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Abstract
Robust portfolio optimization refers to finding an asset allocation strategy whose behavior
under the worst possible realizations of the uncertain inputs, e.g., returns and covariances, is
optimized. The robust approach is in contrast to the classical approach, where one estimates
the inputs to a portfolio allocation problem and then treats them as certain and accurate. In
this paper we provide a categorized bibliography on the application of robust mathematical
programming to the portfolio selection problem. With no similar surveys available, one of
the aims of this review is to provide quick access for those interested, but maybe not yet in the
area, so they know what the area is about, what has been accomplished and where everything
can be found. Toward this end, a total of 148 references have been compiled and classified
in various ways. Additionally, the number of Scopus© citations by contribution and journal
is recorded. Finally, a brief discussion of the review’s major findings is provided and some
solid leads on future directions are given.

Keywords Robust mathematical programming · Portfolio selection · Bibliographic review

1 Introduction

Optimization affected by parameter uncertainty has long been a focus of the mathematical
programming community (Bertsimas et al. 2011). Two of the most popular methodologies
for handling parameter uncertainty are stochastic and robust optimization. Stochastic opti-
mization starts by assuming the uncertainty has a probabilistic description. On the other hand,
robust optimization, is a more recent approach to optimization under uncertainty, in which
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the uncertainty in the model is not stochastic, but rather deterministic and set-based. Instead
of seeking to immunize the solution in some probabilistic sense to stochastic uncertainty, here
the decision maker constructs a solution that is feasible for any realization of the uncertainty
in each set.

The framework of robust mathematical programming fits perfectly with the modeling of
many modern financial optimization problems, as these problems involve future values of
security prices, interest rates, exchange rates and so forth, which are not known in advance,
but can only be forecasted or estimated. The substantial advances in the areas of robust
optimization have proven to be of great importance, especially in the practical applicability
and reliability of portfolio optimization procedures.

Unlike the traditional approach, where inputs to the portfolio allocation framework are
treated as deterministic, robust portfolio optimization incorporates the notion that inputs have
been estimated with errors. In this case, the inputs are not traditional point estimate forecasts,
such as for expected returns and asset covariances, but rather uncertainty sets including these
point estimates.

In the last 20 years, research activity in robust portfolio optimization has become quite
substantial (Ghahtarani andNajafi 2013;Mansini et al. 2014;Gorissen et al. 2015).Kolmet al.
(2014) reviewed the 60-year course of portfolio optimization and have confirmed significance
of the portfolio robustness trend that has emerged. Results from Google Scholar queries
provide some interesting figures about the area’s momentum: When searching for modern
portfolio theory, we obtained 928,000 results, when searching for portfolio optimization, we
obtained 758,000 results, yet when searching for robust portfolio optimization, we obtained
131,000 results. This shows the extent to which robust portfolio optimization has grown to
have impact since it has come on the scene.

This paper provides a categorized review on the application of robust mathematical pro-
gramming to the problem of portfolio selection. A total of 148 references have been compiled
and classified. Initially, the contributions are categorized by type of publication and publisher,
while the distribution of papers over time is also provided.Moreover, all references are classi-
fied by journal, either as comingout of thefield of operations research or finance.Additionally,
the number of contributions by author is reported. Also, we record the number of Scopus©
citations by contribution and by journal. Finally, a brief discussion of the literature’s major
findings is also provided.

Our fundamental purpose is to provide rapid access to the topic for finance practitioners,
graduate students, and others looking for such a vehicle. More specifically, our aim with
this paper is to provide quick access for those interested, but not already in the area, so they
know: (a) what the area is about, (b) what has been accomplished, (c) where everything can
be found, and (d) have some leads on future directions.

The paper proceeds as follows: In Sect. 2 we describe the problem of robust portfolio
optimization in a, as much as possible, straightforward and simplified manner. In Sect. 3
we provide details about the underlying bibliographic analysis. In Sect. 4 we report some
basic findings with regard to the robust portfolio optimization literature. Finally, concluding
remarks are given in Sect. 5.

2 Problem setting

Optimization and more specifically robust optimization has become, as seen by many, an
important component in applications. The development of robust methods for optimization
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is one of the major achievements in the theory of modern financial modeling (Fabozzi et al.
2006). Robust technologies assume that both models and inputs are uncertain. They evalu-
ate the consequences of errors in the models and introduce modifications that mitigate the
potentially negative effects of model and estimation errors.

