
Decision Support Systems 51 (2011) 250–255

Contents lists available at ScienceDirect

Decision Support Systems

j ourna l homepage: www.e lsev ie r.com/ locate /dss
Comparative issues in large-scale mean–variance efficient frontier computation

Ralph E. Steuer a,⁎, Yue Qi b, Markus Hirschberger c

a Terry College of Business, University of Georgia, Athens, GA 30602-6253, USA
b Department of Financial Management, College of Business, Nankai University, Tianjin, China
c Department of Mathematics, University of Eichstätt-Ingolstadt, Eichstätt, Germany
⁎ Corresponding author. Tel.: +1 706 542 3782; fax:
E-mail address: rsteuer@uga.edu (R.E. Steuer).

0167-9236/$ – see front matter © 2010 Elsevier B.V. A
doi:10.1016/j.dss.2010.11.018
a b s t r a c t
a r t i c l e i n f o
Available online 25 November 2010
Keywords:
Mean–variance efficient frontiers
Portfolio selection
Hyperbolic segments
e-Constraint method
Parametric quadratic programming
One of the functions of a portfolio management system is to return quickly an efficient frontier. However, in
the large-scale problems (1000 to 3000 securities) that are beginning to appear with greater frequency, the
task of computing the mean–variance efficient frontier, even when all constraints are linear, can range from
the significant to the prohibitive. For ease of reference, we call mean–variance problems with all linear
constraints Markowitz problems. With little on the time to compute aMarkowitz-problem efficient frontier in
the literature, we conduct experiments that involve varying problem sizes, methods employed, and
optimizers used to present an overall picture of the situation and establish benchmarks in the large-scale
arena. One of the conclusions of the experiments is the superiority of the class of techniques that would fall
under the title of parametric quadratic programming.
+1 706 542 9434.

ll rights reserved.
© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Large institutional investors such as mutual funds and pension
funds use portfolio management systems (also called portfolio
selection systems, portfolio construction systems, asset allocation
systems, and so forth) to assist in their asset allocations. Some are
leased on a turnkey basis from vendors and others are built in-house.
For related readings, see Zopounidis and Doumpos [29], Maginn et al.
[11], and Xidonas et al. [27]. Typically, a system consists of several
modules including a database management module, an input
coefficient calculation module, and an optimization module. Our
interest is in the optimizers in the optimizationmodules that compute
and re-compute the efficient frontier any time the model undergoing
study changes.

Generally, when using a system to achieve an asset allocation,
considerable experimentation takes place as the user experiments with
various constraint sets and pools of eligible securities in search of a
portfolio that is both suitable andmeets the criteria of the project.While
in the beginning a user may even wish to test a few unorthodox ideas
just to see what might result, in the end the experimentation generally
tapers down to last-minute perturbations to confirm, re-confirm, and
perfect a final solution. In this way, the optimizers in the optimization
modules are often called upon to compute efficient frontier after
efficient frontier. In order to not slow down a user, a rapid-fire response
capability is an important attribute for a system to possess. On small
problems, this is usually not an issue as the time to compute an efficient
frontier is not of such a length that it makes much difference what
optimizer is used. But on large problems (the domain of this paper),
where turnaround times can become serious and inhibiting, the choice
of optimizer canmake amajor difference. Consequently, the bestway to
keep turnaround times down in such cases is to know the situation and
then try to manage it. Benchmarks would be very helpful.

Unfortunately, when it comes to benchmarks for the time required
to compute an efficient frontier, the literature has been essentially a
vacant area. This is despite the fact that the concept of an efficient
frontier has been around since Markowitz [12] and that large-scale
problems are now appearing with greater frequency. With data now
widely available on securities from all over the world and with
investors often open to the consideration of increased numbers of
opportunities to produce added value for their portfolio, problems in
the range of 1000 to 3000 securities no longer raise eyebrows.

Because of (a) the growing importance of large-scale problems
(here defined to be in the range from 1000 to 3000 securities), (b) a
lack of benchmarks, and (c) the time that could be wasted when
attempting to compute an efficient frontier with a wrong optimizer,
we have this paper. A sad thing about using a wrong optimizer in the
absence of comparative computational experience is that a person
might conclude that a given efficient frontier cannot be computed
when in fact with a different optimizer the same frontier could be
computed perhaps in reasonable time.

