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Despite the volume of research conducted on efficient frontiers, in many cases it is still not the easiest
thing to compute a mean–variance (MV) efficient frontier even when all constraints are linear. This is par-
ticularly true of large-scale problems having dense covariance matrices and hence they are the focus in
this paper. Because standard approaches for constructing an efficient frontier one point at a time tend to
bog down on dense covariance matrix problems with many more than about 500 securities, we propose
as an alternative a procedure of parametric quadratic programming for more effective usage on large-
scale applications. With the proposed procedure we demonstrate through computational results on prob-
lems in the 1000–3000 security range that the efficient frontiers of dense covariance matrix problems in
this range are now not only solvable, but can actually be computed in quite reasonable time.
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1. Introduction

When one hears reference to ‘‘mean–variance efficient fron-
tiers,” one almost certainly thinks of portfolio selection in finance.
But mean–variance efficient frontiers need not necessarily be con-
fined to finance. In most any problem with a stochastic linear
objective, it is conceivable that a mean–variance efficient frontier
could arise (Caballero et al., 2001). And in multiple criteria optimi-
zation, the nondominated set of a problem with one linear and one
convex quadratic objective is in principle a mean–variance effi-
cient frontier. It is just that we do not see many of these other
types of applications. Consequently, with portfolio selection widely
known, the paper is presented in this context for greatest
familiarity.

Mean–variance efficient frontiers were introduced over fifty
years ago by Roy (1952) and Markowitz (1952) in their work on
portfolio selection. In the thirty years following, many papers were
written on efficient frontier topics. But after about a fifteen-year
period of somewhat diminished production, there has been a pick-
up of interest in portfolio selection since about 2000. For instance,
among others, there have been the papers by Chang et al. (2000),
Ballestero and Plà-Santamaría (2003), Ruszczyński and Vanderbei
(2003), Hallerbach et al. (2005), Fang and Wang (2005), Lin and
ll rights reserved.
Liu (2008), Branke et al. (2009) and Zhang et al. (2009) dealing with
all manner of ideas from the use of fuzzy techniques and stochastic
dominance concepts, to alternative risk measures, and to the appli-
cation of evolutionary algorithms for dealing with non-smooth
conditions.

Despite the volume of research conducted on efficient fron-
tiers, in many cases it is still not the easiest thing to compute a
mean–variance efficient frontier even when all constraints are lin-
ear. For short, let us call mean–variance problems with all linear
constraints Markowitz problems.1 The difficulty just mentioned is
particularly true with large-scale Markowitz problems having dense
covariance matrices. In fact, the LP-solvable models developed in
Konno and Yamazaki (1991) and Mansini et al. (2003) have in part
been in response to this. However, these models involve compro-
mises. To address the challenges of mean–variance efficient fron-
tiers without having to make compromises, and because the
desire to be able to solve Markowitz problems with over 2000 secu-
rities is on the rise at large financial services organizations, we have
this paper.

Currently, computing the efficient frontier of a large-scale prob-
lem (defined here to be between 1000 and 3000 securities) with a
dense covariance is a task that can take up to hours with standard
approaches. Of course problem size and how the efficient frontier
is to be rendered play a role, but the primary culprit is the density
1 Because of the extent to which Markowitz has studied such problems.
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of the covariance matrix. It is to be pointed out that portfolio prob-
lems in their natural state most often have dense covariance matri-
ces. For instance, when running with a historical covariance
matrix, using an index model for covariance coefficient estimation,
or applying average correlation coefficient techniques as described
in Elton et al. (2007), the resulting formulations will typically pos-
sess 100% dense covariance matrices. Although in the case of an in-
dex model the covariance matrix can be diagonalized to allow for
faster solutions, the solutions are on the efficient frontier of the
diagonalized problem which can essentially always be expected
to be different from the efficient frontier of the problem in its nat-
ural state. Thus, to meet the task of being able to compute the true
efficient frontier of a large-scale Markowitz problem with a dense
covariance matrix, we have the algorithm of this paper along with
computational results to place it in the frame of what can now be
accomplished in this formerly almost inaccessible area of portfolio
selection problem sizes.

Basically, there are two ways to solve for the efficient frontier of
a Markowitz problem. One is to ‘‘construct” the efficient frontier
discretely. This, to our knowledge, is the only way in which efficient
frontiers are constructed in practice today. This approach is cus-
tomarily carried out in an e-constraint2 fashion by repetitively min-
imizing variance subject to, say, anywhere from 20 to 200 different
lower bounds on expected return. We use the word ‘‘construct” in
connection with this approach because only a dotted representation
of the efficient frontier results.

An appeal of this approach is that it only requires an ordinary
quadratic programming code to implement. A negative of the ap-
proach is that, because of the time to conduct a quadratic optimi-
zation, it is easy for run times to become enormous as problem size
increases. For instance, to compute just a single e-constraint point
on the efficient frontier of a 500-security problem with a dense
covariance matrix, LINGO’s quadratic solver takes roughly 35 sec-
onds and Matlab’s takes roughly 50 seconds.3 With this implying
17.5 and 25 minutes, respectively, for just a 30-dot efficient fron-
tier representation, we can see the computational difficulties lying
before us with dense covariance matrix problems even before
entering the 1000–3000 security range of this paper.

