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a b s t r a c t

In this paper, we describe an interactive procedural algorithm for convex multiobjective programming
based upon the Tchebycheff method, Wierzbicki’s reference point approach, and the procedure of Micha-
lowski and Szapiro. At each iteration, the decision maker (DM) has the option of expressing his or her
objective-function aspirations in the form of a reference criterion vector. Also, the DM has the option
of expressing minimally acceptable values for each of the objectives in the form of a reservation vector.
Based upon this information, a certain region is defined for examination. In addition, a special set of
weights is constructed. Then with the weights, the algorithm of this paper is able to generate a group
of efficient solutions that provides for an overall view of the current iteration’s certain region. By modi-
fication of the reference and reservation vectors, one can ‘‘steer” the algorithm at each iteration. From a
theoretical point of view, we prove that none of the efficient solutions obtained using this scheme impair
any reservation value for convex problems. The behavior of the algorithm is illustrated by means of
graphical representations and an illustrative numerical example.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

When facing a real decision problem, a decision maker (DM)
must often deal with several conflicting objectives. In such cases,
the traditional optimization approach, in which a single objective
is optimized subject to a given set of constraints, is no longer appli-
cable. Instead, a multiobjective model is to be formulated and
solved. Because of the rarity of solutions that optimize all objec-
tives simultaneously, multiobjective programming utilizes effi-
cient solutions. These are solutions from which no objective can
be improved without deteriorating at least one of the others. Being
‘‘trade-off efficient” in this way, the set of all efficient solutions is
precisely the set of all candidates for optimality. But as for which
is to be optimal, this is for the DM to decide, and this often involves
a contemplative process.

As outlined in Hwang and Masud (1979), procedures for solving
multiobjective decision problems can be grouped into three cate-
gories depending upon whether preference information is elicited
from the DM before, after, or during the solution process. In the
‘‘before” category are a priori methods. In these methods, after elic-
iting information from the DM, an optimization problem is solved
to compute a solution. A difficulty of a priori methods is that it is
ll rights reserved.

a@uma.es (F. Ruiz), rsteuer@
hard to know in advance with sufficient accuracy the information
required by the optimization problem for it to produce a final solu-
tion (an optimal solution or a solution close enough to one to qual-
ify in its stead). Also, with these methods, there is the question
about being able to recognize a final solution even when con-
fronted with one without knowing more about the efficient set.
In the ‘‘after” category are a posteriori or, as called by Cohon
(1985), generating methods. In these methods, a comprehensive
set of efficient solutions (or in the best case the whole efficient
set) is generated and shown to the DM. Then, the DM is to choose
his or her most preferred solution from the set. The drawback of
these methods is that usually a great number of efficient solutions
has to be generated, and it can be extremely hard for the DM to
manage all of the information.

In the ‘‘during” category are interactive procedures. Interactive
procedures are designed to overcome the difficulties encountered
in a priori and a posteriori methods. In interactive procedures,
phases of information elicitation are interleaved with phases of
computation. In the beginning, the information exchanged be-
tween the DM and procedure is general, but then becomes more lo-
cal in character as the procedure continues. In this way, interactive
procedures have two main features: (a) they help a DM learn about
a problem while solving it, and (b) they put to work iteratively any
new insights gained during the solution process to help the DM
navigate to a final solution. Prominent interactive procedures
include STEM by Benayoun et al. (1971), the Zionts–Wallenius
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procedure (1976), Wierzbicki’s reference point method (1980),
interactive goal programming (Spronk (1981) for instance), the
Tchebycheff method of Steuer and Choo (1983), Pareto Race by
Korhonen and Wallenius (1988), and the bi-reference procedure
of Michalowski and Szapiro (1992). Others that can be mentioned
are the light beam search method of Jaszkiewicz and Słowinski
(1999), Miettinen’s NIMBUS (1999), and the normal vector identi-
fication approach of Yang and Li (2002).

The real forces behind so many interactive procedures have
been the many different types of problems that lend themselves
to multiple criteria analysis and the fact, due to the differences in
the procedures, that the procedure to use in a given instance is typ-
ically application and decision-making style of the user dependent.
Consequently, there has been a need for today’s many interactive
procedures. From the cognitive point of view, interactive proce-
dures basically differ from one another in the way information is
asked of the DM at each iteration. Four styles can be differentiated.
One asks the DM to specify local tradeoffs or marginal rates of sub-
stitution between the objectives. Another asks the DM to select
from several solution candidates at each iteration. A third asks
the DM to specify target or aspiration levels for the different objec-
tives, and a fourth asks the DM to classify the objectives, for in-
stance, as to which are to be improved, which are permitted to
become relaxed, and which are to be held at their current levels
on the next iteration. Naturally, researchers have thought of con-
solidating procedures. There have been attempts to create global
formulations such as by Gardiner and Steuer (1994) and Luque
et al. (in press), and also to design combined implementations such
as by Antunes et al. (1992) and Caballero et al. (2002b). But mostly
these have involved procedure-switching. By procedure-switching,
we mean giving to the user the option to switch to any procedure
on any iteration. For example, a user may choose to start with one
procedure on the first iteration, switch to another for the second
iteration, switch to a third for the third iteration, and so forth.
But this significantly increases the cognitive burden when, if any-
thing, we should be going in the opposite direction.

