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Abstract Because of size and covariance matrix problems, computing much of anything1

along the nondominated frontier of a large-scale (1000–3000 securities) portfolio selection2

problem with semi-continuous variables is a task that has not previously been achieved.3

But given (a) the speed at which the nondominated frontier of a classical portfolio prob-4

lem can now be computed and (b) the possibility that there might be overlaps between5

the nondominated frontier of the classical problem and that of the same problem but with6

semi-continuous variables, the paper shows how considerable amounts of the nondominated7

frontier of a large-scale mean-variance portfolio selection problem with semi-continuous8

variables can be computed in very little time.9

Keywords Multiple criteria optimization · Portfolio selection · Buy-in thresholds ·10

Nondominated frontiers · Semi-continuous variables · Parametric quadratic programming11

1 Introduction12

In finance and operations research there has long been the problem of portfolio selection—the13

problem of how to allocate one’s capital to a pool of n approved securities to maximize return.14

But since the “return” just mentioned has not yet had time to occur and is thus a random15

variable, the problem is difficult because it is a stochastic programming problem. But since16
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Markowitz [17], for addressing the stochastic nature of portfolio selection, the problem has17

been formulated as a bi-criterion optimization problem with one objective being to minimize18

“variance” (i.e., the variance of the return random variable) and the other being to maximize19

“expected return” (i.e., the expected value of the return random variable) as in20

min xT Σ x = σ 2(x) variance21

max μT x = μ(x) expected return22

s.t. 1T x = 123

Ax ≤ b24

xi ∈ [0, U ] for all i (C)25

where Σ is an n×n covariance matrix, x ∈ R
n is a portfolio composition vector in which xi is26

the proportion of capital allocated to security i , and μ ∈ R
n is a vector of individual security27

expected returns. Concerning the constraints, 1T x = 1 assures full investment, Ax ≤ b28

accommodates conditions such as sector constraints (like no more than 20 % of a portfolio29

is to be invested in oil), and U enforces an upper bound on the amount of investment in any30

single security. When not vacuous, Ax ≤ b usually adds only a few rows to the model so its31

presence is mainly for purposes of completeness rather than anything else. The formulation32

is designated (C) as it is often seen as the classical problem of portfolio selection.33

Since it is rare for a decision maker in portfolio selection to be able to recognize an optimal34

solution in the absolute, decision makers typically wind up “backing into a solution.” By this35

we mean settling on a solution, not always because of its greatness, but because it is seen36

that everything else is worse. While it is known that the solution that optimizes the decision37

maker’s utility function is Pareto optimal, there is, unfortunately, rarely enough a priori38

information around to compute it directly. This is where the nondominated frontier1 (the set39

of all Pareto optimal solutions) comes in. Its importance is that it is precisely the set of all40

candidates for optimality. By being able to see them all at once in frontier form, only then41

can it be assured that the solution that gets backed into, like it or not, is the decision maker’s42

global optimum.43

2 ε-Constraint method44

Although there are parametric methods, such as Markowitz’s [18] critical line method, for45

computing the whole continuous curve of the nondominated frontier of (C), the normal46

process for computing a nondominated frontier is by means of the ε-constraint method.2 In47

this method, one of the objectives, typically the expected return objective, is converted to a48

constraint with an ε right-hand side. For (C), its ε-constraint formulation is49

min xT Σ x50

s.t. μT x ≥ ε51

1T x = 152

Ax ≤ b53

xi ∈ [0, U ] for all i (eC)54

1 Also known as the “efficient frontier”.
2 For more about the ε-constraint method than utilized here, see Mavrotas [19] and Miettinen [20].
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By solving repeatedly for different values of ε, a dotted rendition of the nondominated frontier55

can be obtained. Requiring the solution of a quadratic programming (QP) problem for each56

dot to be generated, the time to compute the nondominated frontier of (C) by means of the57

ε-constraint method depends upon several factors two of which are58

1. number of approved securities n in the pool59

2. number of dots required to represent the nondominated frontier60

Concerning 1, we are now entering an era in which problems with more than 1000 securities61

eligible for investment are beginning to appear with greater frequency at the large financial62

services firms. And with Big Data, only more can be expected in the future. It is because of63

this, and because of difficulties that can arise in problems with more than 1000 securities, that64

we focus on large-scale problems (between 1000 and 3000 securities) in the this paper. As65

for 2, in contrast to the dozen or so dots seen in academic examples, in practice the number66

of dots required is likely to be 50–100 or more, so this is to be kept in mind.67

3 Issues concerning the covariance matrix68

In addition to the two factors of the previous section, the time to compute the nondominated69

frontier of (C) by means of the ε-constraint method also further depends upon the factors of70

3. whether the covariance matrix Σ is positive definite or just positive semi-definite71

4. the solver utilized72

5. whether the model has been modified to incorporate into it features that require integer73

variables.74

It is largely within these last three factors that the serious problems in the area of large-scale75

portfolio selection addressed in this paper lie. If in Factor 3 the covariance matrix Σ in (C) is76

positive definite, there are few difficulties. Warm starting in (eC) can be employed with state-77

of-the-art pivoting-based solvers as in Cplex [7] and representations of the nondominated78

frontier of (C) with 50–100 or more points can be obtained in times few would object to.79

