
European Journal of Operational Research 177 (2007) 1610–1625

www.elsevier.com/locate/ejor
Randomly generating portfolio-selection covariance
matrices with specified distributional characteristics

Markus Hirschberger a,1, Yue Qi b, Ralph E. Steuer b,*

a Department of Mathematics, University of Eichstätt-Ingolstadt, Eichstätt, Germany
b Department of Banking and Finance, Terry College of Business, University of Georgia, Athens, GA 30602-6253, United States

Available online 29 November 2005
Abstract

In portfolio selection, there is often the need for procedures to generate ‘‘realistic’’ covariance matrices for security
returns, for example to test and benchmark optimization algorithms. For application in portfolio optimization, such a
procedure should allow the entries in the matrices to have distributional characteristics which we would consider ‘‘real-
istic’’ for security returns. Deriving motivation from the fact that a covariance matrix can be viewed as stemming from a
matrix of factor loadings, a procedure is developed for the random generation of covariance matrices (a) whose off-
diagonal (covariance) entries possess a pre-specified expected value and standard deviation and (b) whose main diag-
onal (variance) entries possess a likely different pre-specified expected value and standard deviation. The paper con-
cludes with a discussion about the futility one would likely encounter if one simply tried to invent a valid
covariance matrix in the absence of a procedure such as in this paper.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In finance there is the well-known problem of portfolio selection. The standard problem of portfolio
selection is described as follows in which we see the central role played by a covariance matrix. Assume
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(a) the beginning of a holding period,
(b) the end of the holding period,
(c) an initial sum to be invested,
(d) n securities whose end-of-holding-period returns are given by the random vector r = (r1, . . . , rn) with

expected value l = (l1, . . . ,ln) and n · n covariance matrix.
R ¼

r11 r12 � � � r1n

r21 r22

..

. ..
.

rn1 � � � rnn

266664
377775.
In R, each diagonal element rii is a variance (variance of random variable ri) and each off-diagonal element
rij, i 5 j, is a covariance (covariance of random variables ri and rj). We observe that R is symmetric as
rij = rji for all i, j.

Let x = (x1, . . . , xn) be the vector of investment proportion weights. With the monetary payoff (portfolio
return) for the portfolio defined by x being
Xn

i¼1

rixi
the difficulty in portfolio selection is that the ri are not known until the end of the holding period, but the xi

must be chosen at the beginning of the holding period. Under the supposition that investors pursue port-
folio expected return lTx while wishing to avoid portfolio variance xTRx, we have the bi-criterion ‘‘risk-
return’’ portfolio selection formulation of Markowitz [28–30] and Markowitz and Todd [31]
min fxTRxg ð1:1Þ
max flTxg; ð1:2Þ
s.t. x 2 S; ð1:3Þ
where S is the region of all feasible investment proportion vectors.
While (1.1)–(1.3) is at the heart of ‘‘modern portfolio theory’’ [11], a growing interest has been observed

in multiple objective quadratic-linear programming [23,16] and in extending approaches to portfolio selec-
tion to accommodate investors who might have additional criterion concerns such as dividends, liquidity,
number of securities in the portfolio, social responsibility, amount invested in R&D, and so forth [1–
4,6,10,12,19,20,22,33,36,38,26,37,40].

The diversity of above multiple objective quadratic-linear programming and multiple criteria portfolio-
selection approaches has aggravated a long-standing incapability. There is a reason, despite the legions of
papers written on portfolio selection over the past five decades, that there is a dearth of computational
results papers on portfolio optimization. Just try to find a paper that reports on the time it takes to solve
portfolio-selection problems of different sizes and characteristics. We are unaware of any good references
on this. The problem is the covariance matrix. Except in small instances, one cannot simply create covari-
ance matrices whose elements have any resemblance to those seen in portfolio selection by assigning ran-
dom numbers. The difficulty is that for a square matrix to be a valid covariance matrix, it must be positive

semidefinite, where

Definition 1. Let A 2 Rn�n. Then A is positive semidefinite if and only if A is symmetric and
xTAx P 0
for all x 2 Rn.
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If attempting to make up, without a procedure, a portfolio-selection realistic covariance matrix up to size
10 · 10, one might have reasonably good luck, but the success rate quickly declines as n gets larger. For
instance, in the experiments discussed in Section 8, we were not able to generate a single valid 50 · 50
covariance matrix by assigning random numbers in 800 tries. This is serious because covariance matrices
in portfolio selection are often not small. Sizes of 1000 · 1000 are not uncommon.

If this is the case, then how has conventional portfolio optimization managed to survive over the years?
Apart from obtaining simplistic covariance matrices from averaging techniques as described in Chapter 8 of
Elton et al. [11], the field has long been resigned to the often messy process, since there has been no other
way, of generating its necessary covariance matrices from historical data. While this may come with the
territory on applications, this hardly meets the needs of research when all manner of covariance matrices
may be needed for experimenting with, testing, comparing and benchmarking various strategies,
approaches and algorithms.

