
JOURNAL OF FINANCIAL DECISION MAKING 

Volume 1, Number 1, September 2005 

Multiple Objectives in Portfolio Selection 

Ralph E. Steuer1*, Yue Qi1, Markus Hirschberger2 

1
 Terry College of Business, University of Georgia, Athens, Georgia 30602-6253 USA 
2
 Department of Mathematics, University of Eichstätt-Ingolstadt, Eichstätt, Germany 

Abstract 

We begin this paper by first comparing the theory of present-day portfolio selection, which is a theory for standard 

investors (whose utility functions take on only the single argument of portfolio return), with a developing theory for 

non-standard investors (whose utility functions are allowed to take on additional arguments). Examples of additional 

arguments are dividends, liquidity, social responsibility, amount of short selling, and so forth. Then, with portfolio se-

lection for non-standard investors taking on the form of a multi-objective stochastic programming problem, equivalent 

deterministic formulations involving more than mean and variance are explored. With the nondominated sets of non-

standard investors no longer frontiers, but now surfaces, the tools and techniques that must be imported from multiple 

criteria optimization to compute and analyze them are next discussed. The paper concludes with a list of research top-

ics that are candidates for extending the multiple criteria portfolio selection material of this paper.   

Keywords: Multiple criteria portfolio selection, multi-objective stochastic programming, equivalent deterministic problems, para-

metric quadratic programming, nondominated surfaces, hyperboloidic platelets. 

1. Introduction 

In finance there has always been the problem of how to combine investments to form a portfolio. Progress on 

this problem, called portfolio selection, did not reach a historical juncture until the 1950s. During that dec-

ade, Markowitz (1952) developed his mean-variance formulation, introduced an algorithm (Markowitz, 

1956) for solving for the “efficient frontier”, and advised on the selection of one’s optimal portfolio from the 

efficient frontier. Also, there was Roy’s method (Roy, 1952) for the direct computation of one’s “safety first” 

portfolio. At the intersection of finance and operations research, their work not only provided formal meth-

ods for solving portfolio problems, but the influence of their work gave impetus to the topic of quadratic 

programming in operations research and to the branch of finance known today as “modern portfolio analy-

sis”. With regard to books, one could mention that Schrage (2003) provides excellent applications of quad-

ratic programming to problems in portfolio selection and that Elton et al. (2002) is often considered the 

canonical text on modern portfolio analysis. 

Since the mean-variance approaches of Markowitz and Roy, hundreds if not thousands of papers have 

been published on portfolio selection. Despite scrutiny of what might appear to be every imaginable aspect 

of portfolio selection, two assumptions have endured essentially unchanged. One is that the purpose of port-

folio selection is wealth maximization, i.e., to only make money (the more the better). The other is that in 
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pursuing this purpose, it is only necessary to monitor at the utility function level one’s portfolio with one 

random variable, that being the random variable of portfolio return. Because these assumptions have been the 

“standard” for over 50 years, and because virtually all of what is known today about portfolio selection is 

based upon them, we will call this body of knowledge standard portfolio theory, and all investors who feel 

that the assumptions apply to them standard investors.  

If you are a standard investor, you have been well served by enormous amounts of research. But if you 

are a non-standard investor, you do not have much of a road map. In response, the purpose of this paper is to 

fill in some of the gaps for this largely overlooked, but potentially very important and growing, class of in-

vestors. How might it be that the two assumptions might not reflect you? There are at least two ways. One 

way is that you are in portfolio selection for more than the money. For example, you also want your portfolio 

to help the environment, encourage good corporate governance, and contain the smallest number of securities 

whereby all of your intentions can be satisfied to the greatest extent possible. In this case, you would want to 

be monitoring your portfolio at the utility function level with regard to four arguments. Supporters of stan-

dard portfolio theory could probably be counted on to claim that all arguments beyond portfolio return are 

unnecessary. They might well say that, because of efficient markets, all appropriate concerns about the envi-

ronment and corporate governance are already in the prices of securities, so no extra treatment is necessary 

on their account. But what if you do not believe that markets are efficient all the time? As for the smallest 

number of securities, you might well be told that this concern should be modeled as a requirement (i.e., con-

straint) with an appropriate right-hand side. However, knowing how to set the right-hand side values of such 

constraints is not easy without being in a position to have knowledge of the trade-offs (which this approach 

does not facilitate), so this technique is less than ideal.  

A second way in which one might differ from the standard assumptions is as follows. Let it be true that 

you are only in portfolio selection for the money. But let it also be true that you do not fully trust the data 

used to characterize the portfolio return random variable. To be on the safe side, it would not be unreason-

able for you to be interested in the monitoring of your portfolio with a utility function that accepts other cor-

roborating arguments such as dividends, amount invested in R&D, growth in sales, and so forth.  

