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Abstract: Linear IV models with clustering dependence are widely used in empirical

studies, although the common solution, the cluster covariance estimator, often pro-

duces undesirable inferential results, especially with weak instruments. In this paper,

I propose a method that is robust to both weak IV and (potentially heterogeneous)

clustering dependence. The proposed method is based on the idea of Fama-MacBeth

estimation, with group-level estimators being a truncated version of the unbiased IV

estimator. Asymptotic validity is shown under both strong and weak IV sequences, as

well as under general requirements. Simulation results indicate the method has good

finite-sample performance in both size and power. The proposed method is applied to

study the effect of city compactness on population density.
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1. Introduction

In linear IV models, accounting for clustering dependence has been a standard procedure

in conducting statistical inference in empirical research. A common solution is to use the

cluster covariance estimator (CCE), which is often referred to as the “clustered standard

error” method. In linear models CCE methods are shown to deliver valid inference under

either strong homogeneity across groups (the large-homogeneous-group approach, e.g., Bester
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et al., 2011) or lots of small groups (the many-small-group approach, e.g., Hansen and Lee,

2019). Those results provide theoretical justification for the usage of CCE methods in the

linear IV model under strong IV.1 This paper concerns statistically inference in the linear

IV model with clustering dependence.

However, for many common settings, whether either the large-homogeneous-group or

many-small-group approach can justify the usage of standard clustering methods is not

clear. Specifically, Bester et al. (2011) assume all groups are similar in size and the same

design-matrix limit, which does not hold in many settings. Hansen and Lee (2019) require

that maxg n
2
g/n→ 0, where ng is the number of observations in group g and n is the sample

size. In the case of equal-sized groups, this requirement implies n/G2 → 0, where G is the

number of groups. MacKinnon and Webb (2017) conduct simulation studies and show the

empirical rejection can be as high as 0.1073 at a level-0.05 test, when (n,G) = (2000, 50),

thus with n/G2 = 0.8, and group sizes are proportional to population of the 50 states in the

US. A non-exhaustive search in recent empirical research suggests n/G2 is often large, for

example, Coibion et al. (2017) with n/G2 = 0.46 or 0.34 in Table 3, Dell (2012) with n/G2

ranging from 1.21 to 16.65 in Table 7, and Deryugina et al. (2019) with n/G2 = 2.43 in

Table 2. For a discussion on the poor asymptotic approximation of inference methods based

on asymptotic theory, see Ferman and Pinto (2019), Ferman (2019), MacKinnon and Webb

(2017), and Young (2019).

Moreover, standard methods suffer from size distortion when weak IV is a concern. Al-

though robust inference methods such as the Anderson-Rubin test (AR, Anderson and Ru-

bin, 1949) work under standard assumptions described in the previous paragraph, whether

those methods have good inferential properties when standard assumptions break is not well

understood. In the simulation section, we show the extension of AR with the standard error

calculated by CCE methods can result in size distortion under imbalanced group sizes, with

sizes being as high as 0.116 at a level-0.05 test.

Alternatively, Fama-MacBeth methods (Fama and MacBeth, 1973; Ibragimov and Müller,

2010), sometimes referred to as mean group estimation (Pesaran and Smith, 1995; Pesaran

et al., 1999), provide another inferential approach that exploits the clustering dependence

structure. Those methods first perform group-level estimation for each group and consider

a weighted average of all group-level estimators. Under a wide variety of circumstances, the

resulting average has well-understood properties, and a simple procedure such as a t-test

1Hansen and Lee (2019) cover both OLS and IV, whereas Hansen (2007) considers only the OLS case,

but the results can be extended to the strong IV model.
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can be used to attain valid inference. In this paper I introduce a group-based inference

method that is built on Fama-MacBeth methods, in order to simultaneously solve clustering

dependence and potentially weak IV.

In this paper I study robust inferential methods to overcome the practical issues men-

tioned above, based on the idea of Fama-MacBeth estimation. Because the Fama-MacBeth

approach calculates the group-level estimator using only the data in a certain group, a po-

tential finite-sample problem may arise in the IV estimation. To account for that possibility,

I propose a truncated version of the unbiased IV estimator introduced by Andrews and

Armstrong (2017) in calculating the group-level estimator. I show this estimator is nearly

unbiased, and that using it in the Fama-MacBeth approach produces valid inference. The

proposed method allows for a moderate number of moderate-sized groups (e.g., 30 groups

of around 30 observations as in the simulation section) and is robust to both weak IV and

heterogeneous clustering dependence. Table 1 summarizes whether a certain aforementioned

method is robust to a non-conventional set-up.