Primarily motivated by the Tchebycheff method of Steuer and
Choo (1983), the reference point method of Wierzbicki (1980),
and the bi-reference point procedure of Michalowski and Szapiro
(1992), we present the modified interactive Chebyshev algorithm
(MICA) of this paper.1 In one sense, MICA is similar to the Tcheby-
cheff method in that it conducts multiple probing and uses ‘‘over-
sampling/filtering” techniques when developing each iteration’s
group of solutions to be presented to the DM. But MICA departs from
the Tchebycheff procedure in the way the neighborhoods of the effi-
cient set that are to be examined at each iteration are defined,
shifted, contracted, and sampled. In the Tchebycheff method, the
neighborhoods are defined, shifted, and contracted by manipulating
subsets in weight space. Unfortunately, being in weight space, these
manipulations are not very intuitive, and there is no intention of
pursuing them further here. Rather, the neighborhoods to be ex-
plored in MICA are designed to be controlled by an iteratively adjust-
able aspiration criterion vector and an iteratively adjustable
reservation vector. In this way, the aspiration and reservation vec-
tors of a given iteration define the ‘‘frame” that contains the neigh-
borhood of the efficient set to be explored on that iteration. And by
adjusting the vectors, the neighborhoods can be shifted and con-
tracted one iteration to the next in search of a final solution.

With regard to the sampling of the neighborhoods, it is to be
pointed out that MICA possesses a special technical feature. The
technical feature involves the way in which the weight vectors
used to sample the neighborhoods are generated. As shown, they
1 We use the term Chebyshev to stress MICA’s relationship to, yet differences from,
the Tchebycheff method of 1983.
are specially generated to ensure that no reservation level of any
objective is ever violated during the sampling process without ever
having to include any reservation level in the constraint set of the
program used to carry out the sampling operations.

There is also another item that arises in the paper. It stems from
the number of procedures that currently comprise the field of
interactive multiobjective programming. Even though the posses-
sion of many procedures is generally considered a strength of
interactive multiobjective programming, things could well be dif-
ferent in the future with the field ultimately becoming dominated
by a much smaller number of procedures, each capturing the
power of several of today’s procedures without incurring a cogni-
tive burden greater than any of the procedures singly. As we will
see, in taking a step in this direction, MICA shows that at least
some of this is possible.

The paper is organized as follows. Section 2 sets forth the prob-
lem to be addressed and reviews some background concepts. Be-
cause MICA draws upon features from the Tchebycheff method,
Wierzbicki’s aspiration criterion vector method, and the bi-refer-
ence procedure of Michalowski and Szapiro, these procedures are
overviewed in Section 3. The basic philosophy of MICA is outlined
in Section 4 along with details about how weight vectors can be
generated so not to impair any reservation levels in the sampling
process. A step-by-step description of MICA is given in Section 5.
An example illustrating the operation of MICA comprises Section 6,
and Section 7 brings the paper to a close with concluding remarks.
A proof of the main theorem of the paper is given in Appendix A.

2. Formulation and background concepts

MICA is designed for the solution of the (convex) multiobjective
problem

max fðxÞ ¼ ðf1ðxÞ; . . . ; fkðxÞÞ
subject to x 2 X

ð1Þ

in which all fi are continuous and (of course) concave, and X � Rn,
the feasible region in decision space, is closed, bounded and (of
course) convex. Being a multiobjective problem, there is also
Z � Rk, the feasible region in criterion space, where Z ¼ fz ¼
fðxÞjx 2 Xg. In decision space, �x 2 X is efficient if and only if there
does not exist another x 2 X such that fðxÞ P fð�xÞ and
fðxÞ – fð�xÞ. Then, in criterion space, criterion vector ~z 2 Z is non-
dominated if and only if there exists an ~x 2 X such that ~z ¼ fð~xÞ
and ~x is efficient. The set of all efficient points is called the efficient
set and is designated E. The set of all nondominated criterion vec-
tors is called the nondominated set. Also, in decision space, �x 2 X is
weakly efficient if and only if there does not exist another x 2 X such
that fðxÞ > fð�xÞ. Then, in criterion space, criterion vector ~z 2 Z is
weakly nondominated if and only if there exists an ~x 2 X such that
~z ¼ fð~xÞ and ~x is weakly efficient. Note that the set of all weakly effi-
cient points subsumes all efficient points.

Ideal and nadir criterion vectors, z� and znad, whose components
are given by

z�i ¼max
x2E

fiðxÞ ði ¼ 1; . . . ; kÞ ð2Þ

znad
i ¼ min

x2E
fiðxÞ ði ¼ 1; . . . ; kÞ ð3Þ

are often of interest in multiobjective programming. One use of
them, should znad be available, would be to form the intervals
½znad

i ; z�i �; 1 6 i 6 k, so as to frame a problem in the sense that no
optimal solution will have any component outside its specified
interval. Unfortunately, in many problems, nadir criterion vectors
with all components known to be correct are difficult to obtain.
While there is now the special algorithm by Alves and Costa
(2009) for exactly computing nadir criterion values in multiobjec-
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tive linear programming, in other cases, heuristics are often the rule
as discussed, for instance, in Ehrgott and Tenfelde-Podehl (2003)
and Deb et al. (2006). Thus, often, a user will have no other choice
but to use tentative values or approximations instead.

