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Abstract
This paper provides results in the area of the analytical derivation of the efficient set of a
mean-variance portfolio selection problem that has more than three criteria. By “analytical”
we mean derived by formula as opposed to being computed by algorithm. By “more than
three criteria”, we mean that beyond the mean and variance of regular portfolio selection, the
problems addressed have two or more additional linear objectives. The additional objectives
might include sustainability, dividend yield, liquidity, and R&D as extra objectives like these
are being seen with greater frequency. While not all multiple criteria portfolio selection
problems lend themselves to an analytical derivation, a certain class does and the problems
in this class are covered by the mathematics of this paper.

Keywords Multiple criteria portfolio selection · Analytical derivation · Minimum-variance
surface · Nondominated set · Efficient set · Paraboloid

1 Introduction

From Markowitz (1952) we have the mean-variance model of portfolio selection which can
be expressed, in bi-criterion format, as

min{z1 = xT�x}
max{z2 = μT x}

s.t. 1T x = 1

x ≥ 0 (1)

where x is a vector specifying the proportion of capital invested in each stock. Because
this vector specifies a portfolio, x is often called a portfolio. In this model, because of the
nonnegativity restriction on x, short selling is not allowed.With� an n×n covariance matrix
of stock returns, the first objective (z1) is portfolio variance. With μ a vector of expected
stock returns, the second objective (z2) is portfolio expected return.
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Let S ⊂ R
n be the feasible region indecision space.Here S = {x ∈ R

n | 1T x = 1, x ≥ 0}.
Because the problem has more than one objective, the problem has a second representation of
the feasible region, designated Z ⊂ R

k , called the feasible region in criterion space, where
k is the number of objectives. Criterion space is the space of the objectives, and any z ∈ Z
is a criterion vector. With a criterion vector resulting from the values of the objectives at a
given point in S, here Z is given by

Z = {z ∈ R
2 | z1 = xT�x, z2 = μT x, x ∈ S}.

In this way, Z is the set of all images of the points in S, and S is the set of all inverse images
of the criterion vectors in Z .

With respect to Z , a criterion vector z̄ ∈ Z is nondominated iff there exists no z ∈ Z
such that z1 ≤ z̄1, z2 ≥ z̄2 with z �= z̄. The set of all nondominated criterion vectors is
called the nondominated set and is designated N . Similarly, z̄ ∈ Z is weakly nondominated
iff there exists no z ∈ Z such that z1 < z̄1, z2 > z̄2. The difference in the directions of the
inequalities is due to the first objective being in minimization form and the second objective
being in maximization form. Note that the set of all weakly nondominated criterion vectors
subsumes N . With respect to S, a portfolio x̄ ∈ S is efficient iff x̄ is an inverse image of some
nondominated vector in Z . The set of all efficient portfolios is called the efficient set and is
designated E . Similarly, x̄ ∈ S is weakly efficient iff x̄ is an inverse image of some weakly
nondominated vector in Z .

To define optimality in a portfolio problem, letU : Z → R be the decision maker’s utility
function. Hence, a z∗ ∈ Z that maximizes U is an optimal criterion vector, and any inverse
image x∗ ∈ S of z∗ is an optimal portfolio. We are interested in nondominated criterion
vectors and efficient portfolios because under a U in which less-is-better-than-more for all
minimization objectives andmore-is-better-than-less for allmaximization objectives, z∗ ∈ N
and x∗ ∈ E . Thus, it suffices to find one’s most preferred nondominated criterion vector to
find an optimal portfolio.

With this, the idea of Markowitz is to, first, compute all nondominated criterion vectors.
Second, portray them graphically which, when doing so, takes on the form of what is called
the nondominated frontier. Third, have the decision maker select from the nondominated
frontier his or her’s most preferred point on it. Fourth, obtain an optimal portfolio of the
decision maker by taking an inverse image of the selected criterion vector.

In steps three and four we see two reasons why Markowitz’s model has maintained its
position as the most influential model in portfolio selection since its inception over sixty-five
years ago. One is that it allows different decision makers to have different optimal solutions.
A second is that, when attempting to identify one’s optimal portfolio, one does so within the
presence and knowledge of all other candidates for optimality. This is useful when a decision
maker doesn’t naturally like his optimal solution, but only comes to accept it because it can
be seen that everything else is worse.

But perhaps the most frequently given reason for the success of Markowitz’s mean-
variance model is its mathematical tractability. This is demonstrated in the analytical
derivation paper by Merton (1972) which is a classic in the area. In this paper, with
S = {x ∈ R

n | 1T x = 1} so short sales are allowed, Merton (analytically) derives for-
mulas for the efficient set and other salient quantities. In the paper, Merton also proves
the mean-variance nondominated frontier to be the vertex and upper portion of a rightward
opening parabola.

Despite the success of Markowitz’s model, it has not been without criticisms. One of
the most persistent is that it does not accommodate additional criteria such as sustainability,
dividend yield, liquidity, R&D, and others that are now being mentioned in the literature (see
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Lo et al. 2003; Guerard and Mark 2003; Steuer et al. 2007; Ballestero et al. 2012; Utz et al.
2015; and so forth) with greater frequency. With the additional objectives in linear form, this
gives rise to the following extended mean-variance formulation

min {z1 = xT�x}
max {z2 = μ2T x}

...

max {zk = μk T x}
s.t. x ∈ S (2)

where μ2 is the μ of (1), μ3 . . . μk are the coefficient vectors of the additional criteria, and
z3 . . . zk are criterion values. All of the other notation and concepts are the same after care
is exercised to take the extra criteria into account. For instance, when Z ⊂ R

k where k > 2,
a z̄ ∈ Z is nondominated iff there exists no z ∈ Z such that z1 ≤ z̄1, z2 ≥ z̄2, . . . , zk ≥ z̄k
with z �= z̄, and so forth. In this way, we have the extension of (1) to (2).

