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For linear multiple-objective problems, a necessary and sufficient condition for a point to be
efficient is empiloyed in the development of a revised simplex algozithm for the enumeration of
the set of efficient extreme points. Five options within this algorithm were tested on a Yariety
of problems. Results of these tests provide indications for effective wse of the algorithm.

1. Introduction

Let A and C be mX n and kX n matrices, respectively, and let
x €R", b€ R™. Define! §= {x: Ax=b,x 2 0},

Definition 1.1. A point x% € R” is an efficient point of S if
(i) x0e5: ,
(i) thereisnox € $§5 Cx = Cx0.

Define the set £= {x € R": x is an efficient point of S}. The linear
multiple-objective program is to determine £, i.e., the set of all efficient
points for given C, 4 and 5. This problem and its generalization to non-

* This work was partially supported by the Office of Naval Research, Contract No. N0O014-67-
A-0321-0003 (NR047-095).

! Throughout this paper we use the following convention for vector inequalities: x > 0 if x; 20,
J=1,.,nx%0;andx >0 iij 20,7=1,..,n
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linear criteria and constraints have been studied by many authors
[1-7, 9, 10]. Our goal in this paper is the application of a necessary
and sufficient condition for the efficiency of a feasible point (in the
linear problem) to the development of an algorithm for the computa-
tion of the peints in £. We will point out relationships to previous
research throughout the development. In particular, we provide compu-
tational experience on a peint raised by Philip (see [10, p. 222]).

First we present a lemma which characterizes efficient points in a
form that is particularly useful for our purposes. Even though this result
may not previously have been stated in the specific manner selected
herein, it is certainly available as a consequence of early work on linear
multiple-objective programs.?

Lemma 1.2. Let x* €S and let D be an n X n diagonal matrix with

g = 1 if x]0 =Q,
" 0 otherwise .

Then xV € E if and only if the system
Cuz0, Duz0, Au=0, (1.1).
has no solution u € R™,

This leinna has three corollaries whose role will be central in the sub-
sequent development.

Corollary 1.3. Let x° € S and D be as defined above. Then x° is effi-
cient if and only if there exist p € R¥, y € R", w € R™ such that

CTp+DTy+ATw=0, p>0, y>0. (1.2)

Proof. Tucker’s theorem of the alternative (see [8]) states that either
(1.1) has a solution or (1.2) has a solution, but never both.

Corollary 1.4. A point x¥ € § is efficient if and only if there is a
p € R*, p> Osuch that® T CO)x® = max{(pTO)x: x € S}.

2 See for example [lg 10].

3 Note that max{p Cx:x ES} is an ordinary linear program for which the objective function
is obtained by assigning some fixed positive weight to each of the ¥ original criteria and sum-
ming to obtain a single criterion. We shall call this problem (Lp).
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Proof. Can be proved by application of Corollary 1.3.
Note that Corollary 1.4 implies:

Corollary 1.5. If S has an efficient point, at least one extreme point
of S is efficient.

In at least two previous developments on multiple-objective prob-
lems, the idea of assigning positive weight to each objective and solving
the resulting single-objective program has been used to obtain a first
efficient point (see [2, 3]). Subsequent efficient points were then ob-
tained by parametric variation of the weighting vector. This parametri-
zation takes a simple form in the case of two criteria [3]. A typical
choice for the initial weighting is p; = k! i=1, .., k; however, this has
the feature that one or more efficient points may be by-passed before
the algorithm detects one. ‘

It is Corollary 1.5 that provides the primary motivation for the cur-
rent work. Specifically suppose computation of the efficient extreme
points is approached by first choosing arbitrary positive weights for the
criteria and then maximizing the weighted objective function to obtain
the first efficient extreme point. Then in the sequence of basic feasible
solutions generated prior to the optimum point there may be one or
more efficient points. However, this would not be detected unless a
test for efficiency is applied to each basic feasible solution. As a conse-
quence, the computation of all efficient extreme points could well re-
quire substantial back-tracking; in problems with large bases this can
amount to a substantial amount of computation time.