However, in portfolio selection, warm starting is generally only an option in problems with80

fewer than about 120 securities because warm starting is conditional on Σ being positive81

definite. Typically, covariance matrices in portfolio selection are computed from historical82

data. This means two things. One is that the resulting covariance matrix can be anticipated83

to be 100 % dense, and sometimes solvers have a more difficult time solving problems when84

the covariance matrix is dense than when it is less dense. But the other thing is much more85

serious. It is that a covariance matrix can only be positive definite (i.e., invertible) when the86

number of time periods comprising the historical data is greater than the number of securities87

surveyed. But this is hard when the number of time periods is typically in the range of 1288

(monthly data for a year) to 120 (monthly data for 10 years).89

While there are procedures for diagonalizing a covariance matrix and thereby making90

it invertible, information can get lost in the process causing the computed nondominated91

frontier to vary from the true nondominated frontier in unknown ways, so we do not want92

to get involved in this situation if at all possible. Thus, for the accurate computation of the93

nondominated frontiers of large-scale portfolio selection problems, one must be prepared to94

deal with covariance matrices that are both only positive semi-definite and dense.95

Given that (eC) is a quadratic problem, the consequence of a covariance matrix not being96

positive definite is that an interior-point algorithm is required. Not being a pivoting-based97

method, this rules out warm-starting and puts us into the world of repetitive optimization98
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Table 1 Cplex times for solving (continuous variable) formulation (eC) for a single instance of ε, as well
as for 50 repetitive optimizations of (eC), as n is varied from 1000 to 3000 in problems whose covariance
matrices are fully dense and only positive semi-definite

Size Cplex time for
single instance of
(eC)

Cplex time for
50 repetitive
optimizations of (eC)

Time proportion for
subsequent
optimizations

n = 1000 3.46 s 73.56 s .413

n = 1500 8.67 s 233.58 s .529

n = 2000 17.11 s 484.31 s .557

n = 2500 29.18 s 947.86 s .645

n = 3000 47.61 s 1624.98 s .676

where the savings one optimization to the next are smaller (discussed shortly). Factor 4 is99

not to be overlooked because as discussed in Steuer et al. [24], not all interior-point solvers100

are equally powerful. Consequently, with anything more than a few hundred securities, use101

of anything less than a solver like Cplex is not recommended.102

To see where we are so far, consider Table 1. In the second column, as a function of103

large-scale n, are the times3 taken on average by Cplex’s barrier (interior-point) algorithm to104

solve (eC) for a single value of ε. In the third column, as a function of n, are the times taken105

on average by Cplex’s barrier algorithm to compute, by repetitive optimization, a 50-point106

dotted representation of the nondominated frontier of (C).107

The repetitive optimizations are carried out as follows. For each problem, after determining108

the maximum and minimum values of expected return over the nondominated frontier, the109

resulting range is divided into 50 equally spaced values. Then, written in Cplex’s OPL110

modeling language, a script is applied to call Cplex in a do-loop type fashion until all repetitive111

optimizations are completed. While there are not the savings of traditional warm starting, there112

are nevertheless savings to the repetitive optimization process as indicated in the rightmost113

column of the table. For instance, consider the .557 figure in that column. What this means, for114

n = 2000, is that after the first optimization, which takes 17.11 s on average, each subsequent115

repetitive optimization takes on average only 55.7 % of that time. The savings come from the116

fact that the formulation, except for its ε-value, only has to be read in and laid out in memory117

once.118

With all of this as background, Factor concerns modifications to (C) that interject integer119

variables into the model to enable the model to handle special features such as semi-120

continuous variables, which is our interest in this paper. This is because of their practicality.121

Semi-continuous variables are used to model buy-in thresholds so that for a security to be122

held in a portfolio it must be held in at least some minimum amount. Such conditions are123

particularly relevant to mutual funds and pension funds, where in such funds, say, with more124

than a few billion in assets, and there are many of them,4 it would almost never be worth the125

effort to invest in a security without investing in it a few million.126

Re-casting (C) and (eC) with semi-continuous variables127

xi = 0 or xi ∈ [L , U ] where L > 0128

3 All times in this paper are from an i7-2720 2.20 GHz computer. Sample sizes are 10 throughout.
4 In the pension fund arena alone, the 300th largest pension fund has assets in excess of $11 billion (Towers
Watson, The World’s 300 Largest Pension Funds—Year End 2012, www.towerswatson.com).
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we have (S)129

min xT Σ x130

max μT x131

s.t. 1T x = 1132

Ax ≤ b133

Lyi ≤ xi ≤ U yi for all i134

yi ∈ {0, 1} for all i (S)135

and (eS)136

min xT Σ x137

s.t. μT x ≥ ε138

1T x = 1139

Ax ≤ b140

Lyi ≤ xi ≤ U yi for all i141

yi ∈ {0, 1} for all i (eS)142

respectively. In addition to the n original continuous variables, the models now have just143

as many new integer variables. This changes things again quite considerably as no interior-144

point method can handle a mixed integer quadratic program (MIQP) unless Σ is positive145

definite. This then quickly throws us into a “zone of insolvability” in problems with more146

than few hundred securities as there will almost always not be enough observations in the147

historical data to produce a positive definite covariance matrix. Thus, in order to focus on148

semi-continuous variable problems with n between 1000 and 3000 (in which it is highly149

unlikely that the covariance matrix will be positive definite), we will henceforth assume that150

the covariance matrix in (S) and (eS) is not positive definite.151

After Mansini and Speranza [16] recognized (eS) as “NP-complete,” and Chang et al. [6]152

pointed out the potentialities of simulated annealing, genetic algorithms, and tabu search for153

developing discretized approximations of the nondominated frontier of (S), a sizeable litera-154

ture has materialized since on how to use both exact and heuristic procedures for addressing155

