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Abstract: Minimum criterion values from payoff tables have often been used in multiple objective linear 
programming (MOLP). The assumption has often been that the minimum criterion values from payoff 
tables provide reasonably accurate estimates of the minimum criterion values over the efficient set. In this 
paper, however, we report computational experience that demonstrates that the discrepancies between the 
payoff table minimums and the minimums over the efficient set can often be large. This tends to imply 
that the field of multiple objective programming needs a better method than payoff tables for estimating 
the minimum criterion values over the efficient set. The paper concludes with a discussion of a 
simplex-based procedure for deterministically computing the minimum criterion values over the efficient 
set that has potential in large MOLP applications. 
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1. Introduction and terminology 

Minimum criterion values over the efficient set 
are of interest in multiple objective programming 
in order to characterize the ranges of the criterion 
values over the efficient set. The process of using 
payoff tables (defined shortly) to obtain estimates 
of the minimum criterion values over the efficient 
set has been integrated into a number of interac- 
tive multiple objective linear programming proce- 
dures [1,2,9,10,13,15,16, and 18]. Also, in order to 
allow a decision maker to size his or her multiple 
objective problem [17], knowledge of the mini- 
mum criterion values is required when attempting 
to graphically display the criterion value ranges 
over the efficient set. 
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As pointed out by Weistroffer [21] and De- 
ssouky, Ghiassi, and Davis [4], payoff tables only 
provide estimates of the minimum criterion values 
over the efficient set. The purpose of this paper is 
to report computational experience concerning the 
degree to which payoff tables might furnish good 
or bad estimates of the minimum criterion values 
over the efficient set. 

To establish notation and terminology, con- 
sider the multiple objective linear program 
(MOLP) 

max {clx=zl x)}, 

max (c2x=z2t )}, 

max {CkX=Zk X)}, 
s.t. x ~ S =  { x ~ R "  Ax<~b, x>~O, b ~ R ' ~ } ,  

as discussed in [5,6,7,11,15] and others. Alter- 
nately, the above MOLP can be written in vector- 
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maximum form as 

' m a x ' { z ( x )  = C x I x  ~ S }  

where z (x )  = ( z l ( x )  . . . . .  zk(x)),  C is the k x n 
criterion matrix whose rows are the d, and 'max '  
means that all efficient solutions are to be found. 
A point ~ ~ S is efficient if and only if there does 
not exist an x ~ S such that z (x )  >1 z(Y),  z ( x )  
z(2).  The set of all efficient solutions is denoted 
E. Let 2 ~ S ,  then, if ~ E ,  z(2)  is a non- 
dominated criterion vector, and if Y ~ E, z (£)  is a 
dominated criterion vector. 

emin denote the maximum and Let z m~x and z~ 
minimum values of the i-th objective over the 

m a x  efficient set, respectively. The z~ are easy to 
obtain because 

m a x  Z z i = m a x {  i ( x ) = c i x l x ~ S } .  

We simply maximize each of the objectives indi- 
e m i n  vidually over the feasible region S. The z i are 

not as easy to obtain because 

e m i n  m i n { z i ( x )  = c i x [ x ~ E } .  Z i 

The difficulties are that, in general, E is not 
known explicitly, and in all but the most trivial 
cases, E is nonconvex. Dessouky, Ghiassi, and 
Davis [4] discuss three heuristics for solving for 
the Z emin. In this paper, we discuss three determin- 
istic methods for computing the emin Z i , concentrat- 
ing primarily on the third method which is a 
simplex-based procedure that can be used on 
MOLPs of any size. 

Let Xm~' denote the solution resulting from the 
i-th individual maximization over S: 

m a x { c i x l x  e S } .  

Then, using the Xmax,' a payoff table is constructed 
as in Table 1. 

