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Abstract In standard mean-variance bi-criterion portfolio selection, the efficient set is a
frontier. While it is not yet standard for there to be additional criteria in portfolio selection,
there has been a growing amount of discussion in the literature on the topic. However, should
there be even one additional criterion, the efficient frontier becomes an efficient surface.
Striving to parallel Merton’s seminal analytical derivation of the efficient frontier, in this
paper we provide an analytical derivation of the efficient surface when an additional linear
criterion (on top of expected return and variance) is included in the model addressed by
Merton. Among the results of the paper there is, as a higher dimensional counterpart to
the 2-mutual-fund theorem of traditional portfolio selection, a 3-mutual-fund theorem in tri-
criterion portfolio selection. 3D graphs are employed to stress the paraboloidic/hyperboloidic
structures present in tri-criterion portfolio selection.

Keywords Multiple criteria optimization · Tri-criterion portfolio selection · Minimum-
variance frontier · e-Constraint method · Efficient surface · Paraboloids

1 Introduction

In investments, portfolio selection is the problem of allocating a given sum of money to
securities drawn from a designated pool of securities for the purpose of maximizing the
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future return of the portfolio thus formed, or, that is, for the purpose of maximizing portfolio
return.With portfolio return a random variable, the foundation for the solution of the problem
of portfolio selection was laid out by Markowitz (1952) in the form of his famous mean-
variance model. In this model, “mean” refers to the endeavor to maximize the expected return
of the portfolio return random variable, and “variance,” which is Markowitz’s measure for
risk, refers to the endeavor to minimize the variance of the portfolio return random variable.
Hence, the so-called mean-variance model is a bi-criterion optimization problem with, as its
two objectives, variance to be minimized and expected return to be maximized.

While mean-variance has maintained its status as the predominant model in portfolio
selection for over sixty years, it has not been without attempts to extend its scope. One such
attempt arose in the 1970s. It is the attempt to include in the portfolio selection process a
criterion beyond expected return and variance. Lee (1972) proposed taking dividends into
account along with expected return and variance when constructing a portfolio. Stone (1973)
proposed skewness as a different kind of third criterion possibility. With only occasional
articles on this following, one such being by Spronk et al. (1981), the idea of additional criteria
in portfolio selection essentially remained on the back burner of portfolio selection until the
mid-1990s when, for instance, Konno and Suzuki (1995) revisited skewness, Chow (1995)
considered tracking error as a third criterion, and Speranza (1996) and others mentioned
in different ways transaction costs. Soon several survey-type articles appeared such as by
Spronk and Hallerbach (1997), Bana e Costa and Soares (2001), and Steuer and Na (2003)
giving further impetus to the idea of additional objectives.

While skewness and tracking error are difficult to implement because of their nonlinear-
ities, additional criteria that can be modeled linearly are much more tractable. Recognizing
this, the literature then saw a string of contributions involving additional linear criteria and
activity on this in the literature has only been steadily increasing. For example, Lo et al.
(2003) examined liquidity in this regard, Hallerbach et al. (2004) considered social respon-
sibility, and Ehrgott et al. (2004) took into account the star ranking of a mutual fund. In the
list contained in Steuer et al. (2007), the amount invested in R&D (see Guerard and Mark
2004) and growth-in-sales (Ziemba 2006) are also enumerated as possible additional crite-
ria. On the methodological front of how to handle additional criteria in portfolio selection,
there are among others the offerings by Ben Abdelaziz et al. (2007), Xidonas et al. (2012),
Hirschberger et al. (2013), and Aouni et al. (2014).

However, as of most recently, the additional criterion that appears to be attracting the
most attention is social responsibility. Another term often used interchangeably with social
responsibility is sustainability. Over the past few years many papers have been written
about social responsibility in portfolio selection including those by Ballestero et al. (2012),
Dorfleitner et al. (2012), Bilbao-Terol et al. (2013), Calvo et al. (2014), Cabello et al. (2014),
Pérez-Gladish et al. (2013), Utz et al. (2014), and Utz et al. (2015).

While substantial progress has been made as described above, it is quite possible that
multiple criteria in portfolio selection is still in its early stages. With criteria beyond expected
return and variance causing the efficient frontier to become an efficient surface, many new
questions about the structure of the efficient surface and its relationship to other key quantities
in portfolio selection arise. While it is certainly possible to compute individual efficient
solutions by means of inserting any additional criterion into the problem as a constraint, this
only generates partial information. But to appreciate the full expanse of potentially optimal
choices offered by a problem, it is necessary to compute the entire efficient surface. Whereas
Merton (1972) has provided a very nice analytical derivation of the bi-criterion efficient
frontier of traditional portfolio selection, the purpose of this paper is to provide a similar
analytical derivation but of the efficient surface of a tri-criterion portfolio selection problem.