Perhaps one of the reasons for the endurance of the two assumptions is that for a long time portfolio se-

lection had no recourse. There were no techniques for analyzing portfolio problems with multiple objectives, 

i.e., with more than one utility function argument associated with them. But with the area of multiple criteria 

optimization now well developed, it is now possible to begin integrating applicable methods and procedures 

from multiple criteria optimization into portfolio selection to better serve the needs of non-standard inves-

tors. In this way, maybe the research support of non-standard investors can someday catch up with that of 

standard investors.  

Despite the volume of research supporting standard portfolio selection, there has always been a slight 

undercurrent of multiple objectives in portfolio selection, but this undercurrent has become more pronounced 

in recent years. To gain a perspective on the literature of multiple objectives in portfolio selection and how it 

relates to this paper, we utilize seven categories. The first three categories are overview pieces, algorithmic 

articles for characterizing the nondominated set, and skewness papers. The next four result from classifying 

the remaining papers as to whether they are methodological or application, and as to whether they provide 

for a direct computation of an optimal portfolio or involve some sort of interactive search of the nondomi-

nated set before terminating at a final solution.  

In the overview category is Hallerbach and Spronk (2002) in which the benefits of incorporating the 

techniques of multiple criteria analysis into financial decision making in general are highlighted. Other rele-

vant overview contributions are by Pardalos et al. (1994), Spronk and Hallerbach (1997), Bana e Costa and 

Soares (2004), and Steuer et al. (2005). In the second category we mention two papers. For portfolio prob-

lems in which there are additional linear objectives, Fliege (2004) develops an ingenious procedure for ap-

proximating the nondominated set to any degree of resolution with evenly dispersed points. Also, there is 
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Streichert et al. (2003) in which they use evolutionary algorithms to compute families of discretized efficient 

frontiers as a function of the number of securities in a portfolio. In the third category we have skewness pa-

pers as exemplified by Stone (1973), Konno et al. (1993), Konno and Suzuki (1995), Chunhachinda et al. 

(1997), and Prakash et al. (2003). Skewness is given its own category as there can be debate about its crite-

rion status. We follow up on this in Section 2.  

In the methodological/direct computation category, where the attempt is to develop theoretical proce-

dures for the incorporation of decision-maker preferences into a model to enable the direct computation of an 

“optimal” portfolio, we have Ballestero (1998) and Ogryczak (2000). In the application/direct computation 

category, where the same thing is done but in more of the context of an application, we have Aouni et al. 

(2004), L’Hoir and Teghem (1995), and Ehrgott et al. (2004).  

In the methodological/interactive search category, where the attempt is to develop theoretical proce-

dures for iteratively searching the nondominated set, we have Korhonen and Yu (1997, 1998), Xu and Li 

(2002), and Kliber (2005). In the application/interactive search category we have for example Chow (1995), 

Lo et al. (2003), and Tamiz et al. (1996).  

The rest of the paper is organized as follows. In Section 2 we show portfolio selection in the light of a 

single-criterion stochastic programming problem and discuss the idea of obtaining equivalent deterministic 

problem formulations for solution. In Section 3 we augment the single-criterion stochastic programming 

program of the previous section with additional stochastic and deterministic objectives and further discuss 

equivalent deterministic problems in this more complex situation. In Section 4 we discuss the different ways 

people from traditionally-trained finance and multiple criteria optimization might view portfolio selection in 

a mathematical programming context. In Section 5 we discuss the nature of the efficient and nondominated 

sets when additional linear criteria are present in an equivalent deterministic problem. In Section 6 we dis-

cuss how it is no longer necessary to artificially diagonalize the covariance matrix structure in order to make 

large-scale portfolio optimization problems amenable to computation. In Section 7 we enumerate research 

topics in need of investigation to further support developments in multiple criteria portfolio selection.  

2. Stochastic versus Deterministic Sides 

We begin this section by stating that it is a rare person from traditionally-trained finance that views portfolio 

selection as a multiple criteria problem, and it is a rare person from multiple criteria optimization that views 

portfolio selection as a single-criterion problem. Why would this be the case? Because there is both a sto-

chastic and a deterministic side to portfolio selection. We now explain.  

Consider a fixed sum of money to be fully invested in securities selected from a pool of n securities. Let 

there be a beginning of a holding period and an end of the holding period. Also, let xi be the proportion of the 

fixed sum to be invested in the i-th security, 1≤ ≤i n . Here, the sum of the xi equals one. Continuing, let ri 

denote the random variable for the i-th security’s return over the holding period. While the realized value of 

ri is not known until the end of the holding period, all is not hopeless, however, as it is standardly assumed 

that all means µi, variances σii, and covariances σij of the ri are known at the beginning of the holding period. 

