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Abstract
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data, the utility of their current neighborhood will increase if the share of households
of their race in the neighborhood increases. Preferences over race are sufficiently strong
such that even when the model is engineered to be in a steady state consistent with the
current data, a perturbation in the expected demographic mix in one neighborhood in
a metro area can cause widespread and large changes to many neighborhoods. This
result, corroborated by model simulations, suggest that seemingly minor public policies
that shift the expected demographic composition of neighborhoods have the potential
to cause a significant re-sorting of the population.
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1 Introduction

The racial composition of neighborhoods can change quickly. A well known example in-

volves the Weequahic neighborhood of Newark, NJ, birthplace of celebrated novelist Philip

Roth. In 1960, 5 Census tracts comprising most of the population of the Weequahic neigh-

borhood were 99% white and 1% black; by 1970, those same tracts were 18% white and

82% black.1 A more recent example is the Columbia Heights neighborhood of Washington,

DC.2 In 2000, Columbia Heights was 6% white, 58% black and 33% hispanic. By 2020, these

percentages had changed to 39% white, 28% black and 25% hispanic.

We try to understand the extent to which preferences over the racial composition of

neighborhoods influences where people choose to live, and, by extension, how households may

react to policies that change the expected racial composition of neighborhoods. To do this, we

estimate a dynamic, forward-looking model of neighborhood choice. We allow households to

have preferences over exogenous intrinsic features of neighborhoods as well as preferences over

the endogenous demographic composition of neighborhoods. We estimate the parameters of

this model using a large and nationally representative data set for neighborhoods located in

141 metro areas in the United States.

Identification of household preferences over the demographic composition of neighbor-

hoods using location choice data is confounded by the presence of location-specific amenities

that may be unobserved, and the valuation of these amenities that may differ by race. For

example, suppose black households and white households tend to live in different neighbor-

hoods; and, the neighborhoods that are predominantly black have mostly pine trees and the

neighborhoods that are predominantly white have mostly spruce trees. Neighborhoods may

be segregated either because black households prefer pine trees and white households prefer

spruce trees; because black households prefer to have black neighbors and white households

prefer to have white neighbors; or both.

Therefore, to identify preferences over demographic composition of neighborhoods we

need to find an instrument that is correlated with racial shares at the neighborhood level

but uncorrelated with local amenities such as the prevalence of pine or spruce trees. We use

an instrumental-variables approach in the style of Bartik (1991). We believe we are the first

to use a Bartik instrument to estimate preferences various types of households have over

white, black, and hispanic racial shares of neighborhoods.

1We derive these statistics from data reported in the 1960 and 1970 Census of Population and Housing,
published by the U.S. Department of Commerce. We only consider tracts 44, 45, 46, 47 and 49; typically the
definition of the Weequahic neighborhood also includes tracts 48.01 and 51. For reference, the population
of the 4 included tracts was 20,096 in 1960 and 26,598 in 1970; when tracts 48.01 and 51 are included, the
population rises to 27,954 in 1960 and 34,041 in 1970.

2These are Census tracts 28.01, 28.02, 29, 30, 31, 35, 36 and 37 (2000) or 37.01 and 37.02 (2020).
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The instrument exploits the fact that there is variation, across metropolitan areas, in

the metro-area shares of black, hispanic, and white households; therefore, metro areas with

relatively high shares of black households overall are predicted to have relatively high shares

of black households in neighborhood in these metros.

Our IV procedure works as follows. First, we estimate a multinomial logit that predicts

the probability any given type of household3 lives in a given neighborhood (Census tract

throughout) based only on that neighborhoods’s within-metro income percentile ranking.

This logit pools all data from all metro areas. For any given type of household the predicted

mapping of location choices to the income percentile ranking will not vary across metro

areas.

Next, we predict the distribution of where all households will live within each metro area.

This enables us to compute predicted racial shares of black, hispanic and white households

in each neighborhood in each metro area. Conditional on the income percentile of the

neighborhood, variation in predicted racial shares is entirely attributable to variation in

the distribution of types of households across metro areas. Thus, conditional on income

percentile, predicted racial composition of each neighborhood should be orthogonal to local

amenities (i.e. the prevalence of pine versus spruce trees), implying the instrument is valid.

Before continuing, we should be clear about what we can and cannot identify. We cannot

identify pure preferences over race if certain types of households “bring along” certain types

of amenities. In this case, we would estimate preferences for the bundle of race and the

amenities that are brought with race. For example, if pine and spruce trees happen to be

permanently attached to certain neighborhoods, then our procedure should uncover prefer-

ences for the racial composition of neighborhoods independent of the prevalence of pine and

spruce trees. On the other hand, if black households plant pine trees wherever they live, and

white households plant spruce trees wherever they live, then our procedure estimates relative

preferences of the bundle (black households, pine trees) and (white households, spruce trees)

rather than preferences for race directly.

Obviously, we are tip-toeing around the fact that local governments may systematically

underfund policing or schools in non-white neighborhoods. If school quality and public

safety are policy choices that depend on the racial composition of neighborhoods, and not

intrinsic function of neighborhoods in which non-white residents tend to live, our estimates of

racial preferences will also contain preferences for amenities that follow racial shares around

due to decisions of local governments. In some contexts understanding preferences for race

separately from preferences for amenities that follow race (for whatever reason) may be

3We separate households in our data into mutually exclusive and exhaustive types by race, age (young,
middle aged, and old), homeonwership status (rent or own), and credit score terciles.
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important, but for our analysis we do not think this distinction matters.

Perhaps not surprising, we estimate that many – but not all – households have prefer-

ences exhibiting homophily, that is for many households utility in their chosen neighborhood

increases if the share of same-race households in the neighborhood increases. To give a sense

of the size of these preferences, for the average black household in our data, we find that if

the share of black households in their neighborhood increases by 1 percentage point, utility

increases by approximately the same as if rental prices decline by 3 pecent. For the average

white household in our data, if the share of black households increases by 1 percentage point

utility declines by about the same amount as if rental prices increase by approximately 1

percent.

Before continuing, we wish to take a step back. We started this research project with

the intention of using a location-choice model to predict how households may endogenously

resort in response to a place-based policy such as the Moving to Opportunity experiment

that may alter expectations on the racial mix of neighborhoods (Davis, Gregory, Hartley, and

Tan, 2021). After estimating model parameters, we noticed in initial counterfactual policy

simulations that small changes to the expected demographic composition of neighborhoods

frequently yielded a very large resorting of the population across many neighborhoods. That

led us to think that before we use the model to predict the results of any counterfactual

policy, we need to understand if the model is “stable” (in a way we define next) at the

current data.

Of course, the current data almost certainly do not reflect a stable steady state as the

unconditional demographic mix of the United States is changing. For example, in 2020

hispanic persons accounted for 18.7% of the U.S. population in 2020, up from 6.5% in 1980.

Additionally, the location choices of households may not be consistent with the existing

demographic composition of neighborhoods, as pointed out by Caetano and Maheshri (2021).

For example, hispanic households may be moving into some majority-black neighborhoods

at a rate that implies the hispanic share of households is increasing and black share of

households is decreasing relative to current data.

With these important caveats in mind, we wish to give the model its best shot to see

if, absent long-run demographic change, the model predicts the current demographic com-

position of neighborhoods in the United States is stable. To do this, and different from the

exercise in Caetano and Maheshri (2021), for each type of household and in each neighbor-

hood in our data, we allow for exogenous “births and deaths” in every period such that the

model-predicted distribution of location choices for each type of household in each neigh-

borhood, once we add in these births and deaths, matches the distribution of types across
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neighborhoods in the current data.4 With births and deaths included, the model has the

feature that the expected future demographic composition of each neighborhood is always

exactly equal to the current demographic composition.

Given this definition of a steady state that is consistent with the current data, we next

need to take a stand on how households update expectations when expectations are moved

away from the steady state. Simplifying a bit, here is our procedure. First, we feed into

the model a set of household expectations about racial composition in every tract. Then,

we generate household location decisions given those assumptions. Finally, we set new

expectations equal to the new racial composition in every tract implied by those decisions.

With that in mind, we evaluate the stability of the racial composition of neighborhoods

in the data by computing the eigenvalues of the model at the steady state implied by the

data, as we have defined it. We do this for every MSA. If all the eigenvalues in an MSA are

less than 1, then expectations of racial composition return back to the data after a small

perturbation to those expectations. If at least one eigenvalue is greater than 1, expectations

of the racial composition at least one neighborhood does not revert back to the data after a

small perturbation.

Our findings are stark. Only one metro area out of 141 has all its eigenvalues less

than 1. Many neighborhoods in most MSAs are unstable: For the median MSA, more

than 45% of the eigenvalues are larger than 1. We show the fundamental instability of the

model arises because households have very strong preferences over the racial composition

of their neighborhood. The MSA-wide black share and MSA-wide hispanic share of the

population strongly predict the percentage of eigenvalues in the MSA that are larger than

1. Additionally, when we shrink preferences over race by multiplying all coefficients on race

in utility by 0.25 and then recompute eigenvalues, the number of eigenvalues larger than 1

drops dramatically: At the median MSA only 3% of the eigenvalues are larger than 1.5

In summary, preferences over demographic composition of neighborhoods are so strong

that, even without long-run demographic change, and even assuming exogenous “births and

deaths” to keep the demographic composition of neighborhoods constant at the current

data, a slight perturbation to expected demographic composition in one neighborhood can

basically blow up the steady state. Therefore, it should not be surprising that we document

that this fundamental instability suggests very small public policies can be destabilizing if

these policies change the expected racial composition of neighborhoods.

4Note that our model has households aging and dying; dditionally, the model does not include across-
MSA moves. In a very reduced-form sense, births and deaths account for these features and does so in such
a way as to mechanically ensure the data are in a steady state.

5In this exercise, we adjust exogenous amenities such that the overall utility of each neighborhood does
not change at the current data.
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Specifically, we consider a small policy that affects many neighborhoods: Metro area by

metro area, in all tracts that have had at least some low-income housing built since 2000,

we add a one-time, unexpected, additional 10% low-income housing units in those tracts

(assuming the new residents have a different demographic mix than existing residents) and

then simulate the new steady state of each metro area. We measure two things in these

simulations relative to the baseline steady state implied by our data. First, the number

of tracts in a metro area where either the black share of households or hispanic share of

households changes by 5 percentage points or more, and second, changes to metro-area

black-white and hispanic-white segregation indexes.

The punchline from model simulations is that neighborhoods change a lot and metro

areas tend to become much more segregated as a result of this experiment. At the median

MSA, 60% of tracts experience a change in black- or hispanic- share of at least 5 percentage

points in the new steady state relative to the old steady state. Further, the black-white and

hispanic-white segregation indexes jump, such that the median metro area become much

more segregated.

These results are all driven by the very strong preferences for race that we estimate. When

we repeat the exercise after multiplying all coefficients on race in utility by 0.25, changes in

demographic composition are quite small. At the median MSA, in the new steady state less

than 6 percent of tracts experience a change in black- or hispanic- share of greater than 5

percentage points, the hispanic-white segregation index does not change, and the black-white

segregation index declines a little.

Practically speaking, our results imply that households preferences for the race of their

neighbors are sufficiently strong that well intentioned policies that change the racial composi-

tion of neighborhoods may ultimately destabilize neighborhoods and increase segregation. Of

course, these changes may take a long time but recent history also tells us that neighborhood

composition can change quickly.

2 Household Decision Model

We model the system of demand for neighborhoods by considering the decision problem of

a household head deciding where his or her family (“household”) should live. As in Kennan

and Walker (2011) Bayer, McMillan, Murphy, and Timmins (2015), and Davis, Gregory,

Hartley, and Tan (2021) we model location choices in a dynamic discrete choice setting.

Each year, the household, which is of type τ , can choose to live in one of J locations. Denote

j as the household’s current location. We write the value to the household, V τ
t (` | j), of

choosing to live in location ` in year t given a current location of j and current value of a
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shock ε` (to be explained later) as

V τ
t (` | j, ε`) = uτt (` | j, ε`) + β

∑
τ ′

γτ,τ
′
Et

[
V τ ′

t+1 (`)
]

In the above equation uτt (` | j, ε`) is the flow utility in year t to the household of choosing

to live in location ` given a current location of j and current value of a shock ε`; β is the

discount factor on future expected utility; γτ,τ
′
is the probability that the household becomes

type τ ′ next year given they are type τ this year; and Et
[
V τ ′
t+1 (`)

]
is the expected value in

year t + 1 of a type τ ′ household of having chosen to live in neighborhood ` today. The t

subscripts explicitly allow that flow utility and expectations may change over time.

We assume uτt (` | j, ε`) is as follows

uτ (` | j, ε`) = δτ`,t − κτ · 1` 6=j + ε`

δτ`,t is the flow utility a type τ household receives in year t from living in neighborhood `,

inclusive of tastes for rents, neighborhood demographics, and any amenities or natural ad-

vantages the neighborhood provides; κτ are the fixed costs (utility and financial) a household

of type τ must pay when it moves to a different neighborhood i.e. when ` 6= j; 1`6=j is an

indicator function that is equal to 1 if location ` 6= j and 0 otherwise; and ε` is a random

shock that is known at the time of the location choice. ε` is assumed to be iid across loca-

tions, time and people. ε` induces otherwise identical households living at the same location

at the same time to optimally choose different future locations.