123

Author's personal copy



Ann Oper Res

The paper is organized as follows. In Sect. 2 we touch on multiple criteria optimization
and summarize many of the main results of the efficient frontier ofMerton’s model. In Sect. 3
we formulate our tri-criterion model and analytically derive the minimum-variance surface.
In Sect. 4 we derive the portion of the minimum-variance surface that is the efficient surface,
and in Sect. 5 we provide an illustrative numerical example. Also in Sect. 5, we are able to
illustrate the paraboloidic/hyperboloidic nature of the efficient surface by means of several
3D graphs. In Sect. 6 we end the paper with some concluding remarks.

2 Multiple criteria optimization and portfolio selection

Webriefly reviewmultiple criteria optimization and portfolio selectionmodels in this section.
A multiple objective optimization problem can be formulated as

max {z1 = f1(x)}
...

max {zk = fk(x)}
s.t. x ∈ S (1)

where k is the number of objectives and S ⊂ R
n is the feasible region in decision space.

Because (1) has more than one objective, there is another version of the feasible region, that
being Z ⊂ R

k in criterion space, where Z = {z | zi = fi (x), x ∈ S}with reference to which
z = (z1, . . . , zk) is a criterion vector. In criterion space, z̄ ∈ Z is nondominated iff there
does not exist an x ∈ S such that fi (x) ≥ fi (x̄) for all i , with at least one of the inequalities
strict. Otherwise, z̄ is dominated. The set of all nondominated criterion vectors is called the
nondominated set and is designated N . In decision space, x̄ ∈ S is efficient iff its criterion
vector z̄ = ( f1(x̄), . . . , fk(x̄)) is nondominated. Otherwise, x̄ is inefficient. The set of all
efficient points is called the efficient set and is designated E . In the form above, easier said
than done, the purpose of (1) is to compute all of N and E for use by the decision maker.
More on multiple criteria optimization can be found in Miettinen (1999) and Ehrgott (2005).

One of the oldest, if not the oldest, mechanism for addressing (1) is the e-constraint
approach. In this approach, all of the objectives except one are converted to constraints such
as in the following

max {z1 = f1(x)}
s.t. f2(x) = e2

...

fk(x) = ek

x ∈ S (2)

where the ei are pre-chosen values of all of the objectives that have been re-modeled as
constraints. Typically, (2) is solved many times for different configurations of the ei .

In Markowitz (1952), his landmark portfolio selection formulation, given in bi-criterion
format, is
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min{z1 =xTΣx} variance

max{z2 =μT x} expected return

s.t. x ∈ S (3)

where x ∈ R
n , n is number of securities in the designated pool, the xi components of x are

the proportions of capital to be allocated to security i , Σ is the problem’s covariance matrix,
and μ is the problem’s vector of individual security expected returns.

The field of finance calls the N of (3) the “efficient” frontier, but we will henceforth call it
the nondominated frontier. This is so the terms efficient and inefficient can be reserved only
for distinguishing among x-vectors (i.e., portfolios) in decision space. Thus, in accordance
with multiple criteria optimization, the terms dominated and nondominated will only be used
in connection with vectors in criterion space, and the terms efficient and inefficient will only
be used in connection with vectors in decision space.

InMerton (1972),Merton provides elegant analytical derivations of many of the quantities
and properties of the nondominated and efficient sets of the following portfolio model

min{z1 = xTΣx}
max{z2 = μT x}
s.t. 1T x = 1 (4)

where 1 is a vector of ones. On one hand, the unlimited nature of the xi weights is unrealistic,
but on the other, the analyticity of the derived results from (4) brings substantial advantages
to research and teaching (as seen for example in the text by Huang and Litzenberger, 1988).
Becausewewill be parallellingmany of the results ofMerton (1972), but with a third criterion
included, we will now summarize many of the most important points of Merton so as to serve
as a good debarkation point for this paper.