Thus, in this paper the attempt is to fill the gap and provide a frame
of reference for those who find themselves confronting problems in
large-scale portfolio selection. By conducting experiments on the
times required to compute efficient frontiers across problems of
different (large-scale) sizes using different methods and different
optimizers, the goal is for a robust set of benchmarks to emerge. This is

http://dx.doi.org/10.1016/j.dss.2010.11.018
mailto:rsteuer@uga.edu
http://dx.doi.org/10.1016/j.dss.2010.11.018
http://www.sciencedirect.com/science/journal/01679236


251R.E. Steuer et al. / Decision Support Systems 51 (2011) 250–255
a contribution to the literature as no such set of benchmarks is known
to exist. The optimizers used in the experiments are Risk Solver
Platform for Excel [23], Matlab [17], LINGO [10], Cplex [3], and the
research code CIOS by Hirschberger, Qi and Steuer [7].

Despite recent modeling innovations such as by Ben Abdelaziz et
al. [1], Ehrgott et al. [4], Fang andWang [5], Michalowski and Ogryczak
[18], Xie et al. [28], Stummer et al. [25], Tseng et al. [26], and Köksalan
and Tuncer [9], the mean–variance model with all linear constraints
introduced by Markowitz in (1952) and studied further in his books
[14–16] is still thebest knownmodel inportfolio selection. Furthermore,
it is a starting point for many other models. For ease of reference, we
henceforth refer to all mean–variance problems with all linear
constraints as Markowitz problems. Because Markowitz problems are
the standard bearer in portfolio selection, and because most portfolio
problems possess dense covariance matrices in their natural state
(before simplifying assumptions are applied to ease the computational
burden), we will use the times experienced to compute the efficient
frontiers of 100% dense covariance matrix problems to form the
benchmark results reported in this paper.

The remainder of the paper is as follows. Section 2 discusses ways
efficient frontiers can be displayed. Section 3 provides detail on the
piecewise hyperbolic structure of the efficient frontiers computed in
this paper. Section 4 presents comparative computational results
across different problem sizes, methods, and optimizers. Section 5
closes the paper with concluding remarks.

2. Efficient frontier and its display

A typically-appearing mean–variance efficient frontier is as in
Fig. 1. With standard deviation on the horizontal axis, one might
wonder why we hear so often the term “mean–variance” in portfolio
selection. It is because theory and computation are carried out in
terms of variance, but results are displayed in terms of standard
deviation (as standard deviation is more intuitive than variance).

Although the mean–variance efficient frontier of a Markowitz
problem (hereafter simply called the efficient frontier) is a continuous
curve, it is rarely rendered as such. Rather, efficient frontiers are
customarily shown in the form of dotted representations as in Fig. 1.
One can put aside the10- to 20-dot representations seen in textbooks. In
practice, a hundred or more dots are often standard. In this way, with so
manydots, dotted representationsnearly look like the continuous curves
they are to represent. The difficulty usually is theamount of optimization
that it takes to generate a representation.

A niceway for a user to interactwith a dotted efficient frontier iswith
a mouse and cross hairs. By moving the cross hairs up and down a
representation, different dots can be clicked to display their expected
returns, standard deviations, and portfolio compositions. If the efficient
Standard Deviation

E
xp

ec
te

d 
R

et
ur

n

Fig. 1. A 100-dot representation of a typical Markowitz problem efficient frontier.
frontier can indeed be displayed as the continuous curve that it is, then
the cross hairs can move smoothly along the frontier and any point can
be clicked. Otherwise, the cross hairs are only able to jump frompoint to
point with only the given points available for clicking.

3. Problem and its piecewise hyperbolic frontier

In this section we describe the formulation of the problem used in
this study alongwith the piecewise hyperbolic structure of its efficient
frontier. With a Markowitz problem attempting to minimize variance
and maximize expected return simultaneously, the problem in bi-
criterion format is

min xTΣ x variance ð1:1Þ

max μTx expected return ð1:2Þ

s:t: 1Tx = 1 ð1:3Þ

α ≤ x ≤ ω ð1:4Þ

where x∈Rn, n is the number of securities eligible for inclusion in a
portfolio, and the xi components of x are the proportions of capital to
be allocated initially to security i. Also, Σ is the problem's n×n
covariance matrix and μ is the vector of individual security expected
returns. Constraint (1.3) assures that all xi proportions sum to one and
Eq. (1.4) is intended as a holding area for additional linear constraints
(here only lower and upper bounds on the xi).