In Section 2, a test for the efficiency of an arbitrary extreme point is
developed. In Section 3, we provide a classification of multiple-objective
programs. Section 4 outlines and justifies our algorithm and in Section
5 we present the results of extensive numertical tests of several possible
ways to implement computation for multiple-objective programs.'

2. Testing for efficiency at each simplex iteration

Corollary 1.4 provides the primary tool for the efficiency test we
seek. Namely, if x0 is a basic feasible solution (b.f.s.), it is efficient if
and only if x° solves (L, ) for some positive k-vector p. In this section, a
computationally useful form of this result will be first developed under
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the assumption that each basic feasible solution is nondegenerate. Modi-
fication of this result for a degenerate b.f.s. is treated at the end of this
section.

We will use the following common notation for linear problems.
Suppose x is a b.f.s. to the constraints with associated basis B. By re-
numbering variables if necessary and partitioning 4 and €, we have

xg =B 1b—B INxy, z=CpB 10— (CyB IN-Cy)xy, (2.1

where the subscript B denotes basic and the subscript N denotes non-
basic. Observe that Cy is A X m, Cy is £ X (n — m), and z is the k-vector
of criterion values associated with the b.f.s. x.

Lemma 2.1. Let x0 be a nondegenerate b.fs. in S with corresponding
basis B. Then x is efficient if and only if

—(CpgBTIN—-C)uy 20, uy20 (2.2)
is inconsistent, where uy is an (n — m) vector.

Proof. Follows from (1.1).

Corollary 2.2. Define R = Cy BIN- Cy and consider the following
auxiliary problem:

P) max{etv: Ru+fv=0, u=20, v=20},

where ¥ =(1, ..., 1), u€ R"™™  ve R*. If (2.2) is consistent, problem
(P) is consistent unbounded. If (2.1) is inconsistent, problem (P) is con-
sistent, bounded, with optimal objective value equal to zero.

Proof. Straightforward.

The latter result provides a computational test of the efficiency of an
extreme point without requiring identification of the weighting vector
(see Corollary 1.4) for which the point is optimal. Note that the sub-
problem (P) involves one constraint for each criterion, thus one would
generally expect (P) to have a small basis. Moreover, a canvenient initial
feasible basis for (P) is available, namely the variables, v, ..., U;. In ad-
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dition, we shall see below that this same sub-problem plays a central role
in the process of enumerating the efficient extreme points once the first
one has been identified. The sub-problem employed herein is a variation
of a formulation suggested by Philip [10] for a similar purpose.

Now we turn to the problem of enumerating the efficient extreme
points once the first efficient point has been obtained. In the approach
suggested by Charnes and Cooper [2] the original weighting vector was
changed parametrically to test whether an adjacent extreme point is an
alternative optimum to the first efficient point computed. Qur approach
is motivated by the sub-problem (P} and is designed to detect adjacent
efficient points without explicitly displaying a weighting vector p for
which two adjacent extreme points are alternative optima.

The parametric approach of Charnes and Cooper is based on the fol-
lowing result.

Lemma 2.3. Let %0 be an efficient extreme point of S and let x; be a
non-basic variable in the basic feasible solution associated with xY. Then
the adjacent extreme point with x; a basic variable (with some currently
basic variable converted to non-basic status) is efficient if and only if
the following version of problem (P) is consistent and bounded:

(P max{eTv: Ru—rw+lv=0, uz0, v20},
where w € Rand r; is the column of R associated with x;.
Proof. Can be proved by the dual theorem of linear programming.