Table 1
Robustness of Inferential Methods in Linear IV Models with Clustering Dependence

n/G2 � 0 Heterogeneous Groups Weak IV

CCE (large-G) NO YES NO

CCE (small-G) YES NO NO

AR-CCE (large-G) NO YES YES

AR-CCE (small-G) YES NO YES

Fama-MacBeth YES YES NO

Proposed method YES YES YES

Notes: This table roughly summarizes whether a candidate inferential
method is robust to a certain non-conventional set-up. “YES” means it
generally delivers correct size and “NO” means it does not. “Large-G”
stands for the many-small-group approach and “small-G” stands for the
large-homogeneous-group” one. “AR-CCE” is the natural extension of the
Anderson-Rubin method to the case with clustering dependence (described
in Section 4.2). “Proposed method” is the Fama-MacBeth approach with
truncated unbiased estimators proposed in this paper.

Both an unbiased group-level estimator and the truncation are important in implement-

ing the Fama-MacBeth approach in this setting. Without the former, the group-level IV

estimator may lead to substantial finite-sample bias and cause size distortion under the

null. The latter guarantees the group-level estimators have finite second moments such that

the test has power. Simulation studies show direct usage of Andrews and Armstrong (2017)

produces far less power, and the proposed method is robust to many settings and has good

power properties.

Throughout, I assume one endogenous variable and focus on the case of one instrument.
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Cases with multiple instruments can be dealt with using the averaging method introduced

by Andrews and Armstrong (2017). Similar to Andrews and Armstrong (2017), to imple-

ment the proposed method, the sign of the first-stage parameter is assumed to be known.

This assumption is often a weak one in empirical studies, because the sign of the instrument

is typically embedded in the reasoning of instrument validity and comes in before the dis-

cussion of the strength of the instrument. Mills (2019) shows 82.35% of the papers published

in the American Economic Review from 2014 to 2018 and with “instrument” in the abstract

claim the first-stage sign is known. Additionally, Mills (2019) shows exploiting information

of the first-stage sign may help improve test power. Another underlying assumption I as-

sume throughout is the group-level normal model (see Section 3.1), for which a sufficient

assumption would be weak dependence as in the large-homogeneous-group approach (Bester

et al., 2011).

The paper contributes to two streams of literature. First, the proposed method fills a

gap in the literature on cluster-based inferential methods. Although those methods are

extensively studied under standard assumptions such as the large-homogeneous-group case

and the many-small-group case (Bertrand et al., 2004; Hansen, 2007; Bester et al., 2011;

Cameron and Miller, 2015; Hansen and Lee, 2019), the properties of those methods outside

the standard assumptions are largely unknown. I show through simulation that existing

methods can break under many circumstances. I advocate the usage of the proposed Fama-

MacBeth approach with truncated unbiased IV estimation and show its validity.

Second, this paper complements the recent literature on the Fama-MacBeth approach

and shows its usefulness. Fama and MacBeth (1973) introduced this approach, but it was

only recently theoretically justified by Ibragimov and Müller (2010). Ibragimov and Müller

(2010), Canay et al. (2017), Cao et al. (2019), and Hagemann (2019a,b) have documented

the robustness and good power properties of this approach. Many of their results can be

either applied or extended to the strong IV case, but extension to allowing for weak IV is

non-trivial.

The remainder of the paper is organized as follows. Section 2 introduces a truncated

version of the unbiased IV estimator with known first-stage sign. Section 3 proposes the

inferential method that applies the truncated unbiased IV estimator. In addition, the prim-

itive conditions for both strong and weak IV asymptotics are listed. Simulation studies are

presented in section 4. In section 5, I apply the proposed method to study the effect of

city compactness on population density. Section 6 concludes. Proofs are relegated to the

appendix.
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2. Truncated Unbiased IV with Known First-Stage Sign

We first consider a simple linear IV model. Let X, Y , and Z be n× 1 data vectors for three

scalar variables. The reduced-form formulation of the linear IV model isY = Zπβ + U,

X = Zπ + V,

(2.1)

where π and β are both scalars. We are interested in the structural equation parameter β.