AssumingΣ positive definite,Mertonbeginswith the following e-constraint version of (4)

min{ 12xTΣx}
s.t. μT x = z2

1T x = 1

where xTΣx is variance and z2 is an arbitrary value of expected return. Then from the
Lagrangian

L(x, g1, g2) = 1
2x

TΣx + g1(z2 − μT x) + g2(1 − 1T x)

where the gi are the multipliers, the following system[
z2
1

]
=

[
μTΣ−1μ μTΣ−11
1TΣ−1μ 1TΣ−11

] [
g1
g2

]
=

[
a c
c f

] [
g1
g2

]
(5)

is obtained. With a, c and f defined as in (5), and the determinant D = a f − cc of the 2× 2
matrix positive as in Merton (1972), the minimum-variance frontier of (4) is the parabola

z1 = 1

D

(
f z22 − 2cz2 + a

)
(6)

Such a parabola is given in Fig. 1. The minimum-variance point zmv on the parabola and its
corresponding portfolio xmv in decision space are given by

zmv =
(
1

f
,

c

f

)
xmv = 1

f
Σ−11
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Fig. 1 A minimum-variance
frontier plotted in (variance,
expected return)-space where it is
a parabola. The portion of the
parabola from zmv upward is the
nondominated frontier in this
space

zmv

variance

ex
pe

ct
ed

re
tu
rn

In (variance, expected return)-space, the nondominated frontier is the upper part of the
parabola starting at zmv . The set of all portfolios that are inverse images of points on the
nondominated frontier constitutes the efficient set and is given by

{
x ∈ R

n | x = xmv + λ

(
Σ−1μ − c

f
Σ−11

)
, λ ≥ 0

}
(7)

Note that the efficient set of (7) is an unbounded line segment emanating from xmv .
Regarding computational complexity, the most costly part of (6) or (7) is the calculation

of the inverse of Σ , which is O(n3) when using standard Gauss–Jordan elimination. All
other operations, the most costly being n × n by n × 1 matrix multiplications, are at most
O(n2). Thus, the total asymptotic complexity of computing the nondominated frontier and
the efficient portfolios in bi-criterion portfolio selection is O(n3).

With it common to display the nondominated frontier in (standard deviation, expected
return)-space, we have Fig. 2. In this figure, because of the change from variance to standard
deviation along the horizontal axis, the parabola becomes a hyperbola, with the upper part
of the hyperbola starting at the minimum-standard deviation point now showing as the non-
dominated frontier. The dashed lines in the figure are the asymptotes of the hyperbola given
by

z2 = c

f
±

√
Dz1
f

for z1 ≥ 0

where
√
z1 is standard deviation.

Also covered in Merton (1972) is the 2-mutual-fund theorem. The theorem is as follows.
Let x1 and x2 be any two portfolios whose criterion vectors are on the minimum-variance (or
minimum-standard deviation) frontier, and let x be any other portfolio (i.e., any vector in R

n

whose components sum to one). Then, the criterion vector of x is on the minimum-variance
(or minimum-standard deviation) frontier iff x can be formed as a linear combination of x1

and x2 whose weights sum to one.
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Fig. 2 The same
minimum-variance frontier
plotted in (standard deviation,
expected return)-space where it is
a hyperbola. The upper part of
the hyperbola is the
nondominated frontier in this
space. The dashed lines are the
asymptotes of the hyperbola
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3 Deriving the minimum-variance surface

Following the literature with regard to the growing interest in additional criteria in portfolio
selection, let us add an additional objective to (4) to form the following tri-criterion model

min {z1 = xTΣx}
max {z2 = μT x}
max {z3 = �T x}
s.t. 1T x = 1 (8)

While there are many candidates for a third criterion as discussed in Steuer et al. (2007),
let us motivate our third criterion with portfolio liquidity, an arbitrary choice, for illustrative
purposes. Hence, for liquidity, we have the �-vector in (8). As with the solution to model (4),
the solution to (8) is all of its nondominated and efficient sets N and E . In analyzing (8), we
make the following assumptions.

Assumption 1 Matrix Σ is positive definite.

Assumption 2 Vectors μ, � and 1 are linearly independent.

Beginning as in the bi-criterion case, we form the following e-constraint representation of
our tri-criterion model

min { 12xTΣx}
s.t. μT x = z2

�T x = z3

1T x = 1 (9)

where xTΣx is variance, and z2 and z3 are arbitrary values of expected return and liquidity,
respectively. The union of all criterion vectors (z1, z2, z3) resulting from the optimal solutions
of (9) for all values of z2 and z3 is the minimum-variance surface of (8). This is seen as a
generalization of the minimum-variance frontier of (4). To begin the process of solving (9)
for all values of z2 and z3, we take the Lagrangian
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L(x, g2, g3, g4) = 1
2x

TΣx + g2(z2 − μT x) + g3(z3 − �T x) + g4(1 − 1T x)

where the gi are multipliers. Because xTΣx is strictly convex by virtue of the positive
definiteness of Σ , L(x, g2, g3, g4) is strictly convex and x is the minimizing solution of (9)
iff

