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Abstract—This paper is about dotted representations of efficient frontiers. Dotted representations, as
in portfolio selection, can often be the most practical way of communicating an efficient frontier. The
most popular method is to minimize variance subject to fixed levels of expected return. However,
even when the fixed levels are evenly dispersed, one can not count on the resulting dots being
evenly dispersed. Another method uses fixed values of a risk tolerance parameter, but with this
method the resulting dots are even less controllable. In this paper we develop a third approach
applicable to what we call Markowitz problems (mean-variance problems with all linear
constraints). The approach utilizes the results of algorithms that can compute all hyperbolic
segments of a Markowitz efficient frontier. Then the approach can place dots on the hyperbolic
segments of the efficient frontier in a variety ways including equally spaced. The advantage of the
approach is the speed at which dotted representations can be produced and modified, particularly
on large applications.

Keywords Portfolio selection, mean-variance efficient frontiers, hyperbolic segments, e-constraint
method, trapezoidal rule, parametric quadratic programming.

1. INTRODUCTION

In finance, for about thirty years (until about the mid 1980s),

mean-variance models and their resultant efficient frontiers

were a hot topic in portfolio selection. See, for instance,

Elton, Gruber, Brown and Goetzmann (2007). But after a some-

what less active period, interest in portfolio selection, since

about 2000, has shown signs of resurgence. Reasons include

dramatically faster computers, improved algorithmic tech-

niques, and new ideas such as those suggested by Ben

Abdelaziz, Aouni and El-Fayedh (2007), Arenas Parra,

Bilbao Terol and Rodrı́guez Urı́a (2001), Bana e Costa and

Soares (2004), Best and Hlouskova (2005), Ehrgott, Klamroth

and Schwehm (2004), Hallerbach, Ning, Soppe and Spronk

(2004), Mansini, Ogryczak and Speranza (2003),

Ruszczyński and Vanderbei (2003), Stein, Branke and

Schmeck (2007), Fang and Wang (2005), and others.

While there can be many kinds of mean-variance problems,

the focus in this paper is on problems with all linear constraints.

We call such problems “Markowitz problems” because of the

extent studied by Markowitz (1959, 1987, etc.). As seen later,

the approach described herein for creating dotted represen-

tations of efficient frontiers is especially effective on

large-scale Markowitz problems. We know of no other paper

that has dealt with the intricacies of presenting efficient fron-

tiers as we have in this paper.

In bi-criterion format, let us assume the following

Markowitz problem formulation

min
Xn

i¼1

Xn

j¼1

xisijxj variance ð1:1Þ

max
Xn

i¼1

mixi expected return ð1:2Þ

s:t:
Xn

i¼1

xi ¼ 1 ð1:3ÞReceived November 2007; Revision August 2008; Accepted May
2009
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ai � xi � vi ð1:4Þ

where

(a) n is the number of securities in the pool of securities eli-

gible for use in a portfolio

(b) xi is the proportion of a sum to be initially invested in

security i

(c) mi is the expected return of security i

(d) sij is the covariance of the returns of securities i and j

(e) constraint (1.3) is mandatory to assure that all xi pro-

portions sum to one

(f) (1.4) is for additional linear constraints (here just lower and

upper bounds on the xi)

Whereas an ðx1; . . . ; xnÞ-vector is a portfolio if and only if it

satisfies (1.3), a portfolio is feasible if and only if it satisfies

(1.4).

A feasible portfolio x [ Rn has a point z [ R2 on the effi-

cient frontier if and only if there is no other feasible portfolio

that has a higher expected return without a higher variance or

has a lower variance without a lower expected return.

Hereafter, when using the term “efficient frontier,” it will

always be in reference to Markowitz problems as above. A

typical efficient frontier is shown in Figure 1. Although not

easy to discern with the naked eye, efficient frontiers typically

consist of a series of hyperbolic line segments

Despite the prevalence of the term “mean-variance,” effi-

cient frontiers are typically displayed with standard deviation

on the horizontal axis. This is because theory and computation

are carried out in terms of variance, but when communicating

an efficient frontier to a user, standard deviation is commonly

employed because of its more intuitive interpretation.

