50+ -1.145 -2.012 -2.025 -2.027

(0.084) (0.135) (0.139) (0.139)
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Table D.12: Choice Estimates (Continued)

Cause of Death - Anoxia 0.112 0.181 0.184 0.178
(0.049) (0.087) (0.098) (0.097)

Cause of Death - Stroke 0.421 0.729 0.731 0.726
(0.048) (0.082) (0.092) (0.092)

Cause of Death - CNS -0.585 -0.936 -0.981 -0.979
(0.099) (0.168) (0.188) (0.188)

Cause of Death - Head Trauma 0.566 0.986 0.993 0.986
(0.048) (0.084) (0.093) (0.093)

Creatinine 0.5-1.0 0.701 1.264 1.246 1.244
(0.038) (0.064) (0.062) (0.062)

Creatinine 1.0-1.5 0.491 0.908 0.889 0.887
(0.038) (0.067) (0.064) (0.064)

Creatinine >= 1.5 -0.510 -0.852 -0.870 -0.868
(0.040) (0.066) (0.062) (0.062)

Expanded Criteria Donor (ECD) -0.715 -1.239 -1.253 -1.239
(0.030) (0.053) (0.054) (0.054)

Donation After Cardiac Death (DCD) -0.420 -0.768 -0.733 -0.740
(0.028) (0.051) (0.052) (0.052)

Male 0.097 0.175 0.170 0.170
(0.017) (0.028) (0.030) (0.030)

History of Hypertension -0.342 -0.608 -0.598 -0.598
(0.021) (0.034) (0.038) (0.038)

Offer Characteristics
Perfect Tissue Type Match 1.009 1.554 1.511 1.544

(0.051) (0.093) (0.092) (0.093)
2 A Mismatches -0.074 -0.113 -0.116 -0.116

(0.014) (0.024) (0.024) (0.024)
2 B Mismatches -0.012 -0.022 -0.022 -0.023

(0.016) (0.029) (0.025) (0.025)
2 DR Mismatches -0.093 -0.158 -0.154 -0.155

(0.015) (0.023) (0.024) (0.024)
ABO Compatible -0.523 -0.883 -0.868 -0.884

(0.038) (0.066) (0.067) (0.067)
Regional Offer 0.062 0.135 0.132 0.132

(0.018) (0.030) (0.031) (0.031)
Local Offer 1.500 2.517 2.506 2.513

(0.031) (0.056) (0.053) (0.053)
Log Waiting Time (Years) -0.023 0.043 0.053 0.045

(0.004) (0.008) (0.007) (0.007)
Log Waiting Time x 1{Over 1 Year} 0.110 0.334 0.426 0.343

(0.016) (0.029) (0.030) (0.030)
Log Waiting Time x 1{Over 2 Years} 0.089 0.140 0.352 0.156

(0.024) (0.044) (0.044) (0.045)
Perfect Tissue Type Match x Prior Transplant -0.159 -0.619 -0.611 -0.632

(0.073) (0.153) (0.149) (0.150)
Perfect Tissue Type Match x Diabetic Patient 0.017 -0.017 -0.020 -0.019

(0.023) (0.042) (0.043) (0.044)
Perfect Tissue Type Match x Patient Age 0.002 0.005 0.005 0.005

(0.001) (0.001) (0.001) (0.001)
Perfect Tissue Type Match x CPRA 0.301 0.367 0.374 0.371

(0.071) (0.140) (0.140) (0.141)
Perfect Tissue Type Match x 1{CPRA > 80%} 0.016 0.113 0.112 0.110

(0.076) (0.156) (0.156) (0.156)
Perfect Tissue Type Match x ECD Donor -0.641 -1.040 -1.039 -1.058

(0.042) (0.068) (0.073) (0.074)
Perfect Tissue Type Match x DCD Donor -0.607 -1.055 -1.060 -1.062

(0.074) (0.125) (0.129) (0.129)
Perfect Tissue Type Match x Local Offer 0.301 0.684 0.711 0.697

(0.037) (0.068) (0.063) (0.063)
Perfect Tissue Type Match x ABO Compatible 0.511 0.923 0.908 0.922

(0.046) (0.083) (0.084) (0.084)
Local Offer x 1{2 A Mismatches} 0.031 0.045 0.048 0.048

(0.016) (0.027) (0.026) (0.026)
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Table D.13: Choice Estimates (Continued)

Local Offer x 1{2 B Mismatches} -0.112 -0.177 -0.175 -0.176
(0.017) (0.031) (0.027) (0.027)

Local Offer x 1{2 DR Mismatches} -0.167 -0.243 -0.240 -0.246
(0.016) (0.025) (0.026) (0.026)

Local Offer x 1{Donor Age < 18} -0.756 -1.292 -1.287 -1.287
(0.035) (0.059) (0.056) (0.056)

Local Offer x 1{Donor Age 18-35} -0.556 -0.961 -0.963 -0.963
(0.032) (0.053) (0.050) (0.050)

Local Offer x 1{Donor Age 50+} 0.026 0.032 0.029 0.030
(0.030) (0.051) (0.050) (0.050)

Patient Age x 1{Donor Age < 18} -0.013 -0.023 -0.023 -0.023
(0.001) (0.001) (0.001) (0.001)

Patient Age x 1{Donor Age 18-35} 0.000 -0.001 0.000 -0.001
(0.001) (0.003) (0.002) (0.002)

Patient Age x 1{Donor Age 50+} 0.018 0.032 0.032 0.032
(0.002) (0.004) (0.004) (0.004)

Patient Age - 35 if Age >= 35 x 1{Donor Age 18-35} -0.009 -0.014 -0.014 -0.014
(0.002) (0.003) (0.003) (0.003)

Patient Age - 35 if Age >= 35 x 1{Donor Age 50+} -0.008 -0.016 -0.017 -0.017
(0.002) (0.004) (0.004) (0.004)

Scarcity
Log(1+#Future Donors) 0.044 -0.270

(0.025) (0.019)
Log(1+#Future Offers) -0.218 -0.203

(0.012) (0.009)

Instruments No Instruments # Future Donors # Future Offers
# Future Donors, 
# Future Offers

Notes: Estimates of the choice equation are presented. The sample includes 6809293 offers made between 2000 and 2009

to patients in the sample. The chain length is 250000, which includes a burn-in of 50000 draws. We thin the chain by

taking every 10 draws. All columns control for dummies for DSA fixed effect, blood type fixed effect, and registration

year fixed effect. Future donors (offers) is defined as the number of donors (offers) in the next 4 quarters (see Table 4

for detailed definition). Standard errors are in parenthese.
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