∂L

∂x
= Σx − g2μ − g3� − g41 = 0

∂L

∂g2
= z2 − μT x = 0

∂L

∂g3
= z3 − �T x = 0

∂L

∂g4
= 1 − 1T x = 0

Premultiplying the first equation by Σ−1 enables us to obtain x = (g2Σ−1μ + g3Σ−1� +
g4Σ−11). Substituting this into the last three equations of the above yields

g2μ
TΣ−1μ + g3μ

TΣ−1� + g4μ
TΣ−11 = z2

g2μ
TΣ−1� + g3�

TΣ−1� + g4�
TΣ−11 = z3

g2μ
TΣ−11 + g3�

TΣ−11 + g41TΣ−11 = 1

We introduce notation C and express the three equations above in matrix form as

C

⎡
⎣g2
g3
g4

⎤
⎦ =

⎡
⎣z2
z3
1

⎤
⎦ (10)

where

C =
⎡
⎣μTΣ−1μ μTΣ−1� μTΣ−11

μTΣ−1� �TΣ−1� �TΣ−11
μTΣ−11 �TΣ−11 1TΣ−11

⎤
⎦ =

⎡
⎣a b c
b d e
c e f

⎤
⎦

We now demonstrate the following property of C.

Lemma 1 Matrix C is positive definite.

Proof Because Σ−1 is positive definite, it can function as a covariance matrix. There exists
a random vector v ∈ R

n such that the covariance matrix of v is Σ−1. In this way, C is
the covariance matrix of the random vector

[
μ � 1

]T v with C = [
μ � 1

]T
Σ−1

[
μ � 1

]
.

Thus, for all y ∈ R
3 with y �= 0, we have yTCy = yT

[
μ � 1

]T
Σ−1

[
μ � 1

]
y. Define

w = [
μ � 1

]
y. By Assumption 2, w �= 0. Therefore, yTCy = wTΣ−1w > 0. Thus, C is

positive definite. ��

By the positive definiteness of C, its determinant |C| > 0, and

C−1 = 1

|C|

⎡
⎣d f − ee ce − b f be − cd
ce − b f a f − cc bc − ae
be − cd bc − ae ad − bb

⎤
⎦
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Premultiplying (10) by C−1 gives us
⎡
⎣g2
g3
g4

⎤
⎦ = C−1

⎡
⎣z2
z3
1

⎤
⎦ = 1

|C|

⎡
⎣z2(d f − ee) + z3(ce − b f ) + (be − cd)

z2(ce − b f ) + z3(a f − cc) + (bc − ae)
z2(be − cd) + z3(bc − ae) + (ad − bb)

⎤
⎦
3×1

Substituting the above gi into the previously derived x = (g2Σ−1μ + g3Σ−1� + g4Σ−11)
yields

x = 1

|C|
[
(z2(d f − ee) + z3(ce − b f ) + (be − cd))Σ−1μ

+(z2(ce − b f ) + z3(a f − cc) + (bc − ae))Σ−1�

+(z2(be − cd) + z3(bc − ae) + (ad − bb))Σ−11
]

or

x = x0 + z2d2 + z3d3 (11)

where

x0 = 1

|C|
[
(be − cd)Σ−1μ + (bc − ae)Σ−1� + (ad − bb)Σ−11

]
(12)

d2 = 1

|C|
[
(d f − ee)Σ−1μ + (ce − b f )Σ−1� + (be − cd)Σ−11

]
(13)

d3 = 1

|C|
[
(ce − b f )Σ−1μ + (a f − cc)Σ−1� + (bc − ae)Σ−11

]
(14)

We interpret x0 as the minimizing solution of (9) when z2 = 0 and z3 = 0. In this way,
{
x ∈ R

n | x = x0 + z2d2 + z3d3, z2, z3 ∈ R
}

(15)

is the set of all optimal solutions of (9) for all values of z2 and z3, with the three vectors on
the right in the set having the following property.

Lemma 2 Vectors x0, d2 and d3 are linearly independent.