A further use, but of just z�, is to slightly adjust z� to form a z��

ideal criterion vector that strictly dominates it. Most of the time
this is overkill but is done to ensure that each nondominated crite-
rion vector always has associated with it a k-vector

k 2 K ¼ k 2 Rkjki 2 ð0;1Þ;
Xk

i¼1

ki ¼ 1

( )

that makes the nondominated criterion vector uniquely computable.
By this we mean that when the k-vector is used in the Tchebycheff
scalarizing program.2

min a ð4Þ
subject to kiðz��i � fiðxÞÞ 6 a ði ¼ 1; . . . ; kÞ

zi ¼ fiðxÞ ði ¼ 1; . . . ; kÞ
x 2 X

where a 2 R, or in its lexicographic variant, the lexicographic Tche-
bycheff sampling program

lex min a;�
Xk

i¼1

fiðxÞ ð5Þ

subject to kiðz��i � fiðxÞÞ 6 a ði ¼ 1; . . . ; kÞ
zi ¼ fiðxÞ ði ¼ 1; . . . ; kÞ
x 2 X

the nondominated criterion vector in question alone results.
Note that (4) is the first optimization stage of (5). As for the solu-

tions returned by (4) or, identically, the first optimization stage of
(5), all are weakly efficient. But at least one among them is efficient.
Thus, when the solution to (4) or the first optimization stage of (5) is
unique, it is efficient (i.e., has a nondominated criterion vector). But
when there are multiple solutions to (4) or the first optimization
stage of (5), the second optimization stage of (5) finds from among
them an efficient point (i.e., one that is a member of E).

Formulations (4) and (5) work is as follows. Consider a k 2 K
and the line going through z�� that is unbounded in both directions

� 1
k1
; . . . ;

1
kk

� �
and þ 1

k1
; . . . ;

1
kk

� �
ð6Þ

Now imagine a translated non-negative orthant in Rk with its
vertex (origin) attached to the line so that the non-negative orth-
ant can slide up and down the line. Then the minimization of a
in (4) or the first optimization stage of (5) moves the non-negative
orthant as far as it can up the line (i.e., in the + direction) to its po-
sition of last intersection with Z. If there is only one point of last
intersection between Z and the translated non-negative orthant,
the point is a member of E and we are done. But suppose there
are more than one. Then, invoking the second optimization stage
of (5) discards all points of last intersection whose criterion vector
components do not sum to the greatest value, thus leaving behind
only efficient points. In this way, the lexicographic Tchebycheff
sampling program (5) always returns an efficient point whereas
the Tchebycheff scalarizing program (4), because of alternative op-
tima, may sometimes return just a weakly efficient point.

As for one more item, there is no guarantee that the criterion
vector ~z returned by (4) or (5) is at the vertex of the last intersect-
ing non-negative orthant. But if the components of the k used in (4)
or (5) were to satisfy
2 A variant of the scalarizing functional sðq; fðxÞ; kÞ ¼ maxi¼1;...;kfkiðqi � fiðxÞÞg
originally presented in Wierzbicki (1977) where q < z�� .
ki ¼
1

ðz��i � ~ziÞ
Xk

j¼1

1
ðz��i � ~zjÞ

" #�1

ði ¼ 1; . . . ; kÞ ð7Þ

the ~z in question would occur at the vertex of the last intersecting
orthant. Because of this, the k-vector formed by (7) is called the
T-vertex k-vector defined by ~z and z��.

3. Overview of influencing procedures

To make the paper as self-contained as possible and better see
the influences of Wierzbicki’s reference point method, the Tcheby-
cheff method, and the procedure of Michalowski and Szapiro on
MICA, these three procedures are outlined.

Using a z��, the basic reference point method of Wierzbicki be-
gins by asking the DM to specify an initial aspiration criterion vec-
tor q1 < z��. Using the T-vertex k-vector defined by q1 and z��, the
Tchebycheff scalarizing program (4) is solved for criterion vector
solution z1. Commencing the second iteration, in the light of z1,
the DM is asked to specify a second aspiration criterion vector
q2 < z��. Using the T-vertex k-vector defined by q2 and z��, the
Tchebycheff scalarizing program is solved for criterion vector solu-
tion z2. On the third iteration, in the light of z2, the DM is asked to
specify a third aspiration criterion vector q3 < z��, and so forth. The
method ends when the DM stops specifying new q-vectors.

The Tchebycheff method begins by settling on the number of
solutions P to be presented to the DM at each iteration. Commenc-
ing the first iteration, qP dispersed k-vectors, where q is an over-
sampling factor like 2 or 3, are obtained from K1 ¼ fk 2 Kjki 2
½‘1

i ;l1
i �g. Being that this is the first iteration, in the specification

of K1, all intervals ½‘1
i ;l1

i � ¼ ½0;1�. Then the lexicographic Tcheby-
cheff sampling program (5) is solved for each k with the P most dif-
ferent of the resulting (nondominated) criterion vectors being
presented to the DM for the selection of the solution of the first
iteration z1. After tightening the intervals about the T-vertex k-vec-
tor defined by z1 and z�� to form the ½‘2

i ;l2
i � of the second iteration,

qP dispersed k-vectors are obtained from K2 ¼ fk 2 Kjki 2 ½‘2
i ;l2

i �g.
Then the lexicographic Tchebycheff sampling program is solved for
each k with the P most different of the resulting criterion vectors
being presented to the DM for the selection of the solution of the
second iteration z2. After tightening the intervals about the T-ver-
tex k-vector defined by z2 and z�� to form the ½‘3

i ;l3
i � of the third

iteration, the procedure keeps repeating until the ½‘i;li� interval
widths are reduced to some pre-determined value.