The impact of Lemma 9.3 is that, regardless of the number of criteria,
an extreme point adjacent to a given efficient extreme point xP can be
identified as efficient or non-efficient by a straightforward form of post-
optimality analysis applied to the sub-problem (P) associated with x°.
Specifically we simply add to the original data for sub-problem (P) the
negative of the column 7;. If this modification results in a consistent
bounded sub-problem, the corresponding adjacent point is also efficient.
Otherwise it is not. This test can be conducted for each non-basic x; and
thus each adjacent extreme point can be classified as efficient or rejected
as non-efficient, from a consideration of data in sub-problem (P). This
test will form a crucial part of the algorithm to be described subse-
quently.

In the case of a degenerate basic feasible solution, a slight modifica-
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tion of Lemma 2.1 and the sub-problem in Corollary 2.2 is required in
order to retain the sharpness of the efficiency test. This change is pro-
vided in the following result. :

Lemma 2.4. Let x® be a b.f.s. in S with corresponding basis B Let
Q= {i xgi = Q}. Then x© is efficient if and only if

(CeB IN—Cy)ug 20, Yiuy20, i€Q, uyz0 (2.3)
is inconsistent, where Y = —B~\ N and Y, is the i row of Y.

The proof is a straightforward application of Lemma 1.2 and will be
omitted. The new form of the auxiliary program (P) is then

(P max{eTv: Ru+lv=0, Yu—s5;=0, i€,
uz0, v=20, s20}.

Corollary 2.5.
(2.3) inconsistent = (P') consistent and bounded;
(2.3) consistent < (P') consistent and unbounded;

3. Classification of multiple-objective programs

In this section, we wish to indicate a classification of linear multiple-
objective problems which is a natural extension of the corresponding
description of ordinary linear programs as either inconsistent, consistent-
bounded, or consistent-unbounded.* For this purpose we need the fol-
lowing definition.

Definition 3.1. Let x® € S and d € R”, d # 0. Then the direction d is
an efficient direction at x° if there is an o > 0 such that x, = x0 +adis
efficient for each a € [0, «]. If x, is efficient for each « 2 0,then Sis
said to have an unbounded efficient path (with respect to C).

4 The bounded—unbounded terminology refers to objective function values and not to the fea-
sible set S.
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Theorem 3.2.Let C, A, b beas defined in Section 1,with S={x€R":
Ax =b,x 2 0}. Ther one and only one of the following holds:

i S=9;

(i) S+ @, E =0, each criterion unbounded,;

(i) S+ 9, E =@, ar least one criterion bounded,

iv)S#@, E+Q,and S contains one or more unbounded efficient
paths;

(v) S# 0, E# @ but S contains no unbounded efficient paths.

Proof. The five cases are clearly mutually exclusive. Since case (i} can
obviously occur, it remains to exhibit an example of each of the other
cases. '

Case (iD). C=1591,4=(,-1),6=0
Case (iii). =[5 31,4 =(0, 1),b~=
Case (iv). C=1231,4=(0, 1), b=
Case (v). C=0(591,4=(, 1),b=

Corollary 3.3. If § has an unbounded efficient path, then S has an
efficient extreme point,

Proof. Since each point on an unbounded efficient path is efficient .
by definition, the conclusion follows from Corollary 1.5.

Next we indicate the manner in which each of cases (ii)—(v} can be
detected in the process of finding and enumerating efficient extreme
points.

Lemma 3.4, Let x0 = (x3,xY) be a b.fs. in S. Let x; be a non-basic
varigble and r;, ¥, be the corresponding columns of Rand Y = B~ lN,
respectively. If r; = Cy ¥; — Cy < 0and y; <0, then all criteria are un-
pounded, i.e., Case (i) of Theorem 3.2 obtains.

Proof. Obvious.

Lemma 3.5. Let x°, x; be as in Lemma 34 Ifr;<0,y; < 0,and (say)
the i row of R =Cy B™! N — Cy is non-negative, then E =@ and at

least one criterion (the ithy js bounded; Case (iii) obtains.