Indeed, inputs to the portfolio allocation process are generally unknown and must be
estimated. However, any estimate is subject to error. Therefore, it would be useful if the
portfolio optimization problem could handle inputs given in other forms, such as ranges
or even as statistical distributions, rather than as typical point estimates (Bertsimas et al.
2011). Additionally, the classical mean–variance framework assumes that all estimates are
equally precise and handles all securities equally. But it would be desirable if, whenmanagers
calculate optimal portfolios, differences in the precision of the estimates could be explicitly
incorporated in the process. Providing this benefit is an underlying target of robust portfolio
optimization.

To construct a robust portfolio, a manager needs to realize how uncertainty in return
and correlation estimation translates into a distribution of portfolios (Fabozzi et al. 2007a).
As an example, the Monte Carlo methodology offers an effective approach; that is, in these
methods, one simulates a large number of different portfolios. This approach typically entails
a significant computational burden, since every portfolio requires a separate optimization. In
contrast, robust mathematical programming is typically in a position to offer computationally
a much less expensive approach.

Ben-Tal and Nemirovski (1998, 1999) show how a portfolio manager can solve a robust
version of the Markowitz optimization problem efficiently, that is, in about the same time
as needed for solving it in a conventional way. The method uses the distribution from the
estimation process to find a robust portfolio in the form of a single optimization. It thereby
embeds uncertainties about inputs into a deterministic framework. Most classical portfolio
optimization formulations have robust counterparts that have roughly the same computational
complexity and can be solved in approximately the same amount of time as the classical
problem (Goldfarb and Iyengar 2003).

Fabozzi et al. (2006) argue that robust Markowitz portfolios are more stable than other
portfolios as inputs fluctuate, and their out-of-sample performance tends to be better than
classical mean–variance portfolios. Moreover, the robust optimization approach offers high
flexibility and many interesting applications. As an example, robust portfolio optimization
can be very effective in large-scale problems involving many complex investment policy
constraints on transaction costs, turnover, taxes, etc.

Also, it should be noted that the robust counterparts to the classical mean–variance formal-
ism are typically not regular quadratic programming (QP) problems (Fabozzi et al. 2007b).
The resulting type of a robust optimization problem depends on the specific uncertainty set
used with many if not most of the uncertainty sets used in practice leading to second-order
cone programs (SOCP), which can be solved by contemporary optimization algorithms in
approximately the same time as the original problem.

Wenowpresent two examples in order to illustrate someof the essentials of robust portfolio
optimization. The concepts in these examples are not new and have been around since the
beginning of the field, but it is from concepts like these that the field has grown, in many
directions, to what it is today.

The first example is very small. Consider an investment fund that is entering a difficult
period. The board of directors of the fund knows that there are expected return vectors from
within a known set of conceivable expected return vectors Uμ̂, which when combined with
a wrong weighting vector w from the set of all feasible weighting vectors S, that could
harm the fund. Also, the board suspects that there could be a number of such combinations.
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Putting off usual attempts to optimize portfolio return, suppose the board decides that for
the upcoming period top priority is to be placed on avoiding poor outcomes to the greatest
guaranteed extent.

Knowing that for each w ∈ S there is a µ ∈ Uμ̂ that is worst for that w, one way of
maximally avoiding poor outcomes is to seek the w whose worst realization of an expected
return vector, apart from ties, is better than for any other w ∈ S.

Let the ordinary problem of the investment fund be one whose objective is:

max µ′w (1)

and whose feasible region S contains only the six weighting vectors1:

S � {(.1, .1, .8), (.1, .7, .2), (.3, .3, .4), (.5, .2, .3), (.6, .2, .2), (.7, .2, .1)} (2)

The problem is seen as a tiny one for maximizing portfolio return in a future time period.
The w ∈ S that is the board’s best option for dealing with its situation is limited of course to
one of the six vectors of portfolio weights of length 3 in S.

With the board aware that there is unavoidable uncertainty about the expected return vector
in the future period, the board can only suggest a best estimate µ̂ for use as µ in (1) knowing
full well that there can be significant error in the estimate. In keeping the problem simple,
albeit abstract, let us assume that the board has knowledge that the correct expected return
vector for the future period is one of three possibilities in:

Uμ̂ � {(4, 6,−2), (6,−2, 2), (−4, 4, 4)} (3)

but the board does not know which one (where the entries in (3) are profitability indices).
Here,Uμ̂ is the problem’s uncertainty set as it specifies where in the problem the uncertainty
that is to be taken into account lies. A way to view the expected return vectors (3) is as being
merely three representatives, for purposes of illustration, from what in reality would be a
more involved Uμ̂.