Possessing more than one criterion, the problem has two feasible
regions, S⊂Rn and Z⊂R2. S is the set of all feasible portfolios where
x∈Rn is a portfolio if it satisfies Eq. (1.3) and is feasible if it also satisfies
Eq. (1.4). Z is the set of all image vectors (in terms of standard deviation
and expected return) of the portfolios in S.

Now x∈S is an efficient portfolio if with respect to its image vector
there is no image vector a member of Zwith a lower standard deviation
without a lower expected return or a greater expected return without a
greater standard deviation. Then the set of all image vectors of all
efficient portfolios forms the so-called efficient frontier.

A property of aMarkowitz problem is that the image set of any linear
line segment in S forms a hyperbolic line segment in Z. Then, considering
all possible linear line segments in S, we can see why the efficient
frontier, being a portion of the boundary of Z, is piecewise hyperbolic.

To illustrate, consider the three-security example whose data are
in Table 1. With lower and upper bounds of 0 and 1 on all xi, its S and Z
are in Fig. 2. In this example, the efficient frontier consists of three
hyperbolic segments. To see why, let us first look at the curves (partly
dashed) connecting z1, z2 and z2, z3 in Z. As their inverse image sets
are the straight lines connecting x1, x2 and x2, x3 in S, the two curves
are hyperbolic. Hence, boundary segments z5, z6 and z3, z4, which
correspond to x5, x6 and x3, x4, are hyperbolic. By the same token,
boundary segment z4, z5 is hyperbolic as its inverse image set is x4, x5.
In this way, efficient frontiers are piecewise hyperbolic and the
(efficient) portfolios that generate them lie along piecewise linear
paths in S. Markowitz calls the points in S that correspond to the
Table 1
Data defining the three-security illustrative example where σ is the vector of individual
security standard deviations.

1 2 3

σ 0.08 0.07 0.10
μ 0.01 0.08 0.10

0.0064 −0.0010 0.0040
Σ 0.0049 0.0030

0.0100



z1

z2

z3

z4

z5

z6
Z

x1

x2

x3

x4

x5

x6

S

.10.04

.10

.08

Fig. 2. Feasible regions S and Z of the three-security illustrative example along with the
piecewise linear path in S that produces the piecewise hyperbolic efficient frontier in Z.

Table 3
Compositions of the corner portfolios of the three-security illustrative example.

Corner portfolio x1 x2 x3

x3 0.0 0.0 1.0
x4 0.0 0.67017 0.32983
x5 0.33511 0.66489 0.0
x6 0.44361 0.55639 0.0

252 R.E. Steuer et al. / Decision Support Systems 51 (2011) 250–255
endpoints of the hyperbolic segments in Z that constitute the efficient
frontier, such as x3, x4, x5, x6, corner portfolios.

For a method to be able to generate an exact specification of an
efficient frontier, it must be able to generate information as in Tables 2
and 3. Consider row h of Table 2. The a0, a1, a2 entries in that row are
parameters that define the hyperbola upon which the h-th efficient
frontier hyperbolic segment lies, and the μlower and μupper entries in that
row specify the expected returns of the lower and upper endpoints
of the hyperbolic segment, respectively. Rows h and h+1 of Table 3
specify the compositions of the (corner) portfolios corresponding to the
endpoints of the hyperbolic segment.

As an example of how the tables can be deployed, suppose we are
curious about a point z⁎ on the efficient frontier whose μ⁎=.07.
According to Table 2, z⁎ is on the z4, z5 hyperbolic segment. To
calculate z⁎'s standard deviation σ⁎, we use the a0, a1, a2 of the
segment as follows

σ⁎ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 + a1μ⁎ + a2 μ⁎ð Þ2

q

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:00342−:0760 :07ð Þ + 1:0368 :07ð Þ2

q

= :05639:

To compute the composition of the (efficient) portfolio x⁎ whose
image vector is z⁎, we use the μlower and μupper of the segment as follows

x⁎ =
μ⁎−μ lower

μupper−μ lower
x4 +

μupper−μ⁎

μupper−μ lower
x5

=
:07−:05654

:08660−:05654
x4 +

:08660−:07
:08660−:05654

x5

= :18506; :66725; :14769ð Þ:

4. Computational experiments and their results

In this section we describe and present the results of the
computational experiments of the paper. The experiments are first
categorized by approach, discrete or parametric. In the discrete category
Table 2
Expected return ranges of the hyperbolic segments of the efficient frontier along with
parameters that specify the hyperbolas of the hyperbolic segments for the three-
security illustrative example.