Letting rp denote the random variable for the return on the portfolio defined by the ri and xi over the holding 

period, we then have  

 
1=

=∑
n

p i i

i

r r x  

Under the assumption that investors need only confine their interests to making money, the problem of 

standard portfolio selection is then to maximize the random variable rp as in  
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where S as given above is a typical feasible region (in decision space). While this may look like a linear pro-

gramming problem, it is not a linear programming problem. Since the ri are not known until the end of the 

holding period, but the xi must be determined at the beginning of the holding period, what we have here is a 

stochastic programming problem. As defined in Caballero et al. (2001), if in a problem some parameters take 

unknown values at the time of making a decision, and these parameters are random variables, then the result-

ing problem is called a stochastic programming problem. Note that since S is deterministic, (1) is stochastic 

as a consequence of its objective being stochastic.  

The difficulty with a stochastic programming problem is that its solution is not well defined. Hence, to 

solve (1) requires an interpretation. The approach taken in the literature (see for instance Stancu-Minasian, 

1984; Prékopa, 1995; Slowinski and Teghem, 1990) is to ultimately transform the stochastic problem into an 

equivalent deterministic problem for solution. Equivalent deterministic problems typically involve the utili-

zation of some statistical characteristic or characteristics of the random variables in question. For a problem 

with a stochastic objective such as (1), the equivalent deterministic problems enumerated in Caballero et al. 

(2001) result in the five interpretations   

a) max{ [ ]}
p

E r  

 . . ∈xs t S   

b) min{ [ ]}
p

Var r  

 . . ∈xs t S   

c) max{ [ ]}
p

E r  

 min{ [ ]}
p

Var r   

 . . ∈xs t S  

d) max{ ( ) }≥
p

P r u  for some chosen level of u 

 . . ∈xs t S   

e) max{ }u   

 ( ) }β. ≥ ≥
p

s t P r u  for some chosen level of β  

 ∈x S  

In case one is wondering how any of the above can be deterministic, recall that standard theory assumes 

that all means µi, variances σii, and covariances σij of the ri are known at the beginning of the holding period. 

Even with this, how is one to know which is the most appropriate equivalent deterministic problem interpre-

tation for a particular investor? At this point it becomes necessary to take a step back and delve into the ra-

tionale which leads from problem (1) to the interpretations (a) to (e).  

Early seventeenth century mathematicians assumed that a gambler would be indifferent between receiv-

ing the uncertain outcome of a gamble or receiving in cash its expected value. In the context of portfolio se-

lection, the gambler would be the investor, the gamble would be the portfolio return, and the certain 

equivalent would then be  

 [ ]=
p

CE E r  

Since an investor would obviously want to maximize the amount of cash received for certain, this ra-

tionale leads directly to interpretation (a). However, Bernoulli in 1738 discovered what has become known 
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as the St. Petersburg paradox (because it was published in the Commentaries from the Academy of Sciences 

of St. Petersburg). A coin is tossed until it lands “heads”. The gambler receives one ducat if it lands heads on 

the first throw, two ducats if it first lands “heads” on the second throw, four ducats if it first lands “heads” on 

the third throw, eight on the fourth, and so on (2
h–1
 ducats on the h-th throw). The expected value of the 

gamble is infinite, but in reality many gamblers would be willing to accept only a small number of ducats in 

exchange for the gamble. Hence, Bernoulli suggested not to compare cash outcomes, but to compare the 

“utilities” of cash outcomes. In the context of portfolio selection, it is assumed that the utility of a cash out-

come is given by a utility function U : →� �  (eventually an axiomatic foundation for the existence of a 

utility function was provided by Von Neumann and Morgenstern in 1947). Thus the certain equivalent (CE) 

becomes  

 ( ) [ ( )]=
p

U CE E U r  

That is, the utility of the certain equivalent should equal the expected utility of the uncertain portfolio 

return.  

Since an investor would again want to maximize CE, and with U assumed to be increasing, this leads to 

the problem of Bernoulli’s principle of maximum expected utility  

 
max{ [ ( )]}

p
E U r

s t S. . ∈x

 (2) 

That is, any x that solves (2) solves (1), and vice versa. Although Bernoulli’s maximum expected utility 

problem is a deterministic equivalent to (1), we call it an equivalent “quasi” deterministic problem. This is 

because it is not fully determined in that it contains unknown utility function parameters and cannot be 

solved in its present form without further work. But since investors are assumed to be risk averse, i.e., the 

expected value E[rp] is always preferred over the uncertain outcome rp, we at least know that utility function 

U is concave.  