Proof Letting h0, h2, h3 ∈ R, by (12)–(14), we have

h0x0 + h2d2 + h3d3 = h0
|C|

[
(be − cd)Σ−1μ + (bc − ae)Σ−1� + (ad − bb)Σ−11

]

+ h2
|C|

[
(d f − ee)Σ−1μ + (ce − b f )Σ−1� + (be − cd)Σ−11

]

+ h3
|C|

[
(ce − b f )Σ−1μ + (a f − cc)Σ−1� + (bc − ae)Σ−11

]

After rearrangement, we have

h0x0 + h2d2 + h3d3 = 1

|C|
{
[(d f − ee)h2 + (ce − b f )h3 + (be − cd)h0]Σ

−1μ

+ [(ce − b f )h2 + (a f − cc)h3 + (bc − ae)h0]Σ
−1�

+ [(be − cd)h2 + (bc − ae)h3 + (ad − bb)h0]Σ
−11

}
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By Assumptions 1 and 2, Σ−1μ, Σ−1� and Σ−11 are linearly independent. Therefore, the
necessary and sufficient condition of h0x0 + h2d2 + h3d3 = 0 is

(d f − ee)h2 + (ce − b f )h3 + (be − cd)h0 = 0

(ce − b f )h2 + (a f − cc)h3 + (bc − ae)h0 = 0

(be − cd)h2 + (bc − ae)h3 + (ad − bb)h0 = 0

With the above reducing toC−1

⎡
⎣h2
h3
h0

⎤
⎦ = 0, andC−1 nonsingular, the only possibility is that

h0 = h2 = h3 = 0. Therefore, x0, d2 and d3 are linearly independent. ��
With (15) being the set of all portfolios that generate the minimum-variance surface, it is

seen that (15) is an affine set, in particular, being a 2-dimensional hyperplane in R
n offset

from the origin by x0. From this, as an extension of the 2-mutual-fund theorem of bi-criterion
portfolio selection mentioned in Sect. 2, we can state the following 3-mutual-fund theorem
of tri-criterion portfolio selection.

Theorem 1 Let x1, x2 and x3 be any three affinely independent1 points from (15). Then, any
portfolio that generates a point on the minimum-variance surface can be formed by some
linear combination of x1, x2 and x3 whose weights sum to one.

In criterion space, the minimum-variance surface of model (8) is obtained by substituting
(11) into z1 = xTΣx to yield

z1 = d2
T
Σd2z22 + 2d2

T
Σd3z2z3 + d3

T
Σd3z23 + 2d2

T
Σx0z2 + 2d3

T
Σx0z3 + x0

T
Σx0

(16)

where the six coefficients of (16) are specified in detail as

d2
T
Σd2 = 1

|C|2
(
ad2 f 2 − 2ade2 f + ae4 − b2d f 2 + b2e2 f + 2bcde f − 2bce3 − c2d2 f + c2de2

)

d2
T
Σ d3 = 1

|C|2
(
−abd f 2 + abe2 f + acde f − ace3 + b3 f 2 + bc2d f − 3b2ce f + 2bc2e2 − c3de

)

d3
T
Σ d3 = 1

|C|2
(
a2d f 2 − a2e2 f − ab2 f 2 + 2abce f − 2ac2d f + ac2e2 + b2c2 f − 2bc3e + c4d

)

d2
T
Σ x0 = 1

|C|2
(
abde f − abe3 − acd2 f + acde2 − b3e f + b2cd f + 2b2ce2 − 3bc2de + c3d2

)

d3
T
Σ x0 = 1

|C|2
(
−a2de f + a2e3 + ab2e f + abcd f − 3abce2 + ac2de − b3c f + 2b2c2e − bc3d

)

x0
T
Σ x0 = 1

|C|2
(
a2d2 f − a2de2 − 2ab2d f + ab2e2 + 2abcde − ac2d2 − 2b3ce + b4 f + b2c2d

)

Let us now comment on the notion of an elliptic paraboloid. In (z1, z2, z3)-space, the expres-
sion z1 = α2z22 + α3z23, where α2 ≥ 0 and α3 ≥ 0, is an elliptic paraboloid in standard form.
The paraboloid is non-degenerate, if both α2 > 0 and α3 > 0. Otherwise the paraboloid is
degenerate. For a given value ζ > 0 of z1, we obtain α2

ζ
z22 + α3

ζ
z23 = 1 in (z2, z3)-space.

This is recognized as an ellipsoid.

Theorem 2 The minimum-variance surface (16) of the tri-criterion portfolio problem of (8)
is a non-degenerate elliptic paraboloid.

1 Points x0, x1, . . . , xm are affinely independent if x1 − x0, . . . , xm − x0 are linearly independent.
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Proof We rewrite (16) as

z1 = [
z2 z3 1

]
P

⎡
⎣z2
z3
1

⎤
⎦ where P =

⎡
⎢⎣
d2TΣd2 d2TΣd3 d2TΣx0

d2TΣd3 d3TΣd3 d3TΣx0

d2TΣx0 d3TΣx0 x0TΣx0

⎤
⎥⎦ .

As Σ is a covariance matrix, let r ∈ R
n designate the random vector associated with it.