In Table 1, the i-th row is the criterion vector 
i Z(Xrn~) corresponding to the solution obtained 

from the i-th individual maximization. Also, since 

T a b l e  1 

P a y o f f  t a b l e  

z I z 2 z k 

C X m a  x C Xrnax " ' "  C X m a  x 
Z(X2ax)_ ... _ 1 2 2 2 k 2 C X m a  x C X m a  x C X m a  x 

z ( x k a x )  "1 k 2 k k k C X m a  x C X m a  x C X ma  x 

m a x  _ i i m a x  z i - c  x . . . .  we observe that the z i are found 
along the main diagonal of the payoff table. 

Using a payoff  table, a popular way to estimate 
emin is to scan the columns of the payoff  table the z, 

to determine the quantities 

i j pmin= rain {CXmax} , i = 1  k. Z i , • . . ,  
1 <~j~< k 

We call the Z pmin the payoff table column minimum 
values. Then, the z~ pr~n are used as estimates of the 

emin Unfortunately, as illustrated by the numeri- Z i 

cal example of Section 2 and in the computational 
experience of Section 3, the z~ r~n are often such 

e m i n  poor estimates of the z~ as to call into question 
the whole process of using payoff tables to esti- 
mate the z~ ~ 

2. Numerical example 

Consider the MOLP numerical example of Ta- 
ble 2. 

As determined by ADaASE [19], the MOLP has 
25 efficient extreme points. In the individual max- 
imizations of the objectives, it turned out that, 
because of alternative optima, 2 and 3 X m a  x X m a  x were 
inefficient. Thus, in the resulting payoff table of 
Table 3, the second and third rows are formed by 
dominated criterion vectors. Also given in Table 3 
are the max Z p~n, and emi, The first arrow at Z i , Z i  • 

e m i n  > z p m i n .  the bot tom of Table 3 means that zx 
e m i n  < z 2 P m i n  and The second arrow indicates that z 2 

that 5 of the 25 efficient extreme points had z 2 
values less than z pm~". The third arrow means that 

emin< zpmin and that only one efficient extreme z3 
point had its z 3 value less than its payoff table 
column minimum. We have a similar situation 
with the fourth arrow. Overall, 6 of the 25 effi- 
cient extreme points were in violation of one or 
more payoff  table column minimums. 

One might speculate that the difficulty with 
payoff  tables would be less if they were con- 
structed using only nondominated criterion vec- 
tors. To ensure that each maximizing criterion 
vector is nondominated, let us lexicographically 
maximize each of the objectives in (1, 2, 3, 4), 
(2, 3, 4, 1), (3, 4, 1, 2), and (4, 1, 2, 3) order, re- 
spectively. For instance, (4, 1, 2, 3) means that we 
solve lex max{c4x,  cax, c2x, cax lx  ~ S} .  Doing 
the lexicographic maximizations, we obtain Table 
4. 
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Table 2 
MOLP numerical example 

X 1 X 2 X 3 X 4 X 5 X 6 X 7 

Objectives - 2 1 2 - 1 1 2 - 1 max 
- 1  - 2  - 2  3 1 max 

2 - 2  - 2  - 2  max 
2 - 1 1 1 3 max 

s.t. 1 1 3 3 2 ~< 61 
3 2 4 ~< 72 

5 3 5 4 4 ~< 76 
4 2 4 4 ~< 51 
5 2 3 1 4 ~ 66 
2 2 4 4 4 5 ~< 59 
3 2 5 1 2 ~< 77 

all x i >1 0 

Table 3 
Payoff table information generated from individual maximizations 

g 1 z 2 z 3 Z 4  

z ( x l ~ )  49.17 12.75 - 25.50 11.83 nondominated 
z ( x 2  ) 14.75 44.25 0.00 0.00 dominated 
z ( x 3m~ , ) - 25.50 - 12.75 25.50 25.50 dominated 
z ( x 4a~ ) 10.04 - 8.30 - 0.34 59.60 nondominated 