Two schools of thought have evolved for dealing with this difficulty. One involves trying to ascertain a 

particular investor’s utility function and then using it in an attempt to directly solve (2). The other involves 

parameterizing U and then attempting to solve (2) for all possible values of its unknown parameters. Con-

temporary portfolio theory has evolved out of the second approach. Markowitz considered a parameterized 

quadratic utility function
1
  

 2( ) ( 2)λ= − /U x x x  

Since U is normalized such that (0) 0=U  and (0) 1′ =U , this leaves exactly one parameter λ, the coeffi-

cient of risk aversion. By this parameterization, Markowitz showed that precisely all potentially maximizing 

solutions of the equivalent “quasi” deterministic problem (2) for a risk averse investor can be obtained by 

solving interpretation (c)  

 

max{ [ ]}

min{ [ ]}

p

p

E r

Var r

s t S. . ∈x

 

for all x-vectors in S from which it is not possible to increase expected portfolio return without increasing 

portfolio variance, or decrease portfolio variance without decreasing expected portfolio return. As for termi-

nology, all such x-vectors constitute the efficient set (in decision space) and the set of all images of the effi-

                                                 

 
1 There is an anomaly with quadratic utility functions since they decrease from a certain point on. An alternative argument (not 

shown) instead of a quadratic utility function leading to the same result can be made by assuming that U is concave and increas-

ing, and that r=(r1, …, r
n
) follows a multinormal distribution. 
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cient points constitute the nondominated set in (variance, expected return) space. In finance it is common for 

authors to not only use the word “efficient” for qualifying vectors in decision space, but also for their images 

in (variance, expected return) space although some do take the time to say “mean-variance efficient”. So as 

to minimize any confusion, we will adopt in this paper the operations research tradition of using “nondomi-

nated” to distinguish between the two.  

Consequently, (c) is the ideal equivalent deterministic problem choice from among the five. In the ex-

treme case of 0λ =  (risk neutrality) or λ →∞  (extreme risk aversion), we would obtain interpretations (a) 

or (b) as special cases of (c). Another extreme case of  

 
1,

( )
0,

x u
U x

x u

≥
= 

<
 

with an unknown parameter u would yield interpretations (d) and (e). For instance, let u be the risk free in-

terest rate. Then interpretation (d) would mean that the probability to receive at least the risk free interest rate 

is maximized. If 
1

( , , )
n

r r=r …  follows a multinormal distribution, this is then equivalent to Roy's approach. 

In this way, we have the stochastic and deterministic sides of portfolio selection. And we now see how 

there can be a legitimate disagreement on the number of criteria in standard portfolio selection. If only look-

ing at the stochastic side, we would only see one objective, the single stochastic objective of portfolio return 

in (1). If only looking at the deterministic side, we would see typically see two objectives, the deterministic 

objectives of expected value and variance as a result of the choice of interpretation (c).  

Although not a part of standard portfolio selection, let us briefly revisit the comment made earlier about 

skewness. Should the ri be significantly skewed, a conceivable sixth equivalent deterministic problem inter-

pretation could be   

 

max{ [ ]}

min{ [ ]}

max{ [ ]}

. . ∈x

p

p

p

E r

Var r

Skew r

s t S

 

Although skewness shows up as a third criterion on the deterministic side, it is only there to help us bet-

ter solve the single-criterion stochastic programming problem (1) on the stochastic side. This is why there 

can be debate about the criterion status of skewness. What you see depends upon which side you are stand-

ing.  

3. With Multiple Objectives 

We see three types of investors. 

1. Those who truly are only interested in making money.  

2. Those who have been intimidated into thinking that they must act as if they are only interested in 

making money, but actually have suppressed other concerns as well.  

3. Those who have multiple objectives, are aware of the fact, and are in search of improved proce-

dures. 

There is little in this paper for investors of the first type. They are already well serviced by standard the-

ory. While ideally suited for investors of the third type, the paper should also have a liberating effect on in-

vestors of the second type by giving them the theoretical support and confidence to proceed otherwise if they 

so desire.  
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With the previous section established, we now show how the theory of standard portfolio selection can 

be extended to include multiple stochastic and deterministic objectives. For the convenience of the rest of 

this section, let z1 also be notation for denoting random variable rp. Suppose that an investor’s criterion situa-

tion is too complex to be covered by the tenets of standard theory. Then the investor would presumably be 

interested in maximizing some set of the zi, with z1 almost certainly included, selected from a list such as the 