Hyperbolic segment μlower μupper a0 a1 a2

z3, z4 0.08660 0.10000 0.16250 −3.7500 22.250
z4, z5 0.05654 0.08660 0.00342 −0.0760 1.0368
z5, z6 0.04595 0.05654 0.00879 −0.2657 2.7143
for generating dotted representations of the efficient frontier as in Fig. 1,
two methods are treated (e-constraint method and λ-parameter
method). In the parametric category for computing an exact specification
of theefficient frontier as inSection3, there areonlyparametric quadratic
programming variants. As to be seen, there are vast differences in time
among optimizers in the discrete category, and also between the discrete
and parametric categories. In all experiments, the computer used was a
2.66 GHz Core 2 Duo Dell desktop at the University of Georgia.

4.1. Discrete approaches: e-constraint method

Leading the list of discrete approaches is the “e-constraint”method.
Let ρmin and ρmax denote the minimum and maximum expected return
values over the efficient frontier. With regard to the construction of a
discretized representation consisting of q dots, q values, denoted ρi, are
selected from the interval [ρmin,ρmax] where ρ1:=ρmin, and ρq :=ρmax.
Often the ρi are chosen to be equally spaced. Then the e-constraint
method solves the quadratic programming (QP) problem

min xTΣx

s:t: μTx = ρ ρ∈ ρmin;ρ2;…;ρq−1;ρmax

n o

x∈S

ð2Þ

once for each ρ-value in the list. By repetitively minimizing variance
subject to different fixed levels of expected return, it is not necessary
for one to be a mathematical expert to appreciate the construction of
an efficient frontier, and this accounts for much of the e-constraint
method's appeal. The fact that Eq. (2) only requires standard QP
software (in plentiful supply) accounts for most of the rest. We use
the term “e-constraint” because this is the term given to the method
in multiple criteria optimization for computing efficient points after
all objectives have been converted to constraints except one (see
Miettinen[20]).

Suppose we were to compute a 50-dot representation of an efficient
frontier using the e-constraint method. This would normally involve 51
optimizations: (a) a linear programming (LP) optimization to obtain the
maximum expected return value ρmax over the efficient frontier, (b) a QP
optimization to make sure that the z-vector of ρmax with minimum
variance is obtained, (c) a QP optimization to obtain a z-vector of
minimumvariance fromwhichρmin is to be extracted, and (d) 48otherQP
optimizations to obtain the 48 “intermediate” points of the 50-dot
representation. While multiple z-vectors of maximum expected return
will sometimes occur, users usually donotworry aboutmultiple z-vectors
of minimum variance.1 Since LP times are so small in relation to the QP
times, we only track QP times in the experiments.

Table 4 shows the amount of time required on average to compute a
single intermediatepoint along theefficient frontierusing thee-constraint
method (i.e., to solve one instance of the e-constraint QP), tabulated by
problem size and optimizer employed. The four optimizers were selected
because they are well known and have e-constraint examples in their
illustrative materials. In particular, Risk Solver Platform (version 9.5) was
1 In the event there is cause to worry, a second-order cone solver, to maximize
expected return subject to an upper bound on variance (where the upper bound is the
minimum variance obtained in (c)), is a tool that can be considered for resolving the
situation.



Table 5
Average run times (sample size 5 in each case) for computing single intermediate
points on the efficient frontiers of 100% dense covariance matrix Markowitz problems
using the λ-parameter method tabulated by problem size and optimizer.

Size λ-Parameter single intermediate point times

Risk solver Matlab LINGO Cplex

n=500 8.1 s 51.2 s 34.9 s 2.3 s
n=1000 55.1 s 936.6 s – 5.4 s
n=1500 250.0 s – – 17.6 s
n=2000 347.8 s – – 29.3 s
n=3000 – – – 85.3 s

Table 4
Average run times (sample size 5 in each case) for computing single intermediate
points on the efficient frontiers of 100% dense covariance matrix Markowitz problems
using the e-constraint method tabulated by problem size and optimizer.