z max 49.17 44.25 25.50 59.60 
z pmin - 25.50 - 12.75 - 25.50 0.00 

z emin 3.50 - 35.15 - 28.70 -4 .27  

1' $5 ,~1 J, 1 

Table 4 
Payoff table information from lexicographic maximizations 

Z 1 Z 2 Z 3 Z 4 

z ( x ~ , 4  ) 49.17 12.75 - 25.50 11.83 nondominated 
z ( x ~4,1 ) 18.00 44.25 0.00 1.62 nondominated 
z ( x ~;~ .2 ) 6.67 - 12.75 25.50 41.58 nondominated 
z(x~;~ 2'3) 10.04 -8 .30  -0 .34  59.60 nondominated 

gmaX 49.17 44.25 25.50 59.60 
z pmin 6.67 - 12.75 - 25.50 1.62 

Z e m i n  3.50 - 35.15 - 28.70 - 4.27 

~7 ,L5 $1 $1 

I n  t h i s  c a s e ,  o u r  p a y o f f  t a b l e  d i f f i c u l t i e s  h a v e  

g o t t e n  w o r s e .  N o w  a t o t a l  o f  12 o u t  o f  t h e  25 

e f f i c i e n t  e x t r e m e  p o i n t s  v i o l a t e  o n e  o r  m o r e  o f  t h e  

p a y o f f  t a b l e  m i n i m u m s .  T h u s ,  i t  is  h a r d  to  a r g u e  

t h a t  t h e  o c c u r r e n c e  o f  d o m i n a t e d  c r i t e r i o n  v e c t o r s  

is  t h e  c a u s e  o f  t h e  p r o b l e m .  ( N o t e  t h a t  w h e n  

l e x i c o g r a p h i c a l l y  m a x i m i z i n g  t h e  o b j e c t i v e s ,  a 

Z p m i n  c a n n o t  b e  l e s s  t h a n  i t s  c o r r e s p o n d i n g  2 e m i n  

as  o c c u r r e d  in  t h e  f i r s t  c o l u m n  o f  T a b l e  3.) 

3. Computational experience 

T h e  M O L P  o f  t h e  p r e v i o u s  s e c t i o n  is  n o t  a t y p i -  

ca l .  S u c h  d i f f i c u l t i e s  a r e  w i d e s p r e a d .  T o  u n d e r -  

s t a n d  h o w  w i d e s p r e a d  t h e  d i f f i c u l t i e s  a r e  w i t h  

r e g a r d  to  u s i n g  t h e  z~ rain t o  e s t i m a t e  t h e  z emin, 

c o m p u t a t i o n a l  e x p e r i m e n t s  w e r e  c o n d u c t e d  w i t h  

r a n d o m l y  g e n e r a t e d  p r o b l e m s .  T h e  e x p e r i m e n t s  

w e r e  c o n d u c t e d  to  d e t e r m i n e  i f  t h e r e  w e r e  a n y  
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effects due to the size of the criterion cone (gener- 
ated by the c'), the number of objectives, or 
problem size (number of constraints × number of 
objectives). In each experiment the sample size 
was 10. That is, 10 MOLPs were randomly gener- 
ated and solved. In these MOLPs, the right-hand 
side elements were randomly drawn from the in- 
terval of integers [50,100]. After first providing for 
a 25% zero-density in the A-matrix, the remaining 
A-matrix elements were drawn from the interval 
of integers [-1,20] .  In the experiments, we gener- 
ated three types of criterion cones: narrow, inter- 
mediate, and wide-open. In the narrow criterion 
cone case, the C-matrix elements were drawn from 
the interval of integers [0,20], in the intermediate 
criterion cone case, they were drawn from the 
interval [-10,20],  and in the wide-open criterion 
cone case, they were drawn from the interval 
[ - 20,201. 