MIQPs in portfolio selection in which Σ is not positive definite. Key papers in this literature156

include Jobst et al. [11], Konno and Wijayanayake [12], Konno and Yamamoto [13,14], Lin157

and Liu [15], Bartholomew-Biggs and Kane [2], Bonami and Lejeune [3], Anagnostopoulos158

and Mamanis [1], Woodside-Oriakhi et al. [25], and Xidonas and Mavrotas [26]. A helpful159

review of this literature is also in Woodside-Oriakhi et al. [25]. But one thing stands out. Use-160

ful results on problems with more than about 225 securities, whether with exact or heuristic161

procedures, are very difficult to obtain. Instead of being confined to only a few hundred secu-162

rities, we show in this paper how we are able to obtain useful results on the most practical of163

portfolio problems with up to 3000 securities.164

But now, with n between 1000 and 3000 and (eS) supposedly NP-complete, how is (eS),165

for instance, to be solved for a given value of ε? The answer is not to be scared off by the166

complexity measure. Note that (eC) is the relaxed problem for (eS). (eS) is only NP-complete167

in situations where the relaxed problem does not solve (eS). However, should the solution168

to (eC) for a given ε also satisfy the semi-continuous variable requirements of (eS), then169

we have solved (eS) for that value of ε, and moreover, this is accomplished within the times170

listed in the second column of Table 1. But how often can we expect something like this to171

occur?172
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Table 2 Times taken by CIOS to
compute full mathematical
specifications of the
nondominated frontier of (C)

Size CIOS time for whole
nondominated frontier of (C)

n = 1000 3.01 s

n = 1500 6.47 s

n = 2000 13.66 s

n = 2500 21.86 s

n = 3000 35.61 s

The likelihood that the solution to (eS) can be obtained from its relaxed problem depends173

upon L . If L is around .01 or .02, the likelihood is low, but if L is around .001 or .002, the174

likelihood is high. This is essentially independent of n. Given that a problem with between175

1000 and 3000 securities is from a large fund, L would most likely be something like .001176

or .002. For example, if we were dealing with the world’s 300th largest pension fund ($11177

billion), L = .001 would imply a buy-in threshold of $11 million. Thus L could easily be as178

little as .0005 in many funds without being unrealistic.179

As for the rest of the paper, in Sect. 4 we spell out the observations upon which the solution180

strategy of this paper is based. Because detailed knowledge about the nondominated frontier181

of (C) is necessary to carry out the strategy, this is started in Sect. 5 and continued in Sects. 6182

and 7. Section 8 reports on the computational effectiveness of the strategy, and Sect. 9 ends183

the paper with concluding remarks.184

4 Key observations and a strategy185

The principles underlying this paper come from the following two key observations. One is186

based on the fact that the feasible region of a problem with semi-continuous variables [e.g.,187

(S)] is a subset of the feasible region of the same problem but with continuous variables [e.g.,188

(C)]. This means that if any point on the nondominated frontier of (C) is feasible in (S), it is189

on the nondominated frontier of (S).190

The other is that modern implementations of parametric methods can compute the full191

continuous curve on the nondominated frontier of (C) in remarkably little time. For this192

we have the recent implementations of Markowitz’s [18] critical line method by Stein et al.193

[23] and Niedermayer and Niedermayer [21], the multiparametric quadratic programming194

procedure of Faisca et al. [8], and the CIOS parametric quadratic programming implemen-195

tation specified in Hirschberger et al. [10]. Representative of this research, using CIOS, we196

have Table 2. Let us now compare the results of Table 2 with those of Table 1. Whereas197

for n = 2500 it takes CIOS 21.86 s to compute the whole nondominated frontier, it takes in198

Cplex 947.86 s to compute a 50-dot representation of the frontier. Moreover, with regard to199

the 29.18 s entry in Table 1, CIOS is seen to be able to compute the whole nondominated200

frontier in less time than Cplex can compute, on average, a single point on it. Furthermore,201

when CIOS computes a nondominated frontier, it does so in the form of a full mathematical202

specification, so that we can know everything mathematical about it.203

Also, a nice thing about knowing a full mathematical specification of the nondominated204

frontier is that if a dotted representation of it is required, dots can be easily dropped onto the205

frontier in virtually any pattern in very little time.206

With it possible for parts of the nondominated frontier of (C) to supply parts of the207

nondominated frontier of (S) in problems between 1000 and 3000 securities with L-values208
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appropriate to these problem sizes, the endeavor now is to determine how much of the209

nondominated frontier of (C) is feasible in (S), to what extent good use can be made of the210

information, and how long everything takes. For this we have the 4-step strategy:211

