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Abstract In standard portfolio theory, an investor is typically taken as having one stochastic

objective, to maximize the random variable of portfolio return. But in this paper, we focus

on investors whose purpose is to build, more broadly, a “suitable portfolio” taking additional

concerns into account. Such investors would have additional stochastic and deterministic

objectives that might include liquidity, dividends, number of securities in a portfolio, social

responsibility, and so forth. To accommodate such investors, we develop a multiple criteria

portfolio selection formulation, corroborate its appropriateness by examining the sensitivity

of the nondominated frontier to various factors, and observe the conversion of the nondomi-

nated frontier to a nondominated surface. Furthermore, multiple criteria enable us to provide

an explanation as to why the “market portfolio,” so often found deep below the nondominated

frontier, is roughly where one would expect it to be with multiple criteria. After commenting

on solvability issues, the paper concludes with the idea that what is the “modern portfolio

theory” of today might well be interpreted as a projection onto two-space of a real multiple

criteria portfolio selection problem from higher dimensional space.
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1 Introduction

On one hand, we have the portfolio selection problem in finance, its Markowitz (1951, 1956,

1999) mean-variance formulation, and the extent to which this formulation has permeated

the field of finance for the past half century. On the other, there is the trickle of multiple

criteria oriented portfolio papers that has increased from about 1.5 per year over the period

1973–1992 to about 4.5 per year since 1993 (as analyzed from Steuer and Na (2003)).

The question is this: Is the growing trickle of no especial significance, or might the

multiple criteria oriented papers be indicative of a more inclusive way of thinking about

portfolio selection? We feel that many valuable ideas have been suggested in these papers.

Of particular interest is the proposition that all investors are not the same and that different

categories of investors have different modeling needs, currently not well met by standard

approaches. It is toward the idea that all investors cannot be put into the same category, its

implications, and what can be done for different investors, that this paper is directed.

Clearly, the amount of research that has been devoted to portfolio theory is remarkable.

But knowing that all kinds of investors exist, one difficulty with existing theory is that it

only assumes a standard investor. By “standard” investor we are referring to investors whose

behavior complies with the conventional assumptions of finance and who are only in it for

the money, i.e., to maximize the random variable of portfolio return.

But in this paper, not to say that there aren’t large numbers of investors for which the

definition of standard is apt, we wish to consider, for side-by-side existence with standard

investors, another type of investor. To this other type of investor we ascribe the designation

suitable-portfolio investor. This is to signify that the goal of this type of investor, beyond

merely the monetary, is to strive for the construction of a “suitable portfolio.” One look

across the mutual fund landscape shows that many people wish their money invested in

ways that specifically take factors other than simply risk and return into account. There are

dividend, social responsibility, and sector funds of almost any variety. To a portfolio manager,

the maximum amount invested in any security, liquidity, and the number of securities in a

portfolio would be typical operational concerns. In portfolio revision, turnover most likely

would be a factor to be monitored. The intention here is to indicate that suitable-portfolio

investing is not an irrational proposition and that there may well be a little, if not a lot, of

suitable-portfolio investing in many of us.

Consequently, this means that many investors may well wish to seek balance in their

portfolios among a dispersion of competing concerns. Noting (a) that existing portfolio

theory is largely grounded in approaches developed over 50 years ago, (b) that the world

has almost certainly become more complex in the interim, and (c) that new tools such as

those from multiple criteria decision analysis have become available in the meantime, with

evidence mounting, it now appears timely to see if existing portfolio theory can’t be better

extended to meet the modeling needs of investors other than of the standard variety.

To place previous multiple criteria oriented portfolio analysis research into perspective, six

categories are employed: (1) overall framework, (2) portfolio ranking, (3) skewness inclusion,

(4) use of alternative measures of risk, (5) decision support systems, and (6) the modeling of

individual investor preferences.

In the first category, we have overview pieces such as by Hallerbach and Spronk (2002a,

2002b) and Bana e Costa and Soares (2001) in which the benefits of embracing multiple

criteria concepts in financial decision making are outlined. Employing tools (see Belton and

Stewart (2002)) from multiple criteria decision analysis for portfolio ranking, we have papers

represented by Hurson and Zopounidis (1995), Yu (1997), Jog, Kaliszewski, and Michalowski

(1999), Hurson and Ricci (1998), and Bouri, Martel, and Chabchoub (2002).
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In the category of skewness inclusion are papers by Stone (1973), Konno, Shirakawa,

and Yamazaki (1993), Konno and Suzuki (1995), Chunhachinda et al. (1997), and Prakash,

Chang, and Pactwa (2003). Such skewness inclusion papers are interesting because they can

be viewed as part of standard theory in that only the single stochastic objective of portfolio

return is involved. But it could also be argued that they are more multiple-objective in nature

because of the degree to which the tools of multiple criteria analysis are necessary to search

the space of tradeoffs among the first three moments of the portfolio return random variable.

With regard to alternative measures of risk, we have the efforts by Zeleny (1977), Konno

and Yamazaki (1991), Feinstein and Thapa (1993), Doumpos, Spanos, and Zopounidis

(1999), and Michalowski and Ogryczak (2001). In the category of decision support sys-

tems employing mathematical programming techniques, we have the approaches of Colson

and DeBruyn (1989), Ballestero and Romero (1996), Tamiz et al. (1996), Dominiak (1997),

Ogryczak (2000), Arenas Parra, Bilbao Terol and Rodrı́guez Urı́a (2001), Ballestero and

Plà-Santamarı́a (2003), Mansini, Ogryczak, and Speranza (2003), Ehrgott, Klamroth, and

Schwehm (2004), and Zopounidis and Doumpos (2000).