With the uncertainty causing the board consternation, the board is very concerned about
winding up with an unnecessarily bad combination of a w ∈ S and a µ ∈ Uμ̂. Note that
in this problem there are eighteen different (w,µ) combinations, and who knows, some of
them could be very bad. As a consequence, the board would like to immunize the investment
fund from the worst combinations of (w,µ) to the greatest guaranteed extent.

In the literature, techniques for doing this fall under the topic of robust optimization.
“Robustifying” this problem, that is, re-casting the problem so it deterministically takes into
account all of the uncertainties in Uμ̂ when optimizing, results in the max–min formulation:

max

{
min
μ∈Uμ̂

{
µ′w|w ∈ S

}}
(4)

What (4) does is solve for the w ∈ S that keeps us away from as many of the low objective
function value combinations of a w ∈ S and a µ ∈ Uμ̂ that can be guaranteed.

1 Despite the small number of points in S in this example, feasible regions in portfolio selection can be discrete
as a result of lot size and other constraints.
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In this problem, the solution of (4) is shown numerically by computing the dot product of
each w ∈ S with each µ ∈ Uμ̂ to form the 6 × 3 matrix:⎡

⎢⎢⎢⎢⎢⎢⎣

−6 20 32
42 −4 32
22 20 16
26 32 0
32 36 −8
38 40 −16

⎤
⎥⎥⎥⎥⎥⎥⎦

In the matrix, for instance, the 36 of element (5, 2) is the dot product of the fifth w ∈ S with
the second µ ∈ Uμ̂.

From the matrix we see that the solution to (4), which is the robust version of the problem,
is the third w ∈ S as the worst that can happen to the investment fund with this choice of w
is an objective function value of 16. In this way, the solution is robust in that it avoids the
worst objective function values of −16,−8,−6,−4 and 0 seen elsewhere in the matrix with
the other choices of w. Note that along with these protections, there is still the possibility of
portfolio return being 20 or 22.

The solution of the robust version of this problemwas easily obtained because of the small,
discrete natures of S and Uμ̂. This will not happen in realistic applications where, instead
of a few variables, problems are likely to have a few hundred variables, and uncertainty sets
can be counted on to be mostly continuous and more complicated. To illustrate, probably the
three most popular types of uncertainty sets for expected return vectors are:

1. Box uncertainty

Uδ � {
µ|∣∣μi − μ̂i

∣∣ ≤ δi
}

where Σμ is a special covariance matrix (Fabozzi et al. 2007a).
2. Ellipsoidal uncertainty

Uη �
{
µ|(μi − μ̂i

)′
Σ−1

μ

(
μi − μ̂i

) ≤ η2
}

3. Ellipsoidal uncertainty

Uγ �
{
µ �

κ∑
i�1

γi yi |γi ≥ 0,
κ∑

i�1

γi � 1

}
.

As for the small example, the three expected return vectors in (3) could be considered as
representatives coming from any of the three uncertainty set structures above. For instance,
if from a polytopic uncertainty set, the three representatives could easily be the yi , k � 3.

Taking on as our second example a more standard application, let us consider the problem
of conventional mean–variance portfolio optimization:

max
{
µ′w − λw′Σw|w ∈ S

}
(5)

but with box uncertainty set Uδ specified as its best estimate of the future expected return
vector. In (5), S is any set defined by linear constraints. Under the same logic as the first
problem, the robust version of (5) is obtained by re-casting it as:

max

{
min
μ∈Uδ

{
µ′w − λw′Σw|w ∈ S

}}
(6)
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However, because of the problem’s increased number of variables and that Uδ and S are not
small discrete sets, this robust formulation is not as easy to solve. Fortunately, as pointed out
by Fabozzi et al. (2007a), an optimal solution to (6) is obtained by solving:

max
{
µ′w − δ′|w| − λw′Σw|w ∈ S

}
(7)

In this way, after using a trick to get rid of the absolute value signs, (7) results in a quadratic
program problem that can be solved on any number of platforms such as MOSEK, GAMS,
etc. In other words, the robust version of the problem is tractable. That is, it can solved
in acceptable time using known available algorithms. Tractability is a bottom-line issue in
robust optimization as there is little purpose to re-cast a problem into a robust version if the
robust version is not solvable.

The advantage of the other two types of uncertainty sets is the same. They result in tractable
re-cast versions of the problem. However, in the case of ellipsoidal uncertainty sets, the re-
cast problems are second-order cone problems that can be solved using the same packages as
mentioned above in roughly the same amount of time. Hence, with this being a sampling, we
can see why the tools of robust optimization cause the field of robust portfolio optimization
to be such an important, attractive, and growing field.