Four difficulties can be expected when attempting to obtain covariance matrices of meaningful size from
historical data. One is that access to a sufficient database (data universe) must be obtained, often very
expensive. Two, seemingly almost always with missing or defective data and in a format not the way
you want it, the dataset typically must be ‘‘cleaned up’’, a time consuming process. Three, you have no
say about the ‘‘characteristics’’ of the covariance matrix that results, you get what you get.

By characteristics we mean the distributional characteristics of the variances (diagonal elements) and
covariances (off-diagonal elements) in a R. For example, from monthly data for 200 securities randomly
selected from the S&P Composite 1500, Fig. 1 shows how the diagonal variance elements and off-diagonal
covariance elements are distributed in the covariance matrix derived from the data. The taller of the distri-
butions (thin line), with mean of 0.00245 and standard deviation 0.00330, is that of the 19,900 unique
covariances. The other distribution (thick line), with mean of .01860 and standard deviation .01699, is that
of the 200 variances.

A fourth encountered difficulty is that after a historical covariance matrix is obtained, one has no way to
generate additional different, but similar in terms of characteristics, test-problem covariance matrices for
computational testing. Having access to only one or a small number of data universes runs the risk of
researchers optimizing their work around only the datasets they possess. It has been our experience in Hir-
schberger, Qi and Steuer [16,17], at least for purposes of computational testing, that the situation is dramat-
ically improved if one is in possession of a random covariance matrix generation capability. Then one can
produce, on demand, strings of valid covariances matrices of any length, of any size, and of any (mathe-
matically allowable) diagonal/off-diagonal distributional characteristics. In this way, it is almost as if, at
least for computing covariance matrices, we have an infinite number of data universes at our disposal.

With this as background, the purpose of the paper is to present a procedure for not only the random
generation of valid covariance matrices of any size, but for the random generation of covariance matrices
0.05 0.08 0.110.020-0.01
0

40

80

120

Fig. 1. Distributions of the covariances (thin line) and variances (thick line) of 200 randomly selected securities from the S&P
Composite 1500.



M. Hirschberger et al. / European Journal of Operational Research 177 (2007) 1610–1625 1613
whose diagonal elements possess a pre-specified expected value and standard deviation and whose off-diag-
onal elements possess a likely different pre-specified expected value and standard deviation. For instance, if
one were in need of a series of randomly generated covariance matrices whose variances and covariances
have distributions as in Fig. 1, the procedure could do so quite closely in each instance. In this way, this
paper should provide researchers in quadratic-linear programming and portfolio selection with a robust
tool for test problem creation which should be of assistance in many testing, stress testing, computational
comparison, or benchmarking situations.

It is difficult to do a literature review for a paper like this since we are unaware of the reporting of any
other research directed at the random generation of covariance matrices to match pre-defined diagonal/off-
diagonal distributional characteristics. Nevertheless, over the last 35 years, there has been a sprinkling of
papers on the construction, generation, and use of random correlation matrices, mostly in other disciplines,
and in all cases, for different purposes. Not surprisingly, none of them have been of direct assistance to us in
this paper, but we would probably be remiss in not briefly mentioning them since they represent the most
nearby literature.

From the beginning, most papers in the sprinkling have focused on the random generation of correlation
matrices to match given sets of eigenvalues to meet application needs predominately in numerical statistical
analysis (factor analysis, stepwise regression, principal components analysis, and so forth) and signal pro-
cessing. Papers here include those by Tucker et al. [39], Bendel and Mickey [5], Davies and Higham [9],
Holmes [18], Lin and Bendel [27], and Marsaglia and Olkin [32].

Striking closer to home, there have been some random correlation and covariance matrix contributions
with linkages to finance, but still not the same as this paper. One is by Chopra and Ziemba [8] in which the
elements of a covariance matrix are randomly perturbed to test the effects of changes in the elements on
optimal portfolio choice. With a different take on covariance matrices, there are the papers by Laloux
et al. [24,25], Pafka and Kondor [34] and Pafka et al. [35] in which they use results from the theory of ran-
dom matrices to reduce noise in empirical covariance matrices.

Finally, from the literature of matrix nearness problems (surveyed by Higham [13]), there is the recent
paper by Higham [14]. Motivated by a mutual fund situation, the purpose of his paper is to compute from
the cone of positive semidefinite matrices the matrix that is nearest to a matrix not in the cone. This is
potentially very useful in portfolio optimization with correlation matrices in which there may be inadver-
tent errors or inconsistencies that must be ironed out. Perhaps it may be possible to combine Higham�s
paper and this paper in some kind of complementary fashion in future research.