Proof. Straightforward.
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Lemma 3.6. Let x°, x; be as in Lemma 3.4. Suppose the sub-problem
associated with xV is bounded; assume also that making x; positive iden-
tifies an efficient path from xV. Then if Vi < 0, Case (iv) of Theorem
3.2 holds.

Procf. Straightforward.

The classification provided in Theorem 3.2 helps to highlight an as-
pect of multiple-objective programs which is relevant in the selection of
a computational procedure. Consider again the example of Case (iv)
above. Suppose one approaches this problem by assigning equal weight
to the two objectives. That is, one attempts to find an efficient point by
solving the linear program

max{0.5x; +05x,: x,=1, x, 20, x,20}.

Observe that the equal weight objective function of the linear problem
is unbounded. However, note that this example was used to illustrate
Case (iv) of Theorem 3.3, The problem has an efficient point at
{x,,x,)=(0, 1}, but this cannot be detected by assigning-equal weight
to each criterion. Moreover, this same procedure would not detect the
unbounded efficient path in this example,

In connection with Theorem 3.2, we can state a result in the spirit of
a duality theorem. Let us define a family of problems

(D,) min{d* w: ATw=pT C},
where w € R¥ andpeP={pe R*: p > 0},

Theorem 3.7. Let C, A, b:be as defined in Section 1. Then:

Case (i)} = Either (Dp) is inconsistent for each p € P, or for some
pEP (Dp) is consistent unbounded.

Case (ii) or (iii) = (Dp) is inconsistent for each p € P.

Case (iv) = (Dp) is inconsistent for at least one p € P, and consistent,
bounded for at least one p € P.

Case (V) = (Dp) is consistent and bounded for each p€ P.

Proof. Follows from application of the dual theorem of linear pro-
gramming. '
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4. Algorithm for computation of efficient extreme points

In describing the algorithm that has been developed, it will be as-
sumed that the vector x contains any artificial variables which were
added to aid formation of an initial basis. The general outline of the
algorithm is as follows:

Phase 1. Starting from an initial basis which contains vectors asso-
ciated with artificial variabies, proceed to a feasible basis if one exists or
terminate if the problem is inconsistent,

Phase 2. From a feasible basis proceed to an efficient basis if one
exists or detect one of the other cases of Theorem 3.2. The sub-problem
{P) is used as described in Corollary 2.2 to test for efficiency of a b.f.s.

Phase 3. From an efficient basis proceed to enumerate the list of ef-
ficient basic feasible solutions. The sub-problem (P) is used as described
in Lemma 2.3 to test for efficiency of an adjacent b.f.s.

A number of computational options are available in Phase 2 and will
be discussed later in this section. _

For implementation of the algorithm in a revised simplex mode it is
necessary to store the matrices A and C, the right-hand side vector b,
and the artificial (Phase 1)} objective function coefficient vector é. For a
general iteration in Phase 1, the revised simplex basis matrix will be

[ B o0 o0
B=|- C.B Ik 0
L ¢g 0 1 ke

where Cp and &g have the meaning used in Section 2. The revised sim-
plex basis inverse is then

— = =

5
Bl=|cy B

0
0
¢g B 1

(=P Rl

At the transition from Phase 1 to Phase 2 the (m + k + 1" row of B
is modified in the usual way to keep the artificial objective function
value equal to zero. This row is retained because it performs a useful
function in Phase 3.

It is readily seen that if 4; is a non-basic vector, the corresponding
column of the matrix R used in sub-problem (P) is obtained by the
computation
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[Cz B! I, O] g

; —¢; 01T =Cy B g, — ¢

-
Computations in sub-problem (P) are also executed by a revised sim-
plex algorithm. It is readily seen by reference to Corollary 2.2 that the

variables v provide a convenient initial feasible sub-problem basis with

. . I, 0 . . Ip 0] . .
associated matrix [ ’.‘r J which has inverse [’% 1] in which the
— € &

(k+ 1)* row is for the sub-problem objective function. If at some
Phase 2 iteration the current b.f.s. is degenerate, the sub-problem can
be expanded to the form (P') if desired. The original sub-problem (P)
can be used and if it has a bounded objective value, the associated b.f.s.
is an efficient extreme point.