After creating a z�� ideal criterion vector and ascertaining znad

(or a substitute), the bi-reference procedure begins by asking the
DM for an initial ‘‘worst” outcome vector e1; znad

6 e1 < z��. Using
the T-vertex k-vector defined by e1 and z��, the lexicographic Tche-
bycheff sampling program with z P e1 augmenting the constraint
set is solved for the criterion vector solution of the first iteration
z1. After examining z1 and following some rules, the DM is asked
to specify a ‘‘worst” outcome vector e2 for the second iteration.
Using the T-vertex k-vector defined by e2 and z��, the lexicographic
Tchebycheff sampling program with z P e2 augmenting the con-
straint set is solved for the criterion vector solution of the second
iteration z2. After examining z2 and following the rules, the DM
is asked to specify a ‘‘worst” outcome vector e3 for the third itera-
tion, and so forth. The procedure ends when the differences be-
tween the components of two successive resulting criterion
vectors fall below some pre-set tolerance.

4. Theoretical foundations of the algorithm

This section overviews the operation of MICA. Basically, on each
iteration, MICA uses an aspiration criterion vector and a reserva-
tion vector (MICA’s counterpart of the bi-reference procedure’s



Fig. 1. Case one, when qh strictly dominates all zhr . The portion of the efficient set
operating within the intervals defined by eh and qh is indicated by the thick line.
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worst outcome vector) to define the portion of the nondominated
set to be examined. Then it conducts multiple probes of the desig-
nated region to develop P representatives of it for presentation to
the DM for the selection of the most preferred of the group.

More specifically, after creating a z�� ideal criterion vector,
ascertaining znad (or a substitute such as from a payoff table if a
better method is not available), and deciding on the number of cri-
terion vectors P to be presented to the DM at each iteration, MICA
begins by setting aspiration vector q1 to z�� and reservation vector
e1 to znad. With this intending to place the whole nondominated set
within the frame, MICA then multi-probes, in its first iteration, the
(whole) nondominated set in exactly the same fashion as done in
the first iteration of the Tchebycheff method. That is, qP dispersed
k-vectors are obtained from K and the lexicographic Tchebycheff
sampling program (5) is solved for each of them. Then from the P
most different of the resulting (nondominated) criterion vectors,
the DM selects his or her most preferred for the solution of the first
iteration z1.

On the second iteration, in the light of z1, the DM specifies aspi-
ration vector q2

6 z�� and reservation vector e2 P znad. At this
point, qP new k-vectors are computed. Exactly how the ‘‘new” k-
vectors are computed, which is key to MICA, is discussed after
the next few paragraphs. Then, to multi-probe the portion of the
nondominated set falling within the frame defined by e2 and q2,
the lexicographic Tchebycheff sampling program is solved for each
of them with the DM selecting from the P most different of the
resulting criterion vectors the solution of the second iteration z2.
All subsequent iterations follow the pattern of this (the second)
iteration until the DM wishes to conclude.

Notice that in MICA the focus at each iteration h is on the por-
tion of the efficient set whose criterion vectors are in the intervals
½eh

i ; qh
i �. These ranges can be specified in at least two ways. One is

to specify the ranges directly and then induce from them qh and eh.
The other is to specify qh and eh first and then deduce from them
the ranges.

At the beginning of each iteration h P 2, after the reservation
vector of the iteration has been specified, MICA solves the follow-
ing series of auxiliary programs

lex max f rðxÞ;
Xk

i¼1

fiðxÞ PrðehÞ

subject to f iðxÞP eh
i ði ¼ 1; . . . ; k; i – rÞ

x 2 X

ðr ¼ 1; . . . ; kÞ. The auxiliary problems have several uses. One is to as-
sure that the reservation vector specified for the iteration is indeed
feasible according to the following definition.

Definition 1. Given (1), reservation vector eh is feasible if and only
if there exists an x 2 X such that fðxÞP eh.

The feasibility of any candidate reservation vector eh is deter-
mined by solving any auxiliary program, such as P1ðehÞ. Should
the auxiliary program be infeasible or have an optimal first-stage
objective function value less that eh

1, then another reservation vec-
tor must be sought.

As for notation in the auxiliary programs, let ðxhr ; zhrÞ denote the
solution of PrðehÞ with zhr ¼ fðxhrÞ. Should a DM not wish to specify
a reservation value for an objective on a given iteration, the nadir
value for the objective (or the best estimate that we have for it)
is to be used instead.

We now look at two cases. In the first, as in Fig. 1, qh strictly
dominates all zhr . Then the T-vertex k-vectors defined by qh and
the zhr , denoted khr , are each strictly positive. Note that if we let
the uhr denote the vectors that connect the zhr to qh, then their
directions
1
khr

1

; . . . ;
1
khr

k

 !
ðr ¼ 1; . . . ; kÞ ð8Þ

are strictly positive, too.
In the second case, as in Fig. 2, there is an r for which qh � zhr .