Denote ε1 as the shock associated with location 1, ε2 as the shock with location 2, and

so on. In each period after the vector of ε are revealed (one for each location), households

choose the location that yields the maximal value

V τ
t (j | ε1, ε2, . . . , εJ) = max

`∈1,...,J
V τ
t (` | j, ε`) (1)

Et
[
V τ ′
t+1 (j)

]
is the expected value of (1) for households of type τ ′, where the expectation is

taken at year t with respect to the vector of ε and the vector of δτ
′

j′,t+1 for j′ ∈ 1, . . . , J and

for all types τ ′, in the event these values change over time.

Holding δτj,t fixed for all j and τ for expositional convenience (such that the expected

values are time-invariant and time subscripts can be removed) when the ε are assumed to

be drawn i.i.d. from the Type 1 Extreme Value Distribution, the expected value function
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E [V τ (j)] has the functional form

E [V τ (j)] = log

{
J∑
`=1

exp Ṽ τ (` | j)

}
+ ζ (2)

where ζ is equal to Euler’s constant and

Ṽ τ (` | j) = δτ` − κτ · 1`6=j + β
∑
τ ′

γτ,τ
′
E
[
V τ ′ (`)

]
(3)

That is, the tilde symbol signifies that the shock ε` has been omitted.

We use the approach of Hotz and Miller (1993) and employed by Bishop (2012) to generate

a likelihood function. This approach does not require that we solve for the value functions.

Instead, it can be shown that the log probabilities that choices are observed are simple

functions of model parameters δτj , κτ , β and of observed choice probabilities. In other words,

a likelihood over choice probabilities observed in data can be generated without solving for

value functions.

To see this, start by noting the log of the probability that location ` is chosen by type τ

given a current location of j, call it pτ (` | j), has the solution

pτ (` | j) = Ṽ τ (` | j) − log

{
J∑

`′=1

exp
[
Ṽ τ (`′ | j)

]}
(4)

Subtract and add Ṽ τ (k | j) to the right-hand side of the above to derive

pτ (` | j) = Ṽ τ (` | j)− Ṽ τ (k | j) − log

{
J∑

`′=1

exp
[
Ṽ τ (`′ | j)− Ṽ τ (k | j)

]}
(5)

Note that equation (3) implies

Ṽ τ (` | j)− Ṽ τ (k | j) (6)

= δτ` − δτk − κτ [1` 6=j − 1k 6=j] + β
∑
τ ′

γτ,τ
′
{
E
[
V τ ′ (`)

]
− E

[
V τ ′ (k)

]}
But from equation (2),

E
[
V τ ′ (`)

]
− E

[
V τ ′ (k)

]
= log

{
J∑

`′=1

exp Ṽ τ ′ (`′ | `)

}
− log

{
J∑

`′=1

exp Ṽ τ ′ (`′ | k)

}
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Now note that equation (4) implies

pτ
′
(k | `) = Ṽ τ ′ (k | `) − log

{
J∑

`′=1

exp
[
Ṽ τ ′ (`′ | `)

]}

pτ
′
(k | k) = Ṽ τ ′ (k | k) − log

{
J∑

`′=1

exp
[
Ṽ τ ′ (`′ | k)

]}

and thus

log

{
J∑

`′=1

exp
[
Ṽ τ ′ (`′ | `)

]}
− log

{
J∑

`′=1

exp
[
Ṽ τ ′ (`′ | k)

]}

is equal to

Ṽ τ ′ (k | `)− Ṽ τ ′ (k | k) −
[
pτ

′
(k | `)− pτ ′ (k | k)

]
= −κτ ′ · 1` 6=k −

[
pτ

′
(k | `)− pτ ′ (k | k)

]
The last line is quickly derived from equation (3). Therefore,

E
[
V τ ′ (`)

]
− E

[
V τ ′ (k)

]
= −

[
pτ

′
(k | `)− pτ ′ (k | k) + κτ

′ · 1` 6=k
]

and equation (6) has the expression

Ṽ τ (` | j)− Ṽ τ (k | j) (7)

= δτ` − δτk − κτ [1 6̀=j − 1k 6=j] − β
∑
τ ′

γτ,τ
′
[
pτ

′
(k | `)− pτ ′ (k | k) + κτ

′ · 1`6=k
]

In estimation, we assume that value functions and expectations are fixed in our sample

period.6 We can therefore use (7) directly in equation (5) for use in the likelihood function,

treating observed choice probabilities for pτ
′
(k | `) and pτ

′
(k | k) for all `, k and τ ′ as data.

3 Data and Likelihood

Like Davis, Gregory, Hartley, and Tan (2021), we estimate the model using panel data

from the FRBNY Consumer Credit Panel / Equifax. The panel is comprised of a 5% random

sample of U.S. adults with a social security number, conditional on having an active credit

file, and any individuals residing in the same household as an individual from that initial

6Due to data limitations, we combine data across multiple years when estimating probabilities and pref-
erence parameters. For this reason, we assume value functions are fixed.
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5% sample.7 For years 1999 to XXX, the database provides a quarterly record of variables

related to debt: Mortgage and consumer loan balances, payments and delinquencies and

some other variables we discuss later. The data does not contain information on basic

demographics like race, education, or number of children and it does not contain information

on income or assets although it does include the Equifax Risk ScoreTM which provides some

information on the financial wherewithal of the household as demonstrated in Board of

Governors of the Federal Reserve System (2007). Most important for our application, the

panel data includes in each period the current Census block of residence. To match the

annual frequency of our location choice model, we use location data from the first quarter of

each calendar year. In each year, we only include people living in in MSAs – if, for example, a

household moves from an eligible MSA to a rural area, that household-year observation is not

included in the estimation sample. Additionally, if a household moves to a different MSA,

the household-year observation of the move is not included in the estimation sample (but

the years before and after the across-MSA move are included). The panel is not balanced,

as some individuals’ credit records first become active after 1999. The total number of

person-year observations in the sample is XXX.

We sort households into 54 mutually exclusive types: by age of the head of the household

(young, middle, old), by housing tenure status (renter, owner), by credit score (low, middle,

high), and by race (black, hispanic, white/other). Except for race, a household’s type can

stochastically change over time. Borrowing a trick from overlapping generations models in

macroeconomics to conserve on state variables, we assume households assume they age up

(i.e. low to middle, middle to high) or die (high to death) with a 5% probability each year.

Conditional on age and race, we estimate the annual 6x6 matrix of transition probabilities of

housing tenure status and credit score using the Equifax data pertaining to our estimation

sample.

From the Equifax data, we classify a household as young if the age of the household head

is between 25-44, middle aged if 45-64, and old if 65 and older. We classify the household

as a homeowner if the household has a mortgage and a renter if not. Finally, we classify a

household as having a low credit score if the Equifax Risk ScoreTM of the household head

is less than or equal to 599, middle credit score if between 600 and 720 inclusive, and high

credit score if greater than or equal to 721.

We do not observe race in the Equifax data. However we know the racial distribution in

the Census block in which the household is first observed, and we use this distribution to

7The data include all individuals with 5 out of the 100 possible terminal 2-digit social security number
(SSN) combinations. While the leading SSN digits are based on the birth year/location, the terminal SSN
digits are essentially randomly assigned. A SSN is required to be included in the data and we do not capture
the experiences of illegal immigrants.
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integrate out uncertainty over the household’s race. Let the subscript r denote a household’s

race, with r = 1 a black household, r = 2 a hispanic household and r = 3 a white/other

household which we call a “white” household from this point forward. Let Pri (r) denote the

probability that household i is of race r given the first observed Census block of residence of

that household, i.e. Pri (1) is the percentage of residents in that block that are black, Pri (2)

is the percentage of residents in that block that are hispanic, and Pri (3) is the percentage

of residents in that block that are white. Then, the likelihood for a given household i that

is observed from periods t = 1, . . . , T can be written as

Li =
3∑
r=1

Pri (r)
T∏
t=1

pτt(r) (`t | jt)

where jt is the household’s starting location at year t, `t is the household’s choice of new

location, and τt (r) is the household’s type at year t given the household is assumed to be of

race r. We find the parameters of the model that maximize the log likelihood of the sample,∑
i logLi.

4 Parameter Estimates and Identification

4.1 Specification of Flow Utility

So far, the key inputs to the model that we have discussed are type-specific moving costs

κτ and the type specific flow utility of living in any neighborhood δτj for all j = 1, . . . , J . In

estimation, we assume δτj is fixed. In the counterfactual simulations, we have in mind that

for each type and neighborhood, δτj has a fixed component that we will call “amenities” and

a component that may change over time if the racial mix of the neighborhood changes or if

the price of housing changes. We specify

δτj = −aτr log rj + f τ
(
Sbj , S

h
j

)
+ Aτj (8)

In the above equation Aτj are the fixed type-specific amenities associated with neighborhood

j, rj is the price per unit of housing in neighborhood j, and aτr governs how utility changes

with respect to changes in house prices. f τ
(
Sbj , S

h
j

)
is the utility from the racial composition

of the neighborhood, with Sbj the share of neighborhood j residents that are black and Shj the

share of neighborhood j residents that are hispanic. We specify this function is quadratic in
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the black and hispanic shares:

f τ
(
Sbj , S

h
j

)
= aτ1S

b
j + aτ2

(
Sbj
)2

+ aτ3S
h
j + aτ4

(
Shj
)2

+ aτ5S
b
jS

h
j (9)

An obvious challenge in estimating the parameters in equations (8) and (9) is that rj,

Sbj , and Shj will be correlated with Aτj and Aτj is unobserved. For example, there may be

neighborhoods with a relatively high value of Aτj for high-credit score, old, homeowning

white households. Since Aτj is relatively high for these households, they will likely be the

occupants. This implies the neighborhoods are likely to also have high house prices and low

black- and hispanic- shares. To deal with this endogeneity we need an instrumental variables

approach.

In estimation we will not be able to strictly identify preferences for racial shares in

utility if certain amenities tend to be attached to certain racial shares. Continuing with

the metaphor of the introduction, suppose that wherever black households live they plant

pine trees and wherever white households live they plant spruce trees. In this case, we

no longer directly estimate preferences for black households as neighbors, but rather the

extent to which households have preferences for black neighbors and preferences for pine

trees (relative to neighborhoods with white neighbors and spruce trees).

4.2 Discussion of our IV Approach

In estimation, we allow each type to have its own value of amenities in each neighborhood

(Census tract), Aτj . With this method, different types of households may sort themselves

into neighborhoods simply because they value amenities of those neighborhoods differently;

or, they may sort because of different valuations of rents and the demographic makeup of

neighborhoods. Estimating parameters in this framework is straightforward: We uncover

κτ and δτj for all j and τ via maximium likelihood, and then given a value of aτr that we

take from Davis, Gregory, Hartley, and Tan (2021) use instrumental variables to estimate

all aτ1, . . . , a
τ
5 for all τ . Once these parameters are known, we compute Aτj as a residual.

Finding instruments to identify preferenes over the racial composition of neighborhoods

is difficult. A few recent examples to identify these preferences include Card, Mas, and

Rothstein (2008) who use a regression discontinuity approach, Almagro, Chyn, and Stuart

(2022) who use random public housing demolitions and BLP-style instruments similar to

Davis, Gregory, Hartley, and Tan (2021), and Caetano and Maheshri (2021) who use long

lags of racial shares after controlling for inflows in a model-consistent way, just to name a
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few. Our approach, which we believe is new, is to use a Bartik-style instrument.8

Our instrument exploits variation across metro areas in the share of households that are

black, hispanic, and white, much in the same way that the original Bartik instrument exploits

variation across metro areas in the share of employment that is accounted for by different

industries. Our instrument uses national data to predict where each type of household

will locate inside each MSA; this is analogous to the Bartik instrument that assigns local

predicted growth in each industry equal to national employment growth for that industry.

Finally, given our type-by-type prediction on within-MSA location decisions is based only

on national data, any variation (across MSAs) in predicted racial shares in each location can

only be generated by differences in the distribution of types across MSAs. This is analogous

to saying that in the original Bartik application, the predicted employment growth for each

industry is constant, but predicted employment growth varies across MSAs because the mix

of industries varies across MSAs.

In the original analysis of Bartik (1991), the instrument is used to forecast one statistic per

MSA per time period, employment growth. In our application, we need to forecast the black

share and the hispanic share in every Census tract in an MSA. Conceptually, forecasting

these shares in multiple tracts in our application is equivalent to forecasting employment

growth in multiple time periods in the original Bartik paper.