While all but Chopra and Ziemba [8] have been about correlation matrices, this is equivalent to all hav-
ing been about covariance matrices. This is because, when all standard deviations ri ¼

ffiffiffiffiffi
rii
p

are nonzero,
associated correlation and covariance matrices, C and R, respectively, are simply re-scaled versions of
one another, i.e.,
R ¼ diagðr1; . . . ; rnÞC diagðr1; . . . ; rnÞ;

C ¼ diag
1

r1

; . . . ;
1

rn

� �
Rdiag

1

r1

; . . . ;
1

rn

� �
.

The paper proceeds as follows. With covariance matrix factorization as a reference point, the strategy of
the paper is introduced in Section 2. The theory behind the procedure by which covariance matrices can be
randomly generated to specification is developed over Sections 3–5. Three different modes of operation for
the procedure are outlined in Section 6. Examples of the procedure applied to four problems in which
n = 50, 200, 500 and 1000 are overviewed in Section 7. Experience reporting on the futility likely to be
encountered if one simply tried to ‘‘guess’’ a covariance matrix without the aid of a procedure concludes
the paper in Section 8.
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2. Covariance matrix factorization

Covariance matrix factorization is sometimes employed in financial research to randomly generate hypo-
thetical return vectors r 2 Rn from a given R 2 Rn�n. From the previous section we know that all covariance
matrices are positive semidefinite, and from linear algebra we know that each positive semidefinite matrix of
order n has a root matrix L 2 Rn�p; p 6 n, such that n · n matrix LLT is the positive semidefinite matrix in
question. In this way, each covariance matrix R 2 Rn�n has a root matrix L 2 Rn�p such that
R ¼ LLT. ð2Þ

According to the theory of factor analysis, L can be interpreted as a matrix of factor loadings for some

vector of risk factors y 2 Rp as follows:
r ¼ lþ Ly. ð3Þ

With respect to (3), we note two things. One is that for each y-vector randomly drawn from the standard
multinormal distribution, (3) generates a random return vector r with expected value l and covariance ma-
trix given by LLT. Of course, if we were to re-use a series of r-vectors generated in this way to compute a
sample covariance matrix, we would obtain only an estimate bR of the original covariance matrix R = LLT.

As shown in Bratley et al. [7], the other involves a collection Y of q P n + 1 specially constructed y-vec-
tors that have exactly 1 2 Rp as mean and exactly identity matrix of order p as covariance matrix. Let M be
n · q whose columns are each l. Then expression M + LY yields q return vectors r 2 Rn of exact mean l
and exact covariance matrix R.

While the above is interesting because, as we shall see in the next paragraph, it provides insight, the point
of this paper is not the random generation of return vectors. Rather, the purpose of this paper is to ran-
domly generate different instances of covariance matrices with pre-chosen diagonal and off-diagonal distri-
butional characteristics. However, with random return vectors as background, the capability of this paper
can be viewed as completing the picture with regard to both the random generation of return vectors and
the random generation of covariance matrices.

While (2) true, its converse is more general. That is, for any matrix F 2 Rn�m where m P 1, n · n matrix
FFT is positive semidefinite. This means that a random covariance matrix can be obtained by creating a
random F-matrix first. In this way we see the strategy of the paper. It is to develop a method for randomly
generating the fij elements of an F matrix such that the resulting positive semidefinite matrix (i.e., covari-
ance matrix) has the diagonal and off-diagonal element distributional characteristics desired.

To accomplish the goals of this paper of holding the diagonal and off-diagonal elements of a R to certain
distributional requirements, all elements fij of the F-matrices constructed in this paper are composed of
independent and identically distributed random components.
3. Procedure inputs

To be clear on notation, for a random variable X, let E[X] denote expected value, and let variance, stan-
dard deviation, skewness, and kurtosis be defined as follows:
V ½X � ¼ E½ðX � E½X �Þ2�;

Std½X � ¼ V ½X �1=2
;

Sk½X � ¼ E½ðX � E½X �Þ3�; ð4Þ

K½X � ¼ E½ðX � E½X �Þ4�. ð5Þ
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Note that in (4) and (5), for simplicity in this paper, we will not be normalizing skewness by V[X]3/2 and
kurtosis by V[X]2.

To specify the desired control over the diagonal and off-diagonal elements of a covariance matrix to be
generated, the procedure accepts four (sometimes five) quantities as inputs. Two are e and

ffiffiffi
v
p

, the expected
value and standard deviation of the off-diagonal element covariances
e :¼ E½rij�
ffiffiffi
v
p

:¼ Std½rij� over all pairs i; j; i 6¼ j;
where for the proposed procedure to work, it is required that e > 0. This is not considered a severe restric-
tion as the vast majority of securities exhibit positive comovements with one another. Two other inputs, �e
and

ffiffiffi
�v
p

, are the expected value and standard deviation of the diagonal-element variances
�e :¼ E½rii�
ffiffiffi
�v
p

:¼ Std½rii� for all i.
Here it is required that �e P e. This is a requirement because it is a property of covariance matrices, proved
in Appendix A, that the average of the off-diagonal elements of a covariance matrix cannot be greater than
the average of the diagonal elements.