2 Analytical versus algorithmic

Portfolio problems such as (1) and (2), but where the feasible region is simply given by S,
where S can vary in how it is defined by linear constraints, can be divided into two classes.
One class consists of problems amenable to analytical methods. By this we mean problems
for which we can solve for quantities such as the efficient set, the nondominated set, special
points within these sets, and so forth, using formulas that have already been derived by
analytical methods or use analytical methods to derive formulas for quantities for which
formulas do not yet exist. The analytical methods of which we speak mostly involve calculus
and matrix algebra. Formulas that have been derived by analytical methods have been found
to be very insightful and are heavily utilized on the theoretical side of portfolio selection.

The other class of portfolio problems consists of those that are not amenable to analytical
methods. Their efficient sets, nondominated sets, special points within these sets, and so
forth, can only be solved by algorithmic methods. By this we mean mostly techniques from
mathematical programming or evolutionary procedures (Deb 2001). Unfortunately, such
techniques typically require considerable computation that can easily run into the minutes
and longer. Obviously, one would prefer to obtain needed results by formula, but not all
problems qualify.

To be amenable to analytical methods, a problem must meet two requirements. One is
that the problem must possess a positive definite1 covariance matrix. The other is that the
problem’s feasible region S must be defined by equality constraints. In Merton (1972), the
assumed covariancematrix and S in the form of {x ∈ R

n | 1T x = 1}meet these requirements.
While such an S might be overly simplistic in practice, this is not a drawback in theoretical
portfolio selection. Allowing short selling, the simplicity of the feasible region better enables
one to express the mathematical relationships that exist among the various sets, points of
special interest, and properties of a mean-variance model.

As for a review of the literature on the use of analytical methods in portfolio selection,
for problems with more than two assets, there was little other than graphs for the display of

1 A matrix P is (i) positive definite if the scalar xT Px is positive for all nonzero vectors x, and (ii) positive
semidefinite if the scalar xT Px is nonnegative for all nonzero vectors x.
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Fig. 1 For k = 2, with
Variance = xT �x on the
horizontal axis, and Expected
Return = μT x (also the “mean”
in mean-variance) on the vertical
axis, the graph shows feasible
region Z in criterion space. In the
graph we also see the curve of the
minimum-variance boundary, the
minimum-variance point zmv ,
and the nondominated frontier as
the dark line top of the
minimum-variance boundary Variance

Expected
Return

Zmvz

quantitative information prior to 1972, but a complete job on the mathematics of (2) with
k = 2 was not done until Merton (1972). The problem with a complete job is that it leaves
little for others in its wake, and that is true about Merton (1972).

One of the benefits of Merton (1972) is that the material has been especially useful in
instruction. This is reflected in the treatments of the material in Roll (1977), Ingersoll (1987),
Huang and Litzenberger (1988), Campbell et al. (1997) and Luenberger (1997) where each
represents advances in the presentation of the material. Consequently, these references are
popular sources on the theory of portfolio selection in Ph.D. programs in finance. However, it
must be pointed out that the treatments in these references only cover standardmean-variance
portfolio selection. By “standard”, we mean when k = 2. Resulting from the influences these
sources have had over the last twenty years, the k = 2 analytical side of portfolio selection
is often seen in the construction of models in empirical finance.

To illustrate some of the sets, special points, and properties of standard k = 2 portfolio
selection that can be analytically determined by the treatments in the above references,
consider Fig. 1. As noticed from the axes, the figure is in criterion space. The curve in the
figure is a rightward opening parabola. This curve is the boundary of the feasible region Z ,
where Z is the curve and everything to the right of it. The curve is called the minimum-
variance boundary, and the point on it labeled zmv is the minimum-variance point. The
inverse image of this point is the minimum-variance portfolio. The upper portion of the
minimum-variance boundary plus the vertex of the parabola (i.e., the minimum-variance
point) is the nondominated set (frontier). The inverse image set of the nondominated frontier
is the mean-variance efficient set.

Different from the analytical side, problems on the algorithmic side of portfolio selection
are allowed to have covariance matrices that are merely positive semidefinite (not necessarily
positive definite) and feasible regions S that have inequality constraints in their specification.
These problems cannot be solved analytically. By the way, algorithmic methods normally
can not solve problems that analytical methods can solve because all of the algorithmic
methods for solving portfolio problems of which we are aware require S to be bounded. At
this point, we only mention a few k = 2 references on this side of portfolio selection such
as Stein et al. (2008), Niedermayer and Niedermayer (2010), Hirschberger et al. (2010) and
Woodside-Oriakhi et al. (2011), as not k = 2, but k > 3 is the focus in this paper.

For when k = 3, that is, when (2) contains one quadratic and two linear objectives, the
only analytical derivation paper of which we are aware is Qi et al. (2017). In it, among other
things, it is shown how the feasible region Z in criterion space has as its boundary a right-
ward opening paraboloid, how the minimum-variance boundary is now more appropriately
called the minimum-variance surface, and how the nondominated set, being a portion of the
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paraboloid, is called the nondominated surface. Like Fig. 1, all of this can be shown as it is
in Qi et al. (2017), but it requires 3D. For when k > 3, we are confident in saying that there
has been nothing in the literature up until now on the analytical side. This paper contributes
to the literature in this area on the analytical side.