The paper is organized as follows. Section 2 reviews the

hyperbolic structure of an efficient frontier and illustrates the

information necessary for a full specification of an efficient

frontier’s hyperbolic segments. Section 3 discusses compu-

tational experience with the two methods mentioned in the

abstract for constructing dotted representations of an efficient

frontier. Section 4 reviews a method by which the arc-length

of an efficient frontier can be compiled in a cumulative

sense. Section 5 presents a routine for creating points on a

hyperbolically specified efficient frontier in a variety of ways

including equally spaced. Section 6 ends the paper with con-

cluding remarks.

2. STRUCTURE OF THE EFFICIENT FRONTIER

To note the hyperbolic nature of the efficient frontier, we begin

by observing two things.

(1) In portfolio selection, as in any problem with more than

one criterion, there are two versions of the feasible

region. One is S , Rn and the other is Z , R2. In our

case, S is the set of all feasible portfolios and Z is the set

of all (standard deviation, expected return) image vectors

resulting from the portfolios in S.

(2) Any straight line segment in S has as its set of resulting

(standard deviation, expected return) image vectors a

segment of a hyperbola.

Viewing S as the set of all straight lines connecting all pairs of

feasible portfolios, it is not hard to see why the efficient fron-

tier, as a portion of the boundary of Z, is piecewise hyperbolic.

To illustrate, consider the three-security example taken from

Rockafellar and Uryasev (2000) of Table 1 in which S is the

covariance matrix of the sij as in (1.1) and m is the vector of

mi as in (1.2). With lower and upper bounds of 0 and 1 on all

of the xi, S and Z for this problem are in Figure 2. Note the

TABLE 1.

Data for Rockafellar-Uryasev three-security example

1 2 3

S .0032465 .0002298 .0042040

.0002298 .0004994 .0001925

.0042040 .0001925 .0076410

m .0101110 .0043532 .0137058

Figure 1. Efficient frontier of a Markowitz problem with n ¼ 500 securi-

ties. Note that an efficient frontier isn’t always perfectly smooth as so often

seen in textbooks Figure 2. Rockafellar-Uryasev three-security example
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curve (part of which is interior to Z ) connecting z1 and z2 in Z.

This is a portion of a hyperbola as its inverse image set is the

straight line connecting x1 and x2 in S. By the same token,

the curves connecting z4 and z5, and z5 and z6, are hyperbolic

as their inverse image sets, x4 and x5, and x5 and x6, are

straight lines. In this way, an efficient frontier is piecewise

hyperbolic while its set of inverse image portfolios is piecewise

linear. We will call points such as x3, x4, x5, x6 [ S that cor-

respond to the endpoints of the hyperbolic segments corner

portfolios.

For a mathematical description of an efficient frontier, tech-

nical information about the piecewise linear path in S and all of

the efficient frontier’s hyperbolic segments in Z must be speci-

fied. For the three-security Rockafellar and Uryasev example,

this is given in Tables 2 and 3.

To appreciate the tables, suppose we are curious about a

point z� on the efficient frontier whose expected return

m� ¼ .010. This places z� on the middle hyperbolic segment.

To calculate the standard deviation s� of the point, we use

the a0, a1, a2 of the hyperbolic segment as follows

s� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 þ a1m� þ a2ðm�Þ2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:00244� 0:82108ð:010Þ þ 86:7464ð:010Þ2

q
¼ :05389

To calculate the composition of the inverse image portfolio x� of z�,
we use the mupper and mlower of the hyperbolic segment as follows

x� ¼ m� � mlower

mupper � mlower
x4 þ mupper � m�

mupper � mlower
x5

¼ :010� :00507

:01190� :00507
x4 þ :01190� :010

:01190� :00507
x5

¼ ð:39666; :24370; :35964Þ

3. APPROACHES FOR COMPUTING EFFICIENT
FRONTIERS

The “e-constraint” and “risk tolerance factor” methods for pro-

ducing dotted representations of efficient frontiers are as

follows. Both involve the repetitive optimization of a quadratic

programming problem. Let us assume, that a q-dot represen-

tation is to be computed.