The other way is to ‘‘compute” the efficient frontier parametri-
cally. This is accomplished by modeling the problem with a param-
eter and then smoothly varying the parameter to trace out the full
equation structure of the complete efficient frontier. That is, the
equations of all curves (hyperbolas, and typically many) that con-
tribute segments to the efficient frontier are derived for a precise
mathematical specification of the frontier. We use the word ‘‘com-
pute” in connection with parametric procedures because the entire
efficient frontier can be solved for in closed-form in this way. How-
ever, to our knowledge, it is not known that efficient frontiers are
computed anywhere in practice in this way.

Even though Markowitz proposed a parametric procedure for
tracing out the efficient frontier in the form of his critical line
method in (1956), the critical line method is not seen utilized in
practice (Michaud, 1989). While it might take a separate study to
enumerate a full list of reasons why, one would almost certainly
involve the position that the critical line method is difficult for
many to understand and teach, and lengthy in its description. For
instance, even in Markowitz’s most recent book with Todd
(2000), chapters are involved in its explanation. Also, because of
CPU-time and memory requirements, it was difficult for the meth-
od to be applicable until about the early 1980 s. Furthermore, the
whole idea of parametric quadratic programming, of which the
2 A technique from multiple criteria optimization that computes efficient points by
converting all objectives to constraints except one (see Miettinen, 1999).

3 All CPU times are from a Dell 2.66 GHz Core 2 Duo desktop at the University of
Georgia.
critical line method is a variant, was not given a boost by Karmar-
kar (1984) as that paper created great interest in procedures (such
as interior point methods) of polynomial-time complexity, of
which parametric procedures for efficient frontier computation
are not. Of course, complexity issues do not always correlate well
with performance and interior point algorithms can’t do all that
a parametric procedure can do, but irrelevant or not, all of this
was enough so that except for work by Markowitz and a few others
such as Guddat (1976), Best (1996), Korhonen and Yu (1997) and
Stein et al. (2007), little else has appeared in the literature on the
topic of parametric procedures that can be adapted to efficient
frontier computation.

With this as background, the procedure of this paper is a contri-
bution to the literature in the following ways. As an alternative to
the critical line method, the procedure pursues a more simplex-
based strategy, utilizing better-known components from opera-
tions research, for greater transparency and understandability.
Even when specified in detail as in this paper to allow program-
ming by a reader, it is not of great length to fully describe. Also,
with the procedure computational results are presented. In fact,
just these results make the paper unique due to the lack of studies
on the computation of the efficient frontiers of problems anywhere
near in size to the problems addressed in this paper. The results
demonstrate the performance of the procedure on the most diffi-
cult of Markowitz problems, those with dense covariance matrices
in the large-scale range of 1000–3000 securities. Whereas on these
problems discrete approaches with standard solvers can often take
up to prohibitive time, the parametric procedure of this paper is
able to compute the efficient frontier in at most minutes as shown
later in the paper. While it might be noted that there have been
two other studies on efficient frontier computation by Pardalos
et al. (1994) and Jobst et al. (2001), they are not competitors in that
they are mostly concerned with specialized formulations in which
225 securities is a large problem.

In summary, this paper not only presents a parametric proce-
dure for the computation of the full efficient frontiers of dense
covariance matrix problems in the range of 1000–3000 securities,
but does so along with computational experiments conducted
across a variety of test problems with different characteristics to
document that the efficient frontiers of such problems can now
be computed in times that would have to be considered reason-
able, if not very reasonable, by almost any standard.

Also, because parametric procedures for computing efficient
frontiers are not contained in any commercial packages of which
we are aware, the structure of the particular code that we prepared
for carrying out the experiments of this paper may be of interest to
potential programmers. Called CIOS, the code reads from flat text
files, possesses a random problem generator for research experi-
mentation, is entirely self contained, and is written in Java for easy
movement among our machines. Furthermore, because of a grow-
ing interest in portfolio selection with objectives beyond risk and
return as expressed in papers, for instance, by Arenas Parra et al.
(2001), Lo et al. (2003), Bana e Costa and Soares (2004), Ben Abde-
laziz et al. (2007) and Ehrgott et al. (2009), the algorithm and code
of this paper are purposely designed to permit its current uni-para-
metric capability to be generalized (not part of this paper) to a mul-
ti-parametric capability (to address problems with one quadratic
and two or more linear objectives) in the future.

The paper is organized as follows. Section 2 overviews Marko-
witz portfolio selection and demonstrates the piecewise hyperbolic
structure of the efficient frontier. Section 3 begins the detailed spec-
ification of the procedure by describing the reduced Karush–Kuhn–
Tucker setup employed and the way in which bounds on the vari-
ables are handled. Section 4 describes how the procedure’s Phase
II obtains the topmost point of the efficient frontier. Then Section 5
describes how the procedure’s Phase III parameterizes down the
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Fig. 1. Efficient frontier of a 30-security 100% dense covariance matrix problem and
the 8 hyperbolas that contribute segments to the efficient frontier.
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Fig. 2. Efficient frontier of a 30-security diagonal covariance matrix problem and
the 29 hyperbolas that contribute segments to the efficient frontier.