To explain how we construct our instrument, first note that the total population of Census

tract ` in MSA m can be written as
∑
τ ′
popτ

′

`,m, where popτ
′

`,m is the population of type τ ′ living

in tract ` in MSA m. Thus the black share in tract ` in MSA m, Sb`,m, can be written as9

Sb`,m =

∑
τ

I (τ ∈ black) popτ`,m∑
τ ′
popτ

′
`,m

Note that

popτ`,m = N τ
mρ

τ
`,m

where N τ
m is the total number of type τ households living in MSA m and ρτ`,m is the prob-

ability that a type τ household living in MSA m chooses to live in tract `. Now, make

8Those readers familiar with the first verison of this paper may recall that in that earlier work, we
focused on the Qualifying Census Tract (QCT) designation of the Low Income Housing Tax Credit Program
(LIHTC) as a valid instrument. After some analysis, we realized that we actually were using two instruments,
a Bartik-style instrument we explain now and the QCT designation, and that all of the power in our first
stage was from the Bartik-style instrument. This explains why we have dropped QCT from our analysis and
have focused on the Bartik instrument.

9In what follows, the hispanic share is computed analogously.
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that substitution and divide both the numerator and the denominator by the total MSA

population:

Sb`,m =

∑
τ

I (τ ∈ black) sτmρ
τ
`,m∑

τ ′
sτ ′mρ

τ
`,m

(10)

In equation (10), sτm is the share of the MSA population that is accounted for by type τ

households.

To construct the instrument, we replace ρτ`,m, the actual probability a type τ household

chooses tract ` in MSA m, with a predicted probability density that only varies with the

income percentile of the tract.10 Denote the income percentile associated with tract ` in

MSA m as q (`,m) and denote the predicted probability density that specific tract is chosen

by type τ as ρ̂τq(`,m). Given this, our predicted black share in tract ` of MSA m is

Ŝb`,m =

∑
τ

I (τ ∈ black) sτmρ̂
τ
q(`,m)∑

τ ′
sτ ′mρ̂

τ ′
q(`,m)

(11)

To construct predicted probability densities, we regress the log of ρτ`,m on MSA fixed effects11

and a 7th order polynomial in the income percentile associated with tract ` in MSA m,

q (`,m). We run this regression separately for each type, but for each type we pool all

tracts in all MSAs. Thus, for any type and any income percentile of a tract, the predicted

probability density based on this regression does not vary across MSAs (except for the MSA

fixed effects).

To give some intuition on how our Bartik-style IV works in practice, we construct a

simple example. Suppose there are three types of households in our data – black, hispanic,

and white – and that each MSA in our sample has exactly three tracts: low-income, middle-

income, and high-income. In the first step, we use national data to estimate the probability

that each type of households lives in one of the three tracts. Estimates from our data for

each of the three types of households in each of the low- middle- and high-income tracts are

shown in the top panel of table 1.

Now consider predicting the black, hispanic, and white shares of each of the three tracts

in two of the metro areas in our sample. The first metro area shown in the middle panel,

York-Hanover, PA, has a population that is 2.1% black, 2.7% hispanic, and 95.2% white;

10For notation reasons, we switch from probabilities to probability densities to handle the fact that different
MSAs have different numbers of tracts.

11We include MSA fixed effects to account for the fact that MSAs vary in the total number of tracts, so
MSAs with fewer tracts will by construction have higher choice probabilities in every tract.
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Table 1: A Simple Example of the Bartik-Style Instrument

Probabilities over Locations using National Data
Black Hispanic White

Low Income Tract 41.9% 35.2% 18.8%
Middle Income Tract 32.5% 34.4% 35.0%
High Income Tract 25.6% 30.4% 46.2%

Racial Shares by Tract: York-Hanover, PA
Predicted Actual

Black Hispanic White Black Hispanic White
Overall 2.1% 2.7% 95.2% 2.1% 2.7% 95.2%
By Tract:
- Low Income 4.5% 4.8% 90.7% 10.9% 7.2% 82.0%
- Middle Income 2.0% 2.7% 95.4% 3.6% 2.3% 94.2%
- High Income 1.2% 1.8% 97.0% 3.7% 1.9% 94.4%

Racial Shares by Tract: Trenton, NJ
Predicted Actual

Black Hispanic White Black Hispanic White
Overall 8.4% 17.5% 74.1% 8.4% 17.5% 74.1%
By Tract:
- Low Income 14.9% 26.1% 59.0% 38.3% 17.7% 44.0%
- Middle Income 7.9% 17.4% 74.8% 17.5% 8.3% 74.1%
- High Income 5.2% 12.8% 82.1% 6.5% 5.7% 87.8%

and the second metro area (Trenton, NJ) shown in the bottom panel has a population that is

8.4% black, 17.5% hispanic, and 74.1% white.12 Given these overall metro-area type shares,

first three columns of the middle and bottom panels show the predicted racial shares and,

for comparison, the final three columns show the actual racial shares. By construction, the

variation in predicted shares at the Census tract level is driven only by variation in metro-

area racial shares. As the table illustrates, both the predicted and actual racial shares vary

quite considerably, and the predicted racial shares seem to be correlated with the actual.

For example, in York-Hanover, PA, the predicted black share of the low-income tract is 4.5%

(actual is 10.9%), whereas in Trenton, NJ, the predicted black share of the low-income tract

is 14.9% (actual is 38.3%). In both metro areas, the share of black households in the lowest-

income tracts is higher than predicted, but the instrument exploits the fact that Trenton,

NJ has more black households than York-Hanover, PA to predict that the share of black

12York-Hanover, PA and Trenton, NJ are about 120 miles apart.
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households in low-income tracts is higher in Trenton than in York.

4.3 Discussion of Identification

4.3.1 Rotemberg Weights

To understand the source of variation in our Bartik-style instrument, we follow Goldsmith-

Pinkham, Sorkin, and Swift (2020), hereafter GSS, and plot the Rotemberg weights of our

instrument. For the purposes of computing Rotemberg weights, we consider 5,400 instru-

ments: 54 types by 100 income percentiles in each MSA. The Rotemberg weights identify

the fraction of variation in the predicted black (hispanic) share that comes from each of the

instruments.

One reason we describe our predicted black (hispanic) share as resulting from a “Bartik-

style” instrument is that our predicted share is actually the ratio of two Bartiks. The

denominator is the total fraction of all households in the MSA that choose the tract and

the numerator is the total fraction of all households in the MSA that choose the tract and

are black: See equation (11). Our predicted black (hispanic) share is therefore a non-linear

function of the type shares, sτm, and we cannot apply a direct application of the procedure

described in GSS to compute Rotemberg weights. Instead, we take a linear approximation

of our predicted black (hispanic) share and compute the Rotemberg weights of this linear

approximation.

In what follows, we show our method to compute Rotemberg weights for predicted black

shares.13 As before, define the actual predicted black share at income quantile q associated

with tract ` in MSA m as

Ŝbl,m =

∑
τ

I (τ ∈ black) sτmρ̂
τ
q(`,m)∑

τ ′
sτ ′mρ̂

τ
q(`,m)

To conserve on notation, we will replace both q (`,m) and ` with q in what follows. Note

13The method is identical for hispanic shares.
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that the derivative of Ŝbq,m with respect to sτm is equal to

∂Ŝbq,m
∂sτm

=
I (τ = black) ρ̂τq∑

τ ′
sτ ′mρ̂

τ ′
q

−
ρ̂τq
∑
τ ′′
I (τ ′′ = black) sτmρ̂

τ ′′
q(∑

τ ′
sτ ′mρ̂

τ ′
q

)2

=

 ρ̂τq∑
τ ′
sτ ′mρ̂

τ ′
q

[I (τ = black) − Ŝbq,m

]

Continuing, define s̄τ as the national average share of type τ in an MSA, and define S̄bq

as the predicted black share in income quantile q when all type shares in an MSA are equal

to their national average, i.e.

S̄bq ≡

∑
τ

I (τ ∈ black) s̄τ ρ̂τq∑
τ ′
s̄τ ′ ρ̂τ ′q

Given this notation, a first-order Taylor series approximation of Ŝbq,m around S̄bq is equal to

Ŝbq,m ≈ S̄bq +
∑
τ

∂Ŝbq,m
∂sτm

∣∣∣∣∣
s̄τ∀τ

(sτm − s̄τ )

where
∂Ŝbq,m
∂sτm

∣∣∣∣∣
s̄τ∀τ

=

(
ρ̂τq
popq

)[
I (τ = black) − S̄bq

]
popq is the population of the tract with income percentile q when all type shares are equal

to the national average: popq =
∑
τ ′
s̄τ

′
ρ̂τ

′
q . After simplification, the above reduces to

Ŝbq,m ≈ S̄bq +
∑
τ

gτq s
τ
m

where gτq =

(
ρ̂τq
popq

)[
I (τ = black) − S̄bq

] (12)

Thus we can approximate Ŝbq,m as a linear function of type shares. To check the quality of

this approximation, we regress Ŝbq,m on the linear approximation as given by equation (12)

for all 5,400 instruments and get a slope of 0.90 and an R2 of 0.99.14

Given this linear approximation, we compute Rotemberg weights as follows. First, we

regress the actual predicted Ŝbq,m on a full set of MSA dummy variables and a 7th order

polynomial in income percentile. Define the residual from this regression evaluated for MSA

14The results for the hispanic share are similar.
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m at quantile q as Ŝb⊥q,m. Assuming there are M MSAs in the sample, define Ŝb⊥q as the Mx1

vector of residuals evaluated at quantile q

Ŝb⊥q =
[
Ŝb⊥q,1 Ŝb⊥q,2 . . . Ŝb⊥q,M

]′
Similarly, define sτ as the Mx1 vector of type τ shares across all MSAs:

sτ =
[
sτ1 sτ2 . . . sτM

]′
Then for any type τ̂ and income percentile q̂ we define its Rotemberg weight as15

gτ̂q̂
[
sτ̂
]′ · Ŝb⊥q̂∑

q

∑
τ

gτq [sτ ]′ · Ŝb⊥q

where gτq is as defined in equation (12) for all q and τ .

The top panel of table 2 summarizes the Rotemberg weights for predicting the black

share. Black households account for 84.5% of these Rotemberg weights. Hispanic households

account for 12.0% and white households account for only 3.5%. About 40% (740/1,800) of

the Rotemberg weights for predicting the black share of neighborhoods attributable to white

households are negative, but the sum of these negative Rotemberg weights is quite small

at -1.4%; the other, positive Rotemberg weights for white households sums to 4.9%. The

bottom two rows of this panel show that the Rotember weights for predicting the black share

for black renting households is 65.7% and for black home-owning households it is 18.9%.

The bottom panel of table 2 summarizes the Rotemberg weights for predicting the His-

panic share. All Rotemberg weights for predicting the Hispanic share are nonnegative.

Hispanic households account for 88.3% of these weights, with white households accounting

for 7.1% and black households accounting for 4.6%. The bottom two rows of this panel show

that the Rotember weights for predicting the hispanic share for hispanic renting households

is 67.3% and for hispanic home-owning households it is 21.1%. Overall, both panels of ta-

ble 2 show that the Rotemberg weights of renting households for predicting own-race racial

shares sum to about 2/3rds.

The top panel of Figure 1 shows the Rotemberg weights of black renting households for

predicting the black share.16 To keep the graph clean, we show the sum of the weights in

15Note that when we estimate preferences over black and hispanic shares, we need to generate a value of
Ŝb
q(`,m),m appropriate for each tract in each MSA. For the purposes of understanding the source of variation

in the predicted black and hispanic shares, that is not necessary: it is acceptable to divide all tracts in an
MSA into a fixed number of quantiles based on tract income.

16We do not graph the Rotemberg weights for black homeowning households because these weights are
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Table 2: Distribution of Rotemberg Weights

Predicted Black Share
Race Owner/Renter Sum of Rotemberg Weights
Black 0.845
Hispanic 0.120
White∗ 0.035

Black Renter 0.657
Black Owner 0.189

Predicted Hispanic Share
Race Owner/Renter Sum of Rotemberg Weights
Black 0.046
Hispanic 0.883
White 0.071

Hispanic Renter 0.673
Hispanic Owner 0.211

∗ White types have 740 (out of 1800) negative Rotemberg weights for predicted black shares.
The average weight when negative is −1.86× 10−5 and the sum of these negative weights is
-0.014.

5 percentile income bins, i.e. income percentiles 1-5, 6-10, and so forth. We do not show

results between the 61st and 100th income percentiles since there is minimal variation in

that range. There are 9 lines on this graph, one for each type of black renting household.

The different colors correspond to different credit bins – black for lowest, blue for middle,

and red for highest – and the different markers refer to different ages – square for youngest,

circle for middle aged, and triangle for oldest. The figure shows that a disproportionate

amount of variation in predicted black shares is accounted for by young- and middle-aged

black renting households with low credit scores locating in lower-income tracts, the black

lines with square and circle markers.