Table 5 shows one of the experiments in detail. 
The contents of Table 5, in which 5 × 10 × 10 
means 5 objectives, 10 constraints and 10 varia- 
bles, are now explained. The first problem of the 
experiment, Problem 1, had 87 efficient extreme 
points. With regard to the first objective, the hid- 
den percentage is 26.60%. By this we mean the 
percentage of the criterion value range over the 
efficient set that is 'hidden' below the payoff table 

column minimum. That is, 

Z pmin __ Z~ rnin 

Z~ nax z~mi n ( 1 0 0 )  = 2 6 . 6 0 .  

Also, it is found that 3 of Problem l 's  efficient 
extreme points have z I values less than Zl pr~n. As 
seen, the maximum hidden percentage for Prob- 
lem 1 is 47.54%. The dashed entries in Table 5 
mean that the z pm'n in question correctly esti- 
mated their z~ ~in. In the last column of Table 5 
for Problem 1, the average percentage of the crite- 
rion value ranges (over E)  below the Z pmin is 
21.33%. That is, 

1 5 pmin __ ernin 
zi zi (100) = 21.33. ~ ma--- - - ;  - -  omi-----q 

i = zi -- zi 

In total, 10 of Problem l 's  87 efficient extreme 
points had one or more zi values less than their 
corresponding z pmm. 

Tables 6, 7 and 8 give the results of experi- 
ments in which we controlled for the size of the 
criterion cone, the number of objectives, and prob- 
lem size. For each experiment, the tables report: 

(1) the average hidden percentage, 
(2) average maximum hidden percentage per 

problem, 
(3) the average percentage of the total number 

T a b l e  5 

5 × 10 × 10 e x p e r i m e n t  wi th  [ - 20,20] c r i t e r ion  cone  

P r o b l e m  Eff ic ient  ex t r eme  po in t s  H i d d e n  p e r c e n t a g e s  a n d  n u m b e r  o f  ef f ic ient  ex t r eme  po in t s  be low 

1 87 26 .60  47.54 12.84 - 19.64 21.33 

3 5 1 - 2 10 

2 109 2.97 0.65 - 1.52 33.22 7.17 

1 1 - 1 3 5 

3 117 4.37 20.96 16.38 11.58 10.66 

- 2 1 1 2 5 

4 190 13.69 10.65 11.13 15.61 - 10.22 

6 2 3 3 - 14 

5 92 - 38.49 - - 22.16 12.13 

- 1 - - 1 1 

6 104 28.16 3.58 12.18 19.40 20.70 17.40 

7 1 2 7 2 15 

7 108 - - 1.76 9.94 2.34 
- - - 1 4 5 

8 201 8.98 32.53 21.92 2.85 13.26 
3 2 5 1 11 

9 182 36.40 4.90 14.90 25.61 0.57 16.48 

3 3 6 5 2 19 

10 44  1.81 51.06 - - 43 .00  19.17 

1 2 - - 2 3 
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Table 6 
Controlling for size of criterion cone 

Averages per problem 5 × 1 0 × 1 0  5 × 1 0 × 1 0  5 × 1 0 × 1 0  

[0,201 [ -  10,20] [-20,20] 
cone cone cone 

(1) Hidden %-age 8.47% 15.55% 13.06% 
(2) Maximum hidden 

%-age 23.36% 34.56% 31.39% 
(3) % of ranges in 

violation 56.00% 74.00% 74.00% 
(4) No. of eff. ext, 

pts. 53.7 104.5 123.4 
(5) No. of eff. ext. 

pts. below 5.9 9.2 8.8 
(6) % of eff. ext. pts. 

below 11.75% 8.99% 7.11% 

Table 7 
Controlling for number of objectives 

Averages per problem [ - 10,20] criterion cone 

3 × 1 0 × 1 0  5 × 1 0 x 1 0  7 x 1 0 × 1 0  

(1) Hidden %-age 3.94% 15.55% 12.33% 
(2) Maximum hidden 

%-age 9.29% 34.56% 33.27% 
(3) % of ranges in 

violation 33.33% 74.00% 82.86% 
(4) No. of elf. ext. 