In contrast to the analytical side, there has been research activity, mostly since about
2000, on the algorithmic side when k ≥ 3. Apart from attempting to compute the whole
nondominated surface when k = 3 as in the case of Hirschberger et al. (2013), strategies
when k ≥ 3 have generally been to convert the problem to a single-objective one and
then apply (a) a weighted-sums approach, (b) an epsilon constraint approach, or (c) a goal
programming approach. Notable references in this regard include Ehrgott et al. (2004), Ben
Abdelaziz et al. (2007), Calvo et al. (2011), Ballestero et al. (2012) and Aouni et al. (2014).

With k > 3, covariance matrix � positive definite, and an equality-constraint feasible
region in decision space generalized to S = {x | AT x = b}, we have the rest of the paper. In
Sect. 3 we analytically derive theminimum-variance surface. In Sect. 4 we analytically derive
the efficient and nondominated sets. In Sect. 5, we discuss the dimensionality of the efficient
set. In Sect. 6 we study relationships among efficient sets as additional linear objectives are
added to a model. In Sect. 7 we provide an illustration of the material of the paper, and in
Sect. 8 we discuss future directions.

3 Deriving theminimum-variance surface

To begin the process of providing the analytical derivations of this paper that cover the
four-objective and higher cases of the extended mean-variance formulation of (2) with S
generalized to S = {x | AT x = b}, b ∈ R

m , we first focus on developing a formula for the
minimum-variance boundary, which of course is a surface when k > 2. Highlighting the key
assumptions used in this paper, we have

Assumption 1 Covariance matrix � is positive definite (and thus invertible).

Assumption 2 Vectorsμ2 . . . μk and all rows ofAT (altogether k−1+m vectors) are linearly
independent.

Applying an epsilon-constraint method to (2), we have

min {z1 = xT�x}
s.t.μ2T x = e2

...

μk T x = ek

AT x = b (3)

where the ei , i = 2 . . . k, are parameters. The union of all optimal criterion vectors resulting
from varying the ei , i = 2 . . . k, over all possible real values is called the minimum-variance
surface.

We now employ the following notation

M = [
μ2 . . . μk A

]
n×(k−1+m)

f =

⎡

⎢⎢⎢
⎣

e2
...

ek
b

⎤

⎥⎥⎥
⎦

(k−1+m)×1
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We rewrite the constraints of (3) as MT x = f. The system of linear equations MT x = f is
always solvable by Assumption 2.

Taking the Lagrangian to solve (3), we obtain

L(x, �) = xT�x + �T (MT x − f)

where � is the vector of Lagrange multipliers. Because L(x, �) is convex, x is the optimal
solution of (3) if and only if

∂L

∂x
= 2�x + M� = 0

∂L

∂�
= MT x − f = 0

Pre-multiplying the first equation by �−1 yields x = − 1
2�

−1M�. Substituting x into the
second equation yields (MT�−1M)� = −2f. We now have Lemma 1 to help us with the
invertibility ofMT�−1M. The invertibility is used to compute theminimum-variance surface.

Lemma 1 Let T be an n × h matrix of linearly independent columns. Then TT�−1T is
positive definite (and hence invertible).

Proof Since � is positive definite, �−1 is positive definite (Lax 2007). This means that
there exists a random vector s ∈ R

n such that �−1 is its covariance matrix. Consider TT s.
Then, TT�−1T is the covariance matrix of TT s (Brockwell and Davis 1987, pp. 33-35). Let
y �= 0 ∈ R

h . Of course yT (TT�−1T)y = (Ty)T�−1(Ty). Letting u = Ty, u �= 0 because
T has full column rank by assumption. Then, yT (TT�−1T)y = uT�−1u > 0, because �−1

is positive definite. Therefore TT�−1T is positive definite and thus invertible. 	

Substituting M for T, on the basis of Lemma 1, we pre-multiply (MT�−1M)� = −2f

by (MT�−1M)−1 to obtain � = −2(MT�−1M)−1f. We substitute � into x = − 1
2�

−1M�

to obtain the optimal solution of (3) as

x = �−1M(MT�−1M)−1f (4)

We now state Lemma 2 concerning the rank of �−1M(MT�−1M)−1. The rank is used to
demonstrate the dimensionality of the inverse image set of the minimum-variance surface in
Theorem 1.

Lemma 2 The n × (k − 1 + m) matrix �−1M(MT�−1M)−1 has full column rank.

Proof We know that for matrices B and C such that BC exists, rank (BC) ≤ min {rank (B),

rank (C)}. Pre-multiplying (4) by MT , observe that

MT (�−1M(MT�−1M)−1) = (MT�−1M)(MT�−1M)−1 = Ik−1+m

where Ik−1+m is an identity matrix of order k − 1 + m. Letting B = MT and C =
�−1M(MT�−1M)−1, then rank (C) ≥ k − 1+m. But because of the dimensions of C, we
know that the rank of C is at most k − 1 + m. Thus, the rank of C = �−1M(MT�−1M)−1

is k − 1 + m. 	

To express in the form of columns, let

�−1M(MT�−1M)−1 = [
p2 . . . pk q1 . . . qm

]
n×(k−1+m)

(5)
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From (4), we obtain the inverse image set of the minimum-variance surface as

{x ∈ R
n | x = e2p2 + . . . + ekpk + (b1q1 + . . . + bmqm), for all ei ∈ R} (6)

We now state Theorem 1.