The bottom panel of Figure 1 shows the Rotember weights for predicting the hispanic

share for hispanic renting households. The formatting of the bottom panel is identical

to the top panel. The panel shows that four types of Hispanic households account for a

disproportionate amount of variation in predicted hispanic shares: young- and middle-aged

black renting households with low and middle-tier credit scores, the black and the blue lines

with square and circle markers.

relatively very small.
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Figure 1: Rotemberg Weights
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(a) Weights for Predicted Black Share, Black Renters
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(b) Weights for Predicted Hispanic Share, Hispanic Renters

Notes: black line is lowest credit score, blue line is medium credit score, red line is highest
credit score, square marker is youngest age, circle marker is middle age, and triangle marker
is oldest age.
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Table 3: Balance Test Results

Panel A: Predicted Black Share

Coefficient on Ŝb
j p-values

Outcome mean sd IV SE IV2 SE IV IV2
(1) (2) (3) (4) (5) (6) (7) (8)

Distance to river (mi) 3.316 3.562 0.712 (1.105) 1.321 (1.649) 0.520 0.423
Fraction flat planes 0.410 0.423 -0.167 (0.113) -0.174 (0.102) 0.141 0.089
Public transit < .25 miles 0.023 0.103 0.053 (0.057) 0.033 (0.048) 0.354 0.495
Public transit < .5 miles 0.059 0.189 0.085 (0.094) 0.054 (0.084) 0.369 0.522
Road network density 2.895 6.165 0.675 (1.402) 0.885 (1.644) 0.630 0.591
Sb
j 0.156 0.250 1.221 (0.021) 1.226 (0.024) 0.000 0.000

Sh
j 0.112 0.179 -0.426 (0.058) -0.411 (0.054) 0.000 0.000

Panel B: Predicted Hispanic Share

Coefficient on Ŝh
j p-values

Outcome mean sd IV SE IV2 SE IV IV2
(1) (2) (3) (4) (5) (6) (7) (8)

Distance to river 3.316 3.562 1.029 (1.761) 2.015 (1.994) 0.559 0.312
Fraction flat planes 0.410 0.423 0.517 (0.199) 0.246 (0.235) 0.009 0.294
Public transit < .25 miles 0.023 0.103 -0.017 (0.063) -0.091 (0.066) 0.786 0.163
Public transit < .5 miles 0.059 0.189 0.041 (0.120) -0.116 (0.130) 0.731 0.374
Road network density 2.895 6.165 -3.845 (2.089) -5.097 (2.863) 0.066 0.075
Sb
j 0.156 0.250 -1.518 (0.177) -1.397 (0.256) 0.000 0.000

Sh
j 0.112 0.179 1.383 (0.022) 1.373 (0.034) 0.000 0.000

4.3.2 Balance Tests

For our estimates to be unbiased, the instruments must be uncorrelated with amenities:

The following must hold for all ` and τ for the black share

cov
(
Aτ⊥`,m, Ŝ

b⊥
`,m

)
= 0 (13)

with the analogous expression holding for hispanic share. In the above equation, Aτ⊥`,m would

be the residual of a regression of Aτ`,m – if it were observable – on a full set of MSA dummy

variables and a 7th order polynomial in income percentile.

We wish to test equation (13), but amenities are not directly observable. Instead we try to

find variables that may proxy for amenities, and test if equation (13) holds for these proxies.

To the extent that certain amenities are associated with certain racial groups (i.e. pine trees

and black households), and our estimates for preferences for the black and hispanic shares

of neighborhoods bundle both preferences for race and amenities associated with race, we

do not want to include proxies for Aτ⊥`,m that may be influenced by household or government

choices potentially related to racial shares.
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For proxies for amenities, we use tract distance to the nearest river (in miles),17 the frac-

tion of the tract that is a flat plain, a dummy variable if the tract is within 0.25 miles of public

transit, a dummy variable if the tract is within 0.50) miles of public transit, and an estimate

of the road network density of the tract. The top panel of Table 3 shows results of these

balance tests for predicted black shares and the bottom panel shows results for predicted

hispanic shares. Columns (1) and (2) of Table 3 show the means and standard deviations

of these variables. Columns (3) and (5) show estimates from two different regressions of the

outcome variable (i.e. distance to river) on our instrument after controlling for MSA fixed

effects and a 7th order polynomial in income; columns (4) and (6) show the standard errors;

and columns (7) and (8) show p-values for the null hypothesis that the coefficient is zero.

The column marked “IV” is for our actual instrument and the column marked “IV2” is the

linear approximation of our instrument from equation (12), but only including black or his-

panic households that rent, the source of most of the variation of the instrument according

to the Rotemberg weights. Columns (4), (6), (7) and (8), show that we systematically fail

to reject the null that our instrument is uncorrelated with these variables.

Columns (3) - (8) of the last two rows of the top and bottom panels show the results

from regressing actual black or hispanic shares on either predicted black share (top panel) or

predicted hispanic share (bottom panel). As before, these regressions also include MSA fixed

effects and control for tract income percentile.18 Shown in the top panel, the predicted black

share strongly positively predicts the actual black share and strongly negatively predicts

the actual hispanic share. Conversely, the bottom panel shows the predicted hispanic share

strongly negatively predicts the actual black share and strongly positively predicts the actual

hispanic share.

4.4 Discussion of Estimates

Table 4 provides a summary of our estimates. Column (1) of shows the type index and

(2) reports the percentage of the estimation sample accounted for by that type. Columns

(3)-(6) show the race, age (y=young, m=middle-aged, and o=old), homewonership tenure

(r=rent, o=own), and credit score bin (l=low, m=middle, h=high) of the type. Column (7)

reports the average share of black households in the Census tracts in which that type tends to

live and column (8) shows the average derivative of utility that type would experience from

an increase in the share of black households in the Census tracts in which that type tends

17We require that some tract in the CBSA lie within 5 miles of a river for any tract in that CBSA to be
included in our analysis.

18These regressions are not our actual first stages, but we find the results in this table to be informative
on the relevance of the instruments.
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Table 4: Summary of Estimates of Prferences over Race

Type Sample % Race Age Tenure Credit Avg Sbj Avg ∆δj/∆S
b
j Avg Shj Avg ∆δj/∆S

h
j δ95j − δ5j

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1 2.2% y r l 0.47 1.22 0.10 2.32 1.54
2 1.2% y r m 0.37 1.11 0.11 1.31 1.06
3 0.6% y r h 0.26 0.41 0.10 -0.01 0.47
4 0.4% y o l 0.38 1.21 0.09 1.16 1.19
5 0.5% y o m 0.28 0.59 0.09 0.96 0.58
6 0.6% y o h 0.17 -0.21 0.08 0.37 0.94
7 1.1% m r l 0.50 0.89 0.09 1.64 1.36
8 0.9% m r m 0.43 0.89 0.10 0.46 1.05
9 0.6% Black m r h 0.31 0.42 0.09 -0.51 0.35
10 0.4% m o l 0.47 0.69 0.08 -0.19 1.04
11 0.6% m o m 0.38 0.48 0.08 -0.42 0.58
12 0.9% m o h 0.23 0.38 0.08 -0.42 0.53
13 0.3% o r l 0.56 0.60 0.08 0.90 1.46
14 0.5% o r m 0.52 0.58 0.08 0.04 1.10
15 1.0% o r h 0.39 0.25 0.07 -0.71 0.34
16 0.1% o o l 0.58 1.03 0.07 0.31 1.81
17 0.2% o o m 0.51 0.88 0.07 0.19 1.33
18 0.4% o o h 0.33 0.42 0.07 -0.47 0.41

Sum 12.3% Avg 0.39 0.73 0.09 0.70 0.97

19 1.6% y r l 0.14 1.61 0.37 1.55 1.42
20 1.4% y r m 0.11 0.78 0.36 1.49 1.40
21 0.8% y r h 0.09 -0.85 0.29 1.11 1.74
22 0.3% y o l 0.12 1.21 0.33 1.35 1.23
23 0.5% y o m 0.10 -0.28 0.31 1.29 1.70
24 0.7% y o h 0.07 -1.82 0.22 0.82 1.82
25 0.7% m r l 0.14 1.50 0.37 1.09 1.10
26 0.9% m r m 0.11 0.88 0.38 0.93 0.92
27 0.8% Hisp m r h 0.09 -0.37 0.32 0.93 1.25
28 0.3% m o l 0.13 0.72 0.35 0.79 0.76
29 0.6% m o m 0.10 0.27 0.32 0.77 1.10
30 1.1% m o h 0.07 -0.30 0.23 0.58 1.34
31 0.1% o r l 0.14 1.43 0.41 1.13 1.18
32 0.3% o r m 0.11 0.74 0.40 0.99 0.94
33 1.0% o r h 0.08 -0.47 0.31 0.65 1.08
34 0.0% o o l 0.14 1.94 0.38 1.67 1.38
35 0.1% o o m 0.12 0.54 0.36 1.04 0.96
36 0.4% o o h 0.08 -0.26 0.25 1.16 1.19

Sum 11.6% Avg 0.10 0.31 0.33 1.07 1.30

37 5.6% y r l 0.13 1.05 0.11 1.03 0.81
38 6.1% y r m 0.09 0.50 0.10 0.87 1.40
39 5.4% y r h 0.07 -1.19 0.08 -0.23 2.23
40 1.5% y o l 0.10 1.03 0.09 0.65 1.29
41 3.3% y o m 0.08 -0.86 0.08 0.57 2.07
42 6.8% y o h 0.06 -2.90 0.06 0.08 2.67
43 2.7% m r l 0.13 1.12 0.11 0.52 0.55
44 4.1% m r m 0.09 0.87 0.10 0.25 0.92
45 6.5% White m r h 0.06 -0.22 0.07 -0.35 1.63
46 1.3% m o l 0.10 1.04 0.08 -0.11 0.94
47 3.7% m o m 0.08 0.76 0.08 -0.18 1.44
48 11.5% m o h 0.05 -0.31 0.06 -0.22 2.04
49 0.5% o r l 0.13 1.10 0.11 0.41 0.49
50 1.8% o r m 0.09 0.86 0.09 0.20 0.67
51 10.5% o r h 0.06 -0.27 0.07 -0.51 1.49
52 0.2% o o l 0.12 1.05 0.09 -0.01 0.73
53 0.7% o o m 0.09 1.04 0.08 -0.10 0.95
54 4.0% o o h 0.06 0.26 0.06 -0.37 1.75

Sum 76.1% Avg 0.08 -0.15 0.08 0.05 1.61

For age: y = young, m = middle-aged, o = old. For tenure: r = renter, o = owner. For credit: l = low, m = middle, h = high.
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to live. Similarly, column (9) reports the average share of hispanic households in the Census

tracts in which which that type tends to live and column (10) shows the average derivative

of utility that type would experience from an increase in the share of hispanic households in

the Census tracts in which that type tends to live. Note that the values reported in columns

(7)-(10) are computed as weighted averages over all tracts in which the type may live, with

the weights being the probability that the type lives in the tract.19

The top panel of the table show results for black types, the middle panel show results for

hispanic types, and the bottom panel show results for white types. Focusing on the bottom

row of each of the panels panel, black households account for 12.3% of our sample, hispanic

households account for 11.6% of our sample, and white households account for 76.1% of our

sample. Table 4 shows that same-race sorting is a prominent feature of our data. Columns

(7) and (9) show that, on average, black households live in Census tracts that are 39% black,

hispanic households live in Census tracts that are 33% black and white households live in

Census tracts that are comprised of 84% white households.

Columns (8) and (10) show the derivative of utility with respect to exogenous changes in

the tract-level black share (8) or hispanic share (10). Shown in the bottom row of the top and

middle panels, on average both black and hispanic households receive additional utility from

an increase in black and hispanic shares. The bottom panel shows that white households are

roughly indifferent to an increase in hispanic shares and, on average and with considerable

heterogeneity, white households experience disutility from an exogenous increase in the share

of black households living in their Census tracts. The white type experiencing the largest

disutility are young, homeowning, high-credit score households, type 42, accounting for 6.8%

of our sample. The derivative of utility of this type with respect to the black share of the

population is -2.90, such that if the black share increases by one percentage point, utility falls

by -0.029. For comparison, a twenty percent increase in rental prices generates approximately

the same decline in utility.

Finally, column (11) illustrates the importance of racial preferences in accounting for

location choice in our data. For column 11, we set aτr = 0 and Aτj = 0 for all τ and all j and

then evaluate the the level of utility for each type in each tract; in this calculation, differences

in black and hispanic shares entirely determine differences in utility across tracts. For each

type, we sort tracts by the level of utility the tract provides; we then report in column

(11) the level of utility for the type at the location representing the 95th percentile less

the level of utility at the location representing the 5th percentile. These utility differentials

19For example, suppose there are two tracts A and B; and, thinking about column 8, suppose a particular
type experiences a -1.0 derivative to utility with respect to the black share in tract A and a +1.0 derivative
to utility with respect to the black share in tract B. If the probability that type lives in tract A is 0.20, then
we would report a value in column 8 for that type of 0.6 which we compute as 0.2 (−1.0) + 0.8 (1.0).
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attributable entirely to differences in racial composition across neighborhoods are huge:

0.97 for black households, 1.30 for hispanic households, and 1.61 for white households. On

average, there is essentially no change to rent that can compensate types sufficiently to induce

households to move from neighborhoods with their most desired demographic composition

to neighborhoods with their least desired demographic composition.