Then the khr defined by qh and zhr for this r would not be strictly
positive. Thus, for such an r, we construct a ‘‘modified” khr . Toward
this end, we form index sets

Ihr ¼ ijzhr
i P qh

i

� �
Jhr ¼ ijzhr

i < qh
i

� � ð9Þ

and then reset the components of khr to

khr
i ¼

1
d Chr if i 2 Ihr

1
ðqh

i
�zhr

i
ÞC

hr if i 2 Jhr

8<
: ð10Þ

where d is a small, but numerically significant, positive number,
that satisfies the following relation:

d 6 min
i¼1;...;k

fqh
i � eh

i g ð11Þ

and

Chr ¼
X
j2Jhr

1
ðqh

j � zhr
j Þ
þ cardðIhrÞ1

d

2
4

3
5
�1

Reforming

1
khr

1

; . . . ;
1
khr

k

 !
ð12Þ

with the modified k-vector for each r such that qh � zhr , all result-
ing modified uhr are strictly positive as their components (see Fig. 2)
are given by

uhr
i ¼

d if i 2 Ihr

ðqh
i � zhr

i Þ if i 2 Jhr

(

Thus, we have the following general rule. For each r such that
qh > zhr , we construct khr is the usual way, and for each r such that
qh � zhr , we construct khr in modified fashion. As a result, in the
case when qh � zhr;uhr does not any longer connect the zhr to qh.



Fig. 2. Case two, when there exists an r for which qh � zhr . The (small) slope of uh2

is given by d.
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Once all khr have been constructed, the next step, motivated by
the Tchebycheff method, is to generate a collection of weight vec-
tors that are convex combinations of the khr . For showing P solu-
tions to the DM at each iteration, this is done as follows. qP
dispersed weight vectors, designated fx1; . . . ;xqPg, each with all
non-negative components that sum to one, are generated using,
for instance, the LAMBDA/FILTER strategy described in Steuer and
Choo (1983).

Then, for each xj, we build �kj ¼ ð�kj
1; . . . ; �kj

kÞ as follows:

�kj
i ¼

Xk

r¼1

xj
r

1
khr

i

 !�1

ði ¼ 1; . . . ; kÞ ð13Þ

That is,

1
�kj

i

¼
Xk

r¼1

xj
r

1
khr

i

ði ¼ 1; . . . ; kÞ

After employing each �kj in the lexicographic Tchebycheff sampling
program, qP solutions are obtained. Filtering to obtain the P most
different, we have the solutions to be shown to the DM.

The question now is this: Might any of these solutions be in vio-
lation of the reservation values? Theorem 1 proves that none of the
solutions obtained using the described scheme impairs the reser-
vation levels. In Theorem 1, all of the following conditions are
assumed:

1. X is a convex set, and all the objective functions fi are concave.
2. eh is a feasible reservation vector, and qh is such that qh > eh.
3. Vectors zhr ðr ¼ 1; . . . ; kÞ are obtained by solving the auxiliary

problems and all corresponding khr are computed via (10).
4. Each xj vector is such that xj

r P 0; ðr ¼ 1; . . . ; kÞ and
Pk

r¼1x
j
r ¼ 1.

5. Each �kj is computed as per (13).
Theorem 1. Consider problem (1) or which condition 1 holds. Let
eh;qh and �kj satisfy conditions 2–5. For any �kj , let ð�x; �zÞ be the solution
returned by the lexicographic Tchebycheff sampling program. Then
�z P eh.
Proof. See Appendix A. h
This result shows that all solutions obtained using the proposed
scheme satisfy the reservation values in the convex case.

While MICA is described with all objectives in maximization
form, without loss of generality, any mix of maximization and min-
imization objectives can be handled. In the event of minimization
objectives, one needs to note the following:

(a) For each minimization objective, the optimizations of (2)
and (3) are to be reversed.

(b) For each minimization objective i, recognize that znad
i is to be

its maximum value over the efficient set and that ½z�i ; znad
i � is

to be its interval for framing a problem.
(c) Whereas each maximization objective has its z�i augmented

by a small positive value to form z��i , each minimization
objective has its z�i augmented by a small negative value to
form its z��i .

(d) For each minimization objective i, constraint kiðz��i � fiðxÞÞ 6
a in (4) and (5) is converted to kiðfiðxÞ � z��i Þ 6 a.
5. MICA algorithm

The modified interactive Chebyshev algorithm is now described
in step-by-step fashion.

Step 1. Initialization. Given problem (1), specify a z�� ideal vector,
what is to be used for znad (either its exact specification
or a good substitute), and the number of solutions P to
be shown to the DM at each iteration. Let q1 ¼ z�� and
e1 ¼ znad. Also, from K, obtain qP dispersed weight vectors
�k1; �k2; . . . ; �kqP
Let h ¼ 1.

Step 2. Sampling the efficient set. For each �kj;1 6 j 6 qP, solve the

lexicographic Tchebycheff sampling problem (5). Filter
the resulting qP criterion vectors to obtain the P most dif-
ferent for presentation to the DM.

Step 3. Termination rule. If after selecting the most preferred of the
P criterion vectors the DM wishes to cease iterating, go to
Step 8.