Table 1
Coefficients that enable the hyperbolas of the segments that make up the efficient
frontier of Fig. 1 to be expressed as a function of expected return along with the
intervals of expected return over which the segments operate.

Hyperbolic segment a0 a1 a2 lupper llower

1 .00190 �.20628 5.62990 .02107 .01891
2 .00035 �.04194 1.29597 .01891 .01676
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efficient frontier to enumerate all of its hyperbolic segments. After
Section 6 comments on the random problem generator built into
CIOS, Section 7 reports on the results of computational experiments
conducted on large-scale problems. Section 8 closes the paper with
some concluding remarks.

2. Markowitz problem background

With Markowitz portfolio selection attempting to simulta-
neously minimize variance and maximize expected return, the
problem in bi-criterion format is

min xTR x ¼ r2
p variance ð1:1Þ

max lT x ¼ lp expected return ð1:2Þ
s:t: 1T x ¼ 1; ð1:3Þ

AxQb; ð1:4Þ
‘ 6 x 6 x; ð1:5Þ

in which

(a) x ¼ ðx1; . . . ; xnÞ, n is the number of securities eligible for use
in a portfolio, and xi is the proportion of the capital available
to be invested in security i

(b) R is the covariance matrix of the problem and l is the
expected return vector

R ¼

r11 r12 � � � r1n

r21 r22

..

. ..
.

rn1 � � � rnn

2
66664

3
77775 l ¼

l1

l2

..

.

ln

2
66664

3
77775

(c) an x-vector is a portfolio if it satisfies (1.3), and is a feasible
portfolio if it also satisfies (1.4) and (1.5).

As a result of its multiobjective nature, (1.1)–(1.5) has two fea-
sible regions, S � Rn in decision space and Z � R2 in criterion
space. S is the set of all feasible portfolios, and Z is the set of all im-
age vectors, in terms of standard deviation and expected return,4 of
the portfolios in S. A feasible portfolio has a point on the efficient
frontier if and only if there is no other feasible portfolio that has a
higher expected return without a higher variance, or a lower vari-
ance without a lower expected return. Or in more mathematical
terms, x� 2 S is an efficient portfolio if and only if there does not exist
another x 2 S such that lpðxÞ > lpðx�Þ and rpðxÞ 6 rpðx�Þ, or
rpðxÞ < rpðx�Þ and lpðxÞP lpðx�Þ. Because of the noncomparability
of such portfolios, the solution set of (1.1)–(1.5) is then the set of all
efficient portfolios x� 2 S along with the set of all of their image vec-
tors ðrpðx�Þ;lpðx�ÞÞ 2 Z, which otherwise is known in portfolio selec-
tion as the efficient frontier.

As is known, the efficient frontier of a Markowitz problem is
piecewise hyperbolic. That is, it consists of a connected series of
segments from different hyperbolas. This follows from the fact that
the image set of any straight line in S is hyperbolic. In this way, the
inverse image sets of the different hyperbolic segments in Z form a
piecewise linear path in S.

To illustrate the piecewise hyperbolic structure of an efficient
frontier, let us consider two 30-security Markowitz problems
whose efficient frontiers are in Figs. 1 and 2. Shown in the figures
are the hyperbolas that supply the segments out of which the effi-
cient frontiers consist. For instance, the topmost two dots on each
frontier define the portion of the most nested hyperbola that forms
the topmost hyperbolic segment of the efficient frontier. The rea-
4 While theory and computation are carried out in terms of variance, efficient
frontiers are typically shown to users with standard deviation on the horizontal axis.
son the first efficient frontier has fewer hyperbolic segments is be-
cause it comes from a problem whose R is fully dense, whereas the
second comes from a problem whose R is diagonal. It is typical for
the number of efficient frontier hyperbolic segments to increase as
covariance matrix density decreases.

To provide a parametric specification of the efficient frontier,
information as in Tables 1 and 2, whose contents are from the effi-
cient frontier of Fig. 1, must be generated. With the rows indexed
from the top of the frontier down, Table 1 provides information
about the efficient frontier’s hyperbolic segments, and Table 2
specifies the endpoints of the linear line segments in S pertaining
to them.

Consider hyperbolic segment h and the entries in that row of
Table 1. The a0; a1; a2 specify the hyperbola that supplies the hyper-
bolic segment. They do so in such a way that the standard devia-
tion of a point on the hyperbolic segment can be expressed as a
..

. ..
. ..

.

8 .00106 �.04636 2.82223 .01344 .00818



Table 2
Compositions of the portfolios that define the endpoints of the straight lines in S that
correspond to the hyperbolic segments of the efficient frontier in Fig. 1.

Endpoint portfolio x1 x2 x3 x4 x5 x6 � � �

x1 .0 .0 .0 .0 1.0000 .0 � � �
x2 .0 .0 .0 .51201 .48799 .0

x3 .0 .0 .0 .35396 .31795 .0

..

. ..
.

x9 .21886 .0 .0 .00611 .12361 .0
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function of its expected return as in (2). The lupper ;llower specify the
range of expected returns over which the hyperbolic segment
operates. As for the linear line segment in S that corresponds to
the hyperbolic segment, it is specified in Table 2 by the straight line
whose endpoints are xh and xhþ1.

