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a b s t r a c t 

Despite many proposed alternatives, the predominant model in portfolio selection is still mean–variance. 

However, the main weakness of the mean–variance model is in the specification of the expected returns 

of the individual securities involved. If this process is not accurate, the allocations of capital to the dif- 

ferent securities will in almost all certainty be incorrect. If, however, this process can be made accurate, 

then correct allocations can be made, and the additional expected return following from this is the value 

of information. This paper thus proposes a methodology to calculate the value of information. A related 

idea of a level of disappointment is also shown. How value of information calculations can be important 

in helping a mutual fund settle on how much to set aside for research is discussed in reference to a 

Taiwan Stock Exchange illustrative application in which the value of information appears to be substan- 

tial. Heavy use is made of parametric quadratic programming to keep computation times down for the 

methodology. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

The problem of portfolio selection – on how to invest a sum

of money across a series of assets for optimal return – continues

to be a challenge, as it always has been ever since there has been

accumulated wealth in the world. Let there be a beginning of a

holding period and an end of the holding period. Also, let r i be the

return on asset i over the holding period, and w i be the proportion

of initial capital invested in asset i at the beginning of the holding

period, and held in asset i throughout the holding period. With the

goal being to maximize end of period wealth, and with constraints

in canonical form, the problem of portfolio selection is 

max r p = 

n ∑ 

i =1 

r i w i 

s.t. 

n ∑ 

i =1 

w i = 1 

w i ≥ 0 for all i (1)

where r p is the return on one’s capital over the holding period,

n is the number of securities eligible for inclusion in a portfolio,
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nd the sum-to-one constraint along with the nonnegativity re-

trictions define the feasible region in decision space. In the model,

 p is portfolio return, and with the w i weights arranged in the form

f w = (w 1 , . . . , w n ) , w is called a fund allocation vector. 

The problem looks innocuous enough, as it appears to be a lin-

ar programming problem, which in fact it is, except for the ob-

ective function. The difficulty in the objective function is that the

 i , the returns of the individual securities over the holding period,

re random variables, and hence r p is a random variable. Portfolio

election is thus the problem of maximizing the random variable

f portfolio return – but to do so it is necessary to make decisions

n the w i at the beginning of the holding period based upon the

alues of the r i that are not known until the end of the holding

eriod. This makes Model (1) a stochastic programming problem.

n this form, the problem of portfolio selection has been much

iscussed and analyzed. Thousands of papers have been written

n the problem as the basic model can take on many related

orms. 

As defined by Caballero, Cerdá, Muñoz, Rey, and Stancu-

inasian (2001) , if in a programming problem some of the

arameters take unknown values at the time of making a decision,

nd these parameters are random variables, then the problem

s a stochastic programming problem. Stochastic programming

roblems are notoriously difficult to solve, and solution methods

re usually developed based upon the type of problem being con-

idered ( Beraldi, Violi, & Simone, 2011; Shapiro & Philpott, 2007 ).

http://dx.doi.org/10.1016/j.ejor.2016.02.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.02.011&domain=pdf
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ne often contemplated approach is to employ interpretations and

ssumptions so as to strive for an equivalent deterministic formu-

ation that can be solved in a reasonably straightforward fashion. 

Through reasoning such as overviewed in many places as in

uang and Litzenberger (1988) , it is generally accepted that in-

estors are expected utility maximizers. Under this assumption,

nd where U is the investor’s utility function, Model (1) can be

ewritten equivalently as 

ax E[ U(r p )] 

.t. 

n ∑ 

i =1 

w i = 1 

 i ≥ 0 for all i (2) 

n advantage of Model (2) is that all random variables have been

leared from the formulation. With investors assumed to possess

eclining marginal utility, U is at least known to be concave and

ncreasing. 

Two schools of thought have evolved on how to address Model

2) with its expected utility objective function. One is to try to ac-

uire enough information about the decision maker’s preferences

o enable the creation of an optimization problem that can be

olved directly for an optimal portfolio. The “safety first” strategy

f Roy (1952) is an example of this approach. More recent exam-

les involving a range of techniques, although in the multi-criteria

rena, can be found, for instance, in Ballestero and Romero (1996) ,

renas Parra, Bilbao Terol, and Rodríguez Uría (2001) , Bilbao-Terol,

érez-Gladish, Arenas-Parra, and Rodríguez-Uría (2006) , Abdelaziz,

ouni, and El-Fayedh (2007) , Fang, Lai, and Wang (2008) , and

ouni, Colapinto, and La Torre (2014) . But these techniques are dif-

cult because the setting up of the optimization problem generally

equires more knowledge about the optimal solution to be found

han is possible beforehand. The other school of thought involves

arameterizing U and then attempting to solve Model (2) for all

nknown values of U ’s parameter(s). 

Now, if U is quadratic, which is a common assumption in port-

olio selection, there is only one parameter, and it is not difficult

o show, as in many places including Steuer, Qi, and Hirschberger

2007) , that E [ U ( r p )] is a function of the mean and variance of r p 
n the form of 

(r p ) − 1 

t 
V (r p ) (3) 

here t is a risk tolerance parameter. With (3) concave and in-

reasing, all potentially optimizing solutions of Model (2) , with

3) substituted for E [ U ( r p )], can be obtained by computing all effi-

ient ( E , V ) mean–variance combinations that occur in the follow-

ng two-objective program: 

ax E = E(r p ) 

in V = V (r p ) 

.t. 

n ∑ 

i =1 

w i = 1 

 i ≥ 0 for all i (4) 

Recognizing that the two objectives are to be optimized simul-

aneously, an ( E , V ) combination is efficient if and only if it is not

ossible to improve one of the criteria without deteriorating the
ther. Putting (4) into practice, we have 

ax E = 

n ∑ 

i =1 

μi w i 

in V = 

n ∑ 

i =1 

n ∑ 

j=1 

w i σi j w j 

.t. 

n ∑ 

i =1 

w i = 1 

 i ≥ 0 for all i (5) 

here μi is the expected return of the i th security (that is, of the

 i random variable), σ ii is the variance of r i , and the σ ij , i � = j , are

he covariances of the random variables r i and r j over the hold-

ng period. In bi-criterion format, this is the famous mean–variance

odel of Markowitz (1952) , and as prescribed by Markowitz, the

pproach is as follows: 

1. Specify Model (5) with all of its required μi , σ ii and σ ij values.

2. Solve Model (5) for all efficient ( E , V ) combinations and the

fund allocation solution vector w , as a function of V , pertaining

to them. Methods for doing this go back to Markowitz (1956) . 