Form a new random vector
[
d2 d3 x0

]T r. Let P be its covariance matrix. For all y ∈ R
3

with y �= 0, yTPy = yT
[
d2 d3 x0

]T
Σ

[
d2 d3 x0

]
y. Let w = [

d2 d3 x0
]
y and w �= 0 by

Lemma 2. Then yTPy = wTΣw > 0, becauseΣ is positive definite. Therefore, P is positive
definite.

With P positive definite, all of its eigenvalues v1, v2 and v3 are positive. With P real

and symmetric, there exists a normal matrix N such that P = NT

⎡
⎣v1 0 0
0 v2 0
0 0 v3

⎤
⎦N. Hence, the

minimum-variance surface (16) is z1 = [
z2 z3 1

]
NT

⎡
⎣v1 0 0
0 v2 0
0 0 v3

⎤
⎦N

⎡
⎣z2
z3
1

⎤
⎦. Letu = N

⎡
⎣z2
z3
1

⎤
⎦.

Then, z1 = uT

⎡
⎣v1 0 0
0 v2 0
0 0 v3

⎤
⎦u = v1u21 + v2u22 + v3u23. With v1, v2, v3 > 0, after a change of

coordinate system, we see the paraboloid as non-degenerate. ��

A depiction of a minimum-variance surface is given in Fig. 3. The task of specifying the
portion of the paraboloid that is the nondominated set of our tri-criterionmodel (8) still awaits
us.

4 Deriving the nondominated surface

In order to compute the efficient and nondominated sets of model (8), we utilize a weighted-
sums approach to form

min
{
1
2x

TΣx − λ2μ
T x − λ3�

T x
}

λ2, λ3 ≥ 0

s.t. 1T x = 1 (17)

whose Langrangian is

L(x, g) = 1
2x

TΣx − λ2μ
T x − λ3�

T x + g(1 − 1T x)

where g is its multiplier. Because xTΣx is strictly convex, L(x, g) is strictly convex and x
is the minimizing solution to (17) if and only if it satisfies

∂L

∂x
= Σx − λ2μ − λ3� − g1 = 0

∂L

∂g
= 1 − 1T x = 0
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Premultiplying the first equation by Σ−1 yields x = λ2Σ
−1μ + λ3Σ

−1� + gΣ−11. Substi-
tuting x into the second equation produces

g = 1

1TΣ−11

(
1 − λ21TΣ−1μ − λ31TΣ−1�

)
= 1

f
(1 − λ2c − λ3e)

Noting that f > 0, the above is well-defined. Substituting g into x = (λ2Σ
−1μ+λ3Σ

−1�+
gΣ−11) yields

x = λ2Σ
−1μ + λ3Σ

−1� + 1

f
(1 − λ2c − λ3e)Σ−11

or

x = xmv + λ2Δ
2 + λ3Δ

3 (18)

where

xmv = 1

f
Σ−11 (19)

Δ2 = Σ−1μ − c

f
Σ−11 (20)

Δ3 = Σ−1� − e

f
Σ−11 (21)

Notice that the expression for xmv , the minimum-variance portfolio, is the same for both
Merton’s model (4) and the tri-criterion model (8) of this paper. The efficient set of (8) can
then be expressed as{

x ∈ R
n | x = xmv + λ2Δ

2 + λ3Δ
3, λ2, λ3 ≥ 0

}
(22)

Lemma 3 Vectors Δ2 and Δ3 are linearly independent.

Proof For h2, h3 ∈ R we have

h2Δ
2 + h3Δ

3 = h2

(
Σ−1μ − c

f
Σ−11

)
+ h3

(
Σ−1� − e

f
Σ−11

)

= h2Σ
−1μ + h3Σ

−1� − ch2 + eh3
f

Σ−11 (23)

SinceΣ−1μ,Σ−1� andΣ−11 are linearly independent, the right-hand side of (23) is zero iff
h2 = h3 = 0, and − ch2+eh3

f = 0. Since only h2 and h3 are needed, Δ2 and Δ3 are linearly
independent. ��

Therefore, generated by Δ2 and Δ3, E is a translated 2-dimensional cone. Furthermore,
note that the Δ2 generator of (22) is the same as the single generator of (7). This means that
any portfolio efficient in model (4) is efficient in model (8), and this immediately enables us
to state the following theorem.

Theorem 3 The efficient set (7) of the bi-criterion model (4) is a subset of the efficient set
(22) of the tri-criterion model (8).