To illustrate use of the tables, suppose we would like to know
more about the point on the efficient frontier whose expected re-
turn l� ¼ :018. This places the point ðr�;l�Þ on the 2nd hyperbolic
segment. To calculate the standard deviation r�, we use the
a0; a1; a2 of the hyperbolic segment as follows:

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 þ a1l� þ a2ðl�Þ2

q
ð2Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:00035� :04194ð:018Þ þ 1:29597ð:018Þ2

q
¼ :03913:

To calculate the composition of the portfolio x� corresponding to
efficient frontier point ðr�;l�Þ, we use the lupper;llower values of
the hyperbolic segment as follows:

x� ¼ l� � llower

lupper � llower
x2 þ lupper � l�

lupper � llower
x3

¼ :018� :01676
:01891� :01676

x2 þ :01891� :018
:01891� :01676

x3

¼ ð:0; :0; :0; :44511; :41600; :0; etc:Þ:

ð3Þ

Instead of being of sizes 8� 5 and 9� 30, the tables for the effi-
cient frontier of Fig. 2 if displayed would be of sizes 29� 5 and
30� 30, respectively. Thus, because of the work involved, we can
expect the parametric specification of an efficient frontier with
more hyperbolic segments to take longer to compute than an effi-
cient frontier with fewer hyperbolic segments.

3. Standardized format and Karush–Kuhn–Tucker set up

To prepare (1.1)–(1.5) for the computation of its efficient fron-
tier, we now do three things. The first, because (1.1)–(1.5) is con-
vex when R is a covariance matrix, is to re-formulate (1.1)–(1.5) as

maxf�xTRxþ k lT xg k P 0 ð3:1Þ
s:t: Hx ¼ e; ð3:2Þ

Gx 6 g; ð3:3Þ
x 6 x; ð3:4Þ
x P ‘; ð3:5Þ

where constraints (1.3)–(1.5) are re-written in matrix form as (3.2)–
(3.5). That is, all left-hand side coefficients of the equality con-
straints in (1.3) and (1.4) form H and all left-hand side coefficients
of the inequality constraints in (1.4) after they have been rear-
ranged if necessary form G. Then, by observing that if (3.1)–(3.5)
can be solved for all k P 0, a set of x-vectors will be obtained whose
set of ðrp;lpÞ image vectors is precisely the efficient frontier.

A second thing, to lighten the computer load when ‘–0, is to
translate the axis system to the point ‘ 2 Rn. This saves the sim-
plex-based procedure a row for each xi lower bound that is non-
zero. This is done by replacing x with xþ ‘. In terms of the new
x-vector, we have
maxf�xTRx� 2‘TRx� ‘TR‘þ klT xþ klT‘g k P 0
s:t: Hx ¼ e�H‘;

Gx 6 g� G‘;
x 6 x� ‘;
x P ‘� ‘:

After dropping the ‘TR‘ and klT‘ constant terms from the objective
function and defining d P 0 (which may require changes in sign to
some of the rows of H), b, and b for the new right-hand sides, we
have the problem to be solved in parametric quadratic program-
ming standardized format

maxf�xTRxþ k lT x� 2 ‘TRxg k P 0 ð4:1Þ
s:t: Hx ¼ d; ð4:2Þ

Gx 6 b; ð4:3Þ
x 6 b; ð4:4Þ
x P 0: ð4:5Þ

The third thing, to facilitate the transition to the Karush–Kuhn–
Tucker Conditions, is to write (4.1)–(4.5) in the style of Winston
(2004) as

maxff ðxÞg ð5Þ
s:t: hiðxÞ ¼ di i ¼ 1; . . . ; l;

gjðxÞ 6 bj j ¼ 1; . . . ;m;

x 6 b;

x P 0;

and then note that if f : Rn ! R is concave and all constraints are
convex, x 2 Rn solves (5) if and only if there exist vectors
v 2 Rl; us 2 Rm; ub 2 Rn and ux 2 Rn such that x satisfies the Kar-
ush–Kuhn–Tucker Conditions

@f ðxÞ
@xj

�
Xl

i¼1

v i
@hiðxÞ
@xj

�
Xm

i¼1

us
i
@giðxÞ
@xj

� ub
j þ ux

j ¼ 0 j ¼ 1; . . . ;n;

hiðxÞ ¼ di i ¼ 1; . . . ; l;

gjðxÞ 6 bj j ¼ 1; . . . ;m;

x 6 b;

x P 0;

us P 0;

ub P 0;

ux P 0;

ðbj � gjðxÞÞus
j ¼ 0 j ¼ 1; . . . ;m;

ðbj � xjÞub
j ¼ 0 j ¼ 1; . . . ;n;

xjux
j ¼ 0 j ¼ 1; . . . ;n;

v unrestricted:

Inserting (4.1)–(4.5) into the above Karush–Kuhn–Tucker Condi-
tions, we have in matrix format the following system:

2Rx� klþ 2R‘þHTv þ GT us þ Inub � Inux ¼ 0; ð6:1Þ
Hx ¼ d; ð6:2Þ
Gx 6 b; ð6:3Þ
Inx 6 b; ð6:4Þ
x P 0; us P 0; ub P 0; ux P 0; ð6:5Þ
ðbj � gjðxÞÞus

j ¼ 0; j ¼ 1; . . . ;m ðbj � xjÞub
j ¼ 0;

j ¼ 1; . . . ;n; ð6:6Þ
xiux

i ¼ 0; i ¼ 1; . . . ; n; ð6:7Þ
v unrestricted: ð6:8Þ
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Moving the two constant terms to the right in (6.1), adding
slack variables s 2 Rm to (6.3), and replacing the ðbj � gjðxÞÞ with
their sj variables in (6.6), we obtain the full Karush–Kuhn–Tucker
system

2RxþHTv þ GT us þ Inub � Inux ¼ �2R‘þ kl; ð7:1Þ

Hx ¼ d; ð7:2Þ

Gxþ Ims ¼ b; ð7:3Þ

Inx 6 b; ð7:4Þ

x P 0; us P 0; ub P 0; ux P 0; s P 0; ð7:5Þ

sjus
j ¼ 0; j ¼ 1; . . . ;m ðbj � xjÞub

j ¼ 0; j ¼ 1; . . . ;n; ð7:6Þ

xiux
i ¼ 0; i ¼ 1; . . . ;n; ð7:7Þ

v unrestricted: ð7:8Þ

A problem with the full Karush–Kuhn–Tucker system is that it is
too big. Just (7.1)–(7.4) alone is ð2nþmþ lÞ � ð3nþ lþ 2mÞ. Fortu-
nately, it is possible to reduce the system by modeling the upper
bound constraints x 6 b implicitly. This enables the inequalities
of (7.4) to be eliminated.

Following known procedures, the upper bound constraints
x 6 b can be modeled by replacing x by �x 2 Rn where it is under-
stood that we substitute any xi in �x by bi � x�i whenever xi hits its
bi upper bound, and that we re-substitute any bi � x�i in �x by xi

whenever x�i hits its bi upper bound.
In addition, we can combine ub and ux into one vector �u 2 Rn.

This is possible because when xi is in �x;ux
i is unnecessary; and

when bi � x�i is in �x; ub
i is unnecessary. Let

I� ¼ fijith component of �x is currently substituted by bi

� x�i g: ð8Þ

Then Inub � Inux in (7.1) can be replaced by D�u where D is a diago-
nal matrix such that if i 2 I�, dii ¼ 1, otherwise dii ¼ �1. This enables
us to form the reduced Karush–Kuhn–Tucker system

2R�xþHTv þ GT us þ D�u ¼ �2R‘þ kl; ð9:1Þ
H�x ¼ d; ð9:2Þ
G�xþ Ims ¼ b; ð9:3Þ
�x P 0; us P 0; �u P 0; s P 0; ð9:4Þ
sjus

j ¼ 0; j ¼ 1; . . . ;m �xi�ui ¼ 0; i ¼ 1; . . . ; n; ð9:5Þ
v unrestricted: ð9:6Þ

The significance of this system is that Eaves (1971) has proved that
(9.1)–(9.6) is solvable if and only if there exists a basis of (9.1)–(9.3)
that solves the system. Since the reduced Karush–Kuhn–Tucker sys-
tem is solvable for all k P 0 by virtue of the boundedness imposed
by (4.4) and (4.5), the task is now to find all such bases for k P 0.

4. Locating maximum expected return point

In computing an efficient frontier, three phases are distin-
guished. Phase I, like in linear programming, is simply to find a fea-
sible vertex, but here, it need only be a vertex of the region of
solutions defined by the constraints (9.2) and (9.3). In Phase II,
we maximize the linear portion of the objective in (3.1) for the ulti-
mate purpose of obtaining a maximizing solution that satisfies the
reduced Karush–Kuhn–Tucker system (9.1)–(9.6) for some k P 0.

4.1. Phase I

To find a vertex of the region defined by the constraints (9.2)
and (9.3), we solve the linear program
min
Xm

i¼1

a1
i þ

Xl

j¼1

a2
j

( )
ð10Þ

s:t: H�xþ Ila2 ¼ d;

G�xþ Ims� Ima1 ¼ b;
�x P 0; s P 0; a1 P 0; a2 P 0;

in which a1 2 Rm and a2 2 Rl are vectors of artificial variables. The
starting basic variables are a2

j ; j ¼ 1; . . . ; l, along with si for each
bi P 0 and a1

i for each bi < 0; i ¼ 1; . . . ;m. Unless the optimal objec-
tive function value of (10) is non-zero, in which case we stop be-
cause no feasible solution of (4.1)–(4.5) exists, we pass the
optimal ð�x; sÞ solution of Phase I to Phase II (making sure, in cases
of degeneracy, that no a1

i or a2
j are left remaining in the basis).