Depending on conditions, a fifth input s, reflecting the skewness of the off-diagonal covariances, where
s :¼ Sk½rij� over all pairs i; j; i 6¼ j
is sometimes possible.
Since for every covariance matrix R there exists an F-matrix of some horizontal dimension m such that

R = FFT, the goal of this paper is to utilize the above inputs to construct the fij elements of an F in such a
way that matrix multiplication FFT results in a R possessing the desired diagonal and off-diagonal distribu-
tional characteristics. In other words, the procedure of this paper shows how the inputted e; v;�e;�v (and
sometimes s) are transformed into ê; v̂; ŝ; k̂ and m values where
E½fij� :¼ ê V ½fij� :¼ v̂ Sk½fij� :¼ ŝ K½fij� :¼ k̂ over all pairs i; j; i ¼ 1; . . . ; n j ¼ 1; . . . ;m
such that when drawing the fij values from a distribution with these characteristics, the entries in the result-
ing covariance matrix reflect the distributional structure specified by the four or five inputs.
4. Theory of the fij for the computation of covariances

To develop the ê; v̂ and ŝ moments of the distribution from which the fij are drawn so as to generate the
off-diagonal elements of a covariance matrix that have expected value e and standard deviation

ffiffiffi
v
p

, we have
Theorem 1.

Theorem 1. Let the fij, i = 1, . . . , n, j = 1, . . . , m, be independent random variables, identically distributed by

some probability distribution F. Then the (off-diagonal) covariance elements rij, i, j = 1, . . . , n, i 5 j, in FFT

have expected value e P 0, variance v P 0 and skewness s > 0 if and only if
ê ¼
ffiffiffiffi
e
m

r
; ð6Þ

v̂ ¼ �ê2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ê4 þ v

m

r
; ð7Þ

ŝ ¼ �ê3 � 3êv̂þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ê2v̂2 þ 6ê4v̂þ ê6 þ s

m

r
; ð8Þ
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where formula (8) is valid if and only if
s P � 1

m
e3

m
þ 3ve

� �
. ð9Þ
The right-hand side of (9) specifies a lower bound on an inputted value for the skewness s of the covari-
ances. If s is not specified, then ŝ will be determined later on. Since randomly generated covariances are
to have positive expected values, the lower bound is negative which is hardly a restriction since covariances
in practice tend to exhibit mild positive skewness.

Proof. In the following, we will make use of the well-known relations:
E½ðX � E½X �Þ2� ¼ E½X 2� � E½X �2; ð10Þ
E½ðX � E½X �Þ3� ¼ E½X 3� � 3E½X 2�E½X � þ 2E½X �3; ð11Þ
which hold for any random variable X for which the necessary moments exist. Note that (10) and (11) can
be expressed as
E½X 2� ¼ V ½X � þ E½X �2; ð12Þ
E½X 3� ¼ Sk½X � þ 3V ½X �E½X � þ E½X �3. ð13Þ
Throughout the proof, let Y and Z be independent random variables distributed according to F. h

Proof of formula (6). By definition, rij = fi1fj1+� � �+fimfjm. By the additivity of expected values
E½rij� ¼ E½fi1fj1� þ � � � þ E½fimfjm�.

Since the fik and fjk are independent for i 5 j, we obtain
e ¼ E½rij� ¼ E½fi1�E½fj1� þ � � � þ E½fim�E½fjm� ¼ mê2.
Upon rearrangement, this establishes (6). h

Proof of formula (7). Since the products fil1
fjl1

and fil2
fjl2

are independent for i 5 j, for the variance of the
covariances we have
v ¼ V ½rij� ¼ V ½fi1fj1� þ � � � þ V ½fimfjm� ¼ mV ½YZ�.

By (10) and by the independence of Y and Z, we have
v ¼ mðE½Y 2�E½Z2� � E½Y �2E½Z�2Þ.

Applying (12) to Y and Z yields
v ¼ mðV ½Y �V ½Z� þ V ½Y �E½Z�2 þ V ½Z�E½Y �2 þ E½Y �2E½Z�2 � E½Y �2E½Z�2Þ;

which in turn yields
v ¼ mðv̂2 þ 2v̂ê2Þ.