In the sixth category, recognizing that some criteria may come from financial-economic

theory and others may come from the individual investor, we have Spronk and Hallerbach

(1997), Ballestero (1998), Chang et al. (2000), Gilli and Këllezi (2000), and Bana e Costa and

Soares (2004). It is mostly in this category, in the area of recognizing the existence of other

than standard investors and in developing more inclusive approaches to portfolio selection,

that this paper is concerned.

The paper proceeds as follows. In Section 2 we study the line of thinking that has led to the

acceptance of the mean-variance approach to portfolio selection. In Section 3 we extend the

line of thinking to suitable-portfolio investing. In Section 4 we review the topic of multiple

criteria optimization. In Section 5 we comment on the two most popular models of standard

portfolio selection (the unrestricted-variable model that can be addressed in closed-form and

the restricted-variable model which requires mathematical programming) and on the standard

assumptions of “modern portfolio analysis.” In Section 6, the sensitivity of the nondominated

frontier to various factors is discussed. With a revised set of assumptions and the presentation

of an expanded formulation in Section 7, the conversion of the nondominated frontier to a

nondominated surface is overviewed in Section 8. Computational viability is addressed in

Section 9 and concluding remarks constitute Section 10.

2 Standard theory

The problem of standard portfolio selection is as follows. Assume

(a) n securities

(b) an initial sum of money to be invested

(c) the beginning of a holding period

(d) the end of the holding period

and let x1, . . . , xn be the investor’s investment proportion weights. These are the proportions

of the initial sum to be invested in the n securities at the beginning of the holding period, that

define the portfolio to be held fixed until the end of the holding period. By standard theory

there is only one motivating factor in portfolio selection, and it is to make money, i.e., to

maximize the concept of portfolio return, the percent return earned by the portfolio over the

course of the holding period. Reflecting this, the problem of standard portfolio selection is

Springer



Ann Oper Res

then to solve

max

{
n∑

j=1

r j x j = R(x,r)

}
(1)

s.t. x ∈ S =
{

x ∈ Rn

∣∣∣∣∣ n∑
i=1

xi = 1, αi ≤ xi ≤ ωi

}

in which the r j are the percent returns to be realized on the n securities over the holding

period, the α j and ω j are fixed lower and upper bounds on the x j , and S as specified in

(1) is a typical feasible region. Unfortunately, to solve (1) is not so easy. The difficulty is

that the x j must be solved for at the beginning of the holding period, but the r j , which are

random variables, are not known until the end of the holding period. This makes (1), whose

objective R(x,r) is a random variable, a stochastic optimization problem, and what it means

to solve a stochastic program requires an interpretation (for example, see Caballero et al.

(2001)). To operationalize what it means to solve (1), there are several ways to proceed (i.e.,

interpretations). The most popular has been the mean-variance approach, justifications for

which are as follows.

Let U : D → R represent the utility function of a standard investor where R is the real

line. Since a standard investor’s only purpose is to maximize portfolio return, U is then a

function of only the single argument R(x,r). In this way, it suffices for the utility function’s

domain D to be given by the interval D = [Rmin, Rmax] where

Rmin = min
1≤ j≤n

{r jα} Rmax = max
1≤ j≤n

{r jω}

in which r jα and r jω are lower and upper bounds on all possible realizations of r j . Since

standard investors are assumed to possess declining marginal utility, U : D → R must then be

strictly concave and increasing. This is what is known as risk aversion. Often U is additionally

assumed to be infinitely-differentiable so that, except in some pathological cases, U is Taylor-

series expandable.

Since (1) is stochastic and what it means to solve a stochastic programming problem

requires a decision, let us consider what might be the interpretation with such a U if it is

accepted that any x ∈ S that maximizes the expected utility of R(x,r) solves (1), i.e., any x
that solves the substitute problem

max {E[U(R(x,r))]} (2)

s.t. x ∈ S

solves (1). Now, if in addition, U is quadratic, U would be of the form

U(R(x,r)) = a0 + a1 R(x,r) + a2 R(x,r)2 (3)
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where α2 < 0 (as a result of the strict concavity of U ). Taking the expectation of (3), we have

E[U(R(x,r))] = a0 + a1 E[R(x,r)] + a2 E[R(x,r)2] (4)

= a0 + a1 E[R(x,r)] + a2(V [R(x,r)] + E[R(x,r)]2) (5)

= a0 + a1 E[R(x,r)] + a2 E[R(x,r)]2 + a2V [R(x,r)] (6)

= U(E[R(x,r)]) + a2V [R(x,r)] (7)

in which V designates variance.

In (7), with U strictly concave and increasing, it is seen that all expected utility function

contours are strictly convex and increasing in (variance, expected-return) space. Thus, with

E[U(R(x,r))] increasing (a) when E[R(x,r)] increases and V [R(x,r)] is held fixed, and (b)

when V [R(x,r)] decreases and E[R(x,r)] is held fixed, all potentially maximizing solutions

of substitute problem (2) can be obtained by solving

max {E[R(x,r)]}
min {V [R(x,r)]} (8)

s.t. x ∈ S

for all x-vectors in S from which it is not possible to increase expected portfolio return without

increasing portfolio variance, or decrease portfolio variance without decreasing expected

portfolio return. Note that (8) is equivalent to the problem posed by Markowitz (1956), but

justified from a stochastic programming point of view.