4.2. Phase II

After receiving an ð�x; sÞ from Phase I, the purpose of Phase II is
to proceed from this point to the maximum expected return point
of the efficient frontier by solving the linear program

maxflT �xg ð11:1Þ
s:t: H�x ¼ d; ð11:2Þ

G�xþ Ims ¼ b; ð11:3Þ
�x P 0; s P 0; ð11:4Þ
v unrestricted: ð11:5Þ

If (11.1)–(11.5) yields a unique maximizing solution, we are ready
to move on to Phase III. If there are alternative maxima, then it must
be assured that the point passed on to Phase III is one of smallest
standard deviation. When such a point is needed, one can always
be obtained by temporarily perturbing l as in Bank et al. (1983).

5. Parameterizing down the frontier

Phase III operates on the reduced Karush–Kuhn–Tucker system
by maintaining feasibility as k is parameterized down from1 to 0,
thus completing the task of finding x-vector solutions of (4.1)–(4.5)
for all k P 0. This is done by employing a modification of Guddat’s
(1974) multi-parametric Phase III. To describe the method as ap-
plied to the reduced Karush–Kuhn–Tucker system, let

A ¼

2R HT GT In 0

H 0 0 0 0

G 0 0 0 Im

2
6664

3
7775 b1 ¼

�2R‘

d

b

2
6664

3
7775 b2 ¼

l

0

0

2
6664

3
7775

and x̂ ¼ ð�x;v;us; �u; sÞ. The system has to be modified in each step to
account for the currently substituted variables. After recalling index
set I� from (8), for all i 2 I� multiply column i and column
nþmþ lþ i of A by �1 and subtract column i of A times xi from b1.

Denoting by B the columns of A that comprise a basis, the (9.1)–
(9.3) portion of the reduced Karush–Kuhn–Tucker system can be
rewritten as

Bx̂B ¼ b1 þ kb2
;

where x̂B ¼ ð�xB;v;us
B; �uB; sBÞ. Since a basis of the ðnþ lþmÞ�

ð2nþ lþ 2mÞ reduced Karush–Kuhn–Tucker system contains ðnþ
lþmÞ variables, we observe two things about Phase III bases. By vir-
tue of the complementary slackness conditions of (9.5), one is that
all v-variables are always in a basis. The other is that all nonbasic
variables always have their complementary variables in the basis.
This means that

(a) whenever we pivot in Phase III, whatever variable leaves, in
comes its complementary slackness counterpart;
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(b) the initial solution for Phase III is constructed as follows:
whenever a variable �x or s was basic in Phase II, it will be
basic in Phase III. Whenever the variable was nonbasic in
Phase II, its complementary slackness counterpart �u or us

will be basic in Phase III. Moreover, index set I� is also taken
as is from the solution of Phase II.

5.1. For computing the linear line segments

Let B1 be the basis of the initial solution for Phase III, and let JB1

be its basic index set. Since B1 is invertible,

x̂B1 ¼ B�1
1 b1 þ kB�1

1 b2
:

Now, delete the components corresponding to the v-variables in the
right-hand side vectors B�1

1 b1 and B�1
1 b2 and denote the resulting

right-hand side vectors r1 2 Rnþm and r2 2 Rnþm, respectively. Then
use the r-vectors to define vectors n1 2 Rn and D1 2 Rn where

n1
i ¼

‘i i R JB1
and i R I�;

xi i R JB1
and i 2 I�;

‘i þ r1
ji

i 2 JB1
and i R I�;

xi � r1
ji

i 2 JB1
and i 2 I�;

8>>>><
>>>>:

D1
i ¼

0 i R JB1
and i R I�;

0 i R JB1
and i 2 I�;

r2
ji

i 2 JB1
and i R I�;

�r2
ji

i 2 JB1
and i 2 I�;

8>>>><
>>>>:

where ji is the index of �xi in r1
j ; i 2 JB1

. Then

x ¼ n1 þ kD1

solves (3.1) for all k P 0 as long as all components of �xB1 stay within
their upper bounds and

ð�xB1 ;u
s
B1
; �uB1 ; sB1 Þ ¼ r1 þ kr2 P 0:

In other words, k may be increased up to

kmax ¼ min
j¼1;...;nþm

�r1
j

r2
j

r2
j < 0

bij
�r1

j

r2
j

r2
j > 0 and ij 2 f1; . . . ;ng

8>><
>>:

or decreased down to

kmin ¼ max
j¼1;...;nþm

�r1
j

r2
j

r2
j > 0

bij
�r1

j

r2
j

r2
j < 0 and ij 2 f1; . . . ; ng

8>><
>>:

at which point k hits a binding constraint. This means that either

(a) a basic variable �xi; us
i ; �ui or si is driven to 0, in which case we

remove the variable and enter its counterpart �ui; si; �xi or us
i

to obtain B2, or
(b) a basic variable �xj hits its upper bound, in which case, after

substituting for �xj and �uj (possibly affecting the contents of
I�), we exchange the variables to obtain B2.

In the initial solution, we will have kmax ¼ 1 since the solution
of Phase II already maximizes the linear objective. We set k2 :¼ kmin

and k1 :¼ kmax. Repeating in this way, we compute a sequence of
linear line segments

nh þ kDh k 2 ½khþ1; kh�

with khþ1 < kh until khþ1 becomes zero (or negative, at which point
we stop and set khþ1 ¼ 0). While these are the efficient line seg-
ments that ‘‘zig-zag” through S, their outcome vectors form the
hyperbolic segments comprising the efficient frontier of Z.
5.2. Iterative procedure

Letting the linear line segment endpoint portfolios of S be de-
noted xh and their images in Z be denoted ðrh;lhÞ, the Phase III
procedure of the paper is as follows.