1. For the (S) of interest, form its corresponding (C).212

2. Solve for a full mathematical specification (done in this paper by CIOS) of the continuous213

curve nondominated frontier of (C).214

3. Post-process the mathematical specification (done in this paper in Matlab) of the non-215

dominated frontier of (C) to determine all points along it that satisfy the semi-continuous216

variable requirements of (S). This typically results in many bits and pieces.217

4. Continuing with our post-processing, drop onto the bits and pieces dots to determine218

how much of a desired dotted representation of the nondominated frontier of (S) can be219

obtained in this way.220

Because Steps 3 and 4 require an in-depth understanding about the structure of the nondom-221

inated frontier of (C), such information now follows.222

5 Structure of classical nondominated frontier223

In this section, we discuss in necessary detail the continuous curve, as in Fig. 1a, that is224

the nondominated frontier of (C) in standard-deviation, expected-return criterion space, and225

how it is mathematically specified. This is done to be able to extract all of the bits and pieces226

of the nondominated frontier of (C) that are feasible in (S). Results will later show that the227

number of bits and pieces can often be over one hundred.228

A property of the continuous curve that is the nondominated frontier of (C) is that it is229

piecewise hyperbolic. That is, it is made up of a connected collection of curved line segments,230

each coming from a different hyperbola. In Fig. 1b, on the nondominated frontier, we see 14231

dots (some of which are hard to distinguish). They define, in this example, the nondominated232

frontier’s 13 hyperbolic segments. The topmost (1st) dot is the upper endpoint of the 1st233

hyperbolic segment and the bottommost (14th) dot is the lower endpoint the 13th hyperbolic234

segment.5 The other dots are where the lower endpoint of one hyperbolic segment connects235

with the upper endpoint of the next hyperbolic segment coming down the curve. In Fig. 1c236

are displayed the 13 hyperbolas (some of which are hard to distinguish) that supply the 13237

hyperbolic segments. For instance, the most nested hyperbola supplies the 1st hyperbolic238

segment.239

Information (generated by CIOS) that provides a mathematical specification of a classical240

nondominated frontier is organized as in Tables 3 and 4. The actual entries in the two tables241

specify the nondominated frontier of Fig. 1, which is that of a 25-security problem produced242

by the random problem generator, developed in Hirschberger et al. [9], that is built into CIOS.243

To illustrate Table 3, consider the row of any hyperbolic segment j . Employing the ai in244

the row, the hyperbola that provides the j th hyperbolic segment is given by245

σ =
√

a0 + a1μ + a2μ2 (1)246

5 A word about the bottommost hyperbolic “segment” of the nondominated frontier: In portfolio selection
there is the minimum standard deviation boundary as shown in Sharpe [22]. It is entirely constructed out
of hyperbolic segments, and the upper portion of this boundary is the nondominated frontier, that is, from
the global minimum standard deviation point upward. With the global minimum standard deviation point
likely falling within the relative interior of one of the hyperbolic segments of the minimum standard deviation
boundary, the bottommost hyperbolic segment of the nondominated frontier will normally be observed to be
a subset of this generally larger hyperbolic segment.
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(c)

Fig. 1 a Nondominated frontier of a classical problem (with n = 25), b the 14 endpoints of the frontier’s 13
hyperbolic segments, c the 13 hyperbolas from which the hyperbolic segments are taken

Table 3 Information describing the hyperbolic segments of the nondominated frontier of Fig. 1 where the ai
(must be multiplied by 103 before being used) are the parameters of the different hyperbolas, and the μupper

and μlower specify the expected return ranges over which the different hyperbolas contribute segments to the
nondominated frontier

Hyp seg a0 a1 a2 μupper μlower

1 .0010314 −.1085372 2.862618 .019892 .019473

2 .0004814 −.0520491 1.412221 .019473 .019327

3 .0003874 −.0423224 1.160586 .019327 .018535

.

.

.
.
.
.

.

.

.

13 .0000014 −.0001350 0.006051 .012966 .011159

Utilizing the μupper and μlower values in the row, expression (1) limited to247

μ ∈ [μlower , μupper ]248

exactly specifies the hyperbolic segment.249

Table 4, on the other hand, provides information about the sets of x-vectors in decision250

space that generate the hyperbolic segments of the nondominated frontier. Specifically, the251

rows of Table 4 are the x-vectors that generate one after the other the endpoints of the hyper-252
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Table 4 Information specifying the piecewise linear path of portfolios in x-space that generates the piecewise
hyperbolic nondominated frontier in criterion space

Endpoint portfolios x1 x2 x3 · · · x10 x11 x12 x13 · · ·

x1 .0 .0 .0 · · · .0 .0 1.00000 .0 · · ·
x2 .0 .0 .0 .22563 .0 .77437 .0

x3 .0 .0 .0 .26215 .0 .55793 .0

.

.