Theorem 1 The inverse image set of the minimum-variance surface is a (k−1)-dimensional
affine subspace in R

n. The subspace is spanned by p2 . . . pk and then translated to b1q1 +
. . . + bmqm. Any portfolio x whose criterion vector is on the minimum-variance surface can
be expressed as a linear combination of any k affinely independent portfolios whose criterion
vectors are also on the minimum-variance surface.

The theorem follows from Lemma 2, (6), and the affine subspace property that a (k − 1)-
dimensional affine subspace is determined by any k affinely independent vectors.

From (6), we see that b1q1 + . . . + bmqm is the optimal solution of (3) when e2 =
0, . . . , ek = 0. We substitute (4) into z1 = xT�x to compute the minimum-variance surface
as

z1 = (�−1M(MT�−1M)−1f)T � (�−1M(MT�−1M)−1f)

= (fT (MT�−1M)−1MT�−1)� (�−1M(MT�−1M)−1f)

= fT (MT�−1M)−1(MT�−1M)(MT�−1M)−1f

= fT (MT�−1M)−1f

for all zi ∈ R, i = 2 . . . k, in f where

f =

⎡

⎢⎢⎢
⎣

z2
...

zk
b

⎤

⎥⎥⎥
⎦

Substituting z2 . . . zk for the e2 . . . ek in f, we have the following as the equation for the
minimum-variance surface in the criterion space

z1 = [
z2 . . . zk bT

]
(MT�−1M)−1

⎡

⎢⎢⎢
⎣

z2
...

zk
b

⎤

⎥⎥⎥
⎦

(7)

Before analyzing the surface’s property, we comment about paraboloids as follows.
A paraboloid in (y, x1, . . . , x j ) space can be written as y = a1x21 + . . . + a j x2j with
a1 ≥ 0, . . . , a j ≥ 0 as coefficients. The xi here have nothing to do with the x ∈ S men-
tioned elsewhere in the paper. If some ai = 0, the paraboloid is degenerate. Otherwise, the
paraboloid is nondegenerate. A paraboloid is degenerate if it has at least one ruling along
which we may slide in either direction without ever leaving the paraboloid. For example, for

y = 0x21 + x22 in (y, x1, x2) space, choose any point (e.g.,

⎡

⎣
0
2
4

⎤

⎦) on the parabola y = x22

in (y, x2) subspace and then slide from that point in either x1 direction. Then the complete

ruling (i.e., {
⎡

⎣
0
2
4

⎤

⎦ + t

⎡

⎣
1
0
0

⎤

⎦ ∈ R
3 | t ∈ R}) still belongs to the paraboloid. A nondegenerate

paraboloid does not have any such rulings.

123



Annals of Operations Research

Theorem 2 The minimum-variance surface (7) is a nondegenerate paraboloid in criterion
space.

Proof SinceMT�−1M is positive definite, so is its inverse. Because (MT�−1M)−1 is sym-
metric, by Lax (2007), there exists a (k − 1 + m) × (k − 1 + m) normal matrix N such
that

(MT�−1M)−1 = NT

⎡

⎢
⎢
⎢
⎣

v1 0 . . . 0
0 v2 . . . 0
...

...

0 0 . . . vk−1+m

⎤

⎥
⎥
⎥
⎦
N

where v1 > 0, . . . , vk−1+m > 0 are the eigenvalues of (MT�−1M)−1. Let

⎡

⎢
⎣

w1
...

wk−1+m

⎤

⎥
⎦ = N

⎡

⎢
⎢⎢
⎣

z2
...

zk
b

⎤

⎥
⎥⎥
⎦

Then the minimum-variance surface is

z1 = [
z2 . . . zk bT

]
(MT�−1M)−1

⎡

⎢⎢⎢
⎣

z2
...

zk
b

⎤

⎥⎥⎥
⎦

= [
z2 . . . zk bT

]
NT

⎡

⎢⎢⎢
⎣

v1 0 . . . 0
0 v2 . . . 0
...

...

0 0 . . . vk−1+m

⎤

⎥⎥⎥
⎦
N

⎡

⎢⎢⎢
⎣

z2
...

zk
b

⎤

⎥⎥⎥
⎦

= [
w1 . . . wk−1+m

]

⎡

⎢⎢⎢
⎣

v1 0 . . . 0
0 v2 . . . 0
...

...

0 0 . . . vk−1+m

⎤

⎥⎥⎥
⎦

⎡

⎢
⎣

w1
...

wk−1+m

⎤

⎥
⎦

= v1w
2
1 + . . . + vk−1+mw2

k−1+m

With the last m wi being constants, note that the first k − 1 wi effect a change of coordinate
system.With v1 > 0, . . . , vk−1+m > 0, this then demonstrates theminimum-variance surface
to be a nondegenerate paraboloid after the change of coordinate system. 	


With it established that the feasible region Z in criterion space is bounded by a nondegen-
erate paraboloid, we now explore the mathematics of the efficient set and how it produces the
portion of the bounding paraboloid (where the bounding paraboloid is the minimum-variance
surface) that is the nondominated set.
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4 Deriving the efficient set and nondominated set

To identify the nondominated portion of theminimum-variance surface (where theminimum-
variance surface is the bounding paraboloid), we form the weighted-sums model

min {α1xT�x − α2μ
2T x − . . . − αkμ

k T x}
s.t. AT x = b (8)

where α ≥ 0. We know from Geoffrion (1968) that the weakly efficient set is the set of all
optimal solutions of (8) as a result of the fact that all objective functions and S are convex.
We now show Theorem 3.