During Phase 2, each time the sub-problem test for efficiency is not
met, a non-basic variable must be chosen to become basic. It is possible
to employ a scheme in making this selection which insures that Phase 2
of the algorithm will terminate finitely in one of the cases listed in
Theorem 3.2. * However, the example which follows Lemma 3.6 shows
that choosing the new basic variable to maximize some weighted sum
of the objectives may fail to detect one of the cases which can occur.
The investigator using the algorithm must decide whether the compu-
tational cost of using a fail-safe strategy is justified. We turn now to a
discussion of such a strategy for which computational experience is re-
ported in Section 4.

The key to the strategy referred to above comes directly from the
classification provided in Theorem 3.2. The procedure developed below,
which we call sequential maximization, constructs a sequence of nested
subsets of the feasible region which permits us to distinguish the pos-
gible cases. We shall need the following preliminary results.

Lemma 4.1. Suppose E+ O, and let x° € S\ E. Define T = {x € 5:
Cx2 Cx"} and let Ey be the set of efficient points of T for criterion
matrix C. Then there isx € £ 5 Cx 2 CxY,

Proof. We note that x? & T. Suppose E, = @. Then for each k-vector
A> 0, the problem max{(AT C)x:x & T} has no solution, i.e., is un-
bounded. But since T € S, it follows that (AT C) x is unbounded over S,

5in [10], a pivot selection rule is suggested which reduces but does not eliminate the risk of
cycling. The scheme described herein maximizes one of & criteria at a time, holding previously
treated criteria at fixed levels.
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whicﬁ by Corollary 1.4 implies £ = @, a contradiction. Thus £ # @ and
E, € T yields the desired conclusion.

Lemma 42. Let x,, T, Ey be asin Lemma 4.1. Then E,CE

Proof. Let x € Ey; suppose x ¢ E. But then there is xesSacx>
Cx 2 Cx,. This contradicts x € Ey, hence E, CE.

Lemmad3. Letx’ €S\E x€E IfCx 2 Cx% then Cx 2> Cx°.

Proof. Assume Cx=C % Since x € E, there is a positive k-vector A
quch that AT Cx =max{AT Cx:x € S}. But then AT cx =AT Ccx0,
which contradicts x° € S\ E.

The preceding results yield the conclusion that if £+ @, then each
inefficient point is dominated by an efficient point. In the remainder of
this discussion, we will employ the following recursively defined sets:

Sg =S, §= {y: cjly=max{c]-1x:x€S,_1}}, I=1,..,k,

in which ¢; is the j row of the matrix (.5 We will now employ this
process of sequential maximization either to yield an efficient extreme
point if one exists, or terminate with the indication that E = @. Note
that S, 2 8, 2 ... 2 5.

Lemma 4.4. Suppose E+ Q. If S;# @ for some [, 1 £ 1<k, then
S5 nE#§.

Proof. Let x® €8, for some I, 1 1S k. If x¥ € E, we are done.
Hence suppose x® ¢ E. Then by Lemma 4.3 there is a point x € E such
that Cx = C x°. Hence

¢ x2¢ x0, g=1,..,1

Iq q

which implies x € §; and hence S; " E # 0.

% To comstruct the set Sg, S1, ...\ Sy, we first identify a criterion ¢; x which is bounded over So-
Then we maximize a criterion ¢; X holding the first criterion at its maximum value. The pro-
cess continues until Sy is obtained or for some value /, Sl # (, but each remaining criterion is
unbounded over Sy. In the latter case Spq = ... = Sg = @.
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From Lemma 4.4 we see that if there is at least one efficient point,
each nonempty set Sy, 0 £ 1 < k, contains an efficient point.