3. Display the efficient ( E , V ) combinations in the form of a graph,

called the efficient frontier. 

4. Have the investor select from the efficient frontier his or her

most preferred ( E , V ) combination. 

5. For this ( E , V ) combination, retrieve from the w of Step 2 the

specific portfolio composition corresponding to the V of the se-

lected ( E , V ) combination. Provided all has been carried out ac-

curately, this then is the investor’s optimal portfolio. 

As seen, the efficient frontier is central to the approach. This is

ecause the efficient frontier displays precisely all efficient ( E , V )

ombinations. That is, if a particular fund allocation vector can po-

entially be an optimal solution of Model (2) , its ( E , V ) combination

ill be on the efficient frontier, and conversely, if a particular fund

llocation vector cannot be an optimal solution of Model (2) , its ( E ,

 ) combination will not be on the efficient frontier. 

The success of Markowitz’s mean–variance approach is often at-

ributed to its mathematical tractability, but there are other rea-

ons. One is that the approach allows different investors to have

ifferent optimal portfolios. Another is that, because one’s optimal

ortfolio is usually only recognized as such after seeing that ev-

rything else is worse, the approach’s efficient frontier lets one see

he “everything else.” However, a caveat comes with the approach.

While the evolution of Model (5) represents considerable

chievement with regard to theory, the model is in fact a monster

ith regard to its demands for data. That is, for an upcoming hold-

ng period, the model needs n expected returns, n variances, and

(n 2 − n ) / 2 covariances. This is a lot of information, and there may

e no good way to get all of it. Hence there is a legitimate worry

hat errors in the values used for at least some of these quantities

ill propagate through Model (5) and affect the resulting “optimal”

olution. 

Fortunately, the σ ii and the σ ij do not create any especial diffi-

ulties as they are readily estimated from historical data and tend

o be stable from holding period to holding period. However, as

rought into sharp relief by Best and Grauer (1991) , the μi are a

ifferent story. Not only are the μi lacking in the persistence of

he variances and covariances (see DeMiguel & Nogales, 2009; Kan

 Smith, 2008; Siegal & Woodgate, 2007 ), but as shown in Chopra

nd Ziemba (1993) , at a risk tolerance of 50, errors in the μi are

bout 11 more serious than errors of the same relative size in the
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variances, 1 and about twice that factor with regard to errors of the

same relative size in the covariances, with the “times factor” be-

coming larger as risk tolerance increases. Thus, because of the less-

ened effect of errors in the variances and covariances, and because

errors in the variances and covariance are likely to be of smaller

relative sizes than in the expected returns, the implication for re-

search, as pointed out by Chopra and Ziemba (1993) , is that first

emphasis is to be placed on the expected returns and that is done

in this paper. 

As a result, we will be comparing two situations. In the first

we assume the default case in which the investor has no particu-

lar information about the individual security expected returns for

the upcoming holding period and is forced to utilize mean returns

derived from historical data when setting the μi in Step 1 of the

Markowitz approach. Following through on the remaining steps of

the Markowitz approach, the investor is ultimately guided to a spe-

cific fund allocation vector in Step 5. After implementing the spe-

cific fund allocation vector only to find out that the actual returns

for the holding period differ from the mean returns, the investor

then realizes that the portfolio return for the holding period is only
˜ E (where ˜ E is the dot product of the vector of actual returns and

the specific fund allocation vector). 

The other situation imagines that the investor is able to come

into possession of a forecast for the upcoming period so that the

values entered for the μi in Step 1 of the Markowitz approach are

the returns that will actually occur over the holding period. In this

case, guided by the Markowitz approach, the investor will wind

up in Step 5 with a fund allocation vector that is optimal for the

problem (because of the exact match between the actual security

returns and those forecasted). In this case let us say that the port-

folio return is ˆ E (where ˆ E is the dot product of the vector of ac-

tual returns and the optimal fund allocation vector). Thus, the dif-

ference between the two portfolio returns (i.e., the difference be-

tween 

ˆ E and 

˜ E ) is the value of information ( Copeland & Weston,

1983 ) which can assist investors in deciding whether more μi in-

formation beyond the historical should be sought and at what ex-

penditure. 

This paper thus proposes a methodology for conducting value

of information calculations in portfolio selection. In Section 2 the

idea of an efficient frontier is reviewed. In Section 3 a two-security

example along with graphs, similar to as in Markowitz (1959 , pp.

83–86) and Frances and Archer (1971 , pp. 62–70), is provided for

initial illustration purposes. Section 4 comments in more detail

about the value of information. Section 5 extends the concepts of

the paper to n assets. Section 6 illustrates an application drawn

from the Taiwan Stock Exchange, and Section 7 provides a discus-

sion of it. Section 8 describes the strategy of parametric quadratic

programming that is used to carry out the computations of the pa-

per, and Section 9 closes the paper with concluding remarks. 

2. Efficient frontier 

Consider n assets whose upcoming holding period returns

r 1 , . . . , r n are described by a probability density function with

mean vector μ = (μ1 , . . . , μn ) and covariance matrix � = ‖ σi j ‖ . 
There are two main ways in which to express the bi-objective

formulation of Model (5) in the form of a single-objective pro-

gram so as to compute the efficient frontier. One is to solve for

the value E that maximizes expected portfolio return for a given
1 According to Chopra and Ziemba (1993 , p.10), most large institutional investors 

have risk tolerances in the 40–60 range. 

l  

a  

M  

p  

t  
pper bound on portfolio return variance (i.e., risk) V as in 

 = max 

n ∑ 

i =1 

μi w i 

.t. 

n ∑ 

i =1 

n ∑ 

j=1 

w i σi j w j ≤ V 

n 
 

i =1 

w i = 1 

 i ≥ 0 for all i (6)

Model (6) is a quadratically constrained program due to the

 i σi j w j terms in the variance constraint. Actually, Model (6) is a

ery intuitive way of modeling a portfolio problem as many clients

ave risk levels they do not wish to violate. Various second-order

one solvers (as in Cplex (2013) ) can be applied to Model (6) , so

olutions to the formulation are always within reach this way. By

tilizing various V -values to compute their corresponding E -values,

he locus of all ( E , V ) combinations obtained yields the efficient

rontier of the problem and the w i -values of all points along the

fficient frontier enable the specification of the fund allocation so-

ution vector w as a function of V . 