Theorem 3 The efficient set equals the weakly efficient set.

This is shown by demonstrating that all weakly nondominated criterion vectors are non-
dominated criterion vectors. The existence of a weakly nondominated criterion vector which
is not nondominated would imply that the minimum-variance surface has at least one feasible
ruling. However, this is not possible because of the absence of rulings possessed by nonde-
generate paraboloids. Thus, each weakly nondominated criterion vector is nondominated,
and consequently, each weakly efficient point is efficient.

Let

M̃ = [
μ2 . . . μk

]
n×(k−1) α̃ =

⎡

⎢
⎣

α2
...

αk

⎤

⎥
⎦

(k−1)×1

Then, (8) can be rewritten as min {α1xT�x − α̃T M̃
T
x | AT x = b} in which there are two

cases.
Case 1 is when α1 = 0. This causes the quadratic term to drop out. Then (8) reduces to

the following linear program:

max {α̃T M̃
T
x}

s.t. AT x = b (9)

Lemma 3 states the status of (9)’s optimality.

Lemma 3 Linear program (9) does not have an upper bound (and thus has no optimal
solution).

This results from the fact that feasible region S is unbounded and that the objective

function coefficient vector α̃T M̃
T
is linearly independent of the rows of AT . In this way,

(9) has no optimal solution. Thus nothing is lost when attempting to derive the efficient and
nondominated sets by discarding the α1 = 0 case.

Case 2 is when α1 > 0.We divide the α of (8) by α1 to obtain
[
1 α2

α1
. . .

αk
α1

]T
. In this way,

min {α1xT�x− α2μ
2T x− . . . − αkμ

k T x} and min {xT�x− α2
α1

μ2T x− . . . − αk
α1

μk T x} are
equivalent when α1 > 0. Making the substitution α2

α1
�→ λ2, . . . ,

αk
α1

�→ λk , we then form

λ =
⎡

⎢
⎣

λ2
...

λk

⎤

⎥
⎦

(k−1)×1
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A financial interpretation of λ is that of a risk tolerance vector. For instance, the larger λi , the
larger the decision maker’s tolerance of taking on more risk in pursuit of more of objective i .

Taking the Lagrangian, we have

L̃(x, �̃) = xT�x − λT M̃
T
x + �̃

T
(AT x − b)

where �̃ is them-Lagrangian-multiplier vector. By this, x is the optimal solution of (8) if and
only if

∂ L̃

∂x
= 2�x − M̃λ + A�̃ = 0

∂ L̃

∂ �̃
= AT x − b = 0

Pre-multiplying the first equation by �−1 yields x = 1
2�

−1(M̃λ − A�̃). Substituting x into

the second equation yields AT 1
2�

−1(M̃λ − A�̃) − b = 0. Rearranging we have

(AT�−1A)�̃ = AT�−1M̃λ − 2b

Substituting A for T in Lemma 1, AT�−1A is invertible. Premultiplying the equation above
by (AT�−1A)−1, we obtain �̃ = (AT�−1A)−1(AT�−1M̃λ − 2b). Substituting �̃ into x =
1
2�

−1(M̃λ − A�̃) gives us

x = 1

2
�−1(M̃λ − A(AT�−1A)−1(AT�−1M̃λ − 2b))

= 1

2
�−1M̃λ − 1

2
�−1A(AT�−1A)−1(AT�−1M̃λ) + �−1A(AT�−1A)−1b

= 1

2
�−1In(M̃λ) − 1

2
�−1A(AT�−1A)−1AT�−1(M̃λ) + �−1A(AT�−1A)−1b (10)

where In is the identity matrix of order n. Combining the first two terms of (10), we have the
optimal solution of (8) as a function of the risk tolerance vector λ in the form of

x = 1

2
�−1(In − A(AT�−1A)−1AT�−1)M̃λ + �−1A(AT�−1A)−1b (11)

Expressing the first term of the above in columns as

1

2
�−1(In − A(AT�−1A)−1AT�−1)M̃ = [

g2 . . . gk
]
n×(k−1) (12)

allows us to write (11) as

x = λ2g2 + . . . + λkgk + xmv (13)

where

xmv = �−1A(AT�−1A)−1b (14)

is the minimum-variance portfolio. Note that xmv is the optimal solution of (8) when λ2 = 0,
. . ., λk = 0. We now have Theorem 4.

Theorem 4 The efficient set E is a translated polyhedral cone.
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Proof From (13), the efficient set can be written as

E = {x ∈ R
n | x = λ2g2 + . . . + λkgk + xmv, λ2 . . . λk ≥ 0} (15)

This is recognized as a polyhedral cone whose generators are the gi , i = 2 . . . k, translated
to the point xmv . 	


The nondominated set N is obtained by substituting the points in E into the objective
functions of (2).Moreover, the nondominated set is a paraboloidal subset of the (paraboloidal)
minimum-variance surface. Since by Theorem 4 the efficient set is a polyhedral cone, in the
next section we investigate the dimensionality of this cone.

5 Determining an efficient set’s dimensionality

In this section we make use of the result that if we pre- or post-multiply a matrix with an
unknown rank by an invertible matrix, the resultant matrix will have the same unknown rank
(Lax 2007). This is done when it is easier to determine the rank of a resultant matrix.