Suppose without loss of generality that the sequential maximization
process employed ¢y, ..., ¢;_; to define the sets Sy, . S; — 1, respecti-
vely. In the result below we will examine the expression Z%,p; ¢; x on
Siq-

Lemma 4.5. Suppose Sy, Sy, ..., S;_; are non-empty, but §; = 0.

(i) If Z%,p; ¢, x is bounded on S;_; for some set of positive weights
Dis s Pi, then E+ Q.

(ii) If E{L,picix is unbounded on §y_; for each set of positive weights
P> -os Dy, then E= Q.

Proof. (1) Suppose for some fixed positive scalars, py, ..., Py, the ex-
pression El 1P; c; x is bounded on §,_; with the max1mum value occur-
ring at x € §;_;. Assume x x ¢ E; then there is an x € S, such that
C x% > CXx. Hence x® € §;_,, and moreover

k k

o _
P xt > piex,
i=1 i=l

which is a contradiction. Thus x € E.

(ii) Now suppose that Z%,p.c;x is unbounded on S;_, for each
choice of positive weights pl, v P - Assume x €S54 0N E then by
Coroilary 1.4 there existsp &€ R, p> 0, such that x solves max{(pT O)x:
x € Sy} Since §;_; C S, this is a contradiction. Thus £ = 0.

In the context of Lemma 4.5, let x be a basic feasible solution in S;_;,
and consider the following associated subproblem, a variation of (P)
which reflects the additional constraints required to define §; , :

P;_y) max{el v: B INu<0, Ru+lv=0, u,v20}

in which the basis 8 contains m + ] — 1 rows and R is the reduced cost
matrix for the remaining ¥ — / + 1 unmaximized criteria.

Corollary 4.6. Assume Sy, ..., S;_, non-empty, but §; = ¢ and let x be
a basic feasible solution in S;_,. Then E+ ¢« subproblem (P,_,) is
consistent, bounded.
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Lemma 4.7.If S, # @, then S, © E.

Proof Assume x° € S./E. Then there is an x € E3Cx> Cx%, by
Lemmas 4.1-4.3. But then X €8y, hence ¢; X = ¢; x% j=1, .., k, which
contradicts Cx > C x°. Thus we conclude S € E.

To summarize these results, we have the following list of termination
possibilities for the sequential maximization process:

(a) If S, # @, then E # @, and furthermore each point in Sy is effi-
cient.

(b) If §;, =0 for some I, 1 <1< k, and subproblem (P,_,) is consis-
tent, bounded, then E+# @. In addition, any optimal solution to the dual
of (P,_;) yields a set of weights which can be used to identify an effi-
cient point in §;_; .

(0)If §,=0 for some I, 1 SISk, but the associated subproblem
(P;_) has unbounded objective value, then £= Q.

The process empioyed in distinguishing among these possibilities re-
quires at most a finite number of simplex pivots.

5. Computational experience

The sequential maximization procedure described in the preceding
section is guaranteed to terminate at an efficient point if one exists.
However, since the sub-problem can be used to test for the efficiency
of any extreme point, a number of computational variations is avail-

able for Phase 2. These options together with computational experience -

obtained to date are described below.

Option 1. Assign equal weights to each of the & criteria and maximize
the resulting scalar objective. Employ no subproblem testing for effi-
ciency.’

Option 2. Maximize equally weighted criteria with sub-problem test-
ing for efficiency after each pivot.

Option 3. Employ the sequential maximization described in the pre-
ceding section with no sub-problem testing.

Option 4. Employ sequential maximization with sub-problem testing

7 Recall that this procedure is not fail-safe in that it may fail to find an efficient point when
one exists.
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only at the completion of each new maximization.