Assume the sign of π is known, and, without loss of generality, let π > 0. Assume the vector

of reduced-form and first-stage estimators follows

ψ̂ =

γ̂
π̂

 =

(Z ′Z)−1Z ′Y

(Z ′Z)−1Z ′X

 ∼ N(µ,Σ), (2.2)

where

µ =

πβ
π

 , Σ =

 σ2
1 σ12

σ12 σ2
2

 .

The usual IV estimator is β̂IV = γ̂/π̂. We assume through-out that Σ is known and positive

definite. Our analysis relies heavily on (2.2), which applies to cases where normality is a

good approximation of the reduced-form and first-stage coefficients ψ̂.

Comment 2.1. The model (2.1) has an equivalent structural formulation. Generalization

of (2.1) to models with multiple instruments and/or other control variables can be done in

standard methods. For multiple instruments, we can use a weighted average of the proposed

estimators of a single instrument, because a weighted average of (nearly) unbiased estimators

is still (nearly) unbiased. Including other control variables can be done through projection

on the null space by the Frisch-Waugh-Lovell theorem.

Comment 2.2. The assumption that π has known sign is often weak in empirical studies.

According to a survey by Mills (2019) on papers published in the American Economic

Review from 2014 to 2018, 14 out of 17 papers with “instrument” in the abstract claim to

have known first-stage sign.

Comment 2.3. The normal model (2.2) is common in the literature on IV inference that is

robust to weak instruments (see, e.g., Andrews et al., 2006; Andrews and Mikusheva, 2016;

Kleibergen, 2002; Moreira, 2003; Moreira and Moreira, 2019; Staiger and Stock, 1997).

One motivation is that the vector (πβ, β) can be considered a regular parameter and well

estimated under mild regularity conditions, whereas β itself is only weakly regular in the
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case of weak instruments (Kaji, 2020). As a result, the least-squares estimator for (πβ, β)

can often be approximated by a normal distribution. One simple example for the model

(2.2) to hold is the case where Z is fixed and the rows of [U, V ] are i.i.d. or stationary. In

this case, the covariance matrix of ψ̂ is

Σ = (I2 ⊗ (Z ′Z)−1Z ′)Var[(U ′, V ′)′](I2 ⊗ (Z ′Z)−1Z ′)′ (2.3)

and can be consistently estimated. See Andrews et al. (2019) for a review on the normal

approximation to the distribution of (γ̂, π̂).

We follow Andrews and Armstrong (2017) and define the unbiased IV estimator. Let

δ̂ = δ̂(ψ̂,Σ) = γ̂ − σ12

σ2
2

π̂

and

τ̂ = τ̂(ψ̂,Σ) =
1

σ2

1− Φ(π̂/σ2)

φ(π̂/σ2)
=

1

σ2
Ψ(π̂/σ2),

where Ψ(x) = (1− Φ(x))/φ(x), and Φ(·) and φ(·) are cdf and pdf for the standard normal

distribution, respectively. The unbiased IV estimator is

β̂U = β̂U (ψ̂,Σ) = δ̂τ̂ +
σ12

σ2
2

.

It is shown that E[β̂U ] = β when π > 0.

Comment 2.4. The main idea of β̂U is to use the fact that τ̂ is an unbiased estimator for

1/π (Voinov and Nikulin, 1993). Because δ̂ can be considered the projection of γ̂ on the

null space of π̂, δ̂ is independent of π̂, and thus of τ̂ as a function of π̂. Those facts lead to

E[β̂U ] = β (Andrews and Armstrong, 2017).