The “e-constraint” method employs formulation

min xTS x

s:t: mT x � r

x [ S

ð1Þ

The idea is to obtain solutions to (1) for q different values of r

r1 , r2 , . . . , rq

where rq causes (1) to produce the maximum expected return

point on the efficient frontier, r1 causes (1) to produce the

minimum variance point on the efficient frontier, and the

other ri cause (1) to produce q 2 2 in-between points. The

method is a little more difficult than it looks because one or

two preliminary optimizations may be necessary to set the

values for r1 and rq in the first place. We use the term

“e-constraint” because this is the term attributed to the

method in multiple criteria optimization for generating efficient

points by converting all constraints to objectives except one

(see for instance Miettinen (1999)).

The “risk tolerance factor” method employs formulation

min xTS x� lmT x

x [ S
ð2Þ

The idea is to obtain solutions to (2) for q different values of l

l1 , l2 , . . . , lq

where lq causes (2) to produce the maximum expected return

point on the efficient frontier, l1 ¼ 0 causes (2) to produce

the minimum variance point on the efficient frontier, and the

other li cause (2) to produce q 2 2 in-between points. A

weighting approach, this method works in the context of this

paper as S is polyhedral and S is positive semi-definite

(being a covariance matrix). Frustrations with the method are

TABLE 2.

From the top of the efficient frontier down, this table specifies the

expected returns of all hyperbolic segment endpoints along with three

parameters for specifying each hyperbola for the Rockafellar-Uryasev

three-security example

Hyperbolic

Segment mupper mlower a0 a1 a2

z3 to z4 .01370 .01190 .01747 23.34735 191.8733

z4 to z5 .01190 .00507 .00244 20.82108 86.7464

z5 to z6 .00507 .00483 .00278 20.95669 99.1275

TABLE 3.

From the top of the frontier down, this table specifies the

compositions of the corner portfolios (whose images are the

endpoints of the hyperbolic segments) for the Rockafellar-Uryasev

three-security example

Corner Portfolio x1 x2 x3

x3 .0 .0 1.0

x4 .50176 .0 .49824

x5 .12396 .87604 .0

x6 .08204 .91796 .0
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that a few preliminary optimizations may be necessary to ascer-

tain a good value to use for lq and that it is difficult to know

how to space the li to obtain nicely spaced points on the effi-

cient frontier.

With small problems, there is no difficulty in solving (1) or

(2). But when the number of securities begins to exceed more

than a few hundred, implementation can be a disappointment.

For instance, with Premium Solver Platform (Frontline

Systems, 2007), we encountered run times of about 7

minutes1 per dot at 400 securities (roughly 2 1/3 hours for

a 20-dot representation). With Matlab’s QUADPROG

routine (Matlab, n.d.), we encountered run times of about

11 minutes per dot at 1,000 securities (roughly 3 1/2 hours

for a 20-dot representation). With LINGO (Schrage, 2007),

which is faster than Matlab, but reads from an Excel spread-

sheet, most of the time we could not get beyond 600 securities

with a dense covariance matrix because of freeze ups from

Excel 2003 on data read in. But with Cplex (2007), things

are much faster. With a dense covariance matrix and 2,000

securities, we were able to obtain run times of about 70

seconds per dot (roughly 20–25 minutes for a 20-dot

representation).

However, dotted representations can generally be created

much more quickly. The proposed approach involves utilizing

an algorithm, such as implemented in the CIOS code described

in Hirschberger, Qi and Steuer (2008), to generate information

as in Tables 2 and 3 about all of an efficient frontier’s hyper-

bolic segments. As reported in that paper, CIOS is of such a

speed that it can often compute all of an efficient frontier’s

hyperbolic segments in less time than it takes Cplex to

compute just a single dot. Although CIOS is the only code cur-

rently demonstrated to operate at such a speed, research by

Niedermayer and Niedermayer (2007) indicates that other well-

tested codes in the same speed-class could soon be available.