Since it is also assumed that the r j in R(x,r) are from distributions whose means μ j , vari-

ances σ j j and covariances σi j are known, it is interesting to see how stochastic programming

problem (1) under the above rationale is operationalized in the form of a problem with two

deterministic objectives. With S from (1), this is seen more clearly by re-expressing (8) as

max

{
n∑

i=1

μ j x j

}

min

{
n∑

i=1

n∑
j=1

xiσi j x j

}
(9)

s.t. (x1, . . . , xn) ∈ S =
{

x ∈ Rn

∣∣∣∣∣ n∑
i=1

xi = 1, αi ≤ xi ≤ ωi

}

Standard theory embraces a second set of assumptions that, through (2), also leads to (8)

and hence (9). If we drop the condition that our risk-averse U is quadratic, but add the condi-

tion that all security returns (r1, . . . , rn) are multivariate normally distributed, then all poten-

tially maximizing solutions of this U in (2) are obtained by solving (8) or equivalently (9).

Now, with all of the images of the x-vectors that solve (8) or equivalently (9) tracing a

positively-sloped curve in (standard-deviation, expected-return) space, it is assumed that an

investor is able to identify the point on the curve that maximizes his substitute problem (2),

thus specifying for the investor, via an inverse image of the point, an optimal (portfolio)
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solution for (1). It is in this way, under the acceptance of the rationale of this section, that (9)

has emerged as the reigning operationalization for solving portfolio selection problems.

3 Suitable-portfolio theory

With standard theory as a reference point, let us now introduce theory with regard to suitable-

portfolio investors. Actually, it is from the very start that the theory of a suitable-portfolio

investor departs from that of a standard investor. Whereas a standard investor starts with the

need to solve the single-objective formulation (1), a suitable-portfolio investor starts with the

need to solve the multiple objective formulation

max

{
n∑

j=1

r j x j = R(x,r)

}
(10)

max

{
n∑

j=1

c′
2 j x j = g′

2(x)

}
...

max

{
n∑

j=1

c′
pj x j = g′

p(x)

}
s.t. x ∈ S

in which the extra p −1 objectives are additional criteria to be considered by the investor,

and the primes on the ci j and gi indicate that all of the additional objectives are written in

maximization form.

With the first objective remaining stochastic, we assume that all of the additional objectives

2 to p can be acceptably modeled deterministically. There is no problem with objectives such

as the number of securities in a portfolio, the maximum amount invested in any security, or

the amount of short selling involved, because these objectives are deterministic in the first

place. While there could be a problem with objectives like dividends, social responsibility,

and R&D, it is our position in this paper that concerns about variability in the outcomes of

these objectives are of a different order of magnitude than with portfolio return, and can in

many if not most cases be safely ignored.

As for interpreting what it means to solve (10) with the first objective being stochastic, let

U : Rp → R now be the investor’s utility function in p arguments (one for each objective).

With D as defined earlier, it suffices for the domain of U to be given by M = D × Rp−1. As

for properties, let U be coordinatewise strictly increasing in all p arguments, and furthermore,

be strictly concave (for risk aversion purposes) in the first argument.

Under the interpretation that it is also acceptable to proceed along the lines of expected

utility maximization, it is then considered that any x that solves the substitute problem

max {E[ U(R(x,r), g′
2(x), . . . , g′

p(x))]} (11)

s.t. x ∈ S
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is an optimal portfolio solution for any investor whose formulation is as specified in (10). As

for operationalizing (11), guidance is drawn from Theorem 1.

Theorem 1. Let

(a) R(x,r) be stochastic as described in (1)

(b) the r j in R(x,r) be from distributions whose means μ j , variances σ j j and covariances
σi j are known

(c) g′
2(x), . . . , g′

p(x) be deterministic functions as defined in (10)

(d) U be defined as above.

Then if

(i) U is also quadratic over domain M in the first argument and all security returns
(r1, . . . , rn) are continuously distributed, or

(ii) the security returns (r1, . . . , rn) are multivariate normally distributed

all potentially maximizing solutions of (11) can be obtained by solving

max

{
n∑

i=1

μ j x j

}
(12)

min

{
n∑

i=1

n∑
j=1

xiσi j x j

}

max
{
g′

2(x)
}

...

max
{
g′

p(x)
}

s.t. x ∈ S

for all x-vectors of (12) from which it is not possible to increase one of the maximizing
objectives without decreasing at least one of the other maximization objectives or increasing
the minimization objective, or decrease the minimization objective without decreasing at
least one of the maximization objectives.

The proof of Theorem 1 can be found in the Appendix. Unfortunately, computing all

such x-vectors of (12) when p ≥ 2 is more difficult than when extra objectives do not exist

because they cannot normally be computed by the methods of single-objective or parametric

mathematical programming. Hence their computation is left to the topic of multiple criteria

optimization. Moreover, the images of the x-vectors in (12) are vectors of dimensionality

p + 1 so that when there are extra objectives they do not lend themselves to graphical

representation as in the former case. To address the difficulties inherent in (12), we now

overview multiple criteria optimization.
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4 Multiple criteria optimization

In deterministic operations research, there is the multiple criteria optimization problem that is

not normally addressed by the methods of traditional mathematical programming. While on

first appearance, other than for possessing a stack of deterministic objectives instead of just

one, it does not look much different from an ordinary mathematical programming problem,

but its solution is much more involved. Facilitating both maximization and minimization

objectives, a multiple criteria optimization problem can be expressed as

max or min { f1(x) = z1}
... (13)

max or min { fk(x) = zk}
s.t. x ∈ S

in which the fi are deterministic functions, x ∈ Rn , k is the number of objectives, and the

zi are criterion values. In single-objective programming there is of course the usual feasible

region S in decision space Rn . But in multiple objective programming there is also feasible

region Z = {z | z = f (x), x ∈ S} in criterion (or evaluation) space Rk . In this way, each

x ∈ S in decision space has an image z ∈ Z in criterion space, and each z ∈ Z in criterion

space has at least one inverse image x ∈ S in decision space.