Figure XXX graphs how our estimates for YYY different household types

maps to utility for various racial configurations.

Do we need a variance decomposition of racial shares vs amenities in deter-

mining where people live?

5 Discussion of Demographic Stability

We now discuss if the demographic composition of neighborhoods is stable. We begin

by introducing some notation and defining what we mean by stability. Ultimately, stability

depends on the process by which expectations of neighborhood composition change.

For a given MSA m with J total tracts, denote T as 2J × 1 vector comprised of starting

values of expectations of racial shares, E
[
Sbj
]

and E
[
Shj
]

for all tracts. Let g (T ) be an

expectations-generating function produced by our model that takes as a starting input T
and produces a different vector of expectations T ′,

T ′ = g (T ) .

We define a steady state of g as a vector of expectations T ∗ that generates, via g, an identical

set of expectations, i.e.

T ∗ = g (T ∗) .

Before describing how g (T ) works, we now define a steady state that is consistent with

our current data for each metro area. We start with the distribution of types by tract implied

by our estimation sample and then simulate the model for 5 periods, our “burn in” period.

During these 5 periods, we assume each household’s type stays fixed. During the burn in

period, we hold δτj fixed for all types and all tracts. We use a 5-period burn in to ensure

all types populate all tracts in our baseline steady state implied by our data. In a sense,

the burn-in period smooths through sampling variability that may be in the data. After the

burn-in, we use the resulting distribution of types by tract to compute our baseline vector

for T , E
[
Sbj
]

= Sbj and E
[
Shj
]

= Shj for all j.
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Next, we compute the distribution of types across all tracts that results after running

the decision model for one period such that all location choices are made and all types

probabilistically evolve. For each tract, we compute the required additions (“births”) or

subtractions (“deaths”) of the population of each type such that the resulting meausres of

household types in each tract after all decisions are made and all types have stochastically

evolved is constant in all tracts. The addition of type-specific births and deaths to each tract

the model guarantees that the model-predicted distribution of types across tracts is stable

and the vector T ∗ consistent with our data is a steady state. That is, the decisions implied

by the model are consistent with expectations households have over racial shares and rental

prices in each tract.

We now describe the g (T ) function that predicts how expectations evolve given any

starting set of expectations T . To start, denote the total number of households and the

rental price in each tract in the data as Hj and rj, respectively. Then, we compute g (T ) as

follows:

1. Denote the guess of new rental prices r′j.

2. Using equations (8) and (9), adjust δτj appropriately for all j and τ given the values

of E
[
Sbj
]

and E
[
Shj
]

from T and the guess r′j, holding exogenous amenities Aτj fixed.

Households assume this new value of δτj is fixed forever when making decisions.

3. Simulate the model 99 periods and then compute new housing demand in each tract,

H′j.

4. Update the guess of rental prices and repeat steps 2-3 until rental prices in each tract

clear markets to satisfy

logH′j − logHj = ψj
[
log r′j − log rj

]
The housing supply elasticity in each tract j, ψj, is given by the estimates in Baum-

Snow and Han (2022) with a floor elasticity of 0.025.20

5. Once we know rental prices r′j that clear housing markets given values of E
[
Sbj
]

and

E
[
Shj
]

from T , compute simulated black and hispanic shares in each tract and call

these Sb
′
j and Sh

′
j .

6. Set the elements of T ′ equal to Sb
′
j and Sh

′
j .

20In a handful of tracts, Baum-Snow and Han (2022) estimate a negative supply elasticity.
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Given our procedure to compute g (T ), we test the stability of the steady state implied

by the data by computing the eigenvalues and eigenvectors of the model at the steady state.

To see why this is useful, suppose we perturb expectations of racial shares at the steady

state – call these perturbed expectations as T ′ – and then measure how expectations evolve

from this perturbed starting point, i.e. T ′′ = g (T ′). We can do this with a first-order linear

approximation:

g (T ′)− g (T ∗) ≈ G · [T ′ − T ∗]

where G is a 2J by 2J vector of derivatives of g evaluated at T ∗. Once we make appropriate

substitutions, we get

[T ′′ − T ∗] ≈ G · [T ′ − T ∗]

We compute the elements of G at T ∗ using numerical derivatives. Specifically, define T̃ ∗i
as equal to T ∗ in all elements except for the ith element which we perturb by ∆i units.21

We set the ith column of G equal to
[
g
(
T̃ ∗i
)
− T ∗

]
/∆i. We repeat this computation for all

i = 1, . . . , 2J elements of T ∗ to populate all the columns of G.

Once we have estimates of G, we compute its eigenvalues to determine whether the

expectations of racial shares move away from or return to the steady state expectations

implied by the data in response to a tiny perturbation to expectations. In other words, we

ask if the system predicts expectations return to T ∗ if we start our model using expectations

that are nearly but not exactly identical to T ∗. If all the eigenvalues of G are less than 1,

the expectations converge back to the steady state; if at least one eigenvalue is greater than

1, expectations do not converge back to the starting point and in this instance, we say the

steady state implied by the data is not stable.

Appendix table A.1 lists our full set of MSAs and results. Column (1) lists the MSA

name, (2) lists the population, (3) lists the number of tracts, (4) lists the black share of the

MSA population, and (5) lists the hispanic share of the population. Column (6) lists the

share of eigenvalues of G of that MSA that have a value greater than 1. The results shown

in column (6) very strongly suggest that the demographic composition of neighborhoods in

the United States is inherently unstable – even using a model framework engineered to have

a steady state at the current data. Only one MSA out of 141 in the sample, Rockingham

County - Strafford County, NH, has zero eigenvalues greater than 1. Every other MSA has at

least one eigenvalue greater than 1, and in fact the median MSA has 47% of its eigenvalues

21For each element i, we set ∆i equal to 1.0× 10−6.
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greater than 1 (shown at the end of the table).

Ultimately, the reason that the system is not stable is that households have very strong

preferences over the racial composition of their neighbors. Rockingham County - Strafford

County, NH, is stable because the population is almost entirely white; the black share is 1.3%

and the hispanic share is 0.8%. The other MSAs that have a minimum of eigenvalues larger

than 1 are also almost entirely white as well, for example Barnstable Town, MA (1.3% black

and 2.3% hispanic), Duluth MN-WI (0.8% white and 1.0% hispanic), and Portland - South

Portland, ME (0.9% white and 0.9% hispanic). The racial composition of neighborhoods in

these metro areas is stable because the population is nearly entirely white and arithmetically

stability is nearly guaranteed.

To show the impact of the presence of nonwhite households in a metro area on our

estimates of eigenvalues, Figure 2 graphs the share of eigenvalues of G that are larger than

1 in each MSA on the y-axis against the percentage of black households (top panel) or

percentage of hispanic households (bottom panel) in each MSA on the x-axis. As shown in

the top panel, on average the share of eigenvalues larger than 1 increases rapidly with the

black share of the MSA population until the black share is about 20%, at which point the

share of eigenvalues larger than 1 stabilizes at about 50%. Nearly the exact same relationship

holds in the bottom panel. When we regress the share of eigenvalues of G of an MSA greater

than 1 on the black and hispanic shares of that MSA, and restrict the sample to MSAs where

the black and hispanic shares are each less than 20% (101 out of 141 MSAs), the coefficients

on both shares are positive and statistically significant with t-statistics of 13.85 and 15.31,

respectively, and the R-squared is 0.82.

The racial composition of neighborhoods at the steady state implied by the current data

is unstable because many households want to live in more segregated neighborhoods. This

result is not merely a statement about the direction of racial preferences; it is more of a

statement about the size of these preferences. To show this, we recompute eigenvalues of G
holding δτj fixed for all tracts j and types τ , but after multiplying all coefficients on race in

utility – aτk for k = 1, . . . , 5 (see equation 9) – by 0.25 for all types. By holding δτj fixed, we

preserve the relative desirability of all tracts in the baseline, so any changes to eigenvalues

only reflect changes in the strength of preferences for race. The results for all MSAs are

shown in column (7) of Appendix table A.1. The bottom line is that with these scaled-down

preferences for race, stability for all MSAs vastly improves. Measured at the median MSA,

with this rescaling only 3.2% of an MSA’s eigenvalues are larger than 1, shown at the end

of the table.
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Figure 2: Percent of Metro Area Eigenvalues > 1
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6 Example Implication for Policy

In this section, we use simulations of the model to predict how neighborhoods will endoge-

nously change in response to a somewhat small policy change that simultaneously affects a

relatively large number of tracts. Specifically, for each MSA, we simluate the long-run

steady-state predicted response if local governments unexpectedly allow a one-time and im-

mediate 10 percent expansion of all housing developments previously financed using Low

Income Housing Tax Credits (LIHTC).22 The thought behind this analysis was to ask if

local governments could implement a relatively small place-based policy in many locations

at once without causing a lot of disruption. If the policy was sufficiently small, and imple-

mented in enough locations that already had experience with government policy via LIHTC

developments, perhaps incumbent residents would not move in response to a small influx of

low-credit-score new residents that may be of a different average racial mix than existing

residents.

We implement this counterfactual policy as follows. Denote ∆H as the total number of

new LIHTC units that will be built in the MSA as a consequence of this policy. In the first

step, we remove ∆H housing units (in total) from tracts that are currently housing low-

credit-score households in the MSA.23 Then, in the second step we simulate the model for 5

periods holding δj fixed and rj fixed. After these 5 periods, we compute births and deaths

needed to keep the data (with these ∆H units removed) in a steady state, before adding

the new LIHTC units. Finally, in the third step we add new LIHTC units in proportion to

existing LIHTC units until ∆H units are added.24 We assume the distribution of types in

these new units is the same as the distribution of types from the ∆H units removed in the first

step. With these three steps, we preserve the MSA-wide distribution of types and maintain

the MSA-wide aggregate stock of housing, but move ∆H low-credit score households from

tracts without LIHTC units to tracts with LIHTC units. Importantly, the mix of household

types moving into the ∆H new LIHTC units is unlikely the same as the mix of household

types in the tracts where those units are located.

Once we have taken the three steps listed above, we compute a new steady state for each

MSA. A steady state has the features that (i) the mix of household types in each tract is

stable, (ii) the rent in each tract is stable, (iii) the shares of black and hispanic households in

each tract is stable, and (iv) expected future rents and black and hispanic shares in each tract

are equal to realized shares. When households have strong preferences over the demographic

22As we show in Appendix Table A.2, in many MSAs LIHTC developments are located in about 25-35
percent of Census tracts.

23The housing units are removed in proportion to the low-credit score population of each tract.
24We use XXXX to identify the location and number of LIHTC units in each metro area.
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composition of their neighborhood, we cannot rule out the possibility that there may be

multiple feasible steady states in each MSA. We try to compute a steady state that will be

as close to the data as possible, and our algorithm to do this is as follows:

a. Denote the starting total number of households and the rental price in each tract as

Hj and rj, respectively.

b. Do steps 1-5 of the procedure to compute g (T ) (see section 5). This generates new

simulated black and hispanic shares in each tract, Sb
′
j and Sh

′
j .

c. Update expected black and hispanic shares in each tract using a weighted average,

such that

new E
[
Sbj
]

= 0.99 ∗
(
old E

[
Sbj
])

+ 0.01 ∗ Sb′j
new E

[
Shj
]

= 0.99 ∗
(
old E

[
Shj
])

+ 0.01 ∗ Sh′j

d. Using equation (8) and (9), adjust δτj appropriately given the new values of E
[
Sbj
]
,

E
[
Shj
]

and r′j, holding exogenous amenities Aτj fixed.

e. Set rj = r′j and Hj = H′j.

f. Call the sequence of steps b-e as one iteration. Repeat steps b-e until the distribution

of types in each tracts does not change with one additional iteration.

In the simulations, we tract three statistics for each metro area. The first statistic we

compute is the share of tracts that “tip.” We define a tract to have tipped if either the black

share or the hispanic share changes by 5 percentage points or more in the new steady state

relative to the baseline steady state. The other two statistics we compute are black-white

and hispanic-white dissimilarity indices. For each metro m, we compute these inidices as

black-white dissimilarity =
1

2

∑
j∈m

∣∣∣ bj,m
Bm

− wj,m
Wm

∣∣∣
hispanic-white dissimilarity =

1

2

∑
j∈m

∣∣∣ hj,m
Hm

− wj,m
Wm

∣∣∣
where bj,m, hj,m and wj,m are the numbers of black, hispanic, and white households in tract j

of metro m and Bm, Hm, and Wm are the numbers of black, hispanic, and white households

in metro m. If there is perfect mixing of races in each tract, then these indices will equal 0;

and if there is perfect segregation then the indices will equal 1.