The other way of expressing Model (5) in the form of a single-

bjective program is to find the value of V that minimizes portfolio

eturn variance for a given lower bound on expected portfolio re-

urn E as in 

 = min 

n ∑ 

i =1 

n ∑ 

j=1 

w i σi j w j 

.t. 

n ∑ 

i =1 

μi w i ≥ E 

n 
 

i =1 

w i = 1 

 i ≥ 0 for all i (7)

By utilizing various E -values to compute their corresponding V -

alues, the locus of all ( E , V ) combinations obtained also gives the

ame efficient frontier of the portfolio problem. Since Model (7) is

 quadratic program, for which it is generally easier to find solvers,

t is often used to find the efficient frontier. In this study, however,

odel (6) is used, because it shows the expected portfolio return

t each specific level of risk, which is more meaningful in express-

ng the value of information. 

. An n = 2 illustrative example 

Assume two risky assets whose historical holding period re-

urns r 1 and r 2 are believed to be described by the bivariate distri-

ution whose mean vector is (8, 6) and whose covariance matrix

as elements σ11 = 0 . 75 , σ22 = 0 . 48 , and σ12 = 0 . Utilizing this in-

ormation in Model (6) gives us in the default situation the follow-

ng formulation: 

 = max 8 w 1 + 6 w 2 

.t. 0 . 75 w 

2 
1 + 0 . 48 w 

2 
2 ≤ V 

 1 + w 2 = 1 

 1 , w 2 ≥ 0 (8)

Fig. 1 shows the feasible region in decision space of this prob-

em, which is the intersection of an ellipse (with its interior points)

nd the straight line of w 1 + w 2 = 1 in the first quadrant. For V in

odel (8) equal to 0.2927, or 36/123 to be exact, there is only one

oint C = (0.3902, 0.6098), or (48/123, 75/123) to be precise, in

he feasible region. For this V , point C is then the fund allocation
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Fig. 1. Graph of the example in decision space. 
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ector that solves (8) whose expected portfolio return E = 6 . 7805 ,

r 834/123 to be exact. 

The problem is obviously infeasible when the risk level is less

han 0.2927. As risk V increases, the ellipse expands, and the fea-

ible region extends from point C towards points A and D along

he line w 1 + w 2 = 1 . The largest feasible region is the whole line

egment AD which occurs when portfolio risk reaches 0.75. Since

1 > μ2 in this example, the fund allocation vector that solves

odel (8) is always at the lower endpoint of the portion of AD

hat is feasible, regardless of the value of V . A simple mathemati-

al derivation produces, as a function of V , the optimal fund allo-

ation solution vector w 

∗ and associated expected portfolio return

 as follows: 

 

∗ = 

(0 . 96 + 

√ 

4 . 92 V − 1 . 44 , 1 . 5 − √ 

4 . 92 V − 1 . 44 ) 

2 . 46 

 = 

8 . 34 + 

√ 

4 . 92 V − 1 . 44 

1 . 23 

(9) 

or V ∈ [0.2927, 0.75]. The efficient frontier of this model, since

he individual security expected returns come from historical data,

s indicated by the curve labeled “E , Historical” in Fig. 2 . Starting

rom the smallest attainable risk level of 0.2927, expected portfolio

eturn increases from 6.7805, at a decreasing rate, to 8 (not shown)

here the risk level is 0.75. 
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Fig. 2. Efficient frontier of Model (8) . 
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. Value of information 

Now, suppose someone comes to you, claiming that he is a fi-

ancial guru, and that he can give you an expected return vector,

esignated 

ˆ μ, to be used in place of μ in Model (6) for the model

o yield an optimal fund allocation vector ˆ w 

∗
for the upcoming

olding period. You are interested in this vector of expected re-

urns in order to determine how much it might be worth to you.

ctually, the best ˆ μ to be used in this situation is the vector of re-

urns that will actually occur in the upcoming holding period. This

ould represent the outer limit on forecasting ability as no fore-

ast can be better than that. 

If in our example the guru tells you 

ˆ μ = (8 , 6) , this informa-

ion has no value at all because this is the vector, from historical

ata, that you would be using by default if you had no informa-

ion. However, if the guru tells you 

ˆ μ = (6 . 8 , 7) , this information

as value because with it one can find his or her optimal fund al-

ocation vector (different from the default case). 

By applying Model (8) , with 

ˆ μ = (6 . 8 , 7) instead of μ = (8 , 6) ,

ne obtains, as a function of V , the optimal fund allocation solution

ector ˆ w 

∗
and associated portfolio return 

ˆ E as follows: 

ˆ  
∗ = 

(0 . 96 − √ 

4 . 92 V − 1 . 44 , 1 . 5 + 

√ 

4 . 92 V − 1 . 44 ) 

2 . 46 

ˆ 
 = 

8 . 514 + 0 . 1 

√ 

4 . 92 V − 1 . 44 

1 . 23 

(10) 

or V ∈ [0.2927, 0.48]. Here, the efficient frontier of Model (8) , but

ith 

ˆ μ, is drawn in Fig. 3 and labeled “ ˆ E , True”. This is because,

ith 

ˆ μ being the ultimate forecast, “ ˆ E , True” is the true efficient

rontier, but this curve would not be known without the guru. 