3 Bibliographic analysis

The classification of robust portfolio optimization models is often insightful. Bertsimas et al.
(2011) adopt the following categorization of the various models that have been proposed: (a)
uncertainty models for return mean and covariance, (b) distributional uncertainty models, (c)
robust factor models, and (d) multi-period robust models.

In Fabozzi et al. (2010) there is another classification. They distinguish between: (a)
portfolio models with known moments, (b) portfolio models with unknown means (with
either box or ellipsoidal uncertainty on the mean), (c) portfolio models with unknown mean
and covariance (factor models or models with box uncertainty on the covariance matrix), (d)
robust VaRmodels, (e) robust CVaRmodels (mixture or discrete distribution models), and (f)
models depending on the size and shape of the uncertainty sets (models with specifications,
either for factors or for mean and covariance).

Also, an earlier classification by Goldfarb and Iyengar (2003) assumes the following
categories: (a) robust mean–variance portfolio selection models (distinct study of the robust
minimum variance, maximum return and maximum Sharpe ratio problems), (b) robust VaR
portfolio selection models, (c) multivariate regression models with norm selection, and (d)
robust portfolio allocation models with uncertain covariance matrices (distinct study of the
uncertainty structure for covariance inverse and regular covariance). Similar comprehensive
categorizations are also provided by Kim et al. (2014a), Scutella and Recchia (2010) and
Tütüncü and Koenig (2004).

This section provides a categorized bibliographic analysis on the application of robust
mathematical programming to the portfolio selection problem. In compiling and classifying
the 148 references included in this study, the distribution of contributions by type of publica-
tion is as follows: operations research journals (91), finance journals (41), books (6), edited
volumes (6), and PhD dissertations (4).2

2 As far as the distribution of the contributions by publisher, we report that most appear in publications of
Elsevier (52), Springer (43), INFORMS (17), Taylor & Francis (10) andWiley (6), with the remaining articles
spread across 9 other publishers.
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Table 1 Distribution of
contributions by 3-year periods

3-Year periods Number of contributions

1995–1997 3

1998–2000 3

2001–2003 7

2004–2006 10

2007–2009 25

2010–2012 22

2013–2015 30

2016–2018 36

2019 12aaThrough November 30, 2019

Tables 1 and 2 show the distribution of references over time. Specifically, Table 1 shows
the references by 3-year periods. Clearly, the publication rate has been on the increase since
1995 with 2007–2009 being the 3-year period in which the number of publications increased
the most (25 relative to the 10 of the previous period), while the 2016–2018 period has been
the most prolific (36). These findings are supported by the more detailed views of Table 2
with (b) showing years 2014, 2017 and 2018 being of greatest productivity.

Table 3 classifies the contributions by journal in the field of operations research (91 out the
148). The most (22) have been published in the European Journal of Operational Research
by Elsevier followed by the Annals of Operations Research by Springer (12) andOperations
Research by INFORMS (12). The remaining articles are distributed across 24 other journals.

Similarly, Table 4 classifies the contributions by journal in the field of finance (41 out the
148). The most (9) have been published in the Journal of Asset Management by Springer
followed by the Journal of Banking & Finance by Elsevier (5) and Quantitative Finance (5)
by Taylor & Francis. The remaining articles are distributed across 11 other journals.

Additionally, Table 5 shows the classification of contributions by various types of publi-
cation (16 out the 148). We observe the existence of 6 books, 6 edited volumes articles and
4 PhD dissertations.

Table 6 summarizes the number of contributions by author, with at least 3 connections
(papers on which they are authors) being the condition set for an author to be included in the
table. The most (18) have been published by Frank J. Fabozzi (EDHEC Business School)
and Dessislava Pachamanova (Babson College) (14). The remaining articles are distributed
across 21 other authors.

Table 7 presents the 76most influential papers in the field, ofwhich 56 have been published
in operations research journals and 20 in finance journals. At least 10 connected citations was
the condition set for a reference to be included in this table. The total number of citations of
these 76 papers is 12,637. Furthermore, Table 7 presents the number of Scopus© citations by
contribution, as observed throughNovember 30, 2019. The study ofBertsimas andSim (2004)
is the most cited paper with 1842 citations. This is followed by Rockafellar and Uryasev
(2002) with 1625, Ben-Tal and Nemirovksi (1998) with 1223, Ben-Tal and Nemirovski
(1999) with 1046, Mulvey et al. (1995) with 949, Bertsimas et al. (2011) with 898, and so
forth.