Define the truncated version of the unbiased IV estimator by

β̃ = δ̂τ̃ +
σ12

σ2
2

,

where

τ̃ =
1

σ2
Ψ

(
max{π̂, π∗}

σ2

)
,

and π∗ is some truncation parameter. That is, we “winsorize” the unbiased IV estimator

according to π̂ by the threshold π, when π̂ is too small. We do so because Ψ(·) is positive

and strictly decreasing on R, and Ψ(x) → ∞ as x → −∞, which causes β̂U to have an

unbounded second moment. By truncation, we eliminate extreme values of β̂U , which is

important in conducting inference.
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Example 1. We visualize the truncation in Figure 1. Consider a simple case where ψ̂ =

(γ̂, π̂)′ ∼ N(ψ, I2). Then, the unbiased IV estimator for β is β̂U = δ̂τ̂ , where δ̂ = γ̂ and

τ̂ = (1−Φ(π̂))/φ(π̂). Define π̂U = 1/τ̂ , then β̂U = γ̂/π̂U ; that is, β̂U is the slope of the line

through (π̂U , δ̂) and the origin. Then, the proposed truncated estimator β̃ is the slope of the

line through (π̃, γ̂) = (max{π̂U , π∗}, δ̂) and the origin.

π

γ

β0

β̃

π = π∗

β̂U

(π, πβ0)

(π̂U , γ̂) (π̃, γ̂)

Fig 1: β̃ is obtained through winsorizing π̂U in the gray area.

The following result shows the truncated estimator is nearly unbiased when the truncation

is appropriate.

Proposition 1. Assume β is fixed. Suppose (i) |σ12/σ
2
2 | <∞, (ii) π∗/σ2 → −∞, and (iii)

ππ∗/σ2
2 → −∞. Then, E[β̃]− β → 0.

Comment 2.5. Proposition 1 gives guidance on when the proposed estimator β̃ is approx-

imately unbiased. A trivial example is where π∗ → −∞ and everything else is constant, in

which case, β̃ is approaching the unbiased estimator β̂U . Under either the common strong IV

asymptotics where σ2 = O(1/
√
n) and π is constant, or the common weak IV asymptotics

where σ2 = O(1/
√
n) and π = O(1/

√
n), (ii) and (iii) require π∗ to be negative and not to

shrink as fast as 1/
√
n.
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3. Fama-MacBeth Inference with Truncated Unbiased IV

Consider a triangular array {{(Xn,i, Yn,i, Zn,i)}ni=1}n≥1 that follows the linear IV model

(2.1), Yn,i = Zn,iπnβ + Un,i,

Xn,i = Zn,iπn + Vn,i,

(3.1)

and a sequence of clustering dependence structures {Cn}n≥1 with Cn = {In,g}Gn
g=1 such that

Gn → ∞ as n → ∞. That is, for any fixed n, observations are independent across groups

but may be dependent within a group. As in section 2, (X,Y, Z) is considered fixed and

(U, V ) is considered random. The parameter of interest is β, which does not vary with the

sample size n. Our goal is to make inferential statement on the hypothesis H0 : β = β0. The

first-stage coefficient πn is allowed to change with n but stays the same across groups for

each fixed n.2 In the following presentation, we suppress n for simplicity. All variables and

parameters (except β) should be considered a function of n.

3.1. General results

We consider a Fama-MacBeth-type procedure. Namely, we estimate a truncated unbiased IV

estimator β̃g for each group g ∈ {1, . . . , G}, using only {(Xi, Yi, Zi)}i∈Ig . Thus, we obtain a

set {β̃g}Gg=1 of nearly unbiased IV estimators with bounded second moments. Define group-

level quantities {ng, ψ̂g, δ̂g, τ̂g, π∗g}Gg=1 accordingly. As in section 2, we assume the group-level

reduced-form and first-stage coefficients follow a normal distribution with known covariance

Σg such that

ψ̂g =

γ̂g
π̂g

 ∼ N(µg,Σg),

from which the group-level truncated unbiased IV estimator β̃g is constructed.3 Therefore,

either the errors (U, V ) follow normal distribution or at least a moderate number of obser-

vations are in each group. Also, define {σ1,g, σ2,g, σ12,g, µδ,g, σδ,g} such that

Σg =

 σ2
1,g σ12,g

σ12,g σ2
2,g

 ,

µδ,g = π(β − σ12,g/σ
2
2,g),

σ2
δ,g = σ2

1,g − σ2
12,g/σ

2
2,g.