Rearranging into a recognizable quadratic form
v̂2 þ 2v̂ê2 � v
m
¼ 0
we observe two things. One is that the discriminant 4ê4 þ 4v
m is nonnegative, and the other is thatffiffiffiffiffiffiffiffiffiffiffiffiffi

ê4 þ v
m

q
P ê2. This means that there is only one nonnegative solution for v̂ and it can be found in the po-

sitive branch of the quadratic formula which then yields (7). h
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Proof of formula ((8) and (9)). By (11) and (12), we can express the third central moment of rij as
s ¼ E½ðrij � E½rij�Þ3� ¼ E½r3
ij� � 3E½r2

ij�E½rij� þ 2E½rij�3 ¼ E½r3
ij� � 3ðV ½rij� þ E½rij�2ÞE½rij� þ 2E½rij�3.
Since E½rij� ¼ e ¼ mê2 and V ½rij� ¼ v ¼ mðv̂2 þ 2v̂ê2Þ, this is equivalent to
s ¼ E½r3
ij� � 3m2ê2v̂2 � 6m2ê4v̂� m3ê6
and only E½r3
ij� remains to be computed. By definition of rij,
E½r3
ij� ¼ E

Xm

l¼1

ðfilfjlÞ3 þ 3
Xm

l1;l2¼1
l1 6¼l2

ðfil1
fjl1
Þðfil2

fjl2
Þ2 þ 6

Xm

l1;l2;l3¼1
l1<l2<l3

ðfil1
fjl1
Þðfil2

fjl2
Þðfil3

fjl3
Þ

2664
3775.
Since each E[(filfjl)
a] = E[(YZ)a] regardless of the a 2 N, i 5 j, and l, we can apply, when m > 2, the well-

known formulas
Xm

l1;l2¼1
l1 6¼l2

1 ¼ mðm� 1Þ
Xm

l1;l2;l3¼1
l1<l2<l3

1 ¼ 1

6
mðm� 1Þðm� 2Þ.
Observing that 1
6
mðm� 1Þðm� 2Þ ¼ m

6
ðm2 � 3mþ 2Þ, we write
E½r3
ij� ¼ mE½ðYZÞ3� þ 3mðm� 1ÞE½YZ�E½ðYZÞ2� þ mðm2 � 3mþ 2ÞE½YZ�3.
More precisely, since Y and Z are independent
E½r3
ij� ¼ mE½Y 3�2 þ 3mðm� 1ÞE½Y �2E½Y 2�2 þ mðm2 � 3mþ 2ÞE½Y �6.
By (12) and (13), we know that E½Y 2� ¼ v̂þ ê2 and E½Y 3� ¼ ŝþ 3v̂êþ ê3. Thus
E½r3
ij� ¼ m ŝ2 þ ŝð6v̂êþ 2ê3Þ þ ð3mþ 6Þv̂2ê2 þ 6mv̂ê4 þ m2ê6

� �
.

Inserting this relation into our formula for s yields
s ¼ mð̂s2 þ ŝð6v̂êþ 2ê3Þ þ 6v̂2ê2Þ.

Rearranging into a recognizable quadratic form, we have
ŝ2 þ ŝð6v̂êþ 2ê3Þ þ 6v̂2ê2 � s
m
¼ 0.
If this equation is solvable, the positive branch of the quadratic formula yields the solution for ŝ as given by
formula (8). However, for this equation to be solvable, the discriminant has to be nonnegative, i.e.,
s P �mð3v̂2ê2 þ 6v̂ê4 þ ê6Þ. ð14Þ

After inserting (6) and (7) into (14), formula (9) results. h
5. Theory of the fij for the computation of variances

To determine m, the number of columns in F, and the fourth central moment k̂ of the distribution from
which the fij are to be drawn so that the diagonal elements of a covariance matrix have expected value �e and
standard deviation

ffiffiffi
�v
p

, we have Theorem 2.
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Theorem 2. Under the assumptions of Theorem 1, the (diagonal-element) variances rii, i = 1, . . . , n, in the FFT

have expected value �e P 0 and variance �v P 0 if and only if
�e ¼ mðv̂þ ê2Þ; ð15Þ

�v ¼ mðk̂ þ 4ŝê� v̂2 þ 4v̂ê2Þ. ð16Þ
Proof. We use the well-known relation
E½ðX � E½X �Þ4� ¼ E½X 4� � 4E½X 3�E½X � þ 6E½X 2�E½X �2 � 3E½X �4; ð17Þ

which holds for any random variable X for which the necessary moments exist. Note that by combining this
relation with (10) and (11), we receive the equivalent formulation
E½X 4� ¼ K½X � þ 4Sk½X �E½X � þ 6V ½X �E½X �2 þ E½X �4. ð18Þ

Throughout the proof, let Y be a random variable distributed according to F. h

Proof of formula (15). By the additivity of the expectation
�e ¼ E½rii� ¼ E½f 2
i1� þ � � � þ E½f 2

im� ¼ mE½Y 2�.
Then relation (12) yields (15). h

Proof of formula (16). Since f 2
il1

and f 2
il2

are independent for l1 5 l2, the variances are additive, such that
�v ¼ V ½rii� ¼ V ½f 2
i1� þ � � � þ V ½f 2

im� ¼ mV ½Y 2�.
Applying relation (10), we receive
�v ¼ mðE½Y 4� � E½Y 2�2Þ ¼ mðE½Y 4� � ðV ½Y � þ E½Y �2Þ2Þ
and subsequently applying formula (18) yields
�v ¼ mðK½Y � þ 4Sk½Y �E½Y � � V ½Y �2 þ 4V ½Y �E½Y �2Þ.