Finally, Table 8 shows the number of Scopus© citations by journal through November 30,
2019. In particular,Operations Research (INFORMS) has 4095 connected citations, followed
by the Journal of Banking & Finance (Elsevier) with 1741, Mathematics of Operations
Research (INFORMS) with 1614, Operations Research Letters (Elsevier) with 1092, SIAM
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Table 2 Panel (a) shows yearly
contributions and Panel (b) shows
contributions by year sorted from
largest to smallest

Year Number of
contributions

Year Number of
contributions

(a) (b)

1995 1 2014 15

1996 1 2017 14

1997 1 2018 13

1998 1 2011 12

1999 1 2019 12a

2000 1 2007 11

2001 0 2016 9

2002 5 2013 8

2003 2 2009 7

2004 4 2010 7

2005 1 2015 7

2006 6 2006 6

2007 11 2008 6

2008 6 2002 5

2009 7 2004 4

2010 7 2012 3

2011 12 2003 2

2012 3 1995 1

2013 8 1996 1

2014 15 1997 1

2015 7 1998 1

2016 9 1999 1

2017 14 2000 1

2018 13 2005 1

2019 12a 2001 0aThrough November 30, 2019

Review (SIAM)with 898, theEuropean Journal of Operational Research (Elsevier) with 752,
Mathematical Programming (Springer) with 656, the Review of Financial Studies (Oxford
University Press) with 448, the Annals of Operations Research (Springer) with 371, and so
forth.

What is striking about all of the above referenced classifications is how different their
descriptions can be from one another. This is indicative of the originality of the area, its rapid
growth, and ever-growing range of applications to which its tools and techniques have been
found to be amenable. In summary, it represents the many different perspectives from which
one can look at the potentialities of the field.

4 Major findings

In this section, we briefly report some critical findings with regard to the robust portfolio
optimization literature (Pachamanova 2013). First, it has to be mentioned that numerous
studies using simulated and real market data provide support for the claim that robust port-
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Table 3 Classification of contributions by journal in the field of OR

Journal Number of
contributions

References

European Journal of
Operational Research

22 Vassiadou-Zeniou and Zenios (1996), Shen and Zhang
(2008), Huang et al. (2010), Gregory et al. (2011), Kawas
and Thiele (2011b), Zymler et al. (2011), Dupacova and
Kopa (2014), Ehrgott et al. (2014), Fliege and Werner
(2014), Kakouris and Rustem (2014), Kim et al. (2014c),
Kolm et al. (2014), Mansini et al. (2014), Maillet et al.
(2015), Fernandes et al. (2016), Gulpinar and Canakoglu
(2017), Ling et al. (2017), Xidonas et al. (2017b), Fakhar
et al. (2018), Liu and Chen (2018), Lotfi and Zenios
(2018) and Ling et al. (2019)

Annals of Operations
Research

12 Tütüncü and Koenig (2004), Fabozzi et al. (2010),
Dupacova and Kopa (2012), Kim et al. (2013b), Scutella
and Recchia (2013), Marzban et al. (2015), Hasuike and
Mehlawat (2018), Kapsos et al. (2018), Kim et al. (2018a,
b), Pac and Pinar (2018) and Pandolfo et al. (2019)

Operations Research 12 Mulvey et al. (1995), El Ghaoui et al. (2003), Bertsimas and
Sim (2004), Lutgens et al. (2006), Popescu (2007),
DeMiguel and Nogales (2009), Natarajan et al. (2009),
Zhu and Fukushima (2009), Delage and Ye (2010), Chen
et al. (2011), Glasserman and Xu (2013) and Doan et al.
(2015)

OR Spectrum 6 Pinar (2007), Kawas and Thiele (2011a), Pae and Sabbaghi
(2014), Desmettre et al. (2015), Gulpinar et al. (2016) and
Sharma et al. (2017)

Computers & Operations
Research

5 Bertsimas and Pachamanova (2008), Moon and Yao (2011),
Chen and Kwon (2012), Fonseca and Rustem (2012) and
Gulpinar et al. (2014)

Optimization 4 Schöttle and Werner (2009), Pinar (2016), Wang et al.
(2017) and Ding et al. (2018)

Operations Research
Letters

3 Ben-Tal and Nemirovksi (1999), Pinar and Tütüncü (2005)
and Huang et al. (2007)

Mathematics of
Operations Research

3 Ben-Tal and Nemirovksi (1998), Goldfarb and Iyengar
(2003) and Bo and Capponi (2017)

Mathematical
Programming

3 Ben-Tal and Nemirovksi (2002), Lu (2011a) and de Klerk
et al. (2019)

Journal of Computational
& Applied Mathematics

2 Chen and Tan (2009) and Goel et al. (2019)

Management Science 2 Natarajan et al. (2008) andRujeerapaiboon et al. (2016)