Appendix Table A.2 lists all of the results for each metro area. Column (1) shows

the name of the metro and column (2) shows the percentage of tracts with some LIHTC
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units. Column (3) shows the percentage of tracts that tip in this counterfactual experiment

at our baseline estimate of preferences. At the median MSA (shown at the end of the

table), more than 60% of tracts tip when racial preferences are at our baseline estimates

(“Exp 0”). For comparison, column (4) shows the percentage of tracts that tip in these

counterfactual experiments when parameters for racial preferences are set to equal 0.25 of the

baseline estimates, (“Exp 1”). In this parameterization, the percentage of tracts that tip falls

dramatically: at the Median MSA, less than 6% of tracts tip. This confirms intuition from

the eigenvalue analysis that existing neighborhood racial composition is not stable, and the

lack of stability arises from strong preferences over the racial composition of neighborhoods.

Columns (5) and (7) show the black-white and hispanic-white dissimilarity indices for our

metro areas that are consistent with the steady state implied by our data: measured at the

median, the black-white dissimilarity index implied by our data is 31% and the hispanic-white

dissimilarity index is 21%. Columns (6) and (9) show the percentage point change in the

black-white and hispanic-white dissimilarity indexes for the counterfactual experiment at our

baseline estimate of preferences. MSAs become enormously more segregated. At the median

MSA, the black-white dissimilarity index increases by nearly 50 percentage points and the

hispanic-white dissimilarity index increases by nearly 60 percentage points! Households, on

net, want to move to more racially segregated neighborhoods.

Finally, columns (7) and (10) show the percentage point change in the black-white and

hispanic-white dissimilarity indexes for the counterfactual experiment when parameters de-

termining racial preferences in the model are set equal to 0.25 of the baseline estimates.

Shown in the last rows of the table, for most MSAs the black-white and hispanic-white dis-

similarity indexes do not change very much: the median change is -0.3 percentage points in

the black-white and 0.1 percentage points in the hispanic-white. Related, when preference

parameters for race are set to 0.25 their baseline estimates, in approximately 50 percent of the

metro areas both the black-white and the hispanic-white dissimilarity indexes fall, implying

that the new steady state has more racial integration than compared to the baseline.

7 Conclusion

TBD.
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Appendix Table A.1

% Tracts Eigenvalues > 0

Name Pop (000s) Tracts % Black % Hisp Baseline 0.25aτk
(1) (2) (3) (4) (5) (6) (7)

Akron, OH 813 166 0.8% 10.4% 33.4% 3.0%

Albany-Schenectady-Troy, NY 1007 214 2.3% 6.2% 27.7% 1.2%

Albuquerque, NM 878 188 43.7% 3.2% 50.0% 4.8%

Allentown-Bethlehem-Easton, PA-NJ 853 163 6.4% 2.9% 42.9% 0.0%

Amarillo, TX 275 62 18.5% 5.6% 58.1% 3.2%

Anchorage, AK 367 68 4.9% 6.0% 44.9% 0.0%

Ann Arbor, MI 377 97 2.7% 11.9% 39.7% 4.1%

Asheville, NC 487 78 2.6% 3.9% 30.1% 0.6%

Atlantic City-Hammonton, NJ 315 62 11.4% 17.8% 67.5% 8.7%

Augusta-Richmond County, GA-SC 611 95 2.5% 34.6% 50.0% 30.0%

Bakersfield, CA 790 136 40.4% 6.5% 73.2% 11.8%

Barnstable Town, MA 253 50 1.3% 2.3% 1.0% 0.0%

Baton Rouge, LA 817 142 1.8% 29.9% 46.8% 25.0%

Beaumont-Port Arthur, TX 459 100 7.5% 20.9% 72.0% 14.0%

Binghamton, NY 291 65 1.7% 2.9% 15.4% 0.0%

Birmingham-Hoover, AL 1234 226 1.7% 23.6% 39.8% 8.6%

Boise City, ID 539 79 8.3% 0.7% 39.9% 0.0%

37764 799 156 9.4% 2.8% 32.4% 0.6%

Rockingham County-Strafford County, NH 440 79 1.3% 0.8% 0.0% 0.0%

Boulder, CO 309 62 10.9% 1.1% 29.0% 0.0%

14600 688 143 7.2% 7.1% 33.9% 2.1%

Bremerton-Silverdale, WA 257 51 4.2% 3.4% 36.3% 0.0%

Bridgeport-Stamford-Norwalk, CT 992 209 11.4% 10.4% 58.1% 6.9%

Brownsville-Harlingen, TX 408 86 83.3% 0.6% 30.2% 0.6%

Canton-Massillon, OH 467 87 0.9% 6.2% 27.0% 1.1%

Cape Coral-Fort Myers, FL 574 117 10.0% 6.7% 51.7% 4.3%

Cedar Rapids, IA 266 55 1.4% 2.8% 7.3% 0.0%

Champaign-Urbana, IL 253 50 2.5% 9.1% 41.0% 4.0%

Charleston, WV 357 76 0.5% 4.0% 17.1% 1.3%

Charleston-North Charleston, SC 748 117 2.4% 27.0% 51.7% 27.4%

Chattanooga, TN-GA 589 98 1.3% 10.7% 40.8% 7.7%

Gary, IN 802 147 9.2% 14.2% 59.5% 4.8%

Lake County-Kenosha County, IL-WI 964 181 12.3% 7.2% 49.7% 4.1%

Clarksville, TN-KY 324 50 6.0% 20.6% 56.0% 10.0%

Colorado Springs, CO 635 117 11.0% 7.7% 64.1% 3.0%

Columbia, SC 839 144 2.8% 30.5% 51.7% 20.5%

Columbus, GA-AL 396 76 5.2% 38.2% 63.8% 27.6%

Corpus Christi, TX 500 83 51.9% 4.1% 66.3% 10.8%

Davenport-Moline-Rock Island, IA-IL 434 103 5.0% 5.2% 39.8% 1.0%

Dayton, OH 1055 208 1.1% 12.2% 28.1% 3.1%

Deltona-Daytona Beach-Ormond Beach, FL 537 78 7.1% 8.2% 48.7% 3.8%

Des Moines-West Des Moines, IA 583 107 3.5% 3.5% 30.4% 1.4%

Duluth, MN-WI 340 90 0.8% 1.0% 0.6% 0.0%

Durham-Chapel Hill, NC 521 89 6.5% 26.7% 70.2% 20.2%

El Paso, TX 880 126 79.4% 3.0% 53.6% 2.8%

Erie, PA 322 72 1.8% 5.2% 25.7% 1.4%

Eugene, OR 353 78 4.6% 1.4% 22.4% 0.0%

Evansville, IN-KY 418 85 0.9% 4.5% 21.8% 0.6%

Fayetteville, NC 523 55 9.3% 33.3% 85.5% 40.9%
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% Tracts Eigenvalues > 0

Name Pop (000s) Tracts % Black % Hisp Baseline 0.25aτk
(1) (2) (3) (4) (5) (6) (7)

Fayetteville-Springdale-Rogers, AR-MO 385 68 8.2% 1.4% 39.0% 0.0%

Flint, MI 507 131 2.3% 20.0% 37.0% 6.1%

Fort Collins, CO 294 56 7.7% 1.0% 39.3% 0.0%

Fort Smith, AR-OK 310 52 4.2% 3.3% 36.5% 1.0%

Fort Wayne, IN 469 104 3.2% 8.7% 47.1% 3.4%

Fresno, CA 923 158 46.3% 5.7% 71.8% 12.3%

Grand Rapids-Wyoming, MI 816 159 5.5% 7.7% 42.8% 2.8%

Green Bay, WI 336 64 3.1% 0.9% 11.9% 0.0%

Greensboro-High Point, NC 793 142 3.9% 20.5% 62.3% 16.5%

Greenville-Anderson-Mauldin, SC 708 126 2.9% 15.7% 51.6% 8.7%

Gulfport-Biloxi-Pascagoula, MS 322 52 2.1% 15.7% 48.1% 6.7%

Harrisburg-Carlisle, PA 605 111 2.6% 8.6% 32.0% 5.0%

Hickory-Lenoir-Morganton, NC 375 68 3.8% 7.0% 41.2% 0.7%

26180 1067 212 7.0% 3.2% 32.8% 0.0%

Huntington-Ashland, WV-KY-OH 352 75 0.7% 2.2% 5.3% 0.0%

Huntsville, AL 416 87 2.0% 18.8% 48.9% 12.6%

Jackson, MS 608 115 1.0% 43.0% 43.5% 24.8%

Jacksonville, FL 1430 201 4.0% 17.8% 57.2% 11.2%

Kalamazoo-Portage, MI 367 76 3.9% 8.6% 42.8% 2.0%

Killeen-Temple, TX 453 62 15.4% 24.1% 87.9% 21.8%

Kingsport-Bristol-Bristol, TN-VA 356 65 0.6% 1.9% 2.3% 0.0%

Knoxville, TN 786 128 1.1% 4.6% 32.4% 2.3%

Lafayette, LA 277 50 1.6% 24.6% 48.0% 13.0%

Lakeland-Winter Haven, FL 581 110 9.1% 11.9% 77.3% 6.4%

Lancaster, PA 532 94 4.4% 2.6% 33.0% 2.1%

Lansing-East Lansing, MI 547 117 4.0% 7.1% 49.1% 4.3%

Lexington-Fayette, KY 488 95 2.7% 10.9% 37.9% 2.6%

Lincoln, NE 307 62 3.2% 3.2% 18.5% 0.0%

Little Rock-North Little Rock-Conway, AR 759 147 2.1% 20.1% 48.3% 8.5%

Lubbock, TX 303 64 27.2% 7.4% 74.2% 14.1%

Lynchburg, VA 286 56 0.9% 16.7% 42.9% 3.6%

Macon-Bibb County, GA 307 53 1.0% 33.4% 49.1% 20.8%

Madison, WI 572 109 3.1% 4.0% 22.0% 0.0%

Manchester-Nashua, NH 440 81 3.0% 1.5% 11.1% 0.0%

McAllen-Edinburg-Mission, TX 653 80 88.3% 0.6% 33.1% 0.6%

Mobile, AL 507 114 1.1% 26.0% 42.5% 19.3%

Modesto, CA 495 89 32.5% 3.0% 53.4% 4.5%

Montgomery, AL 418 82 1.1% 37.8% 50.0% 28.0%

Naples-Immokalee-Marco Island, FL 291 52 21.4% 5.3% 53.8% 1.9%

New Haven-Milford, CT 931 185 8.8% 11.6% 67.3% 8.1%

Norwich-New London, CT 314 62 5.0% 6.1% 37.9% 2.4%

Ogden-Clearfield, UT 503 93 8.1% 1.4% 39.8% 0.0%

Omaha-Council Bluffs, NE-IA 856 237 5.1% 7.6% 34.4% 0.8%

Oxnard-Thousand Oaks-Ventura, CA 891 155 36.0% 2.4% 56.1% 2.3%

Palm Bay-Melbourne-Titusville, FL 585 92 4.9% 8.6% 40.2% 1.1%

Pensacola-Ferry Pass-Brent, FL 524 77 2.8% 14.1% 47.4% 5.2%

Peoria, IL 412 94 1.4% 7.7% 26.6% 3.2%

Wilmington, DE-MD-NJ 809 166 4.3% 16.4% 59.6% 10.5%

Portland-South Portland, ME 560 108 0.9% 0.9% 0.5% 0.0%

Port St. Lucie, FL 389 60 8.4% 10.8% 54.2% 4.2%

39100 705 131 9.1% 8.2% 63.0% 7.3%

Provo-Orem, UT 423 85 6.7% 0.5% 37.1% 0.0%
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% Tracts Eigenvalues > 0

Name Pop (000s) Tracts % Black % Hisp Baseline 0.25aτk
(1) (2) (3) (4) (5) (6) (7)