Size e-Constraint single intermediate point times

Risk solver Matlab LINGO Cplex

n=500 8.3 s 51.7 s 34.9 s 2.4 s
n=1000 86.0 s 910.2 s – 6.0 s
n=1500 313.7 s – – 22.2 s
n=2000 513.0 s – – 38.6 s
n=3000 – – – 118.2 s

253R.E. Steuer et al. / Decision Support Systems 51 (2011) 250–255
chosen because it is the commercial edition of regular Solver that comes
free with Excel. By the way, regular Solver is size limited to at most 200
variables in QP. Matlab (version 2009a) was selected because of the
popularity of its financial toolbox in the financial services industry. LINGO
(version 11) was chosen because of the degree to which it is well liked in
academic circles. Cplex (default choice of version 11.1) was chosen
because of the toughness of the standard that it presents. Since the times
in Table 4 are for single points on the efficient frontier, they must be
multiplied to take into account the number of points utilized to form a
given discretized representation. Other than for the LINGO column, the
blank cells are from when it is clear, without running, that the results
would exceed 500 s, figuring that, with this much time consumption per
point, it makes no sense to proceed.

As seen, there is considerable variation.AlthoughRisk Solver Platform
and default Cplex start out well at 500 securities, Cplex significantly
widens its advantageuntil Cplex is over anorder ofmagnitude faster than
Risk Solver Platform after 1500 securities. On the other hand, Matlab's
QUADPROG routine and LINGO's barrier algorithm are disappointments.
The reason for the blank cells in the LINGO column is that we could not
get LINGO to complete a run with more than 650 securities (perhaps
Microsoft's faultwhenpassing data) in any of the problemswe triedwith
a dense covariance matrix.

All problems used in the experiments were created using the
random covariance matrix generator described in Hirschberger, Qi
and Steuer [6]. For data mining and potential utilization in finance, see
Peng et al. [22].

4.2. Discrete approaches: λ-parameter method

Another way to obtain a dotted representation of an efficient frontier
is to employ the λ-parameter method. In this method we solve the
following QP

min xTΣx−λμTx λ∈ 0;λ2;…;λq−1;λmax

n o

x∈S
ð3Þ

once for each λ-value in the list. The greater the value of λ, the greater,
if anything, the variance (and hence the expected return) of the point
generated on the efficient frontier. Although the λ-parameter method
only requires standard QP software as with the e-constraint method, this
method, however, is more difficult to work with than the e-constraint
method.

When solving Eq. (3) with λ=0, we solve for a minimum variance
point. With regard to λ, this is clear. But when attempting to solve for
the maximum expected return point on the efficient frontier we run
into frustrations. This is because there is no simple way of knowing
λmax in advance (where λmax is the smallest value of λ that uniquely
computes the maximum expected return point on the efficient
frontier). In some cases λmax could be near infinity. In other cases it
could be a number less than one. We have no way of knowing from
the outside. If we guess too high when selecting values for λ, the last
few λ-valuesmay result in the same point. If we guess too low, wewill
not compute high enough up the efficient frontier. In the first case we
run the risk of generating fewer points than desired. In the second
case we fail to capture the whole frontier. Either way, there can be
problems.

The λ-parameter method can also be disconcerting with regard to
the spacing of the points generated along the efficient frontier. At least
with the e-constraint method we know in advance the expected
return component of each generated point, but with the λ-parameter
method, we don't know either component until after the optimization
is over.

As for single intermediate point run times with the λ-parameter
method, we have Table 5. For Risk Solver Platform and Cplex, the
times follow roughly the same patterns as in Table 4, but are about
30% faster. Matlab and LINGO, however, are little changed. Although
not as intuitive as the e-constraint method, with the right optimizer,
the method offers the opportunity to be faster than the e-constraint
method if one can successfully deal with the likely irregular spacing of
the points generated.