With CIOS available, self-contained (doesn’t involve com-

ponents from any external packages), and written in Java for

transportability, we use CIOS to illustrate.

In the following two sections we (a) describe how we

compute the arc length of an efficient frontfier in a cumulative

fashion and (b), with this accomplished, describe a routine for

developing and displaying various dotted representations of an

efficient frontier.

4. TRAPEZOIDAL PROCESS

Fashioned to a hyperbolic segment, a classical method for com-

puting arc length is as follows. Let m denote expected return.

With respect to a point ðsðmÞ;mÞ on hyperbolic segment i,

sðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai;0 þ ai;1mþ ai;2m2

q
m [ ½mlower;mupper� ð3Þ

We now note that when displaying efficient frontiers, the scale

of the vertical axis is typically “magnified” with respect to that of

the horizontal. For instance, suppose a graph’s aspect ratio is 6/5.

That is, its horizontal axis is 20% longer than its vertical axis.

Also, suppose that the range of the scale on horizontal axis is

from .02 to .16 while that on the vertical axis is from .01 to .04.

Thus, the magnification factor would be given by

m ¼ 5

6

ð:16� :02Þ
ð:04� :01Þ

¼ 3:88

Then, taking this into account, the Euclidean norm of the

gradient ðs0ðmÞ;mÞ on hyperbolic segment i is

liðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðai;1 þ 2ai;2mÞ2

4ðai;0 þ ai;1mþ ai;2m2Þ þ m2

s

and the hyperbolic segment’s arc length on the graph is given

by

Li ¼
ðmupper

mlower

liðmÞ dm

Unfortunately, there is no closed form representation of Li.

However, Li may be approximated numerically by the trapezoid

formula (t [ N)

Li �
1

2
hi liðmlowerÞ þ

Xt�1

k¼1

hi liðmlower þ khiÞ

þ 1

2
hi liðmupperÞ ð4Þ

where

hi ¼
mupper � mlower

t

Letting t be a number like 100 and then accumulating the

terms of (4) one-by-one, one hyperbolic segment after the

other, a schedule for accumulated displayed arc length as we

proceed along the efficient frontier, indexed by both m and s,

can be constructed. Using this schedule of accumulated m, s,

and arc length information at many points along the efficient

frontier, dots can be placed on the efficient frontier according

to virtually any m, s, or arc-length pattern.

5. ROUTINE

The routine we have prepared to carry out this paper is written

in Matlab. Perhaps, a more permanent version could be pro-

grammed in Cþþ or Java. It begins by asking for the paths

of two input files. One file contains expected return range

and a0, a1, a2 information for each of the efficient frontier’s

1 All run times in the paper pertain to a 2.66 GHz Dell Core 2 Duo
Desktop with 3GB of RAM at the University of Georgia.
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hyperbolic segments as in Table 2. The other contains all

corner portfolio x-vectors as in Table 3. Described in terms

of parameters to configure a given run, we have

(1) frontierType: Type of frontier to be outputted

¼ 0 smooth curve only

¼ 1 hyperbolic segment endpoints only

¼ 2 equally spaced dots by expected return

¼ 3 equally spaced dots by standard deviation

¼ 4 equally spaced dots by displayed arc length

(2) numDots: Number of dots used to represent efficient fron-

tier when frontierType � 2.

(3) yL and yU: range lower and upper bounds of the values on

the vertical axis

(4) xL and xU: range lower and upper bounds of the values on

the horizontal axis

(5) aspectRatio: length of the vertical axis divided by the

length of the horizontal axis

To demonstrate the approach of the paper, let us first solve for

the efficient frontier of a 500-security problem using CIOS in

the form of Tables 2 and 3. Then, after reading in the infor-

mation in Tables 2 and 3, the routine is run with the following

settings.

frontierType ¼ 0; 1; 2; 3; 4

numDots ¼ 30

yU ¼ :035

yL ¼ :005

xL ¼ :000

xU ¼ :085

aspectRatio ¼ 5=4

This produces five output graphs. Setting frontierType ¼ 0 pro-

duces the efficient frontier in smooth form. The graph produced

is actually the one in Figure 1. Setting frontierType ¼ 1 pro-

duces Figure 3 which is the dotted representation resulting

from the efficient frontier’s 55 hyperbolic segment endpoints.