Now (16) is immediate. h

Re-expressing (15) in terms of original inputs, which is shown in Appendix B, we have
m ¼ �e2 � e2

v
. ð19Þ
This means that we can always approximately achieve inputted values e, v and �e by rounding m to the near-
est integer. That is, by rounding, m changes by at most 0.5. From Eqs. (15) and (16), it is clear that there is
at most an error of 1% in �e and �v if we assume m = 50 (which is close to the m-values seen in the simulations
of Table 2). We also see that m is independent of n being mostly dependent on the difference between �e and
e. Note that we do not have to worry about m being negative, because as commented on in Section 3, �e is
not to be specified less than e. In one final matter, suppose we were to obtain a negative value for k̂ from
(16). Re-writing (16) as
k̂ ¼ �v
m
þ v̂2 � 4ŝê� 4v̂ê2 ð20Þ
we see that a negative k̂ can always be driven into positive territory by suitably lowering ŝ. This has not been
necessary for all the experiments we conducted with parameters derived from market data.
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6. Choice of distribution function for the fij

The method for randomly generating covariance matrices of this paper can be applied in several modes.
We will assume that m is always adjusted to accommodate inputted expected value �e. In addition, one may
wish to

Mode ev� �e: Only replicate the expected value e and standard deviation
ffiffiffi
v
p

of the off-diagonal elements
of R.
Mode ev� �e�v: Replicate the expected value and standard deviation of the off-diagonal elements, and the
standard deviation

ffiffiffi
�v
p

of the diagonal elements of R.
Mode evs� �e�v: Replicate the expected value, standard deviation and skewness s of the off-diagonal ele-
ments, and the standard deviation of the diagonal elements of R.

For each mode, different families of distribution functions may be applicable for the drawing of the fij.
For instance, for a family to be applicable, there must be algorithms to fit to the distribution the first 2 to 4
central moments. Also, there must exist closed-form formulas or at least good approximations for the cor-
responding quantile (inverse distribution) functions. This is the case for the normal, lognormal and Johnson
[21] families of distributions. However, we wish to point out that not only might the values of the elements
in the matrix being randomly generated differ depending on the choice of distribution function, but the
choice of distribution function might well affect the interdependences among the elements.
6.1. Mode ev� �e

The mode is always possible, and can easily and effectively be implemented using the normal distribution
since only the moments ê and v̂ are required to replicate e, v and �e. It is also possible to use the uniform
distribution, but we have found the kurtosis of this distribution to be too low to produce a satisfactory var-
iance among the diagonal elements. Before starting, we compute the m, ê and v̂ according to formulas (19),
(6) and (7). Then the procedure is

(a) Generate standard normally distributed variables qij, i = 1, . . . , n, j = 1, . . . , m.

(b) Let fij ¼ êþ
ffiffiffî
v
p

qij, i = 1, . . . , n, j = 1, . . . , m.

(c) Compute R = FFT.

6.2. Mode ev� �e�v

This mode requires a more flexible distribution family since after computing m, ê and v̂, moments ŝ and k̂
must be determined to satisfy Eq. (16). Theoretically, this mode is always possible using distributions from
the Johnson family, which includes the lognormal distribution. But in fact, most cases may be covered by
the lognormal distribution only. Since it is much easier to work with the lognormal than the Johnson fam-
ily, we describe a procedure to compute ŝ and k̂ for the lognormal distribution.

To solve for k̂ and ŝ under the lognormal in our situation, two conditions must be satisfied. One is that
under the lognormal, k̂ and ŝ are related through x as described in Johnson [21] and Hill et al., [15] as
follows:
k̂ðxÞ
v̂2
¼ ðx4 þ 2x3 þ 3x2 � 3Þ ŝðxÞ

v̂3=2
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1Þðxþ 2Þ2

q
ð21Þ
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for x P 1. Parameterizing x from 1! +1, points
Fig. 2.
(21).
k̂ðxÞ
v̂2

;
ŝðxÞ
v̂3=2

 !

trace the bullet-shaped curve in Fig. 2. The points start at the minimum normalized kurtosis point (3, 0)
when x = 1, and proceed above and below the horizontal axis (as a result of the ± in (21)) to the right
as x increases. The other is condition (20) which plots as the negatively sloped dashed line in the Fig. 2.

Provided that (20) intersects the horizontal axis to the right of 3 (highly likely), the points of intersection
between the bullet-shaped curve and the dashed line can be found by solving
k̂ðxÞ þ 4êŝðxÞ þ �v̂2 þ 4v̂ê2 � �v
m

� �
¼ 0
for its two roots. In this paper we opt for the solution on the upper half of the bullet-shaped curve (i.e., the
one with the smallest x). It appears that this root is more in line with portfolio optimization as it has po-
sitive as opposed to negative skewness and more kurtosis (fatter tails).