Raleigh, NC 1047 128 5.3% 17.6% 66.4% 14.5%

Reading, PA 455 82 6.5% 3.1% 53.7% 3.0%

Reno, NV 419 68 17.6% 2.6% 48.5% 0.0%

Roanoke, VA 323 59 1.1% 10.7% 42.4% 5.1%

Rockford, IL 370 82 7.5% 8.1% 64.6% 4.9%

Saginaw, MI 244 56 6.3% 18.7% 65.2% 6.3%

Salem, OR 405 63 16.0% 1.1% 48.4% 0.0%

Salinas, CA 519 83 53.2% 4.8% 56.0% 6.0%

Salt Lake City, UT 1123 205 12.3% 1.3% 39.8% 0.2%

42060 445 86 36.3% 2.9% 52.3% 4.7%

Santa Cruz-Watsonville, CA 289 52 29.5% 1.6% 50.0% 0.0%

Santa Rosa, CA 507 86 18.1% 2.0% 47.7% 0.0%

Savannah, GA 441 75 2.2% 26.3% 52.0% 24.0%

Scranton–Wilkes-Barre–Hazleton, PA 668 168 1.1% 1.6% 7.4% 0.0%

Tacoma-Lakewood, WA 806 157 6.0% 9.5% 53.8% 0.0%

Shreveport-Bossier City, LA 471 90 1.8% 35.1% 51.1% 26.1%

South Bend-Mishawaka, IN-MI 402 84 3.5% 7.9% 50.6% 7.1%

Spartanburg, SC 326 51 2.5% 17.3% 52.9% 4.9%

Spokane-Spokane Valley, WA 473 106 2.7% 2.2% 8.0% 0.0%

Springfield, IL 229 55 0.8% 7.7% 41.8% 2.7%

Springfield, MA 779 140 9.8% 6.4% 48.2% 5.4%

Springfield, MO 418 85 1.5% 1.6% 7.1% 0.0%

Stockton-Lodi, CA 659 121 30.1% 7.5% 76.9% 14.0%

Syracuse, NY 774 189 1.8% 5.8% 26.5% 1.3%

Tallahassee, FL 385 63 3.7% 29.7% 59.5% 23.0%

Toledo, OH 777 174 4.2% 9.7% 42.8% 4.0%

Topeka, KS 254 54 5.0% 6.7% 41.7% 0.9%

Trenton, NJ 402 72 8.4% 17.5% 74.3% 13.2%

Tucson, AZ 1026 196 30.1% 3.8% 52.0% 2.0%

Tuscaloosa, AL 232 54 1.2% 32.4% 49.1% 22.2%

Utica-Rome, NY 369 92 2.4% 4.2% 17.9% 1.1%

Vallejo-Fairfield, CA 478 79 17.3% 15.2% 90.5% 18.4%

Visalia-Porterville, CA 419 76 52.3% 1.9% 50.0% 6.6%

Waco, TX 238 51 18.3% 15.4% 90.2% 14.7%

13644 1263 209 9.4% 14.7% 71.5% 15.8%

Wichita, KS 686 143 6.6% 7.0% 52.8% 2.4%

Winston-Salem, NC 483 97 5.6% 17.8% 59.3% 11.3%

Worcester, MA-CT 882 163 6.2% 3.2% 29.1% 0.3%

York-Hanover, PA 451 82 2.1% 2.7% 33.5% 2.4%

Youngstown-Warren-Boardman, OH-PA 748 168 1.4% 8.1% 32.7% 1.5%

25th Percentile 367 68 2.1% 3.0% 33.0% 0.6%

Median 483 89 4.4% 7.1% 46.8% 3.2%

75th Percentile 748 131 9.2% 15.4% 53.8% 8.7%
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Appendix Table A.2

Tracts Tipping Black-White Dissim Hisp-White Dissim

Name LIHTC % Exp 0 Exp 1 Base ∆ 0 ∆ 1 Base ∆ 0 ∆ 1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Akron, OH 28.4% 56.1% 8.9% 43.5% 47.8 pp 0.1 pp 16.5% 71.4 pp 2.2 pp

Albany-Schenectady-Troy, NY 22.3% 24.1% 2.2% 38.3% 49.2 pp -2.5 pp 21.7% 62.8 pp -0.4 pp

Albuquerque, NM 23.8% 93.3% 29.7% 15.3% 61.7 pp -0.7 pp 26.7% 59.4 pp 0.9 pp

Allentown-Bethlehem-Easton, PA-NJ 27.6% 33.9% 2.4% 29.9% 40.0 pp -0.8 pp 36.0% 47.0 pp -1.8 pp

Amarillo, TX 24.5% 67.4% 7.3% 32.6% 46.2 pp -5.2 pp 27.5% 58.1 pp -2.5 pp

Anchorage, AK 34.2% 48.2% 0.0% 21.2% 53.7 pp -0.2 pp 14.4% 59.9 pp 0.0 pp

Ann Arbor, MI 23.7% 52.9% 14.1% 36.2% 49.9 pp 1.7 pp 15.2% 62.9 pp 5.2 pp

Asheville, NC 32.7% 10.8% 1.2% 26.5% 41.2 pp -1.8 pp 16.0% 45.5 pp 0.0 pp

Atlantic City-Hammonton, NJ 4.6% 92.0% 4.6% 42.0% 50.4 pp -3.6 pp 29.7% 62.3 pp -2.5 pp

Augusta-Richmond County, GA-SC 23.4% 97.8% 46.0% 31.8% 58.2 pp 2.0 pp 16.0% 73.8 pp 2.5 pp

Bakersfield, CA 36.9% 92.6% 51.4% 29.3% 61.4 pp -2.3 pp 37.7% 51.2 pp -1.9 pp

Barnstable Town, MA 20.9% 0.0% 0.0% 18.0% -0.6 pp -0.2 pp 15.4% 0.1 pp -0.1 pp

Baton Rouge, LA 30.3% 83.9% 43.7% 43.9% 46.4 pp 4.4 pp 17.3% 69.7 pp 4.9 pp

Beaumont-Port Arthur, TX 23.3% 82.3% 15.8% 53.8% 35.8 pp -0.4 pp 28.3% 59.9 pp 3.5 pp

Binghamton, NY 31.4% 0.0% 0.0% 26.2% -0.9 pp -0.2 pp 19.4% -0.7 pp -0.3 pp

Birmingham-Hoover, AL 31.1% 81.0% 25.1% 52.0% 37.5 pp 2.0 pp 21.5% 68.1 pp 6.8 pp

Boise City, ID 43.6% 46.5% 1.5% 9.4% 2.6 pp 0.3 pp 20.0% 52.2 pp -1.4 pp

37764 24.2% 28.8% 3.3% 32.1% 36.3 pp -1.3 pp 50.3% 29.0 pp -1.6 pp

Rockingham County-Strafford County, NH 36.9% 0.0% 0.0% 12.4% -0.3 pp -0.1 pp 15.5% -0.6 pp -0.1 pp

Boulder, CO 35.5% 36.5% 2.1% 10.7% 5.1 pp -0.2 pp 22.5% 42.7 pp -1.7 pp

14600 13.8% 23.0% 4.5% 33.4% 49.9 pp -2.5 pp 23.1% 57.5 pp -0.7 pp

Bremerton-Silverdale, WA 38.4% 4.9% 0.0% 20.0% 10.8 pp 0.1 pp 10.3% 13.2 pp 0.3 pp

Bridgeport-Stamford-Norwalk, CT 17.1% 88.1% 5.4% 48.2% 38.5 pp -0.9 pp 41.0% 48.4 pp -0.6 pp

Brownsville-Harlingen, TX 23.9% 89.2% 46.5% 19.9% 51.8 pp 5.0 pp 31.4% 47.4 pp 11.4 pp

Canton-Massillon, OH 21.1% 28.1% 1.5% 36.3% 37.4 pp -0.5 pp 13.1% 8.2 pp 0.1 pp

Cape Coral-Fort Myers, FL 12.4% 58.1% 1.9% 35.5% 51.6 pp -5.5 pp 23.9% 63.6 pp 1.9 pp

Cedar Rapids, IA 33.3% 1.4% 0.0% 24.8% 2.2 pp -0.2 pp 13.2% 4.5 pp 0.6 pp

Champaign-Urbana, IL 25.6% 50.3% 7.7% 34.2% 56.4 pp 2.2 pp 22.7% 64.2 pp 3.6 pp

Charleston, WV 33.1% 12.6% 0.0% 35.8% 28.6 pp -1.0 pp 18.1% 10.4 pp 0.1 pp

Charleston-North Charleston, SC 34.8% 94.8% 50.0% 27.0% 62.0 pp 8.3 pp 15.8% 71.8 pp 8.4 pp

Chattanooga, TN-GA 30.2% 60.3% 11.9% 49.1% 41.5 pp -5.8 pp 16.9% 64.1 pp 3.0 pp

Gary, IN 14.9% 86.3% 14.8% 60.9% 31.6 pp 0.8 pp 32.0% 58.6 pp 1.7 pp

Lake County-Kenosha County, IL-WI 20.1% 86.6% 4.3% 45.3% 45.5 pp -2.7 pp 39.5% 52.1 pp -3.1 pp

Clarksville, TN-KY 25.2% 89.0% 10.8% 26.8% 62.6 pp 0.8 pp 26.1% 63.6 pp 0.9 pp

Colorado Springs, CO 13.6% 59.8% 2.2% 23.2% 51.3 pp -0.5 pp 16.3% 45.5 pp -0.5 pp

Columbia, SC 34.0% 94.8% 49.7% 35.5% 56.0 pp 2.8 pp 20.1% 70.7 pp 6.0 pp

Columbus, GA-AL 16.0% 100.0% 15.8% 41.5% 50.2 pp 1.1 pp 24.1% 61.0 pp 3.2 pp

Corpus Christi, TX 23.7% 97.5% 54.6% 21.9% 64.0 pp -2.5 pp 33.1% 53.9 pp -1.7 pp

Davenport-Moline-Rock Island, IA-IL 27.2% 24.7% 1.8% 30.3% 46.3 pp -0.9 pp 23.9% 54.7 pp -0.7 pp

Dayton, OH 41.6% 79.9% 21.8% 53.1% 37.6 pp -0.2 pp 17.0% 70.9 pp 5.6 pp

Deltona-Daytona Beach-Ormond Beach, FL 21.4% 57.6% 3.2% 32.8% 52.6 pp -4.6 pp 28.6% 56.5 pp 1.5 pp

Des Moines-West Des Moines, IA 50.5% 20.0% 2.0% 28.8% 57.3 pp -2.9 pp 25.6% 57.6 pp -2.1 pp

Duluth, MN-WI 27.0% 0.0% 0.0% 21.7% -0.2 pp -0.1 pp 14.7% 0.0 pp 0.0 pp

Durham-Chapel Hill, NC 37.7% 100.0% 43.7% 33.6% 59.5 pp 6.8 pp 29.7% 36.5 pp 10.5 pp

El Paso, TX 45.1% 95.3% 34.4% 21.0% 66.9 pp 3.1 pp 30.5% 51.2 pp 1.6 pp

Erie, PA 23.0% 21.9% 1.0% 41.7% 34.9 pp -0.8 pp 27.2% 38.6 pp 0.0 pp

Eugene, OR 40.5% 0.0% 0.0% 16.4% -0.5 pp -0.2 pp 10.4% -0.2 pp -0.4 pp

Evansville, IN-KY 26.1% 27.9% 0.6% 30.6% 52.7 pp 0.0 pp 14.9% 16.7 pp 1.0 pp

Fayetteville, NC 28.5% 100.0% 47.9% 20.1% 72.2 pp 7.2 pp 15.3% 53.4 pp 5.9 pp
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Tracts Tipping Black-White Dissim Hisp-White Dissim

Name LIHTC % Exp 0 Exp 1 Base ∆ 0 ∆ 1 Base ∆ 0 ∆ 1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Fayetteville-Springdale-Rogers, AR-MO 45.3% 53.9% 0.0% 17.8% 24.4 pp -0.5 pp 24.5% 55.0 pp -1.8 pp

Flint, MI 26.2% 76.1% 27.2% 56.6% 32.1 pp 2.6 pp 16.6% 62.1 pp 10.7 pp

Fort Collins, CO 43.1% 7.2% 0.0% 11.7% 4.3 pp -0.4 pp 8.4% 25.9 pp -0.5 pp

Fort Smith, AR-OK 57.3% 15.8% 0.0% 30.5% 3.2 pp -1.6 pp 30.1% 3.2 pp -1.8 pp

Fort Wayne, IN 28.9% 44.2% 11.0% 42.3% 46.5 pp -3.3 pp 24.9% 63.4 pp 0.2 pp

Fresno, CA 43.8% 94.5% 61.1% 29.7% 61.1 pp -3.8 pp 30.7% 58.6 pp 2.9 pp

Grand Rapids-Wyoming, MI 28.8% 35.7% 2.1% 42.5% 45.7 pp -0.9 pp 32.0% 56.9 pp -0.5 pp

Green Bay, WI 38.9% 0.0% 0.0% 23.3% -0.3 pp -0.1 pp 27.7% -1.0 pp -0.3 pp

Greensboro-High Point, NC 33.6% 97.1% 27.8% 37.8% 54.2 pp 3.9 pp 23.6% 56.4 pp 6.6 pp

Greenville-Anderson-Mauldin, SC 38.2% 70.5% 16.3% 29.6% 57.9 pp 0.4 pp 17.9% 69.1 pp 2.9 pp

Gulfport-Biloxi-Pascagoula, MS 59.3% 68.7% 33.8% 27.1% 58.6 pp -0.1 pp 16.6% 66.7 pp 9.9 pp

Harrisburg-Carlisle, PA 33.7% 42.5% 3.9% 49.0% 39.5 pp -0.6 pp 28.8% 47.8 pp 1.9 pp

Hickory-Lenoir-Morganton, NC 31.5% 28.2% 1.3% 23.4% 53.0 pp -1.1 pp 19.1% 57.2 pp -0.1 pp

26180 16.3% 0.7% 0.0% 24.9% -1.0 pp -0.2 pp 14.1% -0.9 pp -0.2 pp

Huntington-Ashland, WV-KY-OH 29.2% 2.2% 0.0% 31.6% 0.4 pp -1.0 pp 16.7% 1.8 pp -0.1 pp