Step 4. Adjusting reservation vector. Let h ¼ hþ 1. The DM is asked
if the current reservation vector is to be updated. If so, the
DM specifies adjusted reservation vector eh. If not, let
eh ¼ eh�1 and go to Step 6.

Step 5. Solve auxiliary problems. Solve problems PrðehÞ;1 6 r 6 k,
to check the feasibility of eh and obtain criterion vectors
zh1; . . . ; zhk as described in Section 4.

Step 6. Adjusting aspiration criterion vector. The DM is asked if the
current aspiration vector is to be updated. If so, the DM
specifies adjusted aspiration vector qh. If not, let
qh ¼ qh�1.

Step 7. Generate weight vectors. Form the vectors khr , 1 6 r 6 k, as
in (10). Randomly select qP weight vectors xj such that
xj

r P 0; ðr ¼ 1; . . . ; kÞ and
Pk

r¼1x
j
r ¼ 1. For each xj, con-

struct its �kj as in (13). Go to Step 2.
Step 8. Stop with ðxh; zhÞ as the final solution.

Notice in Step 3 that termination is under the control of the DM.
The procedure concludes when the DM decides, not when forced to
by some mechanical condition. In Steps 4 and 6, the portion of the
efficient set contained in any frame can be targeted by the appro-
priate specification of reservation and aspiration criterion vectors.
Also, in Steps 4 and 6, it is possible to conduct more than one iter-
ation with the same reservation and aspiration vectors. Because of
the randomness embedded in Step 7, one might want to do some-
thing like this, for instance, at the end just to confirm that a better



Table 1
Payoff-table obtained minimum and maximum criterion values over the efficient set.

Objective z� znad

1 min 3.00 14.73
2 min 1.50 21.47
3 min 0.00 50.00
4 min 0.25 8.31
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solution cannot be found. Also, there is no reason why the q’s in
Steps 2 and 7 cannot be different. It just depends upon the degree
of resolution desired in carrying out each step.

6. Illustrative example

In this section, we employ a numerical example to illustrate
MICA. The example has been adapted from a problem in Caballero
et al. (2002a) which deals with a hierarchical multiobjective mod-
el. The problem, which is convex, is as follows

minimize f 1ðxÞ ¼ ðx1 � 2Þ2 þ 2ðx2 � 3Þ2

minimize f 2ðxÞ ¼ x2
3 þ 2x2

4

minimize f 3ðxÞ ¼ 2ðx5 � 5Þ2 þ ðx6 � 1Þ2

minimize f 4ðxÞ ¼ 3x2
7 þ x2

8

subject to x3 þ x4 þ x2 � x5 ¼ 2

x2
1 þ x2

2 6 5

x1 � x3 6 0

x2 � x4 6 0

x1 þ x2 þ x5 þ x7 � 2x8 ¼ 0

x2
7 þ x2

8 6 8

x1; x2; x5; x6 P 0

x3 P 1; x8 P 0:5

Given the minimization objectives, in this problem the z�i and
znad

i reflect the minimum and maximum criterion values over the
efficient set. In the case of this problem, they have been extracted
from the payoff table and are shown in Table 1 although in practice
additional work might be conducted to see if better nadir values
cannot be obtained. We now simulate MICA with q ¼ 2, and
d ¼ 10�1.

Iteration 1
Step 1. Let P ¼ 4;q1 ¼ z�� ¼ ð2:99;1:49;�0:01;0:24Þ and

e1 ¼ znad ¼ ð14:73;21:47;50:00;8:31Þ. Then obtain qP ¼ 8
dispersed weight vectors from K, denoted �kj;1 6 j 6 8,
and let h ¼ 1.

Step 2. Solving the lexicographic Tchebycheff sampling problem
for each �kj and filtering the 8 resulting criterion vectors
to obtain the P ¼ 4 most different, the DM is shown:
ð6:30;11:03;3:11;8:24Þ ð7:35;6:07;15:86;3:58Þ
ð4:21;7:61;9:86;8:05Þ ð12:78;14:22;4:36;4:52Þ
Step 3. Assuming the DM chooses the second from the group,
z1 ¼ ð7:35;6:07;15:86;3:58Þ. The DM does not wish to
stop.

Iteration 2
Steps 4 and 5. h ¼ 2. Assume that the DM decides to change the

reservation vector and proposes ð7;8;13;4Þ. Solving
the first auxiliary problem, this reservation vector is
found not to be feasible. Attempting another in the
form of ð7:5;8:5;14;5Þ to make sure objective 3 still
improves, this reservation vector is found to be fea-
sible. Running the auxiliary problems with
e2 ¼ ð7:5;8:5;14;5Þ to calculate the z2r , we have
z21 ¼ ð5:4;6:63;14;5Þ z22 ¼ ð7:49;6:32;14;4:78Þ
z23 ¼ ð7:5;8:26;8:18;5Þ z24 ¼ ð7:5;6:63;14;3:75Þ
Step 6. Wishing to set demanding aspiration levels on objectives
1, 3 and 4, the DM specifies q2 ¼ ð5;7;10;2Þ.