4.3. Parametric approaches: quadratic parametric programming

In a portfolio selection, the purpose of a parametric procedure is to
compute the full continuous curve of the efficient frontier. In a
parametric procedure, the problem is modeled with a parameter so
that by smoothly varying the parameter the whole efficient frontier is
exactly traced out. The first algorithm for doing this was the critical
line method of Markowitz [13]. The critical line method, a parametric
quadratic programming variant, views portfolio selection through the
prism of the following formulation

min xTΣx

s:t: μTx = ρ ρ∈ ρ min;ρ max½ �
x∈S

ð4Þ

where ρ is to be continuously varied over the interval [ρmin,ρmax] of
expected return values associated with the efficient frontier. Note that
the e-constraint method can be seen as a discretized implementation
of Eq. (4).

Even though Markowitz's other ideas have been of major success,
his critical line method, called one of the “enigmas” of modern finance
byMichaud [19], has not been widely adopted. In fact, other than for a
few algorithmic pieces such as by Best [2], Stein et al. [24],
Niedermayer and Niedermayer [21], and the parametric quadratic
programming approach based upon the following formulation

min xTΣx−λμTx λ∈ 0; + ∞½ Þ
x∈S

ð5Þ

by Hirschberger et al. [7], little else has been available for citation on
parametric approaches for efficient frontier computation over about
the last four decades. Note that the λ-parameter method can be seen
as a discretized implementation of Eq. (5).

Reasons for the above mentioned sparseness in the literature stem
from the fact that (i) the critical linemethod in particular is not easy to



254 R.E. Steuer et al. / Decision Support Systems 51 (2011) 250–255
understand, (ii) the critical line method was not useful for much in its
early days due to the CPU-time and memory limitations of computers
at the time, and (iii) since Karmarkar in [8], the emphasis has been on
interior-point algorithms of polynomial-time complexity as opposed
to parametric procedures which are only of exponential-time
complexity. Consequently, discrete methods using interior-point or
barrier-type algorithms (such as in the experiments of Tables 4 and 5)
are about all that is ever seen used in efficient frontier computation
today.

Table 6 shows some remarkable results and that parametric methods,
after all these years, deservemore thana second look.While interior-point
optimizersmaybe fasteronother typesof problems, they certainly arenot
on the computation of the efficient frontiers of large-scale dense
covariance matrix Markowitz problems. For instance in Table 6, CIOS
takes 5.3 s on average to compute the entire efficient frontier of a problem
with 1000 securities, whereas in Table 5, the fastest barrier or interior-
point solver takes 5.4 s on average just to compute a single efficient
frontier point. In the experiments of Table 6, we used CIOS, the code
written to implement theparametric quadratic programmingapproachof
Hirschberger et al. [7], as a stand-in for parametric methods in general,
because, without any parametric procedures existing in any package of
which we are aware, there is a shortage of such codes in practice.

To illustrate the impact of the numbers in Table 6, consider the
following. While it would take Risk Solver Platform between 347.8 and
513.0 s times a factor as large as 100 and Cplex's interior-point routine
between 29.3 and 38.6 s times a factor as large as 100 to construct a 100-
point representation of an efficient frontier of a 2000-security problem, it
would only take a parametric procedure represented by CIOS 23.1 s on
average to compute the whole efficient frontier complete with all details
about the piecewise linear/piecewise hyperbolic nature of the frontier as
described in Section 3.

Also shown inTable6are theaveragenumbersof hyperbolic segments
per efficient frontier. In this way, there are two reasons why CPU-times
increase aswe go down the table. One of course is problem size. The other
is because the average number of hyperbolic segments per efficient
frontier (each of which must be computed) increases with problem size.

5. Concluding remarks

Suppose a user has always viewed efficient frontiers in dotted
representation form, thinks they are more aesthetically pleasing that
way, and has no interest in changing. Going along with this, it would still
be faster to compute the whole frontier by a parametric procedure. Then,
by postprocessing the information that is outputted to Tables like 2 and 3,
points can be placed on the curve of the efficient frontier in any desired
pattern. For example, if a userwanted a 50-point e-constraint portrayal of
the efficient frontier of a 1500 security problem, instead of taking 22.2 or
more secondsmultiplied by a factor as high as 50with an interior-point or
barrier-type algorithm, CIOSwith postprocessing could produce precisely
the same results in about 12.2 s plus about 1 or 2 s more for
postprocessing.

In summary, no commercial optimizers of which we are aware can
compute a parametric specification of the efficient frontier of any non-
Table 6
Average run times (sample size 5 in each case) and numbers of hyperbolic segments
encountered when computing the entire (continuous) curves of the efficient frontiers
of 100% dense covariance matrix Markowitz problems using the parametric quadratic
programming approach of Hirschberger, Qi and Steuer [7] tabulated by problem size.