Option 5. Employ sequential maximization with sub-problem testing
after each pivot. '

Each of these options was investigated on a moderate number of ran-
domly generated problems for the purpose of providing guidelines for
the identification of methods which are most effective in Phase 2, ob-
taining the first efficient point. In these computational results, the right-
hand side vector b is an m-vector with each component set to 100.
Zero density in the A-matrix was explicitly controlled; each non-zero
element of 4 was an observation from the uniform distribution over
the integers 1 to 20. The C-matrices were also randomly generated. In
runs 1—18, each element of C' was an observation from the uniform
distribution over the integers (—20. Sample sizes are indicated in
Tables 1-6.

Each sub-problem call employed version (P") of the sub-problem so
as to retain the sharpness of the Lemma 2.4 in identifying efficient
points.?

The data tabulated are identified by the following key:

T = mean time per problem in tenths of seconds;

MP = mean number of master problem pivots;

MS = mean number of sub-problem pivots;

oy = standard deviation of computation time.

oy = standard deviation of the number of master probiem pivots;
og = standard deviation of the number of sub-rpoblem pivots;

All computation was performed on an IBM 370/165.

In the following tables, the size designation is £ X m X n, where k is
the number of objectives, m the number of constraints, and » the num-
ber of variables exclusive of slacks.

It is apparent from the data that Options 2 and 5, which call the sub-
problem after each master problem pivot, are uniformly poor as mea-
sured by the time required to obtain the first efficient extreme point.
These results clearly suggest that such frequent calls of the sub-problem
involve a very significant setup cost which is not sufficiently offset by
reductions in sub-problem pivots to vield net time savings.

8In [10], the efficiency test proposed in method II.2, p. 218, corresponds to the use of sub-
problem (P) which may fail to detect the efficiency of a degenerate b.f.s.
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It is also apparent that Option 3, which invariably follows the sequen-
tial maximization scheme to its final conclusion without reference to
any sub-problem, is generally poorer in terms of computation time than
either Options 1 or 4. The clear implication is that the first efficient ex-
treme point is typically obtained before all & objectives have been
treated in Option 3.

For the small test problems, Option 1 yielded better mean computa-
tion times than did Option 4. This advantage was relatively small for
low to moderate zero densities but more pronounced for high zero
density (see runs 1-6). However, in the other runs neither Option 1 nor
Option 4 dominated the other. This suggests the tentative conclusion
that the insurance provided by Option 4 (i.e., the guarantee that it
reaches an efficient extreme point if one exists) is not achieved at the
cost of greatly increased computation time as compared to Option 1,
which does not have this fail-safe property. Indeed the computation
times for Option 4 were in some instances better than those for Option
l (seetuns 9, 10, 11, 14, 16, 17).

The effect of zero density is not clear. In runs 3 and 6, the best com- -
putation times were sharply less than those for runs 1,2,4, 5. By con-
trast, the best times in runs 7 and 10 were lower than those for runs 8,
9,11, 12, Runs 13—18 also present a mixed picture.

The general influence of an increase in the number of criteria, other
things being equal, appears to be to increase the average time required
in Phase 2. However, there are exceptions as can be seen by comparing
runs 13 and 16 (Option 4), runs 14 and 17 (Option 1), and runs 15 and
18 (Option 1).

As a summary of the results reported in this section we re-iterate the
apparent indication that the sharpness of Option 4 in identifying the
various cases of Theorem 3.1 is obtained with occasional increases in
computation times over Option 1. However, with impressive frequency
Option 4 is actually better than Option 1.

6. Conclusion

Phase 3 of the algorithm has been implemented, and testing of com-
putational options is now in progress. This phase levies a significant
bookkeeping task on the algorithm in order to avoid revisiting a previ-
ously computed efficient extreme point. Moreover, degeneracy presents
special problems because the number of extreme points adjacent to a
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given extreme point exceeds the number of nonbasic variables. In these
circumstances, special procedures are employed to insure examination
of each adjacent extreme point. These topics will be the subject of
future reports.
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