Criterion vectors z ∈ Z are either nondominated or dominated. Let J+ = { i |
fi (x) is to be maximized} and J− = { j | f j (x) is to be minimized}. Then we have

Definition 1. Let z̄ ∈ Z . Then z̄ is nondominated in (13) if and only if there does not exist

another z ∈ Z such that (i) zi ≥ z̄i for all i ∈ J+, and z j ≤ z̄ j for all j ∈ J−, and (ii) zi > z̄i

or z j < z̄ j for at least one i ∈ J+ or j ∈ J−. Otherwise, z̄ ∈ Z is dominated.

The set of all nondominated criterion vectors is an important set, is designated N , and is

called the nondominated set. In conjunction with vectors z ∈ Z being either nondominated

or dominated, points x ∈ S in decision space are either efficient or inefficient as follows.

Definition 2. Let x̄ ∈ S. Then x̄ is efficient in (13) if and only if its image criterion vector z̄ =
( f1(x̄), . . . , fk(x̄)) is nondominated, that is, if and only if z̄ ∈ N . Otherwise, x̄ is inefficient.

The set of all efficient points is designated E and is called the efficient set. While nondomi-

nance is a criterion space concept, we note that in multiple criteria optimization, efficiency

is only a decision space concept.

To define optimality in multiple criteria optimization, let U : Z → R be the decision

maker’s k-argument utility function where the k arguments are the zi . Then, any zo ∈ Z that

maximizes U over Z is an optimal criterion vector, and any inverse image of zo, that is, any

xo ∈ S such that ( f1(xo), . . . , fk(xo)) = zo, is an optimal solution. We are interested in the

efficient and nondominated sets because if U is such that more-is-always-better-than-less for

each zi , i ∈ J+, and less-is-always-better-than-more for each z j , j ∈ J−, then any optimal

criterion vector is a member of the nondominated set N , and any inverse image of an optimal

criterion vector is a member of the efficient set E . This means that to find an optimal criterion

vector, one only needs to find the most preferred criterion vector in N .

Springer



Ann Oper Res

To obtain an optimal solution, we proceed as follows. Search among the criterion vectors

of all x-vectors that are members of E to identify the best criterion vector in N . Despite the

fact that N is always some portion of the surface of Z , finding a most preferred criterion vector

is often a non-trivial task because of the size or eccentricity of N . Nevertheless, assuming

that a most preferred (i.e., optimal) criterion vector zo can eventually be found, it is only

necessary to obtain an xo inverse image to know what to implement.

In another way of looking at nondominated criterion vectors, they are all contenders for
optimality. By this it is meant that for each nondominated criterion vector, there exists a

utility function U , with the property that more-is-always-better-than-less in the argument of

each objective that is to be maximized and less-is-always-better-than-more in the argument

of each objective that is to be minimized, that makes it uniquely optimal. As for dominated

criterion vectors, they are all noncontenders for optimality because for them no such utility

functions exist.

While the field of multiple criteria optimization has concerns about the full computation

or characterization of efficient and nondominated sets, this is normally only possible on

smaller problems because of computer time. However, to address problems of any size with

up to about 7 objectives, the field of multiple criteria optimization is mostly concerned with

interactive procedures for repetitively sampling in a progressively more concentrated fashion

the nondominated set N until a final solution is obtained. In practice, a final solution is either an

optimal solution, or a solution close enough to being optimal to terminate the decision process.

To reconcile the terminology of Sections 2 and 3 with the terminology of multiple criteria

optimization of this section, “all potentially maximizing solutions” of substitute problems

(2) and (11), or alternately “all x-vector solutions” of (9) and (12), constitute efficient sets,

and full sets of “images” constitute nondominated sets.

While the operationalization (9) of the portfolio problem of standard theory (1) does not

need the methods of multiple criteria optimization (it can be addressed by already existing

methods), the operationalization

max

{
n∑

i=1

μ j x j = z1

}

min

{
n∑

i=1

n∑
j=1

xiσi j x j = z2

}

max or min

{
n∑

j=1

c2 j x j = z3

}
(14)

...

max or min

{
n∑

j=1

cpj x j = zk

}

s.t. (x1, . . . , xn) ∈ S =
{

x ∈ Rn

∣∣∣∣∣ n∑
i=1

xi = 1, αi ≤ xi ≤ ωi

}

of the portfolio problem of suitable-portfolio theory (10) does need the methods of multiple

criteria optimization. The reason is that the mathematics of problem solving changes as
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we transit from problems with two objectives to problems with three or more objectives.

Since none of the methods for solving (two-objective) mean-variance formulations, such as

the critical line method method described in Markowitz and Todd (2000) or e-constraint

approaches (discussed in Section 6), can easily be extended to computing all of E and N in

problems with additional objectives, this is where multiple criteria optimization comes in as

its specialty is problems with three or more objectives.

5 Standard model variants

When looking through the portfolio chapters of university investments texts (Bodie, Kane,

and Marcus (2004), for example), it is hard to miss seeing graphs of bullet-shaped regions.

With standard deviation on the horizontal and expected return on the vertical, these graphs

are recognized as Z feasible regions in criterion space of formulation (9).

Because standard deviation is to be minimized and expected return is to be maximized,

the nondominated set is to the “northwest.” In this way, the nondominated set is the upper

portion (the portion that is positively sloped) of the minimum standard deviation boundary

of a bullet-shaped Z . In finance, this upper portion of the minimum standard deviation

(leftmost) boundary is called the “efficient frontier.” However, this causes a terminological

conflict with the distinction drawn earlier about efficiency being a decision space concept

and nondominance being a criterion space concept. Rather than efficient frontier, we will

call it the “nondominated frontier,” not only because this is consistent with the terminology

of multiple criteria optimization, but because nondominated is a more intuitive term for use

in criterion space.