Thus by adding a linear criterion, the investor’s efficient set becomes a superset of its former
self. By substituting (18) into model (8) we are able to demonstrate, as a function of λ2, λ3 ≥
0, the nondominated set of (8) in the form of the following set of parametric equations
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z1 = (
xmv + λ2Δ

2 + λ3Δ
3)T Σ

(
xmv + λ2Δ

2 + λ3Δ
3)

z2 = μT (
xmv + λ2Δ

2 + λ3Δ
3)

z3 = �T
(
xmv + λ2Δ

2 + λ3Δ
3) (24)

Whereas the nondominated set ofMerton’s bi-criterion model (4) is a portion of the parabolic
minimum-variance frontier (6), the nondominated set of the tri-criterion model is a portion
of the paraboloidic minimum-variance surface (16).

Comparing the computational complexity of tri-criterion portfolio selection to the com-
putational complexity of bi-criterion portfolio selection, notice that for computing (22) and
(24), the calculation of the inverse of Σ is still the most costly part, which is O(n3) when
using standard Gauss–Jordan elimination. As in bi-criterion portfolio selection, all other
operations are at most O(n2). Thus, the total asymptotic complexity of computing the non-
dominated surface and the efficient portfolios in tri-criterion portfolio selection is O(n3),
which is the same as in bi-criterion portfolio selection. This means that as long as there are
no further restrictions on the portfolio weights, adding a third linear criterion to standard
portfolio selection comes at virtually no cost.

5 Illustrative numerical example

We now provide a numerical example along with graphs to illustrate the results of this paper.
To equip the example, data from the Center for Research in Security Prices (CRSP) were
obtained over the period January 2009 to December 2013 on four stocks chosen from the
Dow Jones Industrial Average index: American Express (AXP), Disney (DIS), Johnson and
Johnson (JNJ), and Coca Cola (KO). Monthly data over the period were downloaded for
the covariance matrix Σ and the individual security expected return vector μ of model (8).
Also, for the model’s liquidity vector �, we downloaded monthly closing bid, closing asked,
and closing prices so as to compute as our liquidity measure the negative of each stock’s

bid-asked spread asked price−bid price
closing price . With all of this, we have

μ =

⎡
⎢⎢⎣
0.0355
0.0240
0.0109
0.0135

⎤
⎥⎥⎦ � =

⎡
⎢⎢⎣

−0.0003
−0.0003
−0.0002
−0.0002

⎤
⎥⎥⎦ Σ =

⎡
⎢⎢⎣
0.0182 0.0059 0.0016 0.0008
0.0059 0.0050 0.0014 0.0014
0.0016 0.0014 0.0018 0.0010
0.0008 0.0014 0.0010 0.0019

⎤
⎥⎥⎦ (25)

Utilizing the μ, � and Σ of (25) in (12)–(14), we obtain

x0 =

⎡
⎢⎢⎣

0.7643
−2.7643
0.4959
2.5041

⎤
⎥⎥⎦ d2 =

⎡
⎢⎢⎣

61.8479
−61.8479
−111.0574
111.0574

⎤
⎥⎥⎦ d3 = 104 ×

⎡
⎢⎢⎣

0.7553
−1.7553
−0.6975
1.6975

⎤
⎥⎥⎦

With these vectors inserted, in accordance with (15), the following set
{
x ∈ R

4 | x = x0 + z2d2 + z3d3, z2, z3 ∈ R
}

gives the 2-dimensional hyperplane of portfolios in x-space that generates the minimum-
variance surface. And by (16), we have

z1=9.5778 × 105z22+1.1396 × 104z2z3+53.5843z23+242.7541z2+0.9582z3 + 0.0198
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Fig. 3 The portion of the paraboloidic minimum-variance surface of the illustrative numerical example for
variance z1 ≤ .01
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Fig. 4 The portion of the minimum-variance surface that is the nondominated surface for variance z1 ≤ .01

as the equation of the elliptic paraboloid that is the minimum-variance surface. Graphing
this, the minimum-variance surface is portrayed in Fig. 3.

Now for the nondominated surface. Utilizing the μ, � and Σ of (25) in (19)–(21), we
obtain

xmv =

⎡
⎢⎢⎣

0.0158
−0.0140
0.5210
0.4772

⎤
⎥⎥⎦ Δ2 =

⎡
⎢⎢⎣

0.8591
2.1633

−3.5338
0.5114

⎤
⎥⎥⎦ Δ3 =

⎡
⎢⎢⎣

0.0028
−0.0312
0.0137
0.0147

⎤
⎥⎥⎦

With these vectors inserted, in accordance with (18), the following set{
x ∈ R

4 | x = xmv + λ2Δ
2 + λ3Δ

3, λ2, λ3 ≥ 0
}

(26)

gives the 2-dimensional translated cone of efficient portfolios in x-space that generates the
portion of the minimum-variance surface that is the nondominated surface. By substituting
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Fig. 5 Cross-section taken at variance z1 = .01 showing the rotated nature of the minimum-variance surface

the vectors of the efficient set (26) into model (8), we obtain the nondominated surface as
shown in gray in Fig. 4.