Setting frontierType ¼ 2 produces Figure 4 which a 30-dot

equally spaced by expected return representation of the efficient

frontier, and setting frontierType ¼ 3 produces Figure 5 which

is a 30-dot equally spaced by standard deviation representation

of the efficient frontier. Note the consequent relative sparseness

of the dots at the top of the frontier in Figure 4 and the relative

sparseness of the dots at the bottom of the frontier in Figure 5.

Using the magnification factor of m ¼ 2.266 which is com-

puted inside the routine, setting frontierType ¼ 4 produces the

30-dot equally spaced by displayed arc-length representation of

the efficient frontier as shown in Figure 6.

With regard to CPU run time requirements, let us begin by

commenting on the 30-dot equally spaced by expected return

representation of Figure 4. Whereas it takes Cplex, as shown

in Hirschberger, Qi and Steuer (2008), about 3 seconds to

solve for each dot (roughly 90 seconds for the 30-dot represen-

tation), it takes the approach of this paper only about 1.5 seconds

total (about 1 second for CIOS to generate all hyperbolic infor-

mation and about 0.5 seconds for the routine). Furthermore, the

time difference tends to become more pronounced the larger the

application. For instance, on a 1,500-security dense covariance

Figure 4. Resulting from frontierType ¼ 2, this is the 30-dot equally

spaced by expected return representation of the efficient frontier of the

n ¼ 500 problem

Figure 3. Resulting from frontierType ¼ 1, this is the 55-dot represen-

tation of the efficient frontier of the n ¼ 500 problem given by the endpoints

of the problem’s 54 hyperbolic segments

Figure 5. Resulting from frontierType ¼ 3, this is the 30-dot equally

spaced by standard deviation representation of the efficient frontier of the

n ¼ 500 problem
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matrix problem experiment that we conducted, it takes Cplex

about 40 seconds to solve for each dot (roughly 20 minutes

for a 30-dot representation), but it only takes the approach of

this paper about 26 seconds total (about 25 seconds for CIOS

and about 1 second for the routine).

With regard to the 30-dot equally spaced by standard devi-

ation representation of Figure 5, the difference is even more

pronounced as Cplex would have to use its second-order cone

solver which takes a little longer per dot. Note that both

Premium Solver Platform and Matlab essentially fall out of

the picture at about 400 and 800 securities, respectively,

because of excessive run time.

With regard to the 30-dot equally spaced by displayed

arc-length representation of Figure 6, this can only be carried

out by the approach of this paper as it would be impossible

to know how to set up (1) or (2) beforehand to produce such

a result.

6. CONCLUDING REMARKS

Dotted representations can often be the most practical way of

communicating an efficient frontier. But creating dotted rep-

resentations of an efficient frontier has been a laborious

process, typically taking at least one quadratic optimization

per dot. As discussed in Sections 3 and 5, this can take con-

siderable time as problem size increases. But with the approach

of this paper, CPU time requirements can be reduced by at least

an order of magnitude.

In addition, the approach of this paper allows certain things

to be done that either cannot be done with the e-constraint or

risk tolerance factor methods, or would take considerable

extra time. One is that it is possible to create dotted distri-

butions, like equally spaced by arc length, that are not possible

with either the e-constraint or risk tolerance factor methods.

Another pertains to flexibility. Suppose that after running

CIOS and creating a 30-dot representation, one decides that a

40-dot representation would be better. Because few dots

would likely be reusable for the 40-dot representation, this

would essentially require the e-constraint or risk tolerance

factor methods to start again from scratch. But from the infor-

mation generated by CIOS, dotted distributions can be created

and modified virtually at will with only very little consequence

with regard to computer run time, even on portfolio problems

with up to thousands of securities.
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