Omega 2 Oguzsoy and Guven (2007) and Gorissen et al. (2015)

Applied Mathematics &
Optimization

1 Liu et al. (2019)

Central European Journal
of Operations Research

1 Kara et al. (2019)

Computational
Management Science

1 Kawas and Thiele (2017)

Expert Systems with
Applications

1 Chen and Zhou (2018)

EURO Journal on
Computational
Optimization

1 Gabrel et al. (2018)
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Table 3 continued

Journal Number of
contributions

References

IMA Journal of
Management
Mathematics

1 Recchia and Scutella (2014)

International Transactions
in Operational Research

1 Cacador et al. (2019)

Journal of Combinatorial
Optimization

1 Chen and Wei (2019)

Journal of the Operational
Research Society

1 Lee et al. (2019)

Journal of Optimization
Theory & Applications

1 Kim et al. (2014a)

Metrica 1 Lauprete et al. (2002)

Optimization Methods &
Software

1 Lu (2011b)

SIAM Journal on
Optimization

1 Calafiore (2007)

SIAM Review 1 Bertsimas et al. (2011)

4OR 1 Scutella and Recchia (2010)

folio optimization outperforms classical mean–variance optimization a high percentage of
time (Kim et al. 2018a). The main aspect that differs across robust formulations of the port-
folio optimization problem is how the uncertainty sets are modeled (Pachamanova 2006).
This suggests that finding a proper balance between robustness and a suitable and practical
definition of uncertainty sets may have a nontrivial impact on portfolio performance.

Also, tests using both simulated andmarket data appear to confirm that robust optimization
generally results in more stable portfolio weights. As observed by Fabozzi et al. (2007a),
robust optimization tends to avoid corner solutions. This is because at a corner solution an
additional security is either added to or dropped from the portfolio. As a result, as robust
mean–variance optimization frequently improves worst-case portfolio performance, it also
results in smoother and more consistent portfolio returns.

Indeed, one important property of robust efficient portfolios is that they remain relatively
unchanged over long periods of time. Re-calculating robust efficient portfolios as new data
become available generally generates smaller turnover volumes as compared to their classical
counterparts, thus leading to reduced trading costs if the portfolios are to be rebalanced
regularly (Bertsimas and Pachamanova 2008). We suggest that as robust optimal portfolios
calculated at the beginning of an investment horizon appear to remain optimal or near optimal
throughout the horizon, they may be attractive for buy-and-hold investors.

Moreover, the worst-case behavior of portfolios of different assets can be significantly
enhanced using robust asset allocation methodologies, often with only minor performance
losses on more likely scenarios (Tütüncü and Koenig 2004). Specifically, as the size of
uncertainty sets increase, both the benefits of robust portfolios under worst-case scenarios
and their under-performance under most likely scenarios appear to increase. This trade-off
suggests that a cost–benefit analysis concerning the size of uncertainty sets needs to be
performed. The right size will depend on the risk-profile of investors.
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Table 4 Classification of contributions by journal in the field of finance

Journal Number of
contributions

References

Journal of Asset
Management

9 Ceria and Stubbs (2006), Khodadadi et al. (2006), Scherer
(2007), Van Hest and De Waegenaere (2007), Iyengar
et al. (2010), Guastaroba et al. (2011), Gulpinar et al.
(2011), Deng et al. (2013) and Lu et al. (2019)

Journal of Banking &
Finance

5 Rockafellar and Uryasev (2002), Quaranta and Zaffaroni
(2008), Gulpinar and Pachamanova (2013), Kim et al.
(2014b) and Xing et al. (2014)

Quantitative Finance 5 Zhu et al. (2009), Hellmich and Kassberger (2011), Bergen
et al. (2018), Simoes et al. (2018) and Kang et al. (2019)

Finance Research Letters 4 Kim et al. (2013a), Li et al. (2016), Belhajjam et al. (2017)
and Han et al. (2017)

Journal of Economic
Dynamics & Control

3 Costa and Paiva (2002), Huang et al. (2008) and Plachel
(2019)

Journal of Portfolio
Management

3 Pachamanova (2006), Fabozzi et al. (2007b) and
Pachamanova and Fabozzi (2014)

Economic Modelling 2 Ghahtarani and Najafi (2013) and Xidonas et al. (2017a)

Annals of Finance 2 Ma et al. (2008) and Flor and Larsen (2014)

Journal of Computational
Finance

2 Bienstock (2007) and Zhu et al. (2015)

Review of Financial
Studies

2 Maenhout (2004) and Garlappi et al. (2007)

Energy Economics 1 Costa et al. (2017)