following     

1. max{z1 = portfolio return}  

2. max{z2 = dividends}  

3. max{z3 = amount invested in R&D}  

4. max{z4 = social responsibility}  

5. max{z5 = liquidity}  

6. max{z6 = portfolio return over that of a benchmark}   

7. max{z7 = –deviations from asset allocation percentages}  

8. max{z8 = –number of securities in portfolio}  

9. max{z9 = –turnover (i.e., costs of adjustment)}  

10. max{z10 = –maximum investment proportion weight}  

11. max{z11 = –amount of short selling}  

12. max{z12 = –number of securities sold short}   

The minus signs are used so that all objectives are in maximization form. On one hand, the first six ob-

jectives are stochastic as a result of the fact that they depend upon random variables associated with each of 

the n securities. On the other, the last six objectives are deterministic as they pertain to characteristics of the 

portfolio that would be known at the beginning of the holding period (i.e., as a result of the selection of the 

xi). Whereas one person’s set from the list might be {z1, z2, z10}, another person’s set might be {z1, z5, z7, z8, 

z11}. If we let k be the number of selected objectives, in the case of the first investor k=3, and in the case of 

the second investor k=5. Of course, a standard investor’s set would be {z1} in which case k=1.  

As a guide to the rest of this section, consider Figure 1. At the top, as in Saaty’s Analytic Hierarchy 

Process (Saaty, 1999), we have the investor’s overall focus. In the box immediately below are the stochastic 

and deterministic objectives selected by the investor, say, from the above list. The notation here is that the 

number of selected stochastic objectives is η. Thus the number of selected deterministic objectives is η−k . 

As for the ( ) 1η, + ≤ ≤x
i
j

D i k , they are the functions of the deterministic objectives. For instance, if D12(x) 

were in the box, D12(x) would be a function that returns the number of securities with negative xi weights. 

In the third box we have  

 
1 1

max{ [ ( , , , , , )]}

. .

j j j jkE U z z z z

s t S

η η+

∈x

… …

 (3) 

which is a valid equivalent “quasi” deterministic problem provided that U is concave and increasing in each 

argument, and quadratic in each argument among 
1
, ,

j j
z z

η
… . Assuming that all η stochastic objectives in 

the investor’s set of k objectives are uncorrelated and that the coefficients of all stochastic objectives are 

from distributions whose means, variances and covariances are known at the beginning of the holding period, 

then each stochastic objective can be replaced in the equivalent “quasi” deterministic problem by a mean-

variance pair in accordance with interpretation (c) of the previous section. The resulting equivalent determi-

nistic problem is what is shown in the bottommost box. Note that all k η−  deterministic objectives indicated 

in an investor’s 
1 1

{ , , , , , }j j j jkz z z z
η η+

… … , being deterministic in the first place, are modeled unchanged in 

the equivalent deterministic problem. 
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E U zj1 zj zj +1 zjk

zj1

– j +1

E zj1

Var zj1

Dj +1

 

Figure 1. Hierarchical structure of the objectives and criteria  

in a multiple objective portfolio selection problem 

As a practical matter, for stochastic objectives in which variation is small or not of noteworthy impor-

tance, it may be possible to select interpretation (a) instead of (c). This would simplify their representations 

in the equivalent deterministic problem. For example, suppose an investor’s set is {z1, z5, z8}. Here the inves-

tor’s stochastic-side objectives are  

 

{ }

1

1

5

1

8 8

max

max

max ( )

n

j j

j

n

j j

j

z r x

z x

z D

=

=
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 

 
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 

= −

∑

∑

x

�  

where 
i

�  is the random variable for the liquidity of the i-th security and D8 is a function that returns the 

number of xi weights that are nonzero. Using (c) for each stochastic objective, we have as objectives in the 

equivalent deterministic problem  

 

1

1

5

5

8

max{ [ ]}

min{ [ ]}

max{ [ ]}

min{ [ ]}

min{ ( )}

E z

Var z

E z

Var z

D x

 

Now if we were to conclude that variation in portfolio liquidity is of much less importance than varia-

tion in portfolio return, then it may well be acceptable to use interpretation (a) instead of (c) for liquidity. 

Then this would result in the following equivalent deterministic problem 
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1

1

5

8

max{ [ ]}

min{ [ ]}

max{ [ ]}

min{ ( )}

E z

Var z

E z

D x

 (4) 

A major advantage of being able to use (a) instead of (c) is that a Var criterion is eliminated from the 

equivalent deterministic problem for each affected objective. Then, for each affected objective, it is only 

necessary to know the means of the individual security random variables at the beginning of the holding pe-

riod, thus saving us from having to know any of their variances and covariances. In (4), we see that of the 

equivalent deterministic criteria resulting from the two originally stochastic objectives, only one is quadratic 

but two are linear.  