Step 7. Calculating the k2r by means of (10), we have
k21 ¼ ð0:193; 0:763;0:019;0:025Þ
k22 ¼ ð0:037;0:908;0:023;0:033Þ
k23 ¼ ð0:035;0:069;0:868; 0:029Þ
k24 ¼ ð0:036;0:891; 0:022; 0:051Þ
After randomly generating qP ¼ 8 dispersed xj vectors with
xj

r P 0; ðr ¼ 1; . . . ; kÞ and
Pk

r¼1x
j
r ¼ 1, their �kj are computed in

accordance with (13). Go to Step 2.

Step 2. Solving the lexicographic Tchebycheff sampling problem
for each of the �kj and filtering the 8 resulting criterion vec-
tors to obtain the P ¼ 4 most different, the DM is shown:
ð7:13;7:09;12:60;4:15Þ ð6:54;7:22;12:23;4:52Þ
ð7:16;7:28;11:68;4:32Þ ð6:75;6:97;12:94;4:28Þ
Step 3. Assuming the DM chooses the fourth from the group,
z2 ¼ ð6:75;6:97;12:94;4:28Þ. In this way, objectives 1
and 3 are improved, but at the expense of the other two.
The DM wishes to go on iterating.

Iteration 3
Step 4. h ¼ 3. Suppose the DM wishes to leave the reservation

vector as is. Thus e3 ¼ e2 ¼ ð7:5;8:5;14;5Þ. Go to Step 6.
Step 6. Wishing to improve objectives 3 and 4 and at the expense

of some impairment in the first objective, the DM specifies
q3 ¼ ð6;7;9;1Þ.

Step 7. Calculating the k3r by means of (10), we have
k31 ¼ ð0:489; 0:489;0:010; 0:012Þ
k32 ¼ ð0:060; 0:898;0:018;0:024Þ
k33 ¼ ð0:057;0:068;0:854; 0:021Þ
k34 ¼ ð0:059;0:890;0:018;0:032Þ
After randomly generating qP ¼ 8 dispersed xj vectors with
xj

r P 0; ðr ¼ 1; . . . ; kÞ and
Pk

r¼1x
j
r ¼ 1, their �kj are computed in

accordance with (13). Go to Step 2.

Step 2. Solving the lexicographic Tchebycheff sampling problem
for each of the �kj and filtering the 8 resulting criterion vec-
tors to obtain the P ¼ 4 most different, the DM is shown:
ð7:06;7:04;12:75;4:16Þ ð6:74;7:26;12:13;4:43Þ
ð6:72;6:91;13:12;4:27Þ ð6:61;7:03;12:76;4:39Þ
Steps 3 and 8. Assuming the DM chooses the first from the group,
z3 ¼ ð7:06;7:04;12:75;4:16Þ. Deciding to conclude
with this solution, the DM goes to Step 8 for
termination.

In this example, different types of iterations have been carried
out to illustrate the different possibilities of the algorithm. For
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reasons of simplicity, the number of solutions shown to the DM
was 4, although larger numbers would be preferable in practice.

7. Conclusions

In this paper, we have designed an algorithm that combines
multiple probing from the Tchebycheff method, aspiration crite-
rion vectors from the work of Wierzbicki, and reservation vectors
from Michalowski and Szapiro. The purpose is to capture the
broad-based powers of these procedures within the context of a
single-pattern user interface with a low cognitive burden. In MICA,
all that is required at each iteration is to select from a small group
of solutions and then specify criterion value intervals for the next
iteration, information that is natural and could not be much easier
to provide.

Throughout its history, interactive multiobjective programming
has taken pride in the diverse spectrum of different procedures
that it has had at its disposal for solving multiobjective program-
ming problems. However, this may just be a symptom that the field
is still in its early stages. In the future it could well be that there are
fewer prevailing procedures with each capturing the power of sev-
eral of today’s procedures while still keeping the user’s side of the
interface single-pattern and relatively plain vanilla. With the algo-
rithm of this paper showing some universality in this regard, it is
our belief that the structure of MICA and the simplicity of its inter-
face lend credence to this prognostication about the future.

The theoretical results proved in this paper assure that the effi-
cient solutions generated by the algorithm always satisfy the res-
ervation levels set by the DM in convex cases. In the non-convex
case, there are no guarantees, but we think that the algorithm
might even run well in the majority of non-convex cases. This will
be the subject of future investigations.

Appendix A

In this appendix, we prove Theorem 1 (which was stated in Sec-
tion 4).

Theorem 1. Consider problem (1) for which condition 1 holds. Let
eh;qh and �kj satisfy conditions 2–5. For any �kj , let ð�x; �zÞ be the solution
returned by the lexicographic Tchebycheff sampling program. Then
�z P eh.

Proof. Since any x that is an optimal solution of (5) for a given �kj is
also an optimal solution of (4) for the same �kj, then:

8x 2 X; sðqh; �z; �kjÞ 6 sðqh; fðxÞ; �kjÞ

Let us define a vector bh ¼ ðbh
1; . . . ; bh

kÞ 2 Rk in the following
way:

bh
r ¼

xj
r

Chr

Xk

s¼1

xj
s

Chs

 !�1

r ¼ 1; . . . ; k ð14Þ

Given that, for all r ¼ 1; . . . ; k;xj
r > 0 and Chr > 0, then:

bh
r > 0 ðr ¼ 1; . . . ; kÞ; and

Xk

r¼1

bh
r ¼ 1

Since X is convex, then
Pk

r¼1b
h
r xhr 2 X, and given that all the

functions fi are concave, we have:

fi

Xk

r¼1

bh
r xhr

 !
P
Xk

r¼1

bh
r zhr

i ði ¼ 1; . . . ; kÞ

) s qh; f
Xk

r¼1

bh
r xhr

 !
; �kj

 !
6 s qh;

Xk

r¼1

bh
r zhr; �kj

 !
Taking again into account that
Pk

r¼1b
h
r xhr 2 X and given that �z is

an optimal solution of problem (4) with weights �kj, then

sðqh; �z; �kjÞ 6 s qh; f
Xk

r¼1

bh
r xhr

 !
; �kj

 !
6 s qh;

Xk

r¼1

bh
r zhr; �kj

 !