International Journal of
Theoretical & Applied
Finance

1 Cong and Oosterlee (2017)

International Review of
Financial Analysis

1 Kim et al. (2015)

Mathematical Finance 1 Natarajan et al. (2010)

Table 5 Classification of contributions by various types of publication

Type of publication Number of contributions References

Books 6 Kouvelis and Yu (1997), Fabozzi et al. (2007a),
Cornuéjols and Tütüncü (2006), Ben-Tal et al. (2009),
Kim et al. (2016), Pachamanova and Fabozzi (2016)

Edited volumes 6 Ben-Tal et al. (2002), Pachamanova (2013), Gulpinar and
Hu (2016), Iyengar and Ma (2016), Millington and
Niranjan (2017), Pachamanova et al. (2017)

PhD dissertations 4 Lobo (2000), Lutgens (2004), Brown (2006), Guastaroba
(2010)

Based on the above discussion, a complaint frequently communicated by users of con-
ventional mean–variance methods is that the portfolios generated often contain many small
holdings (Fabozzi et al. 2006). While this appears contradictory to the well-known property
of diversification, this relates to the mechanics of the underlying mean–variance algorithm,
which tries to negotiate the two conflicting objectives of return maximization and risk mini-
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Table 6 Number of contributions
by author

Author Number of contributions

Fabozzi, F.J. 18

Pachamanova, D. 14

Kim, J.H. 10

Kim, W.C. 10

Gulpinar, N. 7

Zhu, S. 6

Ben-Tal, A. 5

Huang, D. 5

Nemirovski, A. 5

Tütüncü, R.H. 5

Canakoglu, E. 4

Fukushima, M. 4

Natarajan, K. 4

Pinar, M.C. 4

Thiele, A. 4

Bertsimas, D. 3

Iyengar, G. 3

Kawas, B. 3

Kolm, P.N. 3

Recchia, R. 3

Rustem, B. 3

Scutella, M.G. 3

Zenios, S.A. 3

mization, thus generating two rankings of the assets, i.e., one for high return potentials and
one for low risk potentials. A similar phenomenon is observed with the robust portfolio
optimization approach. The difference is that the method now ranks the worst-case return
potentials of the assets, as well as their worst-case riskiness and then proceeds from the assets
with highest worst-case returns to those with lowest worst-case variance, thus resulting in
generally smaller portfolios.

However, robust optimization is not a perfect remedy. By using robust portfolio opti-
mization, investors are likely to trade-off the optimality of their portfolio allocation in cases
where nature behaves as they predicted for protection against the risk of inaccurate estima-
tion (Fabozzi et al. 2007b). Therefore, managers using the technique should not expect to do
better than classical portfolio optimization when estimation errors have little impact or when
typical scenarios occur. In contrast, they should expect insurance when their estimates differ
from the actual realized values up to the amount they have pre-specified in the modeling
process.

5 Concluding remarks

While the literature on robust portfolios from operations research is abundant and insightful,
there is a general lack of empirical studies on how themethodswork in realworld applications.
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Table 7 Number of Scopus© citations by contribution

References Number of citations References Number of citations

Bertsimas and Sim (2004) 1842 Glasserman and Xu (2013) 31

Rockafellar and Uryasev
(2002)

1625 Pinar (2007) 31

Ben-Tal and Nemirovksi
(1998)

1223 Chen and Kwon (2012) 31

Ben-Tal and Nemirovksi
(1999)

1046 Zhu et al. (2009) 30

Mulvey et al. (1995) 949 Vassiadou-Zeniou and
Zenios (1996)

29

Bertsimas et al. (2011) 898 Lauprete et al. (2002) 29

Ben-Tal and Nemirovksi
(2002)

642 Kakouris and Rustem (2014) 28

Delage and Ye (2010) 410 Dupacova and Kopa (2014) 27

Goldfarb and Iyengar (2003) 385 Moon and Yao (2011) 27

El Ghaoui et al. (2003) 310 Pinar and Tütüncü (2005) 27

Garlappi et al. (2007) 234 Flor and Larsen (2014) 27

Maenhout (2004) 214 Dupacova and Kopa (2012) 25

Zhu and Fukushima (2009) 196 Xidonas et al. (2017a, b) 24

Tütüncü and Koenig (2004) 176 Shen and Zhang (2008) 22

Kolm et al. (2014) 126 Lu (2011b) 22

Fabozzi et al. (2010) 119 Huang et al. (2007) 19

Gorissen et al. (2015) 119 Ghahtarani and Najafi (2013) 19

Ehrgott et al. (2014) 115 Maillet et al. (2015) 18

DeMiguel and Nogales
(2009)