Size Whole continuous efficient frontier

Hyperbolic segments CIOS time

n=500 179.6 1.5 s
n=1000 227.8 5.3 s
n=1500 249.4 12.2 s
n=2000 272.6 23.1 s
n=3000 294.6 34.3 s
trivial problem, let alone the large-scale problems addressed in this paper.
All they cando is conduct repetitive optimizations to construct an efficient
frontier in the form of a dotted representation. As indicated in Tables 4–6,
one needs to be aware of the great variation among optimizers and
approaches when attempting to carry out the task of computing an
efficient frontier.Many usersmight not be aware of this and consequently
waste a lot of valuable time as a result.

But what Table 6 really says is two things. One is that interactivity
that has not been possible in a portfolio system that uses an interior-
point or barrier-type optimizer is possible if a parametric procedure is
used, even though, ironically, the parametric procedurewould only be of
exponential-time complexity. The other is that there is really no need to
construct the efficient frontier of a continuous-variable Markowitz
problem by repetitive optimization anymore. All can be accomplished
just as well with a parametric code like CIOS plus postprocessing in far
less time, with the savings more pronounced the larger the problem.
References

[1] F. Ben Abdelaziz, B. Aouni, R. El-Fayedh, Multi-objective stochastic programming
for portfolio selection, European Journal of Operational Research 177 (3) (2007)
1811–1823.

[2] M.J. Best, An algorithm for the solution of the parametric quadratic programming
problem, in: B. Riedmüller, H. Fischer, S. Schäffler (Eds.), Applied Mathematics
and Parallel Computing: Festschrift for Klaus Ritter, Physica-Verlag, 1996,
pp. 57–76.

[3] Cplex, Cplex 11.1 User's Manual, ILOG, Inc., Mountain View, California, 2007.
[4] M. Ehrgott, C. Waters, R. Kasimbeyli, O. Ustun, Multiobjective programming and

multiattribute utility functions in portfolio optimization, INFOR 47 (1) (2009)
31–42.

[5] Y. Fang, S. Wang, Fuzzy Portfolio Optimization: Theory and Methods, Publisher of
High Level Education, Beijing, China, 2005.

[6] M. Hirschberger, Y. Qi, R.E. Steuer, Randomly generating portfolio-selection
covariance matrices with specified distributional characteristics, European
Journal of Operational Research 177 (3) (2007) 1610–1625.

[7] M. Hirschberger, Y. Qi, R.E. Steuer, Large-scale MV efficient frontier computation
via a procedure of parametric quadratic programming, European Journal of
Operational Research 204 (3) (2010) 581–588.

[8] N. Karmarkar, A new polynomial-time algorithm for linear programming,
Combinatorica 4 (4) (1984) 373–395.

[9] M. Köksalan, C. Tuncer, A DEA-based approach to ranking multi-criteria
alternatives, International Journal of Information Technology & Decision Making
8 (1) (2009) 29–54.

[10] LINGO Version 11, Lindo Systems, Inc, Chicago, 2008.
[11] J.L. Maginn, D.L. Tuttle, J.E. Pinto, D.W. McLeavy, Managing Investment Portfolios,

3rd edition John Wiley, New York, 2007.
[12] H.M. Markowitz, Portfolio selection, Journal of Finance 7 (1) (1952) 77–91.
[13] H.M. Markowitz, The optimization of a quadratic function subject to linear

constraints, Naval Research Logistics Quarterly 3 (1956) 111–133.
[14] H.M. Markowitz, Portfolio Selection: Efficient Diversification in Investments, John

Wiley, New York, 1959.
[15] H.M. Markowitz, Mean–Variance Analysis in Portfolio Choice and Capital Markets,

Basil Blackwell, Oxford, 1987.
[16] H.M. Markowitz, G.P. Todd, Mean–Variance Analysis in Portfolio Choice and

Capital Markets, Frank J. Fabozzi Associates, New Hope, Pennsylvania, 2000.
[17] Matlab, Optimization Toolbox for Use with Matlab, Version R2009a, Mathworks,

Inc, Natick, Massachusetts, 2009.
[18] W. Michalowski, W. Ogryczak, Extending the MAD portfolio optimization model

to incorporate downside risk aversion, Naval Research Logistics 48 (3) (2001)
185–200.