pts. 19.0 104.5 222.9 
(5) No. of eff. ext. 

pts. below 1.4 9.2 16.1 
(6) % of eff. ext. pts. 

below 9.17% 8.99% 7.95% 

Table 8 
Controlling for problem size 

Averages per problem [ - 10,20] criterion cone 

4 x 8 x 8  4 x 1 6 x 1 6  4 x 2 4 x 2 4  

(1) Hidden %-age 8.43% 15.50% 14.17% 
(2) Maximum hidden %-age 17.72% 30.56% 28.56% 
(3) % of ranges in violation 47.50% 92.50% 87.50% 
(4) Efficient extreme points 21.7 294.3 881.1 
(5) Efficient ext. pts. below 4.0 14.7 18.7 
(6) % of eff. ext. pts. below 18.42% 5.12% 2.48% 

of the criterion value ranges per problem that are 
incorrectly specified by [z pm~", Zm~x], 

(4) the average number of efficient extreme 
points per problem, 

(5) the average number of efficient extreme 
points per problem that have one or more z, 

values below their corresponding z pm~n, and 
(6) the average percentage of the total number 

of efficient extreme points per problem that have 
one or more z, values below their corresponding 
2 pmin. 

From Tables 6, 7 and 8 we see that the likeli- 
hood of a given z~ min being less than its corre- 
sponding z pmin can easily be in the 70 to 90% 
range in problems with more than 100 efficient 
extreme points. Consequently, the difficulties do 
not appear to go away as problem size increases. 
Also, we see that many, if not most, problems 
tend to have at least one range whose hidden 
percentage is 30% or more. Thus, extreme caution 
is advised when using payoff  tables to estimate the 
ranges of the criterion values over the efficient set, 
because, in many cases, the z pmin may not even be 
in the same ballpark as the g iemin. The only par- 
tially encouraging note is that the percentage of 
efficient extreme points that have one or more z i 
values below their corresponding z pmm tends to 
decrease with the total number of efficient ex- 
treme points. All of the experiments were run 
using ADBASE [19]. 

4. Simplex-based approach 

The results of the previous section make it clear 
that the field of multiple objective linear pro- 
gramming needs a better method than payoff ta- 
bles to compute minimum criterion values over 
the efficient set. 

In [4], three heuristics were presented for com- 
puting the minimum criterion values z ier"~n. In this 
paper, we now look at three deterministic ap- 
proaches. The first is to use a vector-maximum 
code such as ADBASE [19] or EFFACE× [12] to 
compute all efficient extreme points. Perhaps, such 
vector-maximum codes could be augmented with a 
pre-processing routine as suggested by Gal [8] to 
eliminate deletable objectives (objectives whose 
gradients are nonnegative linear combinations of 
other objective gradients), should any exist. That 
would boost these codes to maximum speed for 
the generation of all efficient extreme points. Then, 
by examining the components of the criterion 
vectors of each of the efficient extreme points, the 

emin are determined. Even if running at maximum zi 
speed, the amount  of computer time required for 
the vector-maximum generation of all efficient 
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extreme points would still be too large for this 
approach to be a serious candidate except with 
relatively small MOLPs. 

Another approach is to solve the following 
primal-dual feasible program 

rnin ( z i ( x ) = c i x } ,  

s.t. Ax <~ b, 
x>~0, 
A T u - -  c T ~ o ,  

~>~e, 
uTb -- ~TCx = O, 

u>~O, 

where e ~ R k is the sum vector of ones. Justifica- 
tion for this approach is derived from Kornb lu th  
[14] from which we have the result that Y E E if 
and only if there exists a ~ ~ R "  and a ~,R k such 
that (Y, ~, ~,) solves the pr imal-dual  feasible pro- 
gram. 