STEP 1. Let B1 be from Phase II, k1 ¼ 1, and h ¼ 1.
STEP 2. From the r1 and r2 associated with B�1

h b1 and B�1
h b2,

construct
nh and Dh
STEP 3. If h > 1, go to Step 4. Otherwise, do
x1 ¼ n1

l1 ¼ lT x1

write to a file x1
STEP 4. Compute khþ1. If khþ1
6 0, replace by khþ1 ¼ 0.

STEP 5. Do
xhþ1 ¼ nh þ khþ1Dh

lhþ1 ¼ lT xhþ1

if lTDh > 0; compute ah
0; ah

1; ah
2

write to a file h; lh; lhþ1; kh; khþ1; ah
0; ah

1; ah
2 and xhþ1

as long as khþ1 > 0; pivot to Bhþ1
STEP 6. If khþ1 ¼ 0, stop. Else, h ¼ hþ 1 and go to Step 2.

We now explain the ah
0; ah

1; ah
2. They are used to compute the r

of the ðr; lÞ that lie along the hth hyperbolic segment of the effi-
cient frontier, which corresponds to the hth linear line segment
whose endpoints are given by xh and xhþ1. Thus for k 2 ½khþ1; kh�,

l ¼ lTnh þ klTDh; ð12Þ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnhÞTRnh þ k2ðnhÞTRDh þ k2ðDhÞTRDh

q
: ð13Þ

If lTDh ¼ 0, the hyperbolic segment is just a single point, and for
such h, we do not compute ah

0; ah
1 and ah

2 . Otherwise, from (12)
we obtain

k ¼ l� lTnh

lTDh
:

Inserting k into (13) and doing a little algebra, we obtain r as a
function of l as follows:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ah

0 þ ah
1lþ ah

2ðlÞ
2

q
l 2 ½lhþ1;lh�; ð14Þ

where

ah
0 ¼ ðn

hÞTRnh � 2lTnh

lTDh
ðnhÞTRDh þ ðl

TnhÞ2

ðlTDhÞ2
ðDhÞTRDh;

ah
1 ¼

2
lTDh

ðnhÞTRDh � 2lTnh

ðlTDhÞ2
ðDhÞTRDh;

ah
2 ¼

1

ðlTDhÞ2
ðDhÞTRDh:

In this way, hyperbolic segment h can be plotted as a function of the
l-values, l 2 ½lhþ1;lh�, assumed over the segment.

Some comments are in order for when R is non-invertible. In
this case, there can be degeneracy, but this is not the normal type
of degeneracy from linear programming. Unfortunately, none of
the more elegant anti-cycling devices from linear programming
such as the lexicographic positive ordering process (as in Hadley
(1962)) is applicable. Therefore, we simply keep track of all bases



Table 3
A comparison of the results of three experiments of 20 problems each involving the
computation of the entire efficient frontiers of 100% dense covariance matrix
problems with ranks randomly selected from the integers in the interval ½24;n�.

n Percent
down
frontier

Cumulative
hyperbolic
segments

Securities in
portfolios

Whole frontier
CIOS time
(seconds)

Ave Stdev

1000 0 0.0 25.0 – –
25 48.8 65.3 – –
50 95.4 78.2 – –
75 145.6 86.2 – –
100 237.6 89.9 6.77 1.11

2000 0 0.0 25.0 – –
25 70.8 87.2 – –
50 139.7 114.8 – –
75 215.4 128.4 – –
100 335.2 128.7 37.37 14.20

3000 0 0.0 25.0 – –
25 93.0 111.0 – –
50 186.4 147.7 – –
75 283.6 171.0 – –
100 418.1 178.8 100.16 39.05

5 To validate the accuracy of CIOS, the code was tested against Matlab and LINGO at
numerous points along the efficient frontiers of 500-security problems and the results
among the three solvers matched to six places to the right of the decimal point in all
cases.
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already visited in a binary tree to prevent any from being re-
visited.

6. Random problem generator

When an individual covariance matrix is needed for testing, it is
often derived from historical data. However, if one were to need
many covariance matrices of different sizes, ranks, and densities,
where would all the universes of historical data come from? There
is also the issue of a covariance matrix’s diagonal and off-diagonal
elements being distributed as in portfolio selection. The difficulty
in obtaining varieties of ‘‘realistic” covariance matrices, we believe,
goes a long way in explaining why there is so little reported in the
way of computational experience on efficient frontiers in the
literature.

So that CIOS can be used for testing, it is equipped with a built-
in random problem generator. The random problem generator is
patterned after Hirschberger et al. (2007). The following is a subset
of the random problem generator’s settings:
n number of securities
r rank of the covariance matrix
d non-zero density of the covariance matrix
lv mean of the distribution from which the diagonal covari-

ance matrix elements are drawn
rv standard deviation of the distribution from which the diag-

onal covariance matrix elements are drawn
lc mean of the distribution from which the off-diagonal

covariance matrix elements are drawn
rc standard deviation of the distribution from which the off-

diagonal covariance matrix elements are drawn
le mean of the distribution from which the security expected

returns are drawn
re standard deviation of the distribution from which the

security expected returns are drawn

Settings r; d allow the rank and density of the covariance matrix to
be pre-chosen. Settings lv ;rv and lc;rc allow for the separate con-
trolling of the distributional characteristics of the diagonal and off-
diagonal elements of the covariance matrix. Also, there are other
settings such as for lower and upper bounds on the variables.