.
.
.
.

x14 .0 .0 .03796 .0 .0 .04907 .21740

bolic segments coming down the frontier. Consider again hyperbolic segment j . Then the253

x-vector in row j generates its upper endpoint and the x-vector in row j+1 generates its lower254

endpoint, with the relative interior of the straight line connecting x j with x j+1 generating the255

relative interior of the hyperbolic segment. In this way, with the j th nondominated hyperbolic256

segment and the linear line segment x j to x j+1 corresponding to one another, it is as it is257

often said, that the nondominated set of (C) is piecewise hyperbolic in criterion space and258

piecewise linear in decision space.259

6 Nature of the sharing260

With the L-values discussed earlier that would be appropriate to problems with 1000–3000261

securities, there will almost certainly be overlap between the nondominated frontiers of (C)262

and (S). That is, there will almost certainly be points on nondominated frontier of (C) whose263

x-vectors also satisfy the semi-continuous variable requirements of (S).264

To determine all places of overlap, it is necessary to examine the nondominated frontier265

of (C) hyperbolic segment by hyperbolic segment. As it turns out, there are thirteen different266

ways a nondominated hyperbolic segment of (C) can have portions of itself feasible in (S).267

With no significance given to the order in which shown, they are portrayed in Fig. 2. The268

solid dots and solid lines portray the different ways endpoints and/or portions of a hyperbolic269

segment can be feasible in (S), and thus be part of the nondominated frontier of (S). The dots270

without centers are hyperbolic segment endpoints that are not feasible in (S). For the thirteen271

different types of nondominated hyperbolic segments of (C), the list below spells out what272

can be extracted from each of them for the nondominated frontier of (S).273

1. Whole hyperbolic segment including both endpoints274

2. Upper portion of segment plus both endpoints275

3. Lower portion of segment plus both endpoints276

4. Middle portion of segment plus both endpoints277

5. Middle portion of segment plus only upper endpoint278

6. No part of the segment is nondominated in (S)279

7. Only middle portion280

8. Lower portion of segment plus only lower endpoint281

9. Upper portion of segment plus only upper endpoint282

10. Middle portion of segment plus only lower endpoint283

11. Upper endpoint only284
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3

1
2

4

5

6

7

8

9

10

11

12

13

Fig. 2 The 13 different types of hyperbolic segments

Table 5 Percentages of classical
problem nondominated frontier
hyperbolic segments that fall into
the different categories as a
function of L

Hyp seg type L = .0005 L = .0015 L = .0025

1 38.6 % 24.7 % 17.5 %

2 10.7 4.0 1.6

3 14.4 6.9 4.0

4 5.8 1.8 1.0

5 1.3 1.8 1.2

6 8.3 33.1 51.9

7 .6 .8 1.4

8 3.5 5.0 3.9

9 3.7 5.4 3.9

10 1.3 1.2 0.6

11 5.4 7.0 6.2

12 5.4 7.5 6.5

13 1.0 .8 .3

12. Lower endpoint only285

13. Only both endpoints286

To get an idea of the prevalence of each type of segment, we conducted an experiment on287

problems with 2000 securities. With the problems averaging 267 nondominated hyperbolic288

segments each, for three different values of L , we have the results of Table 5. For instance,289

the 38.6 % figure in the table means that for L = .0005, each problem had on average about290

103 hyperbolic segments of type 1.291

Of course, when L = .0000, all hyperbolic segments are of type 1, but as L takes on292

larger values, there is a shift of hyperbolic segments into category 6. While the 51.9 % figure293

in the table might not look particularly encouraging, an L-value of .0025 would be large in294

many situations. For example, in our $11 billion fund, L = .0025 implies a buy-in threshold295

of $27.5 million, which would probably be way too high.296
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Note that for L = .0015, by combining segment types 1–5 and 7–10, we see that 51.6 %297

of the segments contribute some continuous portion of themselves to the (S) nondominated298

frontier. Thus for the realistic values of L in the table, the rate of extraction should be good.299

We do not report on problems with other numbers of securities because the distributions are300

roughly the same as a function of L . The only thing that changes is the number of hyperbolic301

segments, which grows from an average of 220 when n = 1000 to an average of 273 when302

n = 3000.303

7 Identifying the bits and pieces304

In this section we describe how, using L and whatever is in Table 4, the hyperbolic segments305

of the nondominated frontier of (C) are classified for the purpose of extracting from them all306

of their endpoints and/or portions that are “L-qualified.” This is the term we use from now307

on for feasible in (S), or in other words, on the nondominated frontier of (S).308

Recall that the inverse image set of a each hyperbolic segment of (C) is a linear line309

segment in x-space. Since a linear line segment is the set of all convex combinations of its310

endpoints, let the collection of securities associated with a given hyperbolic segment be those311

that are positive over the relative interior of its linear line segment. In this way, a given xi312

in a collection either remains fixed in value, increases linearly, or decreases linearly over the313

line segment. Therefore, if for the linear line segment of a given hyperbolic segment there314

exists an xi in the collection whose value is strictly between 0 and L at each endpoint, no315

points along the hyperbolic segment are L-qualified, thus making it of type 6. Also, if every316

xi in a collection has values at each endpoint that are ≥L, the whole hyperbolic segment is317