Recall from Eq. (9) that w 

∗ = ((0 . 96 + 

√ 

4 . 92 V − 1 . 44 ) / 2 . 46 ,

(1 . 5 − √ 

4 . 92 V − 1 . 44 ) / 2 . 46) . This is the fund allocation solution

ector resulting from μ = (8 , 6) . But since μ = (8 , 6) is incorrect,

 

∗ will not produce as high a portfolio return (for a given V ) as ˆ w 

∗

oes when using the ˆ μ = (6 . 8 , 7) given by the guru. Thus, when

ubstituting w 

∗ into the true objective function “max 6 . 8 w 1 +
 w 2 ”, we then obtain, as a function of V , the portfolio return of

˜ 
 , where 

˜ 
 = 

8 . 514 − 0 . 1 

√ 

4 . 92 V − 1 . 44 

1 . 23 

(11) 

or V ∈ [0.2927, 0.48]. Plotting (11) as a function of V produces in

ig. 3 the dashed curve labeled “ ˜ E , Resulting”. Without the guru,

his curve would not be known either, but it describes reality if

he investor uses historical data rather than the guru’s ˆ μ. 
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6

Recapping, what we have thus far is this. An investor (could

be a mutual fund, pension fund, hedge fund) agrees to take on a

level of risk not to exceed V in the upcoming holding period. If the

investor utilizes the guru’s ˆ μ vector, then the investor will imple-

ment ˆ w 

∗
from Eq. (10) and achieve the portfolio return of the point

corresponding to V on “ ˆ E , True”. If, however, the investor chooses

to turn down the guru’s ˆ μ and go with historical data, then the

investor will implement w 

∗ from Eq. (9) , which in general will be

incorrect, and only wind up with the portfolio return of the point

corresponding to V on “ ˜ E , Resulting”, with the difference between

these two curves being the value of information. 

The difference between the true portfolio return and the result-

ing portfolio return, I = 

ˆ E − ˜ E , is the loss due to making an in-

correct decision, which is also the value of the information pro-

vided by the guru. At the smallest risk level of V = 0 . 2927 , where

there is only one point in the feasible region, one will not make a

wrong decision, so the loss due to making a wrong decision there

is zero, and the corresponding value of information is also zero.

Therefore, if one is paranoid about making a wrong decision, the

investor should choose the portfolio of lowest risk, as no mistake

can be made there. But as risk increases, the loss due to making

a wrong decision, or the value of information, characteristically 2 

increases. In the example the value of information is given by

I = 

ˆ E − ˜ E = 0 . 2 
√ 

4 . 92 V − 1 . 44 / 1 . 23 which yields a minimum value

of zero at V = 0 . 2927 , a maximum value of 0.1561 at V = 0 . 48 , and

an overall average over the V -range of “ ˆ E , True” of 

Ī = 

1 

0 . 48 − 0 . 2927 

∫ 0 . 48 

0 . 2927 

(0 . 2 

√ 

4 . 92 V − 1 . 44 / 1 . 23) dV = 0 . 1041 

Being under the illusion in the default case that the investor’s

expected portfolio return is given by the point corresponding to

V on “E , Historical”, only to find out in reality that one’s port-

folio return is given by the point corresponding to V on “ ˜ E , Re-

sulting”, the vertical distance between these two points in terms

of expected return would be the investor’s level of disappoint-

ment. That is, when applying the incorrect fund allocation vec-

tor w 

∗, you are expecting a portfolio return of μT w 

∗ = E = (8 . 34 +√ 

4 . 92 V − 1 . 44 ) / 1 . 23 . But since ˆ μ = (6 . 8 , 7) , your resulting portfo-

lio return is ˆ μT 
w 

∗ = 

˜ E = (8 . 514 − 0 . 1 
√ 

4 . 92 V − 1 . 44 ) / 1 . 23 . The dif-

ference between E and 

˜ E , designated D , shows the level of your

disappointment. This value varies with the level of risk. In the ex-

ample, the level of disappointment is given by 

D = E − ˜ E = (−0 . 174 + 1 . 1 

√ 

4 . 92 V − 1 . 44 ) / 1 . 23 

Note that D can be negative, indicating that your portfolio re-

turn is more than your erroneous expectation. For example, at

 = 0 . 2927 , the most risk averse case, the level of disappointment

is D = 6 . 7805 − 6 . 9220 = −0 . 1415 , which is the most negative one.

The curves E and 

˜ E intersect at V = 0 . 2978 . If for some reason be-

ing disappointed is to be avoided, an investor would then wish to

choose a risk level between 0.2927 and 0.2978 in this problem. 

5. n > 2 assets 

The two-asset example can be generalized to n assets. Let us

first consider the default case in which the μ-vector of Model (6)

is composed of mean returns obtained from historical data. In this

model, the fund allocation solution vector is w 

∗ and this causes

the investor to believe that his expected portfolio return is given

by μT w 

∗. While w 

∗, when n = 2 , is the straight line in decision

space that runs from the point of minimum variance to the point 3 
2 In more complex problems, increases in the value of information may not be 

strictly monotonic with V as there may be subintervals of V (seen later) in which 

the value of information decreases slightly before resuming its typically increasing 

trend. 
3 We are assuming here that the two points of this sentence are each unique. 

 

b  

c  

a  

s  

a  
hat maximizes 
∑ n 

i =1 μi w i , when n ≥ 3, the line running between

he two points is no longer in general a single straight line. It is

n general a piecewise linear path, or in other words, a connected

ath of linear line segments. It is noted that the points along the

ath at which one segment connects to another are called “turn-

ng points” as the path changes direction at these points. How a

iecewise linear path comes about is described as follows. 

In Model (6) , the constraint 
∑ n 

i =1 

∑ n 
j=1 w i σi j w j ≤ V defines an

llipsoid in n -dimensional space. Its intersection with the hyper-

lane 
∑ n 

i =1 w i = 1 is another ellipsoid, but in (n −1) -dimensional

pace. At the smallest attainable risk level, the (n −1) -dimensional

llipsoid degenerates to one point, its center. Starting at this point,

he ellipsoid expands with risk level V . Since the objective func-

ion is linear, the fund allocation solution vector w 

∗ starts out on a

ay emanating from the point of minimum variance as when n = 2 ,

ut before getting too far will likely hit a w i ≥ 0 constraint. As long

s the objective function of Model (6) can increase, w 

∗ will follow

he constraint. Then maybe another such constraint is encountered,

nd w 

∗ will follow it as long as it is possible to increase the value

f the objective function. The process continues in this way, with

 

∗ in effect zigzagging through the feasible region, until the point

hat maximizes the objective function of Model (6) is reached. 