With regard to the standard model’s operationalization (9), there are two variants. One is

the unrestricted-variable model in which all lower bounds are −∞ and all upper bounds are

+∞. This causes this model variant’s bullet-shaped Z to be unbounded to the right. This

model is often the favorite in teaching and academic research because of its nice mathematical

properties when V, the n × n covariance matrix of the σi j , is nonsingular. This then causes

the model’s minimum standard deviation boundary of Z to be a hyperbola, which when

exploited, enables virtually any piece of information about the unrestricted-variable model

to be obtainable in closed-form (see for example Roll (1977, pp. 158–165).

Starting with a vector of individual security mean returns and a nonsingular matrix of

covariances of returns

μ =

⎡⎢⎢⎢⎣
μ1

μ2

...

μn

⎤⎥⎥⎥⎦ V =

⎡⎢⎢⎢⎣
σ11 σ12 · · · σ1n

σ21 σ22

...
...

σn1 · · · σnn

⎤⎥⎥⎥⎦
we demonstrate as follows. First form

A =
[
μT V−1μ μT V−11
1T V−1μ 1T V−11

]
≡

[
a b
b c

]
(15)

in which 1 ∈ Rn is a vector of ones because A is used in many of the formulas. For

example, (a) the expected return of the portfolio with minimum standard deviation is
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given by

μmin
p = b

c

(b) the standard deviation σp(μp) of a point on the nondominated frontier whose expected

return is μp ≥ μmin
p is given by

σp(μp) =
√

[μp 1]A−1

[
μp

1

]

and (c) the investment proportion vector xp ∈ E whose image is the nondominated criterion

vector (σp(μp), μp) is given by

xp = V−1 [μ 1] A−1

[
μp

1

]

and so forth. For checking dimensionalities, A is 2 × 2, the transpose of [μp 1] is 2 × 1,

and [μ 1] is n × 2. The supposed advantages of the unrestricted-variable model are that

it enables one to focus on the relationships among variables and to teach portfolio theory

without necessitating the inclusion of mathematical programming in the curriculum (which

hardly ever is any more in finance).

The other variant of operationalization (9) is the restricted-variable model in which at least

some of the lower and upper bounds are finite. As a consequence, (a) bullet-shaped feasible

region Z is if anything only smaller, (b) the minimum standard deviation boundary, instead

of being a single hyperbola, is piecewise hyperbolic, (c) closed-form results are in general

no longer possible, and (d) mathematical programming is now required for computing the

nondominated frontier.

With the restricted-variable and unrestricted-variable formulations at the core of the branch

of finance known, over the past four decades, as “modern portfolio analysis”, let us study its

formal assumptions. Given that the world is not the same as it was in the 1960s when the

assumptions were set in place, that multiple criteria optimization did not appear on the scene

until later, and that investors at the individual level have often not been the focus in portfolio

research, the assumptions may well be in need of a revision. Similar to the list in Elton

et al. (2002), the assumptions, classified here into the four groups of overall environment,

preferences, expectations and model convenience, are as follows.

(a) There are many investors, each small, none of which can affect prices.

(b) There are no taxes.

(c) There are no transactions costs.

(d) Each investor’s asset universe is all publicly-traded securities.

(e) All investors are rational mean-variance optimizers.

(f) All investors have expected utility functions whose contours are strictly convex-to-the-

origin.

(g) All investors share the same expected returns, predicted variances, and predicted co-

variances about the future. This is called homogeneous expectations.
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(h) Each security is infinitely divisible.

(i) Unlimited short selling is allowed.

(j) All investors have the same single holding period.

As one can see, the effect of the assumptions is to standardize investors to the point that

they all have the single goal of pursuing portfolio return, have the same feasible region, and

have the same nondominated frontier. In fact, the only latitude given to an investor under

these assumptions is in the selection of a final point from the curvilinear nondominated

frontier they all share in common as a function of the investor’s risk aversion. With these

assumptions running at odds with the concept of a suitable-portfolio investor, let us now look

at the assumptions in greater detail.

In the overall environment group, we have the first four assumptions. Assumption (a) is

akin to the perfect competition assumption in economics, and assumptions (b) and (c) are

included to avoid the artificialities of tax consequences and the complexities of transaction

costs. These assumptions are not criticized because their lack of realism is viewed as being

outweighed by their usefulness in being able to establish benchmarks against which the

costs of the real world’s imperfections can be measured. Assumption (d) is a little different.

With tens of thousands of publicly-traded securities, it is impossible to imagine how anyone

could have all publicly-traded securities as their asset universe. Clearly, this assumption

is for standardization, but it is of concern to us because the size of one’s asset universe

affects the size of one’s feasible region, and hence the location of one’s nondominated

frontier.

In the preferences group, we first have assumption (e) which states that it suffices for

investors to consider only expected return and standard deviation of return to evaluate port-

folios. This is too restrictive as regards suitable-portfolio investors, and will later be relaxed

in our efforts to develop a more inclusive and broad-based theory of portfolio selection.

As for assumption (f), strictly convex-to-the-origin contours mean that, in conjunction with

convex Zs, an investor’s optimal criterion vector is always a singleton point that can be

found somewhere on the nondominated frontier. Strictly convex-to-the-origin contours also

is a common assumption in multiple criteria optimization, so there appears to be no pressing

need to deviate from it in this paper.

In the expectations group, there is only assumption (g) which states that all investors are

the same as regards their forecasts of the future. This is clearly not the case. In fact, it is

almost the hallmark of investors to specialize in different prognostications. This is important

because if everyone has different forecasts, everyone will have different feasible regions

and hence different nondominated frontiers. Once again, we have another case in which the

attempt to standardize does not appear to be defensible.