112 Van Hest and De
Waegenaere (2007)

17

Bertsimas and Pachamanova
(2008)

97 Gulpinar and Pachamanova
(2013)

17

Ceria and Stubbs (2006) 96 Scutella and Recchia (2013) 16

Popescu (2007) 86 Kim et al. (2014c) 15

Natarajan et al. (2009) 85 Kim et al. (2013b) 15

Quaranta and Zaffaroni
(2008)

74 Kawas and Thiele (2011a) 15

Fliege and Werner (2014) 71 Xing et al. (2014) 15

Mansini et al. (2014) 71 Lu (2011a) 14

Natarajan et al. (2008) 70 Gülpinar et al. (2014) 13

Calafiore (2007) 61 Fakhar et al. (2018) 12

Chen et al. (2011) 57 Schöttle and Werner (2009) 12

Huang et al. (2010) 56 Hellmich and Kassberger
(2011)

12

Costa and Paiva (2002) 53 Kim et al. (2013a) 12

Gregory et al. (2011) 50 Pinar (2016) 11

Zymler et al. (2011) 47 Chen and Tan (2009) 10

Natarajan et al. (2010) 47 Rujeerapaiboon et al. (2016) 10
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Table 7 continued

References Number of citations References Number of citations

Fabozzi et al. (2007b) 43 Scutella and Recchia (2010) 10

Huang et al. (2008) 40 Khodadadi et al. (2006) 10

Scherer (2007) 38 Kim et al. (2014b) 10

Kim et al. (2014a) 32 Costa et al. (2017) 10

Table 8 Number of Scopus© citations by journal

Journal Number of citations

Operations Research 4095

Journal of Banking & Finance 1741

Mathematics of Operations Research 1614

Operations Research Letters 1092

SIAM Review 898

European Journal of Operational Research 752

Mathematical Programming 656

Review of Financial Studies 448

Annals of Operations Research 371

Journal of Asset Management 189

Computers & Operations Research 173

Omega 128

Journal of Economic Dynamics & Control 93

Management Science 80

OR Spectrum 62

SIAM Journal on Optimization 61

Journal of Portfolio Management 56

Mathematical Finance 47

Quantitative Finance 43

Annals of Finance 35

Journal of Optimization Theory & Applications 32

Metrica 29

Finance Research Letters 26

Optimization 24

Optimization Methods & Software 22

Economic Modelling 20

Journal of Computational & Applied Mathematics 12

4OR 10

Energy Economics 10
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In addition, it can be suggested that greater interaction between researchers in operations
research and finance would be helpful. For example, many of the financial studies focus
on data-generating processes and their estimations, and often ignore important ideas and
methods from operations research from which they could benefit.

On the other hand,much of the operations research literature takes as given the estimates in
applications, without modeling or taking into account the economic forces that drive the data-
generating process. Additionally, it rarely studies simultaneously both optimal estimation and
associated robust strategies. Also, the operations research literature seldom makes full use
of available asset pricing models.

Moreover, in almost all of the studies reviewed, themain conclusion is that robust strategies
are preferable to classical ones in terms of the stability of the returned portfolios, and in
terms of out-of-sample performance. In a few cases, different robust methods were compared
(DeMiguel and Nogales 2009; Ben-Tal et al. 2009). In those cases, the methods compared are
of the same kind; methods based on robust estimators in the first case and based on convex
risk measures in the second case. On the other hand, it appears that few computational studies
have been performed to compare robust portfolio optimization strategies of different kinds,
e.g. standard robust models based on uncertainty sets, versus robust VaR or CVaR models.

From one point of view it can be argued that theoretical robust portfolio optimization
is mature, but that is only because it is so far in advance of applications. Thus, there are
many unanswered questions in the practice of robust portfolio optimization. Indeed, there
is a need for more empirical research in order to provide portfolio managers with better
guidelines for applying robust optimization in a way that generates superior out-of-sample
returns. Practitioners need to understand better the implications of using different types of
uncertainty sets and how to calibrate model parameters in an optimization model to deal with
the over-conservatism inherent in many robust models. At this point, the growing uneasiness
of practitioners with the usability of the robust portfolio optimization tools is something that
must be acknowledged and taken into account in future research.

Finally, although our focus in this paper has been on the application of robust optimiza-
tion to portfolio optimization, robust mathematical programming may be an effective tool in
many other financial areas. The robust optimization approach may, for instance, appear as
extremely promising, either on the estimation of various econometric models or in the execu-
tion of optimal trading programs, etc. In summary, there is no doubt that the methodology’s
underlying momentum is very strong.
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