It is clear from (15) that the dimensionality of the efficient set E is the rank of
[
g2 . . . gk

]
,

but the rank of
[
g2 . . . gk

]
may be less than k−1.With the rank of M̃ being k−1, a sufficient

condition for the rank of
[
g2 . . . gk

]
to be k − 1 is, from the left-hand side of (12), for,

�−1(In − A(AT�−1A)−1AT�−1) (16)

to be an invertible n × n matrix. To compute the rank of this matrix, we pre-multiply it by �

and then post-multiply the product by � to get

� − A(AT�−1A)−1AT (17)

Sometimes, the matrix of (17), and hence of (16), may not be invertible. Consider the

example in which k = 3, n = 4, m = 2, � = I4 and A =

⎡

⎢⎢
⎣

1 1
1 1
1 0
1 0

⎤

⎥⎥
⎦. Here, the matrix of (17)

=

⎡

⎢⎢
⎣

.5 −.5 0 0
−.5 .5 0 0
0 0 .5 −.5
0 0 −.5 .5

⎤

⎥⎥
⎦, is singular, and has a rank of 2. Hence, the dimensionality of E in

this case would be less than or equal to 2.
However, there is the special case of (2) below

min {z1 = xT�x}
max {z2 = μ2T x}

...

max {zk = μk T x}
s.t. 1T x = 1 (18)

which is recognized asMertonwhen k = 2, and as an extension ofMertonwhen k ≥ 3. In this
problem, with just the one constraint of 1T x = 1, the efficient set is always of dimensionality
of k − 1. Establishing this, we have the following.

123



Annals of Operations Research

Result 1 The efficient set of (18) for k ≥ 2 is a (k − 1)-dimensional translated cone.

Proof With A = 1, let a = 1T�−11, which is a scalar. Re-writing (10), we have

x = 1

2
�−1M̃λ − 1

2a
(1T�−1M̃λ)�−11 + 1

a
�−11

= 1

2
�−1 [

μ2 . . . μk
]
⎡

⎢
⎣

λ2
.
.
.

λk

⎤

⎥
⎦ − 1

2a
(1T�−1 [

μ2 . . . μk
]
⎡

⎢
⎣

λ2
.
.
.

λk

⎤

⎥
⎦)�−11 + 1

a
�−11

= 1

2
�−1(λ2μ

2 + . . . + λkμ
k) − 1

2a
(1T�−1(λ2μ

2 + . . . + λkμ
k))�−11 + 1

a
�−11

= 1

2
(λ2�

−1μ2 + . . . + λk�
−1μk) − 1

2a
(λ21T�−1μ2 + . . . + λk1T�−1μk)�−11 + 1

a
�−11

= λ2

2
(�−1μ2 − 1

a
(1T�−1μ2)�−11) + . . . + λk

2
(�−1μk − 1

a
(1T�−1μk)�−11) + 1

a
�−11

Thus,

gi = 1
2 (�

−1μi − 1
a (1T�−1μi )�−11) for i = 2 . . . k

Suppose that there exist γi ∈ R, i = 2 . . . k such that
∑k

i=2 γigi = 0, that is,

k∑

i=2

γi
1
2 (�

−1μi − 1
a (1T�−1μi )�−11) = 0

k∑

i=2

γi
1
2�

−1μi −
k∑

i=2

γi
1
2a (1T�−1μi )�−11 = 0

Upon observing that �−1μ2 . . . �−1μk and �−11 are linearly independent, it follows that
the coefficients of the equation above are all zeros, that is, γi

1
2 = 0, i = 2 . . . k (thus

γi = 0, i = 2 . . . k), and
∑k

i=2 γi
1
2a (1T�−1μi ) = 0. With γi = 0, i = 2 . . . k, g2 . . . gk are

linearly independent by definition. In other words, after making the substitution of A = 1 in
(12), �−1(In − 1

a 11
T�−1)M̃ has full column rank k − 1. 	


After specifying the efficient set and investigating its dimensionality, we turn our intention
to an interesting question in the next section. As additional objectives are added to (2), what
is the relationship between the existing efficient set and the next efficient set?

6 Subsuming relationship

In Steuer (1986), there is a multiple objective programming example in which the efficient
set becomes smaller as an additional linear objective is added to the model. The question is:
Can this happen in (2) when additional linear objectives are added one after the other? In
this section we show that the answer is “no”. That is, after mean and variance, the efficient
set, if anything, only subsumes its former self as additional linear objectives are added. To
demonstrate that efficient portfolios continue to remain efficient as additional linear objectives
are added, we have Theorem 5.

Theorem 5 Starting with the efficient set of the k = 2 mean-variance problem and with
S = {x | AT x = b}, the efficient set becomes a superset of itself whenever an additional
linear objective is added to the formulation.
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Proof To demonstrate the superset relationship, we add an additional linear objective to (2)
to form

min {z1 = xT�x}
max {z2 = μ2T x}

...

max {zk+1 = μk+1T x}
s.t. AT x = b (19)

Substituting for M̃ and λ in (11), the efficient points of (2) are given by

1

2
�−1(In − A(AT�−1A)−1AT�−1)

[
μ2 . . . μk

]
⎡

⎢
⎣

λ2
...

λk

⎤

⎥
⎦ + �−1A(AT�−1A)−1b

whereas efficient points of (19) are given by

1

2
�−1(In − A(AT�−1A)−1AT�−1)

[
μ2 . . . μk+1

]

⎡

⎢
⎣

λ2
...