[19] R.O. Michaud, The Markowitz optimization enigma: is ‘optimized’ optimal?
Financial Analysts Journal 45 (1989) 31–42.

[20] K.M. Miettinen, Nonlinear Multiobjective Optimization, Kluwer, Boston, 1999.
[21] A. Niedermayer, D. Niedermayer, Applying Markowitz's critical line algorithm, in:

J.B. Guerard (Ed.), Handbook of Portfolio Construction, Springer-Verlag, Berlin,
2010, pp. 383–400.

[22] Y. Peng, G. Kou, Y. Shi, Z. Chen, A descriptive framework for the field of data mining
and knowledge discovery, International Journal of Information Technology &
Decision Making 7 (4) (2008) 639–682.

[23] Risk Solver Platform Version 9.5, Frontline Systems, Incline Village, Nevada, 2009.
[24] M. Stein, J. Branke, H. Schmeck, Efficient implementation of an active set

algorithm for large-scale portfolio selection, Computers & Operations Research 35
(12) (2008) 3945–3961.

[25] C. Stummer, E. Kiesling, W.J. Gutjahr, A multicriteria decision support system for
competence-driven project portfolio selection, International Journal of Information
Technology & Decision Making 8 (2) (2009) 379–401.

[26] K.-J. Tseng, Y.-H. Liu, J.-F. Ho, An efficient algorithm for solving a quadratic
programming model with application in credit card holders' behavior, International
Journal of Information Technology & Decision Making 7 (3) (2008) 421–430.



255R.E. Steuer et al. / Decision Support Systems 51 (2011) 250–255
[27] P. Xidonas, D. Askounis, J. Psarras, G. Mavrotas, Portfolio engineering using the
IPSSIS multiobjective optimisation decision support system, International Journal
of Decision Sciences, Risk and Management 1 (1/2) (2009) 36–53.

[28] S.X. Xie, Z.F. Li, S.Y. Wang, Continuous-time portfolio selection with liability:
mean–variance model and stochastic LQ approach, Insurance, Mathematics &
Economics 42 (3) (2008) 943–953.

[29] C. Zopounidis, M. Doumpos, INVESTOR: a decision support system based on
multiple criteria for portfolio selection and composition, in: A. Colorni, M.
Paruccini, B. Roy (Eds.), Multiple Criteria Decision Aiding, European Commission
Joint Research Centre, Brussels, 2000, pp. 371–381.

Ralph E. Steuer is the Charles S. Sanford, Sr. Chair of Business in the Department of
Banking and Finance of the Terry College of Business at the University of Georgia. He
holds an electrical engineering degree from Brown University, an M.B.A. from Cornell
University, and a Ph.D. in quantitative methods from the University of North Carolina.
Prior to joining the University of Georgia, Dr. Steuer was on the faculty at the University
of Kentucky (eight years) and a Visiting Associate Professor at Princeton University
(one year). Dr. Steuer's research interests are in multiple-attribute portfolio theory,
efficient sets and surfaces, multiple objective programming, and multiple criteria
decision making.
Yue Qi is a Professor in the Department of Financial Management at Nankai University,
Tianjin, China. His research interests are in financial management and multi-attribute
portfolio analysis. Prior to joining Nankai University, Dr. Qi was for one year on the
faculty of the International University of Monaco in the Principality of Monaco.

Markus Hirschberger has his Ph.D. in mathematics from the Katholische University of
Eichstaett-Ingolstadt, Eichstaett, Germany. His dissertationwas on parametric quadratic
programming.His research interests are in various forms of risk analysis,multi-parametric
extensions to quadratic programming, and the computation of efficient surfaces in
portfolio selection. In addition, Dr. Hirschberger is Supervisor of Quantitative Research at
MEAG MUNICH ERGO Asset Management GmbH in Munich.


	Comparative issues in large-scale mean–variance efficient frontier computation
	Introduction
	Efficient frontier and its display
	Problem and its piecewise hyperbolic frontier
	Computational experiments and their results
	Discrete approaches: e-constraint method
	Discrete approaches: λ-parameter method
	Parametric approaches: quadratic parametric programming

	Concluding remarks
	References