Now when the guru-supplied objective function coefficient vec-

or ˆ μ is utilized, Model (6) becomes Model (12) 

ˆ 
 = max 

n ∑ 

i =1 

ˆ μi w i 

.t. 

n ∑ 

i =1 

n ∑ 

j=1 

w i σi j w j ≤ V 

n 
 

i =1 

w i = 1 

 i ≥ 0 for all i (12)

here the fund allocation solution vector that solves Model (12)

s a function of V , following earlier notation, is denoted ˆ w 

∗
. But

ecause Model (6) has objective function coefficient vector μ, and

odel (12) has objective function coefficient vector ˆ μ, assuming

� = 

ˆ μ, ˆ w 

∗
will head away from the point of minimum variance in

 different direction and encounter constraints differently than w 

∗

n search of the point that maximizes over V the value of Model

12) ’s objective function 

∑ n 
i =1 ˆ μi w i . Thus, with the two vectors

enerally becoming further apart as V increases, the value of in-

ormation, I = 

∑ n 
i =1 ˆ μi ( ˆ w i 

∗ − w 

∗
i 
) , typically increases, but of course

here can be, as alluded to in footnote 2 , intervals of V along which

 decreases due to differences between the piecewise linear paths

f w 

∗ and ˆ w 

∗
. 

The level of disappointment is the difference between the ex-

ected portfolio return calculated from historical data, 
∑ n 

i =1 μi w 

∗
i 
,

nd the portfolio return 

∑ n 
i =1 ˆ μi w 

∗
i 

experienced by the investor

n reality, which can be expressed as 
∑ n 

i =1 (μi − ˆ μi ) w 

∗
i 
. While the

(μi − ˆ μi ) are constants as a function of V , the weighted sum
 n 
i =1 (μi − ˆ μi ) w 

∗
i 

is not, and can easily be increasing along one of

he linear segments of w 

∗ and decreasing along the next. Thus it

annot be predicted what a given level of disappointment curve

ill do at a given point and depends upon the problem. 

. Taiwan stock market application illustration 

For the n = 2 illustrative problem of Sections 3 and 4 , all can

e carried out manually and shown graphically. But when, as dis-

ussed in Section 5 , a problem involves more than two securities

nd perhaps takes on additional constraints, the path in decision

pace that corresponds to the problem’s efficient frontier will in

lmost all certainty be more complicated. When this is the case,
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Table 1 

For the 42 stocks, mean return and standard deviation information over the period 

1989–2013, return data for 2014 (column five), and sequence numbers to indicate 

when stocks enter and leave portfolios as we move up the Historical efficient fron- 

tier (column four). 

1989–2013 Sequence 2014 

Mean Stdev numbers return 

1. Asia Cement 12.0391 0.344983 1, 9 7.4230 

2. Cathay Real Estate Dev 12.3569 0.457145 −4.5047 

3. Cathay Finan Holdings 12.8283 0.516924 5.5160 

4. Chang Hwa Bank 6.2430 0.445567 4.2038 

5. Cheng Loong 21.4 4 48 0.516737 13, 16 −5.3715 

6. Chia Hsin Cement 6.6512 0.404714 −3.9228 

7. China Chemi & Pharm 15.3401 0.581060 −11.0858 

8. China Dev Finan Holdgs 20.9496 0.809674 16.8413 

9. China Steel 12.2560 0.375606 2.0717 

10. China Wire & Cable 13.4782 0.556276 −10.2578 

11. Chung Hwa New Century 6.6054 0.464730 −4.9085 

12. Far Eastern Depart Stores 17.7044 0.563518 1, 2 −3.2217 

13. Far Eastern Finan Holdgs 13.0503 0.435786 4.1346 

14. First Financial Holdgs 6.4791 0.448159 10.2657 

15. Formosa Chem & Fibre 18.2970 0.416389 2, 14 −17.5843 

16. Formosa Plastics 17.2128 0.397592 8, 11 −7.9871 

17. Formosa Taffeta 13.5948 0.365130 −10.3191 

18. Goldsun Dev & Construct 13.5345 0.546943 −10.8881 

19. Grand Pacific Petrochem 15.1054 0.720537 −22.5087 

20. Greatwall Enterprises 19.9376 0.637004 7, 17 39.2065 

21. Hua Nan Finan Holdings 7.3682 0.460543 9.0621 

22. LCY Chemical 16.0920 0.449873 −55.1796 

23. Lien Hwa Indl. 11.5796 0.399889 10.6683 

24. Nan Ya Plastics 18.9411 0.4 4084 4 −2.3871 

25. Pacific Construction 18.3111 0.862419 38.9123 

26. San Fang Chemical 19.4491 0.613384 2.8483 

27. Shihlin Elec & Engine 9.8421 0.425025 7.7174 

28. Taiwan Cement 13.5755 0.437849 −1.2233 

29. Taiwan Glass Industries 10.5789 0.325998 1, 8 −25.1987 

30. Taiwan Pulp & Paper 7.8612 0.503937 −11.1953 

31. TSRC 19.9180 0.526613 6, 19 −16.4105 

32. Taiwan Tea 18.6398 0.671788 −24.8869 

33. Tatung 13.1615 0.748537 8.0797 

34. Teco Elec & Machinery 11.4713 0.354611 1, 3 −8.7969 

35. USI 13.6723 0.482036 −12.7775 

36. United Micro Eltn. 25.0325 0.723298 1, 23.1765 

37. Universal Cement 11.6736 0.436670 1, 10 −3.9040 

38. Ve Wong 23.0758 0.938055 16, 20 −0.4825 

39. Walsin Lihwa 15.1108 0.598652 4.1854 

40. Wei Chuan Foods 21.2306 0.655154 5, 18 −51.6898 

41. Yuen Foong Yu Paper 8.3663 0.403238 −5.7510 

42. Yulon Motor 18.5310 0.583911 1, 13 −12.6645 

 

T  

p  

t

i  

t  

t  

t  

s  

t  

fi  

g  

w  

n  

i  

i  

w  

s  

p

 

o  

l  
ccess to tools like Matlab (2013) and mathematical programming

oftware become necessary . 