L-qualified, thus making it of type 1. These are easy cases.318

For the other types, consider Fig. 3. In the figure, let the line between xh and xh+1 denote the319

linear line segment in x-space of hyperbolic segment h. To begin the process of determining320

the hyperbolic segment’s type, let I h be the index set of all xi that are less than L at xh and321

greater than L at xh+1. Assume that the sloped line in Fig. 3 with xloi > 0 is the graph of322

one such xi . By just this xi alone, the portion of the hyperbolic segment associated with the323

first324

aparti = L − xloi

xhii − xloi
325

of the line from xh to xh+1 is non L-qualified. Taking into account all i ∈ I h , at least the326

portion of the hyperbolic segment associated with the first327

apart = max
i∈I h

{aparti }328

of the line from xh to xh+1 is non L-qualified. We say “at least” because the same type of329

thing could be happening from the xh+1 side. In the event that this in not true, a type 8330

hyperbolic segment could result. In the event that this is true on the xh+1 side with at least331

one xloi > 0, a type 7 hyperbolic segment could result. In the event that on the xh+1 side332

all xloi = 0, a type 10 hyperbolic segment could result. Should all xloi = 0 on both sides,333

a type 4 hyperbolic segment could result, and so forth.334

When coming down the nondominated frontier, it helps to understand what causes a335

specific hyperbolic segment’s lower endpoint. It is a change of basis in the Karush–Kuhn–336

Tucker system of equations as described in Hirschberger et al. [10]. While a security hitting337

zero or its upper bound are reasons, the most frequent change is caused by a loss of Pareto338
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Fig. 3 Determining which parts
of a hyperbolic segment h are
non L-qualified to classify it

xlo

xhi

L

xh xh+1

i

i

(a)

(b) (c)

Fig. 4 a The 11 bits and pieces of the nondominated frontier of a 40-security (C) that are feasible in its (S)
with L = .012, b out of 100 equally spaced points dropped onto the nondominated frontier of (C), the 64 that
fall exactly onto the bits and pieces, c the 36 that do not

optimality if one were to continue on the hyperbola of the segment without a basis change.6339

Often when this last condition occurs the collection of securities one hyperbolic segment340

to the next does not change. This is what gives rise to the number of different hyperbolic341

segments being 13 rather than a smaller number.342

8 Experimental results343

We start this section with a small (40-security) example, because with it we can better see344

what is going on. Figure 4a shows the 11 bits and pieces of the nondominated frontier of (C)345

that are feasible in its (S) with L = .012.346

Let us assume that we are contemplating a 100-point dotted representation of the non-347

dominated frontier of (S). Dropping 100 equally spaced dots onto the nondominated frontier348

of (C), we find that 64 of them fall exactly onto the bits and pieces as in Fig. 4b. This has just349

saved 64 ε-constraint optimizations of (eS) when attempting to compute the nondominated350

frontier of (S) in the normal way, and probably several more if one were to accept moving351

6 Or stop in the case of the lower endpoint of the bottommost hyperbolic segment, see footnote 5.

123

Journal: 10898-JOGO Article No.: 0305 TYPESET DISK LE CP Disp.:2015/4/25 Pages: 16 Layout: Small



R
ev

is
ed

Pr
oo

f

J Glob Optim

Table 6 Results of experiments
on problems with 1000, 2000,
3000 securities and L’s as given.
In all problems, U = .04

L Item measured 1000 2000 3000

.0025 %Arc Length 48.34 44.26 46.72

%Biggest Gap 7.55 7.44 6.41

#Bits & Pieces 56.4 62.5 65.5

Ave%ArcLengthGap 0.92 0.89 0.81

.0020 %Arc Length 55.46 51.71 53.20

%Biggest Gap 6.00 6.67 4.50

#Bits & Pieces 62.0 73.2 73.6

Ave%ArcLengthGap 0.72 0.66 0.64

.0015 %Arc Length 64.95 59.86 62.55

%Biggest Gap 4.37 4.42 3.25

#Bits & Pieces 74.0 91.1 89.2

Ave%ArcLengthGap 0.47 0.44 0.42

.0010 %Arc Length 73.43 70.39 73.37

%Biggest Gap 3.46 3.53 2.35

#Bits & Pieces 85.8 111.0 111.4

Ave%ArcLengthGap 0.31 0.27 0.24

.0005 %Arc Length 85.53 84.80 86.22

%Biggest Gap 1.68 1.30 1.09

#Bits & Pieces 111.9 139.5 138.2

Ave%ArcLengthGap 0.13 0.11 0.10

some of the points a small amount so they don’t just miss falling on a bit or a piece. Figure352

4c shows the 36 that do not exactly fall onto the bits and pieces and, barring any movements,353

would have to be computed in another way, presumably by a heuristic or an evolutionary algo-354

rithm (EA). Whereas an MIQP solver is out in situations like this in problems with between355

1000 and 3000 securities because of the covariance matrix, there are advantages to heuristics356

and EAs. An MIQP solver either runs or it doesn’t, and when it doesn’t you get nothing. But357

with a heuristic or an EA, you always get something, and the longer you run it, the better358

that “something” is. (Although what happens in the gaps is not a part of this research, for359

insights gained from small problems about the non-concavities and discontinuities that can360

occur in them, see Calvo et al. [4,5]). Note that in Fig. 4c, the biggest gap is nine dots or 9 %.361

Running the problem again but with L = .008, we find that 74 % of the arc length is now362

covered and the biggest gap drops to 8 %, changes in the directions expected.363

In Table 6 we see the results of experiments conducted over problem sizes from 1000 to364