With x now determined, we can proceed as described in Johnson [21] and Hill et al. [15] with the other
parameters of the lognormal as follows:
d ¼ ðln xÞ�
1
2 c ¼ 1

2
d ln½xðx� 1Þ=v̂�;

k ¼ sgnðŝÞ n ¼ kê� exp
1

2d
� c

� �
=d

� �
.

Then a lognormally distributed variable X may be produced from a standard normally distributed variable
Z using the transformation
X ¼ nþ k exp
Z � c

d

� �
.

This is simply done by replacing the second step of the procedure with

(b) Let fij = n + kexp[(qij � c)/d], i = 1, . . . , n, j = 1, . . . , m.
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Dots mark the solutions in (normalized-kurtosis, normalized-skewness) space that simultaneously satisfy conditions (20) and
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6.3. Mode evs� �e�v

If the required kurtosis from (20) is positive, this mode is possible by fitting a general Johnson distribu-
tion to the required moments ê; v̂; ŝ and k̂. An iterative procedure to fit the Johnson distribution is described
in Hill, Hill and Holder [15]. The drawbacks are that procedures such as in [15] are often not very efficient
and may fail for numerical reasons.
7. Illustrations

To illustrate, 50, 200, 500 and 1000 stocks were selected at random from the S&P SuperComposite 1500.
After calculating the means and standard deviations of the historical covariances and variances in each
case, these values, displayed Table 1, were used as inputs to the procedure to see how well the historical
distributional characteristics can be replicated in a randomly generated covariance matrix in each instance.

Running Mode ev� �e�v, parameters m, ê and v̂ for each case were easily calculated from (19), (6) and (7).
Parameters ŝ, k̂, x, d, c, k and n were computed as stipulated in Section 6. All parameter values are shown in
Table 2.

Note that in the n = 50 case of Table 2, m is greater than n. Whereas the number of columns of a root
matrix L resulting from an LLT factorization can never exceed the number of rows, the number of columns
of F can easily exceed the number of rows when n is small due to the structure of (19). Other than for the
larger value of m in the n = 50 case, which is mostly caused by the relatively small v, the values of m are
fairly flat across all problem sizes.
Table 1
Means and standard deviations of the historical covariances and variances that were used as inputs for the four examples of this section

n 50 200 500 1000

Covars e 0.00195 0.00245 0.00198 0.00209ffiffiffi
v
p

0.00203 0.00330 0.00245 0.00264

Vars �e 0.01521 0.01860 0.01563 0.01616ffiffiffi
�v
p

0.01227 0.01699 0.01563 0.01528

Table 2
Horizontal dimensions of F, first four moments of the distributions from which the fij are to be drawn, parameters of the lognormal
distribution from which the fij are actually drawn, and total job CPU times

n 50 200 500 1000

m 56 32 40 37
ê 5.893857E�3 8.753218E�3 7.034515E�3 7.511269E�3
v̂ 0.239312E�3 0.511910E�3 0.341451E�3 0.381654E�3
ŝ 0.014851E�3 0.039780E�3 0.026670E�3 0.028737E�3
k̂ 0.002363E�3 0.007736E�3 0.005406E�3 0.005504E�3

x 2.003816823 1.811841785 2.075635099 1.951426395
d 1.199473886 1.297122818 1.170197346 1.223008890
c 5.419587398 5.164660207 5.140375943 5.191528750
k 1.0 1.0 1.0 1.0
n �0.009546403 �0.016357617 �0.010782360 �0.012517171

CPU seconds 0.040 0.050 0.170 0.501
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Fig. 3. Distributions of the randomly generated and historical covariances (hard to see any difference because they fall almost exactly
on top of one another) for the example with n = 1000.
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Fig. 4. Distributions of the randomly generated (thin line) and historical (thick line) variances for the example with n = 1000.
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For the n = 1000 case, Fig. 3 compares the distribution of the randomly generated covariances with that
of the historical covariances. The reason it is hard to observe any difference is that the two distributions fall
almost perfectly on top of one another. Fig. 4 compares the distribution of the randomly generated variances
(thin line) with that of the historical covariances (thick line). Here one can distinguish between the two as
there is a slight difference. Figs. 3 and 4 are typical of the results one can expect to obtain. The CPU times
reported in Table 2 were from running the illustrative examples on a 2.4 GHz Pentium 4 M laptop.
8. Situation without a procedure and concluding remarks

Before closing, we would like to comment on the difficulty one might encounter in trying to invent a
valid covariance matrix without the aid of a procedure such as in this paper. To get an idea about how easy
or hard this task might be, we report on the results of 20 experiments. In the experiments, the goal is to
invent a valid 50 · 50 covariance matrix by simply randomly selecting elements from reasonable
distributions.