Huntsville, AL 29.1% 80.3% 31.6% 35.3% 55.5 pp 5.0 pp 17.3% 69.4 pp 7.7 pp

Jackson, MS 47.5% 91.8% 46.2% 42.8% 47.2 pp 5.8 pp 17.3% 75.7 pp 18.3 pp

Jacksonville, FL 35.2% 85.7% 29.8% 37.0% 52.6 pp 3.9 pp 14.2% 76.1 pp 7.3 pp

Kalamazoo-Portage, MI 44.2% 48.5% 4.1% 31.1% 57.0 pp -2.7 pp 23.4% 64.6 pp 1.1 pp

Killeen-Temple, TX 17.5% 97.8% 6.7% 30.2% 58.1 pp -1.8 pp 14.2% 73.6 pp -0.3 pp

Kingsport-Bristol-Bristol, TN-VA 28.4% 2.0% 0.0% 22.9% 0.6 pp -0.4 pp 13.0% 1.7 pp 0.3 pp

Knoxville, TN 25.4% 23.3% 1.7% 32.0% 56.1 pp -1.2 pp 13.5% 70.3 pp 0.4 pp

Lafayette, LA 25.1% 92.3% 28.9% 33.3% 55.5 pp 3.3 pp 12.7% 59.9 pp 2.8 pp

Lakeland-Winter Haven, FL 14.9% 78.1% 7.7% 26.6% 58.9 pp 0.1 pp 17.8% 67.8 pp 3.7 pp

Lancaster, PA 25.1% 17.7% 4.3% 31.5% 49.7 pp -2.2 pp 36.5% 50.7 pp -3.7 pp

Lansing-East Lansing, MI 36.3% 39.4% 2.1% 37.9% 39.5 pp -1.9 pp 23.9% 43.6 pp -0.3 pp

Lexington-Fayette, KY 19.5% 28.3% 2.8% 31.0% 50.4 pp -2.9 pp 15.6% 67.1 pp -0.5 pp

Lincoln, NE 33.3% 2.4% 0.0% 20.2% 4.5 pp 0.1 pp 16.6% 7.2 pp 0.3 pp

Little Rock-North Little Rock-Conway, AR 35.5% 79.8% 40.2% 41.0% 49.3 pp 5.8 pp 17.0% 68.2 pp 12.5 pp

Lubbock, TX 22.4% 91.6% 36.3% 37.4% 49.9 pp -7.6 pp 29.7% 60.3 pp 1.1 pp

Lynchburg, VA 24.5% 84.9% 11.1% 27.8% 60.4 pp 0.6 pp 14.0% 72.0 pp 4.4 pp

Macon-Bibb County, GA 22.3% 96.2% 22.4% 39.7% 48.6 pp 3.0 pp 14.9% 28.7 pp 8.5 pp

Madison, WI 63.2% 16.2% 0.0% 27.0% 38.5 pp -0.4 pp 18.9% 62.8 pp 0.3 pp

Manchester-Nashua, NH 33.2% 3.4% 0.0% 16.7% 8.4 pp -0.3 pp 22.0% 24.0 pp -0.7 pp

McAllen-Edinburg-Mission, TX 41.4% 97.6% 39.3% 14.2% 57.0 pp 5.9 pp 20.6% 55.1 pp 2.6 pp

Mobile, AL 27.7% 83.9% 51.1% 45.3% 42.7 pp 6.3 pp 15.1% 71.4 pp 15.9 pp

Modesto, CA 23.5% 97.8% 9.0% 18.2% 42.1 pp 0.5 pp 21.1% 62.0 pp -0.9 pp

Montgomery, AL 42.6% 90.8% 49.4% 39.0% 52.5 pp 4.8 pp 16.8% 75.2 pp 11.9 pp

Naples-Immokalee-Marco Island, FL 32.2% 52.9% 16.5% 29.5% 51.5 pp -2.6 pp 35.5% 45.0 pp -5.5 pp

New Haven-Milford, CT 20.5% 84.8% 7.5% 46.9% 43.4 pp -3.2 pp 38.4% 52.0 pp -1.5 pp

Norwich-New London, CT 20.3% 19.6% 0.9% 32.1% 40.3 pp -1.7 pp 27.6% 49.9 pp -1.4 pp

Ogden-Clearfield, UT 21.9% 48.0% 2.0% 20.0% 2.6 pp -0.3 pp 20.6% 46.6 pp -1.2 pp

Omaha-Council Bluffs, NE-IA 33.1% 42.4% 0.0% 42.6% 46.0 pp 0.0 pp 28.3% 58.4 pp 0.0 pp

Oxnard-Thousand Oaks-Ventura, CA 24.4% 79.9% 29.2% 23.2% 51.2 pp -2.5 pp 41.0% 44.9 pp -6.1 pp

Palm Bay-Melbourne-Titusville, FL 13.2% 32.7% 1.0% 27.1% 42.3 pp -0.1 pp 13.4% 52.9 pp 1.0 pp

Pensacola-Ferry Pass-Brent, FL 22.3% 65.1% 9.9% 31.1% 51.8 pp 0.3 pp 12.7% 61.6 pp 0.8 pp

Peoria, IL 20.3% 25.1% 3.0% 48.2% 39.1 pp -0.3 pp 19.9% 60.9 pp 1.0 pp

Wilmington, DE-MD-NJ 20.8% 93.2% 24.3% 36.7% 54.7 pp 2.1 pp 26.9% 64.4 pp 4.3 pp

Portland-South Portland, ME 42.8% 0.0% 0.0% 18.6% -0.1 pp -0.1 pp 12.0% 0.4 pp 0.0 pp

Port St. Lucie, FL 20.9% 86.8% 14.2% 31.4% 55.2 pp 4.3 pp 20.7% 29.3 pp 9.7 pp

39100 34.6% 86.8% 4.5% 31.7% 55.9 pp -3.5 pp 23.2% 64.7 pp -1.4 pp

Provo-Orem, UT 16.3% 67.8% 0.0% 13.5% 15.5 pp -0.2 pp 13.9% 70.1 pp -0.2 pp
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Tracts Tipping Black-White Dissim Hisp-White Dissim

Name LIHTC % Exp 0 Exp 1 Base ∆ 0 ∆ 1 Base ∆ 0 ∆ 1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Raleigh, NC 55.0% 100.0% 33.1% 26.5% 67.6 pp 5.2 pp 15.5% 59.6 pp 9.4 pp

Reading, PA 21.6% 27.5% 6.1% 34.1% 53.2 pp -0.5 pp 47.8% 41.8 pp -1.9 pp

Reno, NV 38.7% 95.7% 7.7% 13.9% 18.2 pp -0.9 pp 20.2% 62.2 pp -1.3 pp

Roanoke, VA 26.3% 51.4% 5.5% 41.4% 48.2 pp -2.5 pp 15.9% 59.9 pp 2.4 pp

Rockford, IL 19.1% 48.5% 2.2% 37.7% 50.5 pp 0.1 pp 25.1% 63.9 pp 0.2 pp

Saginaw, MI 31.8% 75.6% 14.3% 55.0% 36.3 pp -2.4 pp 32.8% 57.4 pp 1.6 pp

Salem, OR 36.5% 96.4% 2.9% 12.9% 8.6 pp -0.7 pp 25.4% 57.2 pp -3.1 pp

Salinas, CA 36.2% 83.5% 62.6% 29.9% 57.2 pp -0.1 pp 46.3% 42.2 pp -4.6 pp

Salt Lake City, UT 28.2% 76.1% 3.3% 16.2% 12.5 pp -0.8 pp 25.1% 58.8 pp -1.0 pp

42060 32.0% 84.5% 22.4% 22.6% 51.2 pp -1.5 pp 29.7% 53.5 pp -2.0 pp

Santa Cruz-Watsonville, CA 37.6% 71.8% 18.2% 12.0% 56.2 pp -0.7 pp 44.8% 41.4 pp -8.7 pp

Santa Rosa, CA 46.7% 93.6% 7.9% 15.2% 55.7 pp -1.4 pp 18.1% 58.6 pp -3.2 pp

Savannah, GA 18.0% 95.5% 26.5% 37.9% 54.9 pp -0.8 pp 18.1% 27.2 pp 4.5 pp

Scranton–Wilkes-Barre–Hazleton, PA 9.9% 0.0% 0.0% 28.4% -0.6 pp -0.1 pp 29.4% -0.6 pp -0.2 pp

Tacoma-Lakewood, WA 23.7% 59.1% 0.0% 26.4% 55.5 pp -0.2 pp 14.7% 68.1 pp 0.1 pp

Shreveport-Bossier City, LA 45.1% 91.7% 51.8% 42.0% 48.3 pp 6.2 pp 15.0% 57.7 pp 9.8 pp

South Bend-Mishawaka, IN-MI 20.8% 54.9% 2.8% 37.9% 52.0 pp -0.8 pp 28.4% 59.2 pp -0.6 pp

Spartanburg, SC 34.7% 94.9% 16.0% 25.1% 64.8 pp 2.6 pp 17.0% 72.3 pp 1.6 pp

Spokane-Spokane Valley, WA 33.3% 0.0% 0.0% 13.8% -0.3 pp -0.1 pp 8.9% -0.6 pp -0.1 pp

Springfield, IL 24.5% 26.6% 2.2% 36.7% 47.7 pp -1.9 pp 15.5% 58.7 pp -0.1 pp

Springfield, MA 29.0% 53.3% 9.2% 48.5% 38.6 pp -6.0 pp 46.5% 45.1 pp -4.6 pp

Springfield, MO 52.1% 0.0% 0.0% 18.4% -0.5 pp -0.2 pp 11.2% -0.2 pp -0.1 pp

Stockton-Lodi, CA 18.7% 95.2% 14.8% 26.5% 59.5 pp -1.6 pp 18.9% 67.8 pp -0.1 pp

Syracuse, NY 20.9% 26.6% 2.7% 46.3% 44.8 pp -1.2 pp 25.1% 61.0 pp 0.2 pp

Tallahassee, FL 31.1% 99.7% 40.8% 31.4% 59.5 pp 2.2 pp 14.9% 74.6 pp 6.4 pp

Toledo, OH 26.2% 39.9% 6.2% 49.0% 39.2 pp 0.2 pp 20.9% 65.2 pp 1.6 pp

Topeka, KS 53.2% 35.0% 1.4% 31.5% 45.0 pp -2.1 pp 25.4% 48.3 pp -1.4 pp

Trenton, NJ 10.5% 98.5% 5.3% 48.1% 44.6 pp 0.1 pp 32.8% 49.1 pp 1.0 pp

Tucson, AZ 16.4% 80.1% 10.8% 19.2% 50.3 pp -0.5 pp 34.0% 49.6 pp -2.6 pp

Tuscaloosa, AL 42.0% 97.3% 58.8% 38.6% 53.7 pp 4.1 pp 16.4% 76.7 pp 9.3 pp

Utica-Rome, NY 22.5% 12.9% 1.7% 39.6% 40.4 pp -2.3 pp 31.7% 39.1 pp -1.1 pp

Vallejo-Fairfield, CA 31.0% 96.3% 1.4% 22.8% 60.6 pp -1.7 pp 16.1% 68.2 pp 1.1 pp

Visalia-Porterville, CA 45.8% 99.8% 86.2% 19.3% 56.0 pp 3.0 pp 24.9% 63.0 pp -1.7 pp

Waco, TX 16.5% 95.7% 13.8% 36.8% 51.1 pp -8.7 pp 30.0% 54.7 pp 2.1 pp

13644 24.3% 97.9% 30.4% 29.0% 61.5 pp 2.7 pp 29.4% 61.8 pp 4.1 pp

Wichita, KS 39.7% 70.1% 3.3% 38.0% 52.0 pp -2.8 pp 23.3% 66.7 pp -0.8 pp

Winston-Salem, NC 30.3% 96.6% 20.4% 41.0% 49.5 pp 0.3 pp 27.2% 13.8 pp 3.3 pp

Worcester, MA-CT 23.0% 34.7% 2.6% 29.9% 1.3 pp -1.0 pp 34.3% 48.2 pp -1.4 pp

York-Hanover, PA 27.6% 17.8% 1.3% 28.0% 58.5 pp -1.9 pp 28.4% 59.5 pp -1.2 pp

Youngstown-Warren-Boardman, OH-PA 25.9% 34.5% 5.6% 48.5% 41.3 pp -1.3 pp 29.0% 55.6 pp 0.3 pp

25th Percentile 22.3% 27.5% 1.5% 23.2% 37.4 pp -1.6 pp 16.0% 44.9 pp -0.8 pp

Median 28.4% 60.3% 5.6% 31.1% 48.6 pp -0.3 pp 21.1% 57.4 pp 0.1 pp

75th Percentile 35.5% 91.7% 22.9% 38.3% 55.5 pp 0.5 pp 28.4% 63.6 pp 2.9 pp
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