3000 securities. There are no appreciable changes horizontally across the table with regard365

to %Arc Length (the percent of the nondominated frontier of (C) that is feasible in (S)).366

However, vertically with this measure, we see significant increases as L decreases.367

As for the #Bits & Pieces (number of continuous pieces and isolated endpoints), it increases368

as we sweep from the upper left to the lower right of the table while the %Biggest Gap and369

Ave%ArcLengthGap (average percent of the nondominated frontier per gap) figures decrease370

as we do the same. The three measures provide a guide as to how the amount of information371

conveyed by the bits and pieces and its dispersion increases as we sweep down and across372

the table.373
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Looking, for example, into the L = .0010, n = 1000 cell, we see on average 85.8 bits374

and pieces. Should we be attempting a nice, but not necessarily perfectly dispersed, 50-point375

representation of the nondominated frontier of (S), we should be able to nearly complete376

the job. Of course there will be one or two missing points due to the %BiggestGap being377

3.46 %, but with an average distance between a bit or a piece (coming down the frontier)378

being 0.31 %, we should be in good shape with the rest of the representation. Note that an379

equally spaced 50-point representation has an fixed gap between dots of 1/49 = 2.04 %.380

As another example, let us look into the L = .0005, n = 3000 cell. Here we see an average381

of 138.2 bits and pieces. Say we are now thinking of a perfectly equally spaced 100-point382

dotted representation of the nondominated frontier of (S) (where in such a representation,383

the average distance between points is 1/99 = 1.01 %). Then with an average biggest gap384

of 1.09 % and an average distance between a bit or a piece being 0.10 %, we should not have385

great difficulty in almost perfectly completing the task.386

As for the time savings of the 4-step strategy of this paper for semi-continuous variable387

nondominated frontiers, let us again consider the L = .0005, n = 3000 cell. Going about388

a nondominated frontier in the normal way, we have on average Cplex taking 47.61 s to389

compute a single ε-constraint point on the nondominated frontier, but with the 4-step strategy,390

the 100-point representation discussed above should only take on average 35.61 s plus two or391

three extra seconds for Matlab to do the post-processing. That is faster than one ε-constraint392

optimization because of what can be accomplished by parametric QP plus post-processing.393

9 Concluding remarks394

To put the paper in perspective, previous research, in attempts to deal with minimum trans-395

action sizes and buy-in thresholds, has been unable to report even modest success on the396

computation of points along the nondominated frontier of a mean-variance semi-continuous397

variable problem with many more than 225 securities (size of the Japanese NIKKEI index).398

This is to the best of our knowledge. But in this paper, with between 1000 and 3000 secu-399

rities and realistic buy-in thresholds, we are typically able to produce a majority of the400

semi-continuous variable mean-variance nondominated frontier, and moreover, in very little401

time.402

This is possible because the 4-step strategy of the paper involves first using a code like403

CIOS to compute a full mathematical specification of the nondominated frontier of the relaxed404

problem. Even for a problem with 3000 securities, this should not take much more than 35-36 s405

on average. Then, from the mathematical specification, the (relaxed) nondominated frontier406

just computed is post-processed to determine all parts of it that are on the semi-continuous407

variable nondominated frontier. This only takes two or three more seconds. The surprise here,408

with buy-in thresholds appropriate to the size of the problem, is that between 50 and 85 %409

of the nondominated frontier of a problem with semi-continuous variables can be extracted410

from its relaxed nondominated frontier. And since that extracted does not come in one strip,411

but in 50–140 bits and pieces, many times the 4-step strategy is able to come close to creating412

reasonably full dotted representations of the semi-continuous variable nondominated frontier413

being sought.414

Furthermore, as discussed in Steuer et al. [24], it is more than the time to do just a415

single nondominated frontier computation that counts. Typically, when refining an asset416

allocation, one experiments with different pools of securities, different minimum transaction417

sizes, different upper bounds, and so forth. Hence, nondominated frontier after nondominated418
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frontier may have to be computed to double check, re-confirm, and verify effects. Looking at419

it from a turnaround point of view, whatever time can be saved will be saved again whenever a420

new nondominated frontier computation request is made. Thus, this paper contributes because421

the faster the turnaround time, the better it is for an analyst, and this can only be for the good.422

Lastly, it should eventually be possible to extend the semi-continuous variable approach423

of this paper to include short sales. With regard to Fig. 3, the analysis would then involve a424

band, a gap, zero, a gap, and a band for each variable. As a consequence of this, the number425

of different types of hyperbolic segments would increase from the 13 in Sect. 6 to some426

higher number. Also, considerable computational testing would be required to complete the427

extension.428

Acknowledgments The authors would like to acknowledge helpful comments from the referees.429