The difficulty with this approach is the size of 
the pr imal-dual  feasible program. It has n + k + 1 
more constraints and m + k more variables than 
the original M O L E  This results in roughly twice 
as many rows and twice as many columns. Also, 
the last constraint of the formulation is highly 
nonlinear involving each h-variable in at least one 
nonlinear term. Consequently, this approach is out 
of the question on large MOLPs. 

The third approach is a simplex-based proce- 
dure that is based upon the well-known result that 
each efficient extreme point is connected to every 
other efficient extreme point by means of a path 
of efficient edges [3]. Thus, every hyperplane { x 

emin max R ~ l c ' x = ~ } , w h e r e ~ c [ z i  , z~ ], intersects at 
least one efficient edge of S. With this observa- 
tion, we have the following reduced feasible region 
algorithm for computing the i-th criterion value 
minimum over E. 

Step 4. Pivot along the edge to the adjacent 
extreme point. Let Y designate the new extreme 
point. Go to Step 3. 

Step 5. Let reduced feasible region S = S (~ ( x  

Step 6. Does there exist an extreme point of 
on the ( x  ~ R" I cix = cix } hyperplane from which 
there exists an edge that is efficient and has a 
negative cj - zj reduced cost value with respect to 
c~? If yes, go to Step 4. If  no, go to Step 7. 

Step 7. Stop with z emin = c~Y. 

Although not especially economical, the sim- 
plex-based procedure appears to be the only de- 
terministic approach yet proposed with any degree 
of practicality in large scale MOLP applications. 

5. Illustration of simplex-based algorithm 

Recall the MOLP numerical example of Section 
2 that has 25 efficient extreme points. As de- 
termined by EFFACET [12], the MOLP has 8 
maximally efficient facets as defined in Table 9. 

Figure 1 shows how the 25 efficient extreme 
points are connected by 45 efficient edges. In 
Figure 1 the z I value of each efficient extreme 
point is written next to its node. 

Applying the algorithm of Section 4 to de- 
termine Z~ min, let us start at the efficient extreme 
point that generated Zl pn~n in the payoff  table of 
Table 4. Thus we start at x ]8 whose z] = 6.67. Let 
us pursue the ~x 18, x 23) edge in the 3rd efficient 
facet to x 23 whose z] = 3.60. We find that x 23 is a 
local minimum for z I over E. We then determine 
that the cax = 3.60 hyperplane intersects, for in- 
stance, the relative interior of the ~x 14, x is) effi- 
cient edge which is in the 1st efficient facet. We 

Step 1. Let Y designate an efficient extreme 
point of S. (We can either let Y be the extreme 

proin from a lexicographi- point associated with z i 
cally generated payoff table, or use one of the 
methods discussed in Steuer [20, Section 9.6] to 
generate an ~.) 

Step 2. Let reduced feasible region S = S. 
Step 3. Does there exist an edge of S emanating 

from Y that is efficient and has a negative cj - zj 
reduced cost value with respect to c'? If yes, go to 
Step 4. If  no, go to Step 5. 

Table 9 
Efficient extreme points associated with the different maxi- 
mally efficient facets 

Facet Indices of efficient extreme points 

1 1, 2, 3, 5, 6, 7, 8, 11, 13, 14, 16, 17 
2 1 , 3 , 4 , 5  
3 3, 5, 8, 9, 11, 12, 16, 17, 18, 23 
4 3, 4, 5, 9, 10, 12, 20, 21 
5 7, 15, 16 
6 9, 18, 19, 24 
7 9, 19, 20, 25 
8 15, 16, 22, 23 
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..o f .  . .o 18.00 28.56 

350 t )9.41 

Figure 1. Graph of efficient extreme points, efficient edges, 
and z 1 values 

then follow the  ( x  14, x 13) edge to x 13 whose 

21 = 3.50. We find that x t3 is a local m i n i m u m  
over E. Since the ctx = 3.50 hyperplane does not  

intersect any  efficient edge leading to lower 
ground,  we terminate  with x t3 as a global mini-  

emin = 3.50. m u m  for z~ over E. Thus  z~ 
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