In the model convenience group, we have the last three assumptions. These assumptions

appear to have outlived their usefulness. With faster computers, improved optimization soft-

ware, and advances in evolutionary and local search algorithms (for instance, Gandibleux,

Caballero, and Molina (2006)), progress is possible on integrating almost any type of vari-

able condition (for instance, integer and semi-continuous variables) into portfolio problems

of meaningful size. With regard to assumption (i), unlimited short selling is a stretch of

the imagination and to allow it creates an unrealistically large feasible region. For most

investors, short selling consumes cash, and a limit is quickly reached. Even hedge funds

soon hit limits on short selling. While moderate amounts of short selling are reasonable,

unlimited amounts clearly are not. As for assumption (j) which states that all investors

have the same holding period, this is yet another attempt to standardize that cannot be

sustained.
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6 Sensitivities of the nondominated frontier

In this section we consider sensitivity issues in the (bicriterion) mean-variance model (9)

with regard to reasonable parameters and deviations from the assumptions of modern port-

folio analysis of the previous section. We do this by noting the changes undergone by the

nondominated frontier as the parameters in question change.

First, we look at the sensitivity of the nondominated frontier to changes in a common

upper bound on all of the investment proportion weights. Following this, we discuss the

likely sensitivity of the nondominated frontier to changes in other parameters such as a

portfolio dividend requirement, a portfolio social responsibility quotient, and other matters

that may be of concern.

Because of the difficulty in locating good parametric quadratic programming software, the

optimization runs for the experiments of this section were carried out in accordance with the

following 5-step procedure. The purpose is to compute enough points so that by connecting

them the nondominated frontier in question can be accurately drawn.

1. Convert the expected portfolio return objective of (9) to a ≥ constraint with right-hand

side ρ to form what is recognized in multiple criteria optimization as an e-constraint

program.

2. Add any additional constraints to S required by the experiment being conducted.

3. Make sure the parameter is set to its appropriate value.

4. Successively solve the e-constraint program for a sequence of, say 30, different right-

hand side ρ values. From the solution of each e-constraint run, extract standard deviation

value σ (ρ) to form nondominated point (σ (ρ), ρ).

5. Connect the nondominated points resulting from the 30 runs with a smooth line to form

the computed nondominated frontier. Go to Step 3.

To illustrate, let us track through the process by which the nondominated frontiers of

Fig. 1, as a function of a common upper bound ω̄ on the x j , are computed for display
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Fig. 1 Nondominated frontiers with upper bound parameter ω̄ = 1.00, 0.10, 0.06, all α j = 0, and n = 30
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in an instance when n = 30. Following the 5-step procedure, we form the e-constraint pro-

gram of Step 1; skip Step 2; and set all α j to 0 (our choice) and install our first value for ω̄

(we set ω̄ = 1.00, 0.10, 0.06 in our analysis) in Step 3 to form

min

{
n∑

i=1

n∑
j=1

xiσi j x j

}

s.t.

n∑
j=1

μ j x j ≥ ρ (16)

(x1, . . . , xn) ∈ S =
{

x ∈ Rn

∣∣∣∣∣ n∑
j=1

x j = 1, 0 ≤ x j ≤ ω̄

}

Cycling through the 5-step procedure once for each ω̄ value, solving 30 e-constraint programs

each time, we have the three nondominated frontiers of Fig. 1. The top frontier is from

ω̄ = 1.00, the middle frontier is from ω̄ = 0.10, and the short bottom frontier is from ω̄ =
0.06.

As seen in Fig. 1, the nondominated frontier undergoes major changes as we move

through different values of ω̄. Let the risk-free rate be 0.4%/month. If our interest is in

the point that maximizes the Sharpe ratio (tangent point on the nondominated frontier to a

line drawn from 0.4% on the vertical axis), then we would be about 50% up the ω̄ = 1.00

nondominated frontier, at the top of the ω̄ = 0.10 nondominated frontier, and nearly at

the top of the ω̄ = 0.06 nondominated frontier. These are three notably different points,

and this represents considerable sensitivity. This would not be so serious if an investor

were in a position to know a priori his or her most appropriate ω̄. But with all of the

tradeoffs among standard deviation, expected return, and perhaps other criteria, it is al-

most certainly not possible to know an optimal value ω̄ in advance. This is rationale as to

why, if ω̄ is of concern to an investor, ω̄ should be modeled as an objective rather than a

constraint.

If we were to consider other experiments (results not shown) to examine the sensitivity of

the nondominated frontier to changes in portfolio dividend requirements, social responsibility

aspirations, short selling limitations, the number of securities in a portfolio, and so forth, we

would see more of the same, thus providing a quantitative argument for pursuing a multiple

criteria approach.

7 Expanded multiple criteria formulation

In multiple criteria there is always a line that must be drawn between what is most appro-

priately modeled as an objective and what is most appropriately modeled as a constraint,

but in finance, with mean-variance optimizer assumption (e), the line has most likely been

drawn too soon. Generally, in multiple criteria, we distinguish a constraint from an objective

as follows. If, when modeling a constraint, we realize that we can not easily fix a right-hand

side value without knowing the levels of the other criteria, then we are probably looking at

an objective. In fact, this is the case with upper bound ω̄ and can easily be the case with

dividends, social responsibility, number of securities in the portfolio, short selling, and other

concerns. Consequently, beyond just risk and return, an investor could be looking at an
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expanded multiple criteria optimization formulation such as

min { f1(x) = risk}
max { f2(x) = return}
max { f3(x) = dividends}
min { f4(x) = maximum investment proportion weight} (17)

max { f5(x) = social responsibility}
min { f6(x) = number of securities in portfolio (see Streichert, Ulmer, and Zell (2003))}
min { f7(x) = short selling}
s.t. x ∈ S

Note that there is nothing sacrosanct about the above number or mix of objectives to be

present in a given investor’s expanded formulation. Other objectives that could be used in

place of, or in addition to, those listed in (17) might include

max { f8(x) = liquidity (see Lo, Petrovz, and Wierzbicki (2003))}
min { f9(x) = turnover}

max { f10(x) = skewness}
max { f11(x) = amount invested in R&D (see Guerard and Mark (2003))}
max { f12(x) = excess return over benchmark}

Criteria beyond risk and return are not unreasonable. As for minimizing the number of

securities in a portfolio, each additional security is extra administration, and beyond a point,

can be a managerial distraction. As for short selling, this may be undesirable, but might be

tolerated if worth it in terms of what can be achieved with the other criteria. The point here is

that we have no way of knowing an optimal value of a criterion without knowing the values

of the other criteria, and the smallest set containing all necessary information for us to make

a decision is the nondominated set.