4. Status of Standard Theory Computation 

We now switch to matrix notation. When traditionally-trained finance people think of portfolio selection in 

the context of a mathematical programming problem, it is likely they would recollect the following “mean-

variance” formulations  

 

min{ }

. .

T

T
s t

S

ρ≥

∈

x Σx

x

x

µ  (Pρ) 

or 

 
min{ }

. .

T T

s t S

λ−

∈

x x Σx

x

µ
 (Pλ) 

In these formulations, Σ is the covariance matrix of the individual security returns, ρ in (Pρ) is a pa-

rameter to be ranged over various target values, and λ in (Pλ) is a parameter to be ranged over values 

0→+∞  (please note that the λ of this section is different from the λ of Section 2). For solution, there are 

several approaches. With regard to (Pρ), there are three. One is to repetitively optimize (Pρ) employing dif-

ferent values of ρ each time using regular quadratic programming. Another is to use right-hand side paramet-

ric quadratic programming on the Kuhn-Tucker conditions. A third is to use Markowitz’s variant of right-

hand side parametric quadratic programming called the critical line algorithm (Markowitz, 1959). Whereas 

the first method is only able to achieve an approximation of the nondominated frontier, the last two methods 

enable the computation of the exact nondominated frontier.  

With regard to (Pλ), we mention two approaches. One of course is to repetitively optimize (Pλ) employ-

ing different λ-values each time to obtain an approximated nondominated frontier. A second is to use objec-

tive-function parametric quadratic programming on the Kuhn-Tucker conditions to obtain the exact 

nondominated frontier. Unfortunately, right-hand side and objective-function parametric quadratic program-

ming procedures are hard to come by and are not currently included in popular packages such as Matlab 

(Matlab, 2004), Cplex (Cplex, 2005), and LINGO (Schrage, 2004).  

After inspection of (Pρ) and (Pλ), multiple criteria optimization people would tend to read between the 

lines and view portfolio selection as the (bi-criterion) multiple criteria optimization problem  

 

min{ }

max{ }

. .

T

T

s t S∈

x Σx

x

x

µ  (5) 
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Why would a multiple criteria person recognize (Pρ) and (Pλ) as (5)? Because the person would know 

about the e-constraint method of multiple criteria optimization (for example, described in Steuer, 1986; 

Chap. 8). In the e-constraint method, all objectives but one are converted to inequality constraints (≥  for 

“max” objectives, ≤  for “min” objectives) with the ei right-hand sides set to target values at the instinct of 

the user. However, methods used for solving (5) typically involve the same methods as for (Pρ) and (Pλ). Ac-

tually, this is not surprising as multiple criteria optimization is usually not concerned with bi-criterion 

mathematical programming problems since they can normally be solved using techniques from the single-

criterion literature. Rather, multiple criteria optimization’s real interest is in problems with three or more ob-

jectives where surfaces have to be computed and searched, i.e., problems on which extensions of single-

criterion methods are of little help.  

5. Multiple Criteria Nondominated Sets 

The nondominated sets of standard mean-variance equivalent deterministic problems are no problem. We 

know they are piecewise parabolic in (variance, expected return) space, and thus are piecewise hyperbolic in 

(standard deviation, expected return) space. Even though theory and computation are typically carried out in 

terms of variance, being piecewise hyperbolic in (standard deviation, expected return) space is relevant be-

cause nondominated frontiers are typically presented to users with standard deviation being on the horizontal 

axis. Part, if not all, of the reason for this is that variance is measured in strange units, (%/time period) 

squared. Standard deviation on the other hand is measured in percent per time period, a much more workable 

unit. Percent per time period has the added convenience of being the same unit in which expected return is 

measured.  

Consider Figure 2. With standard deviation on the horizontal axis, Figure 2 right is drawn to represent a 

nondominated frontier. Portrayed with five piecewise hyperbolic segments, such would be typical of a prob-

lem with not more than about 10-15 securities. Along a given hyperbolic segment, the securities in a portfo-

lio remain the same. Only their proportions change as we move from point to point. In Figure 2 left, the 

piecewise linear path is drawn to represent the set of all inverse images (in decision space) of all points on 

the nondominated frontier. In particular, the inverse image set of each individual hyperbolic segment is an 

individual (straight) line segment. For example, the line segment t
3
 to t

2
 inclusive is the inverse image set for 

the hyperbolic segment z
t3
 to z

t2
 inclusive. Since the five hyperbolic segments comprise the nondominated 

set, the piecewise linear path is the efficient set. Intermediate points along the path such as t
1
, t

2
, t

3
 and t

4
 are 

called turning points. It is only at these points that new securities can enter, and old securities can leave, a 

nondominated portfolio.  