Notice the rightmost oval seen in Fig. 4. It is the cross-section of the minimum-variance
surface with constant variance z1 = 0.01. It is shown more directly in Fig. 5. As seen, the
major axis of the ellipse is not parallel to either the z2 or z3 axis. Thus, the minimum-variance

surface is rotated. This is a consequence of the fact that the d2TΣd3 coefficient of the z2z3
term in the expression for the elliptic paraboloid above is not equal to 0. The heavier line
between z1 and z2 inclusive is the portion of the ellipse that is nondominated.

As standard deviation is often more interpretable than variance (as standard deviation is
given in the same units as expected return), we now look at our plotting situation in terms
of standard deviation. Whereas the parabola of Fig. 1 becomes the hyperbola of Fig. 2 when
variance is changed to standard deviation inMerton’s bi-criterionmodel (4), the paraboloid of
Fig. 3 becomes the hyperboloid seen in Fig. 6 when variance is changed to standard deviation
in our tri-criterion model (8).

Denoting standard deviation by z∗1 = √
z1, the hyperboloid in given by

z∗1 =
√
9.5778 × 105z22+1.1396 × 104z2z3+53.5843z23+242.7541z2+0.9582z3+0.0198

While a hyperbola (as in Merton’s model) is surrounded by only 2 asymptotes, a hyperboloid
is surrounded by an asymptotic cone. Such an asymptotic cone can be obtained by shifting
the vertex of the paraboloid that corresponds to the hyperboloid in the z1 direction to z1 = 0.
Since the vertex of the minimum-variance paraboloid is the minimum-variance point, this
involves a shift of zmv

1 = 1
f = 1.4206 × 10−3 in our example. Thus, the asymptotic cone is

given by

√
(z∗1)2 + 1.4206 × 10−3

=
√
9.5778 × 105z22+1.1396 × 104z2z3+53.5843z23+242.7541z2+0.9582z3+0.0198
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Fig. 6 The portions of the hyperboloidic minimum-standard deviation surface and nondominated surface of
the illustrative numerical example for standard deviation

√
z1 ≤ .10

−0.02%

−0.04%

0% 2% 4% 6% 8% 10%

−1%

0.5%

2%

3.5%

liq
uid

ity
standard deviation

ex
pe

ct
ed

re
tu
rn

Fig. 7 Figure 6 with enclosing asymptotic cone for standard deviation
√
z1 ≤ .10

or equivalently

(z∗1)2 = 9.5778 × 105z22 + 1.1396 × 104z2z3 + 53.5843z23
+ 242.7541z2 + 0.9582z3 + 0.0184

How the asymptotic cone encloses the hyperboloidic minimum-standard deviation surface
and nondominated surface is shown in Fig. 7. The dot in the liquidity, expected return plane
is the origin of the cone. This ends our illustrative example.

6 Concluding remarks

The advantage of the analytical derivation of this paper for a tri-criterion mean-variance
portfolio selection problem whose third criterion is linear is that any defined point on the
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nondominated surface as well as a full mathematical specification of the nondominated sur-
face can be computed directly by means of a formula. That is, no mathematical programming
is required. With the most difficult part of any of the formulas being the inverse of the covari-
ance matrix, and with Matlab able to compute the inverse of, say, a 500 × 500 covariance
matrix in only a few hundredths of a second, this means that any particular portfolio result can
generally be obtained analytically in nearly unnoticeable time on that platform. Of course,
as in Merton (1972), but for the tri-criterion situation, this is only for problems that have
a single equality constraint and an invertible covariance matrix. If the covariance matrix is
not invertible or the tri-criterion problem has an inequality constraint, then mathematical
programming is required, and any desired point on the nondominated surface as well as a
full mathematical specification of the nondominated surface will take much more time. For
example, using, as of this writing, the fastest tri-criterion algorithm known to exist, that is,
CIOS from Hirschberger et al. (2013), a tri-criterion problem with a 500 × 500 covariance
matrix would take in contrast over six seconds. Thus one would want to use the analytical
derivation whenever possible. Other advantages of the analytical approach are that by means
of the formulas one can see more clearly the mathematics of the relationships among the var-
ious portfolio quantities, and that the analytical derivation of this paper allows the teaching
of tri-criterion portfolio selection without requiring students to know optimization, which
can be of great convenience in many pedagogical situations.
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