In this section, to demonstrate the concepts of the paper on a

arger problem, a real problem from an emerging market, in which

he path is indeed piecewise linear and price volatility can cause

he value of information to be high, is taken from the Taiwan Stock

xchange. 

Taiwan is a newly industrialized country, and its rapid eco-

omic development starting in the 1990s won it the title of one of

The Four Dragons of Asia”. Established in 1960, the Taiwan Stock

xchange (TSE) is in charge of the listing and trading of securi-

ies. Currently, there are over 800 companies on the TSE. Because

ata on Taiwan stocks are required for the problem being set up,

homson Reuters Datastream is used as our data source. But for

ountries other than the U.S. and Canada, Datastream is only com-

lete from 1988 onward. Selecting only Taiwanese stocks that are

omplete since 1988, this then allows us to draw annual return

ata for our experiments from the period January 1, 1989 to De-

ember 31, 2014. While there are 44 such stocks, two are dropped

China General Plastics and Namchow Chemical) because of outlier

rice behavior. If anything, the dropping of the two securities only

auses the results of our problem to be less pronounced than if

hey were included. 

The 42 remaining companies, as listed in Table 1 , are all in tra-

itional industries, such as textiles, foods, cement, plastics, con-

truction, pulp, and so on. Now, assume that you are the manager

f a $2 billion Taiwanese mutual fund and that the 42 stocks of

able 1 constitute your approved list of securities for investment.

ou of course do not have to invest in them all, but you cannot go

utside of the list. 

Because how much to set aside for research is always a diffi-

ult decision, suppose that, with regard to the 42 securities, you

ish to determine what your fund’s value of information was last

ear (for 2014). In other words, you wish to determine how much

oney you would have left on the table had you used histori-

al means for the expected returns in Model (6) versus a guru-

upplied 

ˆ μ as the objective function coefficient vector in Model

12) . 

To determine this, imagine yourself back at January 1, 2014, and

hat you would like to use all 25 years of previous historical data

or computing the mean returns of the 42 securities and the co-

ariance matrix � associated with these securities over the pe-

iod. This gives us the 25-year mean returns and standard devi-

tions (covariances not shown) listed in columns two and three of

able 1 . 

Solving Model (6) for many values of V produces the Histori-

al efficient frontier labeled as such in Fig. 4 (a). Despite the fact

hat variance is used in Model (6) , and also in Model (12) , observe

hat standard deviation is on the horizontal axis. This is normal.

hile theory and computation are typically conducted in terms of

ariance, results in portfolio analysis are commonly displayed in

erms of standard deviation for greater interpretability. We follow

his practice from this point on in this paper. 

. Discussion 

From the Historical frontier of Fig. 4 (a), the smallest attainable

ortfolio standard deviation is 0.2961 (or 29.61 percent) at which

oint expected portfolio return is 0.1206 (or 12.06 percent). As

nticipated, the smallest attainable portfolio standard deviation is

ess than the standard deviation of any of the 42 companies, but

t 29.61 percent the effect of portfolio diversification is muted be-

ause the average of the correlation coefficients embedded in the

ovariance matrix of the problem is 0.5702 (as opposed to around

.20 for the S&P 500). 
Note the sequence numbers in the fourth column of Table 1 .

he securities with no entries in this column never appear in any

ortfolio along the piecewise linear path of w 

∗ corresponding to

he Historical frontier. Of those that have entries, moving along w 

∗

n the direction away from the point of minimum standard devia-

ion, the number before the comma means that that security en-

ers the portfolios of the piecewise linear path at the beginning of

hat segment, and the number after the comma means that that

ecurity leaves the piecewise linear path of portfolios at the end of

hat segment. Consider the sequence numbers of Company 16. The

rst means that the company enters the portfolios of w 

∗ at the be-

inning of the eighth segment and departs from the portfolios of

 

∗ at the end of the eleventh segment. Note that Company 36 does

ot have a second sequence number. This is because Company 36

s in all portfolios along the piecewise linear path from start to fin-

sh. As a result, Company 36 is the only security left in w 

∗ when

 

∗ reaches the maximum expected return point. With the largest

equence number being 20, this means that the piecewise linear

ath of this particular w 

∗ has 20 segments. 

In the same way, but with the fifth column of Table 1 as the

bjective function coefficient vector in Model (12) , the piecewise

inear path of ˆ w 

∗
corresponding to the True efficient frontier in
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Fig. 4. With reference to the 25 years of immediately previous historical data, (a) 

the 2014 Historical efficient frontier, True efficient frontier and Resulting curve, and 

(b) the 2014 Value of Information (VoI) and Level of Disappointment (LoD) curves 

computed from the frontiers and curve of (a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. With reference to 15 years of historical data and an upper bound of 0.10 

on all securities in all cases, (a) individual-year Value of Information curves for the 

years 2005–2014, and (b) average of these curves over the 10-year period. 
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Fig. 4 (a), has 18 segments (sequence numbers not shown). There is

no reason why the piecewise linear paths of a historical and a true

efficient frontier need involve exactly the same securities or have

the same number of segments. 

While a given segment of w 

∗ produces its own smooth portion

of a resulting curve, the reason for the bumpiness of the Result-

ing curve in Fig. 4 (a) is that w 

∗ has 20 segments, meaning that

there are 19 turning points all of which can potentially create a

kink in the Resulting curve. Because the Resulting curve is to be

subtracted from the True frontier and again subtracted from the

Historical frontier, the bumpiness of the Resulting curve easily car-

ries over to the Value of Information (VoI) and Level of Disappoint-

ment (LoD) curves as seen in Fig. 4 (b). 

Note that the 2014 Value of Information curve of Fig. 4 (b), other

than for near the minimum standard deviation, is essentially over

20 percent for most of its run. For a $2 billion fund, this is 400

million dollars plus. We observe that the VoI curve hits its peak at

a standard deviation value just shy of 0.5 because the True and Re-

sulting curves have their greatest vertical separation there. The LoD

curve has its lowest value at 0.65 because the Historical and Re-

sulting curves are closest together at this standard deviation value.