Suppose an equivalent deterministic problem has one quadratic and two or more linear criteria. We will 

call such problems extended EDPs (where EDP stands for equivalent deterministic problem) to distinguish 

them from the mean-variance EDPs of standard theory. Other than for the theoretical work of Guddat 

(1976), we are unaware of anyone else who has looked into the structure of the efficient and nondominated 

sets of problems such as extended EDPs. However, from the working paper of Hirschberger et al. (2005b), 

we are able to share some preliminary findings. Whereas a mean-variance EDP has a nondominated frontier, 

an extended EDP has a nondominated surface. Whereas a mean-variance EDP is piecewise hyperbolic in 

(standard deviation, expected return) space, the nondominated surface of an extended EDP is platelet-wise 

hyperboloidic in (standard deviation, expected return, extra linear objectives) space. And whereas the inverse 

image set of the nondominated frontier of a mean-variance EDP is a piecewise linear path in n

S∈� , the in-

verse image set of the nondominated surface of an extended EDP is a connected union of polyhedra in 
n

S∈� . Even though S is normally of dimensionality 1n − , it is believed that the dimensionality of a given 

polyhedron in a connected union will never exceed the number of linear objectives. This however has not yet 

been proved.  
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Figure 2. Efficient and nondominated set renditions of a standard theory mean-variance equivalent 

deterministic problem  

 

Figure 3. Efficient and nondominated set renditions of an equivalent deterministic problem with one 

quadratic and two linear criteria 

To illustrate an extended EDP that has one quadratic and two linear criteria, Figure 3 right is drawn to 

portray a nondominated surface and the platelets (like on the back of a turtle) of which it is composed. Note 

how the sizes of the platelets generally decrease as we move down the surface from z
n

 to z
0
. This is normal. 

Also, it is normal for all platelets to not always have the same number of what we call platelet corner points. 

Figure 3 left is drawn to represent a connected union of inverse image sets that could be the efficient set cor-

responding to the nondominated surface. Instead of being 1-dimensional as in mean-variance EDPs, here the 

individual inverse image sets of the individual hyperboloidic platelets are 2-dimensional polyhedra. Note 

how the inverse image set extreme points and the platelet corner points, even though their densities increase 

as we approach x
0
 and z

0
, could function as discretized representations of the efficient and nondominated 

sets, respectively.  

6. Permissibility of Dense Covariance Matrices 

With regard to computation, it is interesting to look at the history of portfolio selection. When Markowitz 

published his paper (Markowitz, 1952) on portfolio selection in 1952 and his algorithm in 1956 (Markowitz, 

1956), computers really were not up to the task of computing a nondominated frontier. For a handful of secu-

rities, yes, but not for the asset universes of several hundred securities awaiting portfolio selection on Wall 

Street. There were two obstacles. One was CPU time. The other was core storage (mainframe counterpart of 

what is known today as RAM). CPU time was the lesser obstacle of the two because it could always be got-
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ten around by waiting longer, but core storage was a “hard” constraint. There was never enough of it, and 

once you hit the maximum, there was usually nothing you could do but to re-program your code to use less 

space. In fact, up until the early 1970s, if a researcher wished to run a job requiring 256KB of core storage at 

a major university, it would not have been out of the question to have to get permission from the computing 

center director first.  

In portfolio selection, both obstacles came into play principally because of dense n n×  covariance ma-

trices. During the early 1980s, to give larger problems a better chance to run, some very innovative tech-

niques were developed by Markowitz and Perold (1981a,b), Perold (1984), and others. To avoid having to 

confront dense covariance matrices, the approaches focused on methods for diagonalizing the covariance ma-

trix structure. These methods are very clever. They enable one to go directly from historical data to a diago-

nalized covariance matrix structure by adding only a few extra variables and constraints to the formulation. 

With diagonalized covariance matrix structures, not only are core storage or RAM requirements reduced, but 

there are substantial savings in the number of arithmetic operations required for the computation of a non-

dominated frontier.  

The downside of the above methods is that one can generally figure that there is a loss of information. 

Thus there is likely to be a difference between the frontier obtained and the one desired. Nevertheless, the 

approaches became popular because they extended the reach of portfolio selection to problems with up to 

500 securities by the end of the 1980s, and beyond 500 securities in the 1990s. Konno and Suzuki (1992) 

proposed yet another diagonalization strategy. It is interesting because it does not involve a loss of informa-

tion. Being based upon Cholesky factorization, it requires that a covariance matrix be initially in hand and 

that it be invertible. While this method, when applicable, will produce a true nondominated frontier, the dif-

ficulty is that most large covariance matrices are not invertible. Regardless of which method one prefers to 

use, diagonalization has essentially become a staple of large-scale optimization to the extent, without think-

ing, it is almost always thought to be a mandatory first step, but this no longer need be the case.  