λk+1

⎤

⎥
⎦ + �−1A(AT�−1A)−1b

Thus, the efficient sets of (2) and (19) are respectively

{x ∈ R
n | x = λ2g2 + . . . + λkgk + xmv, λ2 . . . λk ≥ 0}

and

{x ∈ R
n | x = λ2g2 + . . . + λk+1gk+1 + xmv, λ2 . . . λk+1 ≥ 0}

By comparing the two sets above, the efficient set of (19) is seen to be a superset of the
efficient set of (2). 	


To show how the efficient sets of (2) are translated cones that grow to supersets of them-
selves as additional objectives are added, we have Fig. 2. On the left is a representation of the
efficient set when k = 2. In this case the efficient set is a half-ray translated to the minimum-
variance portfolio xmv . In the middle of the figure is a representation of the efficient set after
a second linear objective is added to make k = 3. Here the efficient set is a 2-dimensional
cone translated to xmv . After a further linear objective is added to the model, we have the
efficient set as on the right in the figure. In this case, with k = 4, the efficient set is, as seen,
a 3-dimensional polyhedral cone translated to xmv . In this way, we see how the efficient sets
subsume their former selves as additional objectives are added.

7 Illustrations

In terms of an instance of the extended mean-variance formulation (2) of this paper with
k = 4 and n = 5, let us numerically illustrate the results of this problem using the results of
this paper as follows. For the five stocks, let us select from the Dow Jones Industrial Average
Index: 1. AXP (American Express), 2. DIS (Walt Disney), 3. JNJ (Johnson & Johnson), 4.
KO (Coca Cola), and 5. (WMT) Wal-Mart Stores. For portfolios constructed out of these
stocks, let the criteria (objectives) to be considered be
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mvx

g2 3

4

g

g

mvx

g2 3g

mvx

g2

Fig. 2 Translated cones of the efficient set of (2) as linear objectives are successively added to the model

1. min { portfolio variance }
2. max { portfolio expected return without dividends }
3. max { portfolio expected dividend yield }
4. max { expected corporate social responsibility }

For the constraints of the problem, let

1. 1T x = 1
2. portfolio expected P/E (price to earnings) ratio = 17.

The data for the problem come from the five stocks’ monthly returns without dividends,
monthly dividend yields, annual CSR (corporate social responsibility), and annual P/E ratios
from January 2010 toDecember 2013.2 We compute the samplemeans and sample covariance
matrix of the stocks’ returns, and the sample means of the dividend yields. We then assume
the sample statistics as population parameters and annualize by the method of Bodie et al.
(2017, Chapter 13) in order to report �, μ2, and μ3. We also compute the sample means of
the stocks’ annual CSRs and report the sample means as population parameters in μ4. After
computing the sample means of the P/E ratios, we are able to report A and b below as well.

� =

⎡

⎢⎢⎢⎢
⎣

0.0413 0.0225 0.0110 0.0094 0.0076
0.0225 0.0440 0.0100 0.0109 0.0121
0.0110 0.0100 0.0198 0.0078 0.0102
0.0094 0.0109 0.0078 0.0162 0.0070
0.0076 0.0121 0.0102 0.0070 0.0217

⎤

⎥⎥⎥⎥
⎦

,

μ2 =

⎡

⎢⎢⎢⎢
⎣

0.2239
0.2395
0.0981
0.1013
0.1078

⎤

⎥⎥⎥⎥
⎦

μ3 =

⎡

⎢⎢⎢⎢
⎣

0.0148
0.0132
0.0342
0.0286
0.0246

⎤

⎥⎥⎥⎥
⎦

,μ4 =

⎡

⎢⎢⎢⎢
⎣

8.0000
6.7500
10.5000
3.7500

−1.7500

⎤

⎥⎥⎥⎥
⎦

,

A =

⎡

⎢⎢⎢⎢
⎣

1 14.3273
1 17.7308
1 17.7038
1 16.9214
1 13.6995

⎤

⎥⎥⎥⎥
⎦

,b =
[
1
17

]

2 Data source of this paper: databases “CRSP” and “MSCI (formerly KLD and GMI)” via Wharton Research
Data Services, https://wrds-web.wharton.upenn.edu/wrds/.
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Using (6), the inverse image set of the minimum-variance surface is

{x ∈ R
5 | x = e2

⎡

⎢
⎢
⎢
⎢
⎣

−45.4372
45.9736
59.0867

−122.1046
62.4815

⎤

⎥
⎥
⎥
⎥
⎦

+ e3

⎡

⎢
⎢
⎢
⎢
⎣

−358.4168
306.4312
482.8894

−913.7268
482.8229

⎤

⎥
⎥
⎥
⎥
⎦

+ e4

⎡

⎢
⎢
⎢
⎢
⎣

0.2928
−0.2482
−0.2104
0.515

−0.3492

⎤

⎥
⎥
⎥
⎥
⎦

+1

⎡

⎢
⎢
⎢
⎢
⎣

16.2347
−14.7916
−16.9579
32.168

−15.6532

⎤

⎥
⎥
⎥
⎥
⎦

+ 17

⎡

⎢
⎢
⎢
⎢
⎣

−0.1465
0.136

−0.1211
0.3193

−0.1877

⎤

⎥
⎥
⎥
⎥
⎦

, for all e2, e3, e4 ∈ R}

Using (7), the equation of the minimum-variance surface (paraboloid) is

z1 = [
z2 z3 z4 1 17

]

⎡

⎢
⎢
⎢
⎢
⎣

339.1450 2568.8379 −1.6541 −95.8324 −0.4015
2568.8379 19547.3448 −12.5322 −726.1840 −3.1784
−1.6541 −12.5322 0.0084 0.4751 0.0014
−95.8324 −726.1840 0.4751 27.4817 0.0877
−0.4015 −3.1784 0.0014 0.0877 0.0025