) max
i¼1;...;k

�kj
iðq

h
i � �ziÞ

n o

6 max
i¼1;...;k

�kj
i qh

i �
Xk

r¼1

bh
r zhr

i

 !( )
: ð15Þ

Next, we are going to find a bound on the right hand side of
inequality (15). Since

Pk
r¼1b

h
r ¼ 1, and taking into account the def-

inition of �kj given in (13), we have:

max
i¼1;...;k

�kj
i qh

i �
Xk

r¼1

bh
r zhr

i

 !( )
¼ max

i¼1;...;k

1Pk
r¼1x

j
r

1
khr

i

Xk

r¼1

bh
r ðqh

i � zhr
i Þ

8<
:

9=
;
ð16Þ

For each i ¼ 1; . . . ; k, let us denote:

Ji ¼ r 2 f1; . . . ; kgji 2 Jhr
n o

; Ii ¼ r 2 f1; . . . ; kgji 2 Ihr
n o

Note that Ji \ Ii ¼ ;, and Ji [ Ii ¼ f1; . . . ; kg. Therefore,

Xk

r¼1

bh
r ðqh

i � zhr
i Þ ¼

X
r2Ji

bh
r ðqh

i � zhr
i Þ þ

X
r2Ii

bh
r ðqh

i � zhr
i Þ

On the other hand, from (10), it follows that:

8i 2 Ii qh
i � zhr

i 6 0 < d ¼ Chr

khr
i

8i 2 Ji qh
i � zhr

i ¼
Chr

khr
i

Substituting these relations into Eq. (16), and taking into
account the definition of bh

r given in (14), we obtain:

max
i¼1;...;k

�kj
i qh

i �
Xk

r¼1

bh
r zhr

i

 !( )

6 max
i¼1;...;k

1Pk
r¼1x

j
r

1
khr

i

Xk

r¼1

bh
r

Chr

khr
i

8<
:

9=
;

¼ max
i¼1;...;k

1Pk
r¼1

xj
r

1
khr

i

Xk

r¼1

xj
r

Chr

Xk

s¼1

xj
s

Chs

 !�1
Chr

khr
i

8>>><
>>>:

9>>>=
>>>;
¼

Xk

s¼1

xj
s

Chs

 !�1

Next, we shall apply this bound in relation (15):

max
i¼1;...;k

�kj
iðq

h
i � �ziÞ

n o
6

Xk

s¼1

xj
s

Chs

 !�1

) qh
i � �zi 6

Xk

s¼1

xj
s

Chs

 !�1
1
�kj

i

¼
Xk

s¼1

xj
s

Chs

 !�1Xk

r¼1

xj
r

1
khr

i

ði ¼ 1; . . . ; kÞ

From the definition of khr
i given in (10), we obtain:

qh
i � �zi 6

Xk

s¼1

xj
s

Chs

 !�1 X
r2Ji

xj
r

qh
i � zhr

i

Chr
þ
X
r2Ii

xj
r

d

Chr

 !

¼
X
r2Ji

xj
r

Chr

Xk

s¼1

xj
s

Chs

 !�1

ðqh
i � zhr

i Þ þ
X
r2Ii

xj
r

Chr

Xk

s¼1

xj
s

Chs

 !�1

d

ði ¼ 1; . . . ; kÞ
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Taking into account the definition of bh
r given in (14), it follows

that

qh
i � �zi 6

X
r2Ji

bh
r ðqh

i � zhr
i Þ þ

X
r2Ii

bh
r d ði ¼ 1; . . . ; kÞ

Taking into account the definition of problems PrðehÞ, it is obvi-
ous that zhr P eh ðr ¼ 1; . . . ; kÞ. Therefore, given that d satisfies
relation (11), we obtain:

qh
i � �zi 6

X
r2Ji

bh
r ðqh

i � zhr
i Þ þ

X
r2Ii

bh
r ðqh

i � eh
i Þ

6

X
r2Ji

bh
r ðqh

i � eh
i Þ þ

X
r2Ii

bh
r ðqh

i � eh
i Þ ¼

Xk

r¼1

bh
r ðqh

i � eh
i Þ

ði ¼ 1; . . . ; kÞ

Finally, given that
Pk

r¼1b
h
r ¼ 1, we have

qh
i � �zi 6

Xk

r¼1

bh
r ðqh

i � eh
i Þ ¼ ðqh

i � eh
i Þ
Xk

r¼1

bh
r ¼ qh

i � eh
i ði ¼ 1; . . . ; kÞ

and therefore,

�zi P eh
i ði ¼ 1; . . . ; kÞ

and this completes the proof. h
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