In each trial of each experiment we populate a symmetric 50 · 50 matrix with off-diagonal elements ran-
domly drawn from one reasonable distribution and diagonal elements from another. Since such matrices
are positive semidefinite if and only if the determinants of all principal minors are nonnegative, we then
compute the determinants of all principal minors starting at 2 · 2 and going to 50 · 50. If
(p + 1) · (p + 1) is the first principal to compute negative, then we know that the p · p principal minor
is the largest valid covariance matrix that can be salvaged from that trial. Utilizing values in a neighbor-
hood about the values for e;

ffiffiffi
v
p
;�e;

ffiffiffi
�v
p

shown in Table 1, with a sample size of 40 for each experiment,
the results of the 20 experiments are shown in columns (a), (b), (c) and (d) of Table 3.

To explain, consider column (a). For the five experiments of this column, the off-diagonal elements were
randomly drawn from the normal distribution with mean of 0.0016 and standard deviations of 0.0038,



Table 3
Results of 20 experiments to invent a covariance matrix

(a) (b) (c) (d)
Off-diag Nð0:0016;

ffiffiffi
v
p
Þ Nð0:0021;

ffiffiffi
v
p
Þ Nð0:0031;

ffiffiffi
v
p
Þ Nð0:0021;

ffiffiffi
v
p
Þ

Diag U[0.003, 0.045] U[0.003, 0.045] U[0.003, 0.045] U[0.010, 0.030]ffiffiffi
v
p

pave pmax pave pmax pave pmax pave pmax

0.0038 8.28 19 7.35 14 6.50 12 8.80 37
0.0032 9.18 17 8.65 16 8.55 20 10.93 17
0.0026 10.90 20 10.48 22 10.10 20 13.93 20
0.0020 14.63 31 14.15 26 11.55 22 19.65 27
0.0014 21.05 37 20.15 44 16.58 28 35.48 48
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0.0032, 0.0026, 0.0020 and 0.0014. In the experiments, though, all diagonal elements were randomly drawn
from the same uniform distribution with lower bound 0.003 and upper bound 0.045 as indicated. The
‘‘8.28’’ and ‘‘19’’ of the first experiment mean the following. In the 40 attempts to generate a 50 · 50 covari-
ance matrix of this experiment, the largest valid covariance matrix we were able to generate was a 19 · 19,
with an average largest valid covariance matrix size of 8.48 over the 40 attempts.

Note that over the ranges of values reasonable for the off-diagonal and diagonal elements used in the
experiments, we were not successful in generating even one valid 50 · 50 matrix over the 800 trials of
the 20 experiments. The largest we were able to generate was a 48 · 48 in one of the trials of the last exper-
iment in column (d). The next largest was a 44 · 44 in one of the trials of the last experiment in column (b),
and so forth. However, we do note that as

ffiffiffi
v
p

decreases, our ability to guess a covariance matrix appears to
improve. But by decreasing

ffiffiffi
v
p

much below the lowest value of 0.0014 shown, we tend to leave the realm of
what is realistic for portfolio-selection types of covariances matrices, so this does not do us much good.

Thus, if one were in need of portfolio-selection types of covariance matrices of, say, size 100 · 100 or
greater, a capability such as described in the paper should come in handy as one�s chances of being able
to randomly ‘‘guess’’ such covariance matrices on one�s own are essentially zero.
Appendix A. Mean of variances > mean of covariances

Let R 2 Rn�n be an arbitrary covariance matrix, lv be the mean of its rii diagonal (variance) elements,
and lc be the mean of its rij, i 5 j, off-diagonal (covariance) elements. Then lv P lc.

Knowing that in any event
r2
i � 2rirj þ r2

j ¼ ðri � rjÞ2 P 0
we have from Cauchy–Schwarz and the above
rij 6 rirj 6
rii þ rjj

2
.

Now
lc ¼
1

nðn� 1Þ
X
i6¼j

rij 6
1

nðn� 1Þ
X
i 6¼j

rii þ rjj

2
¼ 1

nðn� 1Þ
X
j>i

2
rii þ rjj

2

	 

¼ 1

nðn� 1Þ
X
j>i

ðrii þ rjjÞ ¼
1

nðn� 1Þ
Xn

i¼1

ðn� 1Þrii ¼
1

n

Xn

i¼1

rii ¼ lv. ð22Þ
Noting the inequality in (22), lv P lc.
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Appendix B. Derivation of (19) from (15)

Substituting (7) which is v̂ ¼ �ê2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ê4 þ v

m

q
into (15) yields
�e ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ê4 þ v

m

r
. ð23Þ
After substituting (6) which is ê ¼
ffiffiffi
e
m

p
into (23), we obtain
�e ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

m2
þ v

m

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ mv

p
;

which upon algebraic manipulation yields the expression of (19)
m ¼ �e2 � e2

v
.
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