With the speed of computers today, and the virtual disappearance of any kind of storage or memory as a 

constraint, the need to always diagonalize the covariance structure, unless needed for some other purpose, is 

no longer a requirement to bring large-scale portfolio optimization into the realm of computational feasibil-

ity. We are entering a new era. Dense covariance matrices of up to 2000-3000 variables no longer pose the 

problems they once did. According to Hirschberger et al. (2005c), the computation of exact nondominated 

frontiers of large problems with dense covariance matrices is now possible in reasonable time even on a lap-

top. For instance, on a 1.6GHz Centrino laptop, we are now experiencing 10-15 minute times to compute the 

exact nondominated frontier of a standard EDP with a 100% dense covariance matrix and n=1000, and 40-50 

minute times to compute the exact nondominated frontier of a standard EDP with a 100% dense covariance 

matrix and n=1500.  

7. Future Directions 

Because we are in the early stages of multiple criteria portfolio optimization, often when research is con-

ducted, more questions may be raised than answered. In this regard, we see many research projects ahead, 

seven of which are outlined below.  

1. A computational study of the numerical characteristics of the nondominated frontiers of different 

types of mean-variance portfolio selection problems and of the time to compute the nondominated 

frontiers on different software platforms.  

2. A computational study on the loss of information resulting from different schemes for diagonaliz-

ing the covariance matrix structure in mean-variance portfolio optimization.  

3. Development of algorithms for computing the efficient and nondominated sets of extended EDPs 

with 3 or more linear criteria.  
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4. Using evolutionary algorithms to obtain discretized representations of the nondominated sets of ex-

tended EDPs with non-smooth characteristics.  .  ctrg  

a) Cardinality constraints  

b) Semi-continuous variables   

5. A computational comparison of different methods for interactively searching the nondominated 

sets of extended EDPs and an evaluation of the decision-making style of each method. 

a) Projected line search procedures (Korhonen and Wallenius, 1988; Korhonen and Karaivanova, 

1989). 

b) Dispersed sampling procedures (Steuer, 1986).  

c) Classification procedures (Meittinen, 1999).  

d) Interactive decision maps (Lotov et al., 2004).  

6. How to best handle the extra linear variables that are necessary when modeling. 

a) How to best handle the extra linear variables that are necessary when modeling   

b) “Exception-to-the-rule” constraints  

c) Most of the deterministic objectives   

7. A study of the advantages and disadvantages of using mean absolute deviation (MAD) in place of 

variance in portfolio selection. 

Concerning (1), we know of no papers of contemporary value that report on the time it takes to solve for 

the nondominated frontiers of problems of different sizes. We speculate that the reason for this is that there 

has been no way to easily generate test problem covariance matrices other than from real data. However, the 

random generation of covariance matrices is now possible using the routine of Hirschberger et al. (2005a), so 

the roadblock to such a study is now removed.  

Also using this routine along with the ability to solve for the exact nondominated frontiers of problems 

with large dense covariance matrices, we are now for the first time in a position to conduct a study such as 

described in (2) about the amount of information lost in large problems when the covariance matrix structure 

is diagonalized.  

With research underway for solving for the nondominated surface of an extended EDP with one quad-

ratic and two linear objectives, the next step is to extend the algorithm so that it can deal with problems with 

one quadratic and three or more linear objectives as set out in (3).  

Item (4) deals with the effectiveness of evolutionary algorithms (see Deb, 2001) for being able to de-

velop usable discretized representations of the nondominated set in problems that are made non-smooth, for 

instance, by the conditions listed.  

Item (5) deals with the evaluation of different methods for searching the nondominated set using proce-

dures whose capabilities and feel offer an opportunity to be consistent with the decision-making style re-

quirements of, say, a portfolio manager.  

When modeling many of the deterministic objectives listed in Section 3, extra linear variables are gen-

erated in the formulation usually at the rate of one per security in the asset universe. Study (6) is directed at 

how to best handle algorithmically the increase in problem size that results.  

With regard to (7), some, for instance Mansini et al. (2003), have proposed the use of MAD in place of 

variance. The advantage of this is that MAD can be modeled linearly. Since this is likely to result in a loss of 

information, too, the pros and cons of this proposition need to be carefully studied.  

As seen throughout this paper, researching multiple objectives in portfolio selection is challenging. 

However, it is worthwhile because as soon as enough results can be accumulated, portfolio selection will 

then no longer be a one-size-fits-all affair. Portfolio selection will then have the ability to adapt itself to meet 

the criterion needs of most any investor, and in this way, become a much more robust tool for financial 

analysis.  
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