References430

1. Anagnostopoulos, K.P., Mamanis, G.: Multiobjective evolutionary algorithms for complex portfolio opti-431

mization problems. CMS 8(3), 259–279 (2011)432

2. Bartholomew-Biggs, M.C., Kane, S.J.: A global optimization problem in portfolio selection. CMS 6,433

329–345 (2009)434

3. Bonami, P., Lejeune, M.A.: An exact solution approach for portfolio optimization problems under sto-435

chastic and integer constraints. Oper. Res. 57(3), 650–670 (2009)436

4. Calvo, C., Ivorra, C., Liern, V.: The geometry of the efficient frontier of the portfolio selection problem.437

J. Financ. Decis. Mak. 7(1), 27–36 (2011)438

5. Calvo, C., Ivorra, C., Liern, V.: On the computation of the efficient frontier of the portfolio selection439

problem. J. Appl. Math. (2012). doi:10.1155/2012/105616440

6. Chang, T.-J., Meade, N., Beasley, J.E., Sharaiha, Y.M.: Heuristics for cardinally constrained portfolio441

optimisation. Comput. Oper. Res. 27(13), 1271–1302 (2000)442

7. Cplex. IBM ILOG CPLEX Optimization Studio, version 12.6 (2013)443

8. Faisca, N.P., Dua, V., Pistikopoulos, E.N.: Multiparametric linear and quadratic programming. In: Pis-444

tikopoulos, E.N., Georgiadis, M.C., Dua, V. (eds.) Multi-parametric Programming: Volume 1: Theory,445

Algorithms, and Applications, pp. 3–23. Wiley-VCH Verlag, Weinheim (2007)446

9. Hirschberger, M., Qi, Y., Steuer, R.E.: Randomly generating portfolio-selection covariance matrices with447

specified distributional characteristics. Eur. J. Oper. Res. 177(3), 1610–1625 (2007)448

10. Hirschberger, M., Qi, Y., Steuer, R.E.: Large-scale MV efficient frontier computation via a procedure of449

parametric quadratic programming. Eur. J. Oper. Res. 204(3), 581–588 (2010)450

11. Jobst, N.B., Horniman, M.D., Lucas, C.A., Mitra, G.: Computational aspects of alternative portfolio451

selection models in the presence of discrete asset choice constraints. Quant. Finance 1(5), 1–13 (2001)452

12. Konno, H., Wijayanayake, A.: Portfolio optimization under D.C. transaction costs and minimal transaction453

unit constraints. J. Glob. Optim. 22(2), 137–154 (2001)454

13. Konno, H., Yamamoto, R.: Global optimization versus integer programming in portfolio optimization455

under nonconvex transaction costs. J. Glob. Optim. 32(5), 207–219 (2005a)456

14. Konno, H., Yamamoto, R.: Integer programming approaches in mean-risk models. CMS 2(5), 339–351457

(2005b)458

15. Lin, C.-C., Liu, Y.-T.: Genetic algorithms for portfolio selection problems with minimum transaction lots.459

Eur. J. Oper. Res. 185(1), 393–404 (2008)460

16. Mansini, R., Speranza, M.G.: Heuristic algorithms for the portfolio selection problem with minimum461

transaction lots. Eur. J. Oper. Res. 114(2), 219–233 (1999)462

17. Markowitz, H.M.: Portfolio selection. J. Finance 7(1), 77–91 (1952)463

18. Markowitz, H.M.: The optimization of a quadratic function subject to linear constraints. Nav. Res. Logist.464

Q. 3(1–2), 111–133 (1956)465

19. Mavrotas, G.: Effective implementation of the ε-constraint method in multiobjective mathematical pro-466

gramming. Appl. Math. Comput. 213(2), 455–465 (2009)467

20. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)468

21. Niedermayer, A., Niedermayer, D.: Applying Markowitz’s critical line algorithm. In: Guerard, J.B. (ed.)469

Handbook of Portfolio Construction, pp. 383–400. Springer, Berlin (2010)470

22. Sharpe, W.F.: Portfolio Theory and Capital Markets. McGraw-Hill, New York (2000)471

123

Journal: 10898-JOGO Article No.: 0305 TYPESET DISK LE CP Disp.:2015/4/25 Pages: 16 Layout: Small

http://dx.doi.org/10.1155/2012/105616


R
ev

is
ed

Pr
oo

f

J Glob Optim

23. Stein, M., Branke, J., Schmeck, H.: Efficient implementation of an active set algorithm for large-scale472

portfolio selection. Comput. Oper. Res. 35(12), 3945–3961 (2008)473

24. Steuer, R.E., Qi, Y., Hirschberger, M.: Comparative issues in large-scale mean-variance efficient frontier474

computation. Decis. Support Syst. 51(2), 250–255 (2011)475

25. Woodside-Oriakhi, M., Lucas, C., Beasley, J.E.: Heuristic algrithms for the cardinality constrained effi-476

cient frontier. Eur. J. Oper. Res. 213, 538–550 (2011)477

26. Xidonas, P., Mavrotas, G.: Multiobjective portfolio optimization with non-convex policy constraints:478

evidence from the Eurostoxx 50. Eur. J. Finance 20(11), 957–977 (2014)479

123

Journal: 10898-JOGO Article No.: 0305 TYPESET DISK LE CP Disp.:2015/4/25 Pages: 16 Layout: Small


	Extracting from the relaxed for large-scale semi-continuous variable nondominated frontiers
	Abstract
	1 Introduction
	2 ε-Constraint method
	3 Issues concerning the covariance matrix
	4 Key observations and a strategy
	5 Structure of classical nondominated frontier
	6 Nature of the sharing
	7 Identifying the bits and pieces
	8 Experimental results
	9 Concluding remarks
	Acknowledgments
	References