Recognizing that investors may possess multiple criteria, that investors may not possess

the same criteria, and that investors may hold different forecasts of the future, let us consider

a revision of the ten assumptions of Section 5 for non-standard investors as follows.

(a) There are many investors, each small, none of which can affect prices (same).

(b) There are no taxes (same).

(c) There is no longer any need to assume no transaction costs (because transaction costs

and other related nuances can be handled through liquidity and turnover criteria if so

desired).

(d) An investor’s asset universe can be any subset of securities (for most investors, this

means usually not more than a few hundred).

(e) Investors may possess any mix of up to about seven objectives (limited by the fact that

multiple criteria decision making is not yet well developed for problems with more than

this number of objectives).
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(f) All investors have expected utility functions whose contours are strictly convex-to-the-

origin (same).

(g) Heterogeneity of expectations. That is, investors can be expected to hold differing fore-

casts about any investment variable (individualism is not only allowed on expectations,

it is to be expected).

(h) Each security is infinitely divisible (with faster computers and improved optimization

software, this assumption should be dropped, but this is another whole topic).

(i) Short selling is only allowed under realistic restrictions (unrealistic and unlimited short

selling ruled out).

(j) An investor may have any holding period (individualism allowed on holding periods,

too).

8 Nondominated surfaces

Note that nothing has been done to standard theory finance. We have only experimented

with adding criterion space dimensions to it for suitable-portfolio investors. In addition to

the nondominated frontier sensitivity seen in Section 6, might there be other evidence to

corroborate a multiple criteria hypothesis? Consider the “market portfolio,” the portfolio

containing all securities in proportion to their market capitalization. By theory, the market

portfolio is on the nondominated frontier and is an investor’s optimal portfolio of risky as-

sets. However, since the market portfolio is impractical, broad-based indices such as the

S&P 500 or Wilshire 5000 are used as surrogates. But empirically, the surrogates plot dis-

concertingly deep below the nondominated frontier, a fact that standard theory has difficulty

explaining.

If the criteria in (17) indeed trade-off against one another, then the nondominated set is no

longer a “frontier” as before, but is now a portion of the surface of the investor’s k-dimensional

Z . Let us conduct a little experiment. Assume that an investor’s optimal portfolio is in the

middle of his or her nondominated set. While the “buried” nature of the market portfolio

is an anomaly in standard theory, in suitable-portfolio theory, buried is exactly what we

expect.

To illustrate, let us assume that the Z of a standard investor is the region bounded by

the ellipse in Fig. 2. Here, the nondominated set is the portion of the boundary of the el-

z2
z3

z4
z5

Return

Risk

Fig. 2 Ellipsoidal feasible regions projected onto two-dimensional (risk, return) plane
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liptical Z as indicated. Let us further assume that the Z of a suitable-portfolio investor

is the region bounded by a k-dimensional ellipsoid with the same major and minor axes

in (risk, return) space. Here, the nondominated set is the portion of the surface of the

ellipsoidal Z that projects onto the upper left quarter of the 2-dimensional elliptical fea-

sible region. If the optimal portfolio is in the middle of the nondominated set like z2 is

for a standard investor, then the optimal portfolio would be at z3 for a suitable-portfolio

investor with a 3-dimensional ellipsoidal Z , at z4 for a suitable-portfolio investor with a

4-dimensional ellipsoidal Z , and so forth, becoming deeper and deeper as the number of

criteria increases. Thus, being buried in (risk, return) space is no anomaly in multiple criteria

portfolio selection.

9 Computational solvability

While not the thrust of this paper, a few comments are made about the solvability of ex-

panded portfolio selection formulations to demonstrate the computational viability of what

is proposed in this paper. By “solvability” we are referring to the two-stage process of (1)

computing or characterizing the nondominated surface and then (2) searching the obtained

representation for a most preferred point.

With regard to stage-1 possibilities, let a given investor’s expanded formulation have one

quadratic and k − 1 linear objectives as in

min {xT Qx}
max {(μ1)T x}

... (18)

max {(μk−1)T x}
s.t. x ∈ S

in which S is convex and Q ∈ Rn×n is positive semidefinite.1

Now let

� =
{
λ ∈ Rk | λi > 0,

k∑
i=1

λi = 1

}

and with (λ1, λ2, . . . , λk) ∈ �, form

max {−λ1(xT Qx) + λ2(μ1)T x + · · · + λk(μk−1)T x} (19)

s.t. x ∈ S

whose solution produces a point on the nondominated surface of (18). Other than for any

nondominated criterion vectors that minimize the quadratic objective, the power of (19) is that

a point is on the nondominated surface if and only if it can be generated in this way for some

(λ1, λ2, . . . , λk) ∈ �. Since (19) is only a quadratic programming problem, it can be solved

1 All covariances matrices are positive semidefinite.
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by software such as provided by Matlab (2004) and other vendors. Then, by repetitively

solving (19) for different vectors (λ1, λ2, . . . , λk) ∈ �, a dispersion of points characterizing

the nondominated surface can be obtained. With the QUADPROG procedure of Matlab being

able to solve (19) in less than about 15 seconds (on a 3.06 GHz Pentium 4) for problems with

up to about 200 variables, up to several thousand points representing a nondominated surface

can be generated overnight. Clearly, this is a brute force approach, but more sophisticated

approaches should follow.