Chopra and Ziemba (1993) have pointed out the importance of
expected returns in portfolio selection. While not implying that the
random problem generator possesses any clairvoyance in this re-
gard, le;re facilitate, at least on a first-order approximation basis,
the generation of realistic test problems.

7. Computational results

To test the procedure of this paper over problems of differing
sizes, covariance matrix densities, covariance matrix ranks, and
covariance matrix element distributional characteristics, test prob-
lems were randomly generated using settings from the following
intervals:

n 2 ½1000;3000� r 2 ½24;n� d 2 ½diagonal;100%�;
lv 2 ½:010; :025� lc 2 ½:000; :025� le 2 ½:06; :14�;
rv 2 ½:0010; :0025� rc 2 ½:0000; :0025� re 2 ½:02; :10�;

with A vacuous in (1.4), and all lower and upper bounds 0.00 and
0.04 in (1.5).

About run times and some other quantities, we have Table 3. It
contains the results of experiments with three batches of large
Markowitz problems (20 each) with 100% dense covariance matri-
ces. To lend diversity to each batch, the problems were generated
with ranks randomly chosen from the integers 24 to n. For exam-
ple, in the table, 6.77 seconds is the average CIOS run time to com-
pute all information about the hyperbolic segments that make up
the efficient frontier of problems with 1000 securities.5

Utilizing the term ‘‘down the frontier” in the sense of expected
return, column 3 shows the accumulation of hyperbolic segments
as we move down the frontier. For instance, in problems with
2000 securities, 139.7 is the number of hyperbolic segments on
average that have already been computed to get to 50% down the
frontier. By comparing the numbers in the three parts of column
3, we can appreciate why run times increase with problem size.
Not only does it take longer to compute a given hyperbolic seg-
ment the bigger the problem, but there are more hyperbolic seg-
ments to compute.

Column 4 is interesting because it shows the relatively modest
number of securities at a positive level in portfolios along the effi-
cient frontiers of problems with dense covariance matrices. For in-
stance, in problems with 3000 securities, 171.0 is the number on
average at 75% down the frontier.

Pursuing this issue a little further, we have the results of an
experiment with 1500-security problems (36 in total) in Table 4.
Holding covariance matrix rank constant at 1500, covariance ma-
trix density is varied. What is seen is how the numbers of securities
in the portfolios along the efficient frontier increase as density
decreases.

Covariance matrix rank is also a factor. Consider the correlation
matrix of Table 5 taken from the results of the 20 problems of the
2000-security experiment of Table 3. In the first column we see
how rank affects the total number of hyperbolic segments, the
number of securities at a positive level in portfolios (taken at
75% down the frontier), and CIOS run time to compute the whole
efficient frontier. Thus, the greater the rank, the greater the num-
ber of hyperbolic segments, and hence the more work (run time)
required to solve the problem.
8. Concluding remarks

Suppose a client says: ‘‘I have no interest in the equations that
specify the efficient frontier. I am perfectly happy with dotted effi-



Table 4
Holding rank constant, this table shows how the number of securities in portfolios along the efficient frontier increases as covariance matrix density decreases.

n Percent down frontier Number of securities at a positive level

Covariance matrix density

100% 80% 60% 40% 20% Diagonal

1500 0 25.0 25.0 25.0 25.0 25.0 25.0
25 104.5 82.7 109.0 142.2 184.2 252.3
50 143.8 156.7 245.8 348.3 476.2 746.7
75 167.8 224.3 386.8 584.5 831.5 1387.5
100 178.3 329.7 507.3 714.2 978.0 1500.0

Table 5
Correlation matrix resulting from the 2000-security experiment of Table 3.

Rank Segments Securities CIOS time

Rank 1
Segments 0.695 1
Securities 0.779 0.846 1
CIOS time 0.705 0.990 0.796 1
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cient frontiers and I do not wish to change.” It would still be best to
proceed parametrically as in this paper. This is because with knowl-
edge of the equations, dots in virtually any pattern and number can
be placed on the hyperbolic segments of the efficient frontier with
only a small amount of post-processing effort. Although the integra-
tions to compute the arc length of the efficient frontier can not be
carried out in closed-form, they can be carried out numerically, thus
enabling one to very accurately measure any point’s arc length from
either end of the curve. For example, with a routine written in some-
thing like Matlab (which is what we have used), the necessary cal-
culations can be carried out in just a matter of a second or two.
This can give a client great flexibility as one can experiment very
inexpensively with different patterns and different numbers of
points to find the most aesthetically pleasing representation for pre-
sentation without having to re-run the problem each time.

Although other experiments could have been conducted in Sec-
tion 7, they will be left for a later time, but Tables 3–5 present the
picture.
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