2This assumption is made here for simplicity. In principle, we do not need to assume π is the same across

different groups, because of the nature of group-level estimation.
3In practice, {Σg}Gg=1 can be estimated by model-based or HAC-type estimators.
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For the set of group-level estimates {β̃g}Gg=1, define the Fama-MacBeth estimator

β̄ =
1

G

G∑
g=1

β̃g

and the standard error

se =

√√√√ 1

G(G− 1)

G∑
g=1

(β̃g − β̄)2.

The corresponding t-statistic is

t =
β̄ − β0

se
.

We show t is asymptotically normal when the estimator is properly truncated.

Assumption 1. (i) lim supn supg |σ12,g/σ
2
2,g| <∞;

(ii) supg π
∗
g/σ2,g → −∞, as n→∞;

(iii) supg ππ
∗
g/σ

2
2,g → −∞, as n→∞.

Define M = supg Ψ(π∗g/σ2,g)/σ2,g. Conceptually, M guides the overall level of truncation

across groups with respect to τ̂g. The reason is that Ψ(·) is a strictly decreasing one-to-one

map such that π̂g ≥ π∗g if and only if τ̂g ≤ Ψ(π∗g/σ2,g)/σ2,g.

Assumption 2. The truncation parameter M satisfies

M = o

(
B

σ̄δ(κG)1/3

)
,

where

B2 =

G∑
g=1

E[(β̃g − E[β̃g])
2],

σ̄δ = max
g

σδ,g,

κ = max
g

K

(
−3

2
,

1

2
;−

µ2
δ,g

2σ2
δ,g

)

and K(a, b; z) is Kummer’s confluent hypergeometric function.

Comment 3.1. Assumptions 1 and 2 are high-level conditions that allow for many IV

configurations. Both a fixed π (strong IV) or a local drifting sequence that shrinks at the

rate of n−1/2 (weak IV) are discussed below. Assumption 1 is generally weak. Assumption

1(i) implies σ12 and σ2
2,g are approximately of the same scale. This assumption is reasonable

because they are typically O(1/ng) with weak dependence. Assumptions 1(ii) & (iii) require

both π∗g/σ2,g and ππ∗g/σ
2
2,g to go to −∞, uniformly. Those assumptions are weak under

strong IV as long as π∗g is negative and bounded away from zero. Under weak IV where
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π = O(1/
√
n), 1(ii) is weak and 1(iii) holds when infg ng/

√
n does not go to zero too fast;

that is, the number of groups increases too fast. Assumption 2 puts restrictions on the

truncation parameter. Practical suggestions of how the truncation parameters are chosen

are given in Appendix A.

Theorem 1. Under Assumption 1 and 2, t
d→ N(0, 1).

Comment 3.2. This result implies the test ψ = 1{|t| > zα/2} delivers an asymptotically

correct size at level α, where zα/2 is the (1−α/2)-quantile of the standard normal distribu-

tion. In practice, some quantities in constructing the t-statistic need to be estimated. The

implementation details are in Appendix A.

3.2. Strong IV asymptotics

In this subsection, I give the primitive assumptions under which the proposed method de-

livers valid inference under strong IV.

Define σ̄2 = maxg σ2,g

σ2 = ming σ2,g

. (3.2)

Assumption S1. (i) lim infn π > 0;

(ii) lim supn supg |σ12,g/σ
2
2,g| <∞;

(iii) σ2M →∞ and σ̄2 = O(1).

Assumption S2. (i) σ̄2/σ2 = O(1);

(ii) M = o(BG−1/3).

Comment 3.3. S1(i) implies a strong IV sequence and includes the case where π is fixed as

n →∞. S1(ii) is the same as Assumption 1(i). The first half of S1(iii) together with S2(ii)

provides guidance on the choice of M . The second half of S1(iii) is weak as long as groups are

not diminishing. S2(i) requires that no severe size imbalance exists across groups. Together

with the assumptions under the weak IV asymptotics in section 3.3, these assumptions have

implications on the selection of the truncation parameter. Practical suggestions are given in

Appendix A.

Proposition 2. Under Assumption S1 and S2 (strong IV sequence), Assumptions 1 and 2

hold.
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3.3. Weak IV asymptotics

In this subsection, I give the primitive assumptions under which the proposed method de-

livers valid inference under weak IV, where the first-stage strength parameter π follows a

drifting sequence towards 0 at the rate of n−1/2.