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

z2
z3
z4
1
17

⎤

⎥
⎥
⎥
⎥
⎦

In this problem, the minimum-variance portfolio (14) is

xmv =

⎡

⎢⎢⎢⎢
⎣

−0.0121
0.0614
0.3698
0.4903
0.0905

⎤

⎥⎥⎥⎥
⎦

With this as background, let us say that the decision maker, in looking over this problem in
the form of (8), is curious about what would be his optimal portfolio if his weighting vector
over the four objectives were α = (.4, .3, .2, .1). Then, converting the weighting vector to a
risk tolerance vector, we have λ = (.75, .50, .25). Then, in terms of the three risk tolerances,
the efficient set, via (15), is given by

{x ∈ R
5 | x = λ2

⎡

⎢⎢⎢⎢
⎣

1.073
1.6373

−0.8019
−1.261
−0.6473

⎤

⎥⎥⎥⎥
⎦

+ λ3

⎡

⎢⎢⎢⎢
⎣

−0.0755
−0.2341
0.201
0.0577
0.0508

⎤

⎥⎥⎥⎥
⎦

+ λ4

⎡

⎢⎢⎢⎢
⎣

116.4001
−41.7032
129.9236

−131.9752
−72.6453

⎤

⎥⎥⎥⎥
⎦

+ xmv, λ2, λ3, λ4≥0}

and the decision maker’s optimal portfolio is

x∗ = .75

⎡

⎢⎢⎢⎢
⎣

1.073
1.6373

−0.8019
−1.261
−0.6473

⎤

⎥⎥⎥⎥
⎦

+ .50

⎡

⎢⎢⎢⎢
⎣

−0.0755
−0.2341
0.201
0.0577
0.0508

⎤

⎥⎥⎥⎥
⎦

+ .25

⎡

⎢⎢⎢⎢
⎣

116.4001
−41.7032
129.9236

−131.9752
−72.6453

⎤

⎥⎥⎥⎥
⎦

+ xmv

As a second illustration of the material of this paper, we demonstrate how the formula of
(14) for the minimum-variance portfolio of this paper

xmv = �−1A(AT�−1A)−1b
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collapses to Merton’s formula for the minimum-variance portfolio given on page 1854 of his
paper. This happens because in Merton, A = 1 ∈ R

n and b = 1. Substituting into the above,
we have

= �−11(1T�−11)−11

= 1

1T�−11
�−11

which is precisely Merton’s result but in matrix notation.

8 Future directions

With the analytical derivation literature at the k = 2 level remaining relatively stable over
about the last 20 years until recently, things have now begun to change. Principally among
these things is the idea that criteria beyond mean and variance may well be present in a
portfolio problem which, as documented by Zopounidis et al. (2015) and Aouni et al. (2018),
is a prospect that only appears to be gaining momentum. This has led to the k = 3 mean-
variance analytical derivation paper by Qi et al. (2017) for when the number of objectives in
portfolio selection is three.

With that paper, to our knowledge, being the only analytical derivation paper at the k = 3
level, and with no analytical derivation papers known to exist at higher levels of k, in this
paper we have taken it upon ourselves to target the k ≥ 4 case. Moreover, in our treatment of
the k ≥ 4 case, S is allowed to be defined bymore than just one linear equality constraint. The
only restriction is that the coefficient vectors of the linear objectives and of the constraints,
when taken as a group, constitute a linearly independent set of vectors. Note that in this paper,
nothing in the k ≥ 4 case destroys anything in the k = 3 case of Qi et al.or in the k = 2 case
of Merton.

As for future directions, one idea, suggested by a referee, is to use analytical methods to
develop closed-form formulas for sensitive analysis. This could include formulas for changes
in a decision maker’s weighting vector and changes in the inputs to a problem. Something
else that is a thought for the future is the task of working on getting the possibility of multiple
criteria approaches in portfolio analysis better accepted in mainstream finance. There are
several obstacles. One is that many people are of the position that additional criteria are
“priced”, that is, they are built into the price so there is no need to treat them explicitly.
Another is that even if a criterion is not priced, a question is: Why can’t the criterion be
modeled as a constraint? Admittedly, overcoming obstacles is hard to do when theory is in
short supply, as when k > 3, but it is hoped that this paper will change some of that.

In applying the research of this paper, one must be aware of the limitation that all objective
functions are assumed to be monotonic. In this regard, it is to be noted that there is a growing
literature on non-monotonic objective functions as described in Ghaderi et al. (2017), and as
pointed out in Greco et al. (2014), as a result of inteactions among the criteria, non-monotonic
objective functions can find their way into advanced applications in finance. We need to be
aware of this.

Our hope in this paper is to show how there can be substantial theoretical support for
idea of criteria beyond risk and return in finance. Certainly, one area in which research
is welcome would be on how to incorporate multiple risk tolerance factors into portfolio
analysis. Ultimately, some kind of multiple criteria CAPM (capital asset pricing model)
formula would be highly desirable. However, in contrast to today’s CAPM (see Bodie et al.
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2017, Chapter 13), it would probably have to be made to some degree customizable by the
decision maker because of the many different ways in which investors would likely wish to
treat their additional criteria. In any event, any changes would probably have to get into the
educational process first. One way to help in this regard would be to show students how the
analytical treatments of conventional k = 2 mean-variance portfolio selection can be, as in
the paper, extended to include additional criteria as in this paper.
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