In ongoing research by the authors (that is, in Hirschberger, Qi, and Steuer (2007)), it has

been learned that the nondominated surface of a problem such as (18) consists of numerous

paraboloidic platelets (like tiles on the front of the space shuttle). Although not yet fully

described in manuscript form, an algorithm has been developed and coded for computing

the corner points in Rn of all such platelets. Then using the corner points, and convex

combinations of the corner points, a nondominated surface can be represented discretely

to any degree of resolution. Furthermore, it appears that nondominated surfaces can be

characterized in this way in only a fraction of the time required by the weighted-sums

approach of (19).

Even if some of the objectives or constraints of (18) possess non-smooth aspects, advances

in the field of multicriterion evolutionary algorithms (as in Deb (2001)) can probably be

counted on to provide discretized representations of the nondominated set in the near future.

As for the stage-2 task of searching discretized nondominated surfaces, we look to the

methods of interactive multiple objective programming. From these methods we see several

strategies adaptable to the needs of expanded portfolio selection. One is to iteratively sample

the set of discrete points in a progressively more concentrated fashion as in the Tcheby-

cheff Method of Steuer and Choo (1983). Another is to successively conduct projected line

searches across the discretized nondominated surface as in Korhonen and Wallenius (1988)

and Korhonen and Karaivanova (1999), which can be likened to driving an SUV across the

bumpy surface of the moon. A third involves the iterative classification of the criteria into

those to be improved, those to be held at roughly the same level, and those that are allowed

to be deteriorated, as in the NIMBUS approach of Miettinen (1999). Most likely, all of the

strategies could be made more effective by utilizing visualization techniques from Lotov,

Bushenkov, and Kamenev (2004) .

With rudiments of stage-1 and stage-2 procedures already in place, there is no reason

to believe that much more progress won’t be made on solving multiple criteria portfolio

optimization problems in the near future.

10 Concluding remarks

Since the success of any economy is in large part related to the effectiveness by which the

economy’s society allocates its scare capital resources, no stone should be left unturned

in trying to better understand the investment process. This includes theory, education, and

practice. Although this paper pursues an unusual approach, we are not alone, as from Section

1 and the list of references, there are others with similar emerging views.

With the assumptions of Section 7 subsuming the assumptions of Section 5, operational-

ization (14) subsuming operationalization (9), and the buried nature of the market portfolio,

it is not an unreasonable proposition that the “modern portfolio theory” of today may best be

viewed as a projection onto risk-return space of more realistically modeled multiple criteria

problems from higher dimensional space.

Springer



Ann Oper Res

Appendix: Proof of Theorem 1

Choose x ∈ S maximizing expected utility and define the corresponding stochastic objective

vector by

y(r) := (R(x, r), g′
2(x), . . . , g′

p(x))T .

We assume that x is not efficient for the substitute problem, i.e., there exists an x̄ ∈ S such

that the substitute problem’s objective values μ̄, σ̄ 2, ȳ2, . . . , ȳp of x̄ dominate the objective

values μ, σ 2, y2, . . . , yp of x such that

(μ̄, −σ̄ 2, ȳ2, . . . , ȳp)T ≥ (μ, −σ 2, y2, . . . , yp)T

and “>” for some index i ∈ {0, . . . , p}, where the index of μ is 0, the index of σ 2 is 1, the

index of y2 is 2, etc. We will show that

E[ U (ȳ1(r), ȳ2, . . . , ȳp) ]
(1)≥ E[ U (ȳ1(r), y2, . . . , yp) ]

(2)≥ E[ U (y1(r), y2, . . . , yp) ]

where (1) is “>” if x is dominated on the (expected-value, variance) part i ∈ {0, 1}, and

(2) is “>” if x is dominated on the deterministic part, i.e. if i ∈ {2, . . . , p}. This yields the

contradiction

E[ U (ȳ(r)) ] = E[ U (ȳ1(r), ȳ2, . . . , ȳp) ] > E[ U (y1(r), y2, . . . , yp) ] = E[ U (y(r)) ]

Part (1): Since U is coordinatewise strictly increasing in y2, . . . , yp

U (ȳ1(r), ȳ2, . . . , ȳp) ≥ U (ȳ1(r), y2, . . . , yp)

holds for all random values of r, and, if i ∈ {2, . . . , p}, even “>” holds. Since by either

assumption (i) or (ii) of the theorem, the utility values are continuous random variables, the

expected value yields

E[ U (ȳ1(r), ȳ2, . . . , ȳp) ] ≥ E[ U (ȳ1(r), y2, . . . , yp) ]

and again “>” for i ∈ {2, . . . , p}.

Part (2): Define the following utility function for fixed values of the deterministic objectives

Û (t) := U (t, y2, . . . , yp) , t ∈ R

Then it is clear that E[ Û (ȳ1(r)) ] = E[ U (ȳ1(r), y2, . . . , yp) ] and E[ Û (y1(r)) ] =
E[ U (y1(r), y2, . . . , yp) ]. Note that assumptions (i) or (ii) of the Theorem yield Markowitz’s

original assumptions of Û being a quadratic utility function or r being multivariate normally

distributed. Since μ̄ ≥ μ and σ̄ 2 ≤ σ 2, by Markowitz’s theorem

E[ Û (ȳ1(r)) ] ≥ E[ Û (y1(r)) ]

and even “>” if i ∈ {0, 1}. �
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