However, before attempting to attribute too much to the curves of

any single year, we need to check on at least two things. 
One is that our models so far have been unrealistic in the sense

hat 100 percent is the upper bound on the amount that can be in-

ested in any security. The other is that using 25 years of history

ay be too much. To address these items, let us take another look

t the problem to calculate what the value of information has av-

raged over the last 10 years using for each year the previous 15

ears of historical data and upper bounds of 10 percent on all se-

urities. To accommodate the new upper bounds, the“w i ≥ 0 ” con-

traints of Models (6) and (12) are changed to “0 ≤ w i ≤ UB ” where

B , in this instance, is 0.10. With these years of historical data and

pper bound values, we have the graphs of Fig. 5 . 

In Fig. 5 (a) we have, under the new conditions, the ten individ-

al Value of Information curves for the years 2005–2014. The top

urve, for instance, is the Value of Information curve for individ-

al year 2006. Fig. 5 (b) portrays an “average” of the 10 curves. But

ince the individual curves have different starting points and are

f different lengths, we need a convention for how an average of

uch curves is computed. Consider the standard deviation value of

4 percent. From Fig. 5 (a) we see that only 9 of the 10 individual

alue of Information curves are operational at this value. Thus, we

nly average the heights of these 9 Value of Information curves to
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Fig. 6. With reference to 15 years of historical data and an upper bound of 0.10 

on all securities, (a) individual-year Level of Disappointment curves for the years 

2005–2014, and (b) average of these curves over the 10-year period. 
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btain the height of the average Value of Information curve at this

alue of standard deviation. At, for instance, 28 percent, all 10 are

veraged, but at 34 percent, only 6 are averaged. 

As seen, the average Value of Information results of this exper-

ment are not much different from the results of the first experi-

ent when only one year was run and all security upper bounds

ere at 100 percent. Other than for being close to the minimum

tandard deviation, the results are mostly over 20 percent where

he majority of the curves are involved in the average. In fact, in all

f the experiments that we have conducted with reasonable values

or (i) upper bounds on the securities, (ii) the number of years of

istorical data to be employed, and (iii) the number of years to be

veraged, results have always been consistent with a 20 percent or

ore figure, already seen twice in this paper, for all values of stan-

ard deviation other than when minimal risk is taken. Thus the

400 million plus figure mentioned earlier for a $2 billion mutual

und is not off the mark. Thus, it would probably be imprudent for

 manager of a large mutual fund to not spend a few million a year

n research in an attempt to capture some of the huge amount of

oney that otherwise gets left on the table. 

The 2014 Level of Disappointment curve in Fig. 4 (b) has values

ver 15 percent for most of its length, indicating that in 2014 you

ould have been disappointed for earning at least 15 percentage

oints of return less than you would have expected. But after stan-

ard deviation of about 0.55, the curve drops of rapidly. However,

ince almost anything can happen in any given year, one is not to

e swayed by any single year Level of Disappointment curve. 

In Fig. 6 (a) we have the individual-year Level of Disappointment

urves, and in Fig. 6 (b), following the same averaging procedure as

efore, we have the 2005–2014 average Level of Disappointment

urve. In the middle range of standard deviation, where readings

rom most years are present, the average Level of Disappointment

s around zero, indicating that over the long haul your levels of

isappointment tend to average out. This is anticipated. The only

eason there are irregularities at the ends of the average curve is

hat there are not enough observations there. Even though one’s

verage Level of Disappointment may be zero, the individual Level

f Disappointment curves show how varied one’s disappointments

an be year-to-year, positive to possibly large extents in some years

nd negative to possibly large extents in others. 

. Use of parametric quadratic programming 

In contrast to the smoothness of the True and Historical effi-

ient frontiers, the Resulting curve, other than in small problems,

an be anticipated to exhibit bumpiness. The bumpiness is cre-

ted by the fact that the fund allocation solution vector w 

∗ that

s optimal for Model (6) is inserted into Model (12) for which it

s not optimal. At this point we note that the image of any lin-

ar line segment in decision space is a parabolic line segment in

ean–variance space. That is, each different linear line segment

n decision space creates a curved (i.e., parabolic) line segment in

ean–variance space from a different parabola. 4 Since a parabola

n mean–variance space is a hyperbola in mean–standard deviation

pace, then each different linear line segment in decision space

reates a curved (i.e., hyperbolic) line segment in mean–standard

eviation space from a different hyperbola. Not for computation as

his is all done in terms of variance, but for presentation, this last

tatement is relevant to us in that all graphs of our application il-

ustration are portrayed with standard deviation on the horizontal

xis. 

When a piecewise linear path is efficient in a problem, the cor-

esponding hyperbolic line segments in mean–standard deviation
4 As long as no two linear line segments come from the same straight line. s
pace will generally blend into one another, sequentially, in a con-

inuously differentiable fashion. 5 Hence the smoothness of the His-

orical and True efficient frontiers. However, if a piecewise linear

ath is not efficient in a problem, the hyperbolic line segments will

enerally not blend smoothly into one another, with each turning

oint in decision space very well creating a kink in mean–standard

eviation space. This is the situation when w 

∗ is placed into Model

12) , and this is where the bumpiness of the Resulting curve comes

rom. 

Because the Resulting curve is subtracted from the True and

istorical frontiers to obtain the Value of Information and Level

f Disappointment curves, respectively, the bumpiness of a Result-

ng curve is transmitted to these curves as well. Thus, because of

he bumpiness phenomenon, it is necessary to solve Models (6)

nd (12) for many values of V for all curves to be represented ac-

urately as in Figs. 4 –6 . One particular area where w 

∗ for many

alues of V is needed is in the vicinity of where a True frontier

nd Resulting curve depart from one another. One or both of the

urves can be very steep at this point. Steepnesses can occur at

ther locations, and generally one has no way of knowing where in
5 Although kinks are possible, they are rare in problems after more than a few 

ecurities. 
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advance. Consequently, it would be a great relief to be able to

simply obtain the solutions of Models (6) and (12) for thousands

of values of V , so one would not have to worry about when and

where more effort is needed. However, doing this by conventional

means, that is, by repetitively calling for each value of V a quadrati-

cally constrained solver such as from Cplex from a tool like Matlab,

would be quite time consuming, not only because of the cumu-

lative time taken by the solver, but also because of the overhead

involved in the calling process. 

Instead, we use an algorithm of parametric quadratic program-

ming, in this case the CIOS code from Hirschberger, Qi, and Steuer

(2010) . This enables us to save considerable time so that the com-

putational requirements of the methodology can be handled in a

much more efficient way. An advantage of CIOS is that it can com-

pute in one run a full mathematical specification of the efficient

frontier of a problem in very little time (less than 0.04 seconds

on average for a problem of 50 securities). 6 By a full mathemati-

cal description, we mean a complete description of the piecewise

linear path and all parabolic (or hyperbolic) segments. A further

advantage of CIOS is that it does not require the covariance ma-

trix to be positive definite which it never is when the number of

time periods used to construct the covariance matrix is the same

or less than the number of securities being addressed, a common

occurrence. 

The method of parametric quadratic programming makes use of

the fact that the efficient frontier of either Model (6) or (12) is the

set of all nondominated solutions of 

max Ē = 

n ∑ 

i =1 

μ̄i w i 

min V = 

n ∑ 

i =1 

n ∑ 

j=1 

w i σi j w j 

s.t. 

n ∑ 

i =1 

w i = 1 

0 ≤ w i ≤ UB for all i (13)

depending upon whether μ̄i is μi or ˆ μi , and that CIOS is designed

to solve (13) for all such nondominated solutions. With the abil-

ity of the parametric quadratic programming procedure of CIOS to

quickly compute any Historical or True efficient frontier, the task

is to ascertain from the output of CIOS, as fast as possible, the ex-

pected returns of all ( ̄E , V ) points along the two frontiers that have

as their second components the V s in the list to be processed. Also,

it is necessary to compute all of the portfolios along the piecewise

linear path w 

∗ that generates the Historical frontier that have for

their V s the V s in the same list. All of this is necessary to have

points on the Historical, True, and Resulting curves for the same

(large) set of V s to facilitate the vertical subtractions and averag-

ings necessary to produce the graphs of the methodology. Sug-

gested by a method outlined in Qi, Hirschberger, and Steuer (2009) ,

the method here is as follows: 

1. Invoke CIOS to compute a mathematical specification of the ef-

ficient frontier of interest. 

2. From the mathematical specification, note the V -values of the

lower and upper endpoints of each contributing parabolic seg-

ment. 

3. For each in the list of V -values to be processed, do the follow-

ing: 

3.1 Identify the parabolic segment whose lower and upper V -

endpoint values bracket the V -value being processed. 
6 All computations in this paper were conducted on an i7-3770 3.4 gigahertz 

computer. 

k  

h  

t  

y  
3.2 Retrieve from the mathematical specification the a i values

that define the identified parabolic segment in the form of 

V = a 2 ̄E 
2 + a 1 ̄E + a 0 

3.3 Rearrange to form 

0 = a 2 ̄E 
2 + a 1 ̄E + (a 0 − V ) 

and then apply the quadratic formula to solve for Ē . 

3.4 If it is the Historical frontier being processed, let E lo and E up 

be the expected returns of the lower and upper endpoints of

the identified parabolic segment. Then, for the efficient port-

folio associated with the V being processed on the piecewise

linear path of the Historical frontier, we have 

w v = 

E up − Ē 

E up − E lo 
w 

lo + 

Ē − E lo 

E up − E lo 
w 

up 

where w 

lo and w 

up are the turning points in decision space

pertaining to the lower and upper endpoints of the identi-

fied parabolic segment in criterion space, and Ē is the value

obtained from the quadratic formula of the previous step. 

he above is the procedure for deriving the needed solution in-

ormation for a given frontier. Considering the study of this paper,

here are 10 years and two frontiers (Historical and True) per year

or a total of 20 frontiers. With Cplex taking about 40 seconds to

olve a given Model (6) or (12) for 10 0 0 values of V , this is 800

econds in total. Compared to this, CIOS along with a code written

n Matlab to implement the above procedure for all 20 frontiers

akes only about 8 seconds, which, at about 1 percent of the Cplex

lternative, is much more satisfactory from an operational point of

iew. 

. Conclusions 

The problem of portfolio selection can be viewed as the prob-

em of determining the optimal proportions of capital to invest

n a set of assets for the purpose of either maximizing expected

eturn for a given upper bound on risk, or minimizing risk for

 given lower bound on expected return. However, accurate esti-

ates of individual asset expected returns, the procuring of which

enerally poses a considerable challenge, are crucial to the process

f properly obtaining these proportions. With investors having to

ommonly proceed with estimates that are not fully accurate, the

urpose of the paper is to examine in detail what happens in-

ide of a portfolio selection problem when this is the case. This

auses the paper to focus on the concept of the value of informa-

ion and to introduce the concept of levels of disappointment. Just

s Markowitz (1952) , Frances and Archer (1971) , and others have

sed small numerical/graphical examples to illuminate their dis-

ussions in portfolio selection, we have used an example in the

ame style to illustrate our work in portfolio selection. In our work

ith the value of information and levels of disappointment, there

re two major findings. 

First, the value of information, which is zero at the lowest

ttainable risk level, generally increases to high levels with risk

hereafter. The value of information is of course a key reference

oint in helping an investor judge how much to spend on research.

econd, different from the value of information, the level of dis-

ppointment at the lowest attainable risk level is not necessarily

ero. It can be positive or even negative, indicating that an ex-

ected return higher than anticipated can be experienced. 

The whole idea is applied to a case from the Taiwan stock mar-

et. An interesting result is that an investor will earn over the long

aul what is expected, as indicated by a value around zero for

he level of disappointment, but there can be severe differences

ear to year. What is important and attractive is that an investor
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ould earn on average 20 or more extra percentage points of re-

urn per year if sufficient information is provided. Such is quite

ossibly true about other developing markets, which deserve fur-

her research. Possible extensions to the work of this paper that

ould be interesting would be to apply the methodology to prob-

ems with semi-continuous variables ( Calvo, Ivorra, & Liern, 2011 )

nd to models with additional objectives as the topic of multiple

riteria portfolio management has been attracting increasing atten-

ion ( Xidonas, Mavrotas, Krintas, Psarras, & Zopounidis, 2012 ). 
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