Let σ̄2 and σ2 be defined in equation (3.2). Similarly, define σ̄δ = maxg σδ,g and σδ =

ming σδ,g.

Assumption W1. (i) π = π0/
√
n;

(ii) supn supg |σ12,g/σ
2
2,g| <∞;

(iii) n−1/2Ψ−1(σ2M)/σ̄2 → −∞.

Assumption W2. (i) π2/σ2
δ → 0;

(ii) M = o(Bσ̄−1
δ G−1/3).

Comment 3.4. W1(i) is standard in the weak IV literature (e.g., Staiger and Stock, 1997).

In the case of weak dependence with approximately balanced groups, σ2,g = O(n
−1/2
g ), so

W1(iii) implies Ψ−1(σ2M)/
√
G→ −∞; σδ = O(1/ming ng), so W2(i) implies maxg ng/n→

0 (cf. maxg n
2
g/n→ 0 in Hansen and Lee, 2019).

Proposition 3. Under Assumptions W1 and W2 (weak IV sequence), Assumptions 1 and

2 hold.

4. Simulation

In this section, we study the finite-sample performance of the proposed estimator. In all

the following settings, the data generating process follows the linear IV model (3.1), where

n = 900 and G = 30 such that n/G2 = 1, which deviates from the usual asymptotics. The

null hypothesis is H0 : β = 0. For each setting, 1,000 replications are conducted to calculate

the empirical rejection rate.

For each setting, we observe {(Xi, Yi, Zi)}ni=1 and a partition {Ig}Gg=1 of {i}ni=1. Let

consecutive observations belong to the same group; that is, I1 = {1, 2, . . . , |I1|}, I2 = {|I1|+

1, . . . , |I1|+ |I2|}, and so on, where | · | is cardinality. The data are drawn according to the
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following process:

Yi = Ziπβ + Ui

Xi = Ziπ + ViUi
Vi

 ∼ N
0,

 1 0.5

0.5 1

 , if i = 1 +

g∑
h=1

|Ih| for some g = 0, 1, . . . , G− 1

Ui
Vi

 = 0.5

Ui−1

Vi−1

+
√

1− 0.52

εUi
εVi

 , if i 6= 1 +

g∑
h=1

|Ih| for any g = 0, 1, . . . , G− 1

εUi
εVi

 ∼ N
0,

 1 0.5

0.5 1

 and is i.i.d. across i.

Also, each dimension of the k-dimensional instruments Zi takes one draw from the distribu-

tion of {Ui}ni=1 and is fixed across replications. Thus, (Ui, Vi) within each group follows an

AR(1) process and is independent across different groups. The parameters (β, π, {Ig}Gg=1, k)

vary accordingly across settings.

4.1. Debiasing and truncation

We first investigate three Fama-MacBeth-type inferential procedures and show the necessity

of debiasing and truncation. We consider the t-test on group-level 2SLS estimators (FM),

the t-test on group-level unbiased IV estimators(FMU), and the proposed t-test on group-

level truncated unbiased IV estimators (FMUT), with with truncation parameter selected

as suggested in Appendix A. The full-sample 2SLS with CCE estimates of standard errors

is also reported for comparison.

In this experiment, we have five instrumental (k = 5) and one endogenous variable.

Groups are imbalanced in sizes, with five groups of 90 observations and 25 groups of 18

observations. For each group, the observations follow an AR(1) process as described before.

The first-stage coefficient is π = (0.1, 0.1, 0.1, 0.1, 0.1)′/
√

5 such that ‖π‖2 = 0.1.

The power curves are reported in Figure 1. Estimators used in CCE and FM are both

biased. FM has large bias between the two, because it uses group-level 2SLS estimators with

much larger finite-sample bias than the full-sample estimator. FMU is less powerful with

FMUT, because the unbiased IV estimator does not have a bounded second moment, such

that the resulting t-statistic has a tail that is too large.
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Fig 2: Power comparison among Fama-MacBeth procedures (α = 0.05)

4.2. Comparison with other methods

Here, we compare the proposed method with the existing inferential procedure. We consider

the “clustered standard error” approach (CCE) and the natural extension of Anderson-

Rubin test to our settings (AR-CCE). To implement the AR-CCE method, we apply CCE

to the regression of Y −Xβ0 on Z, where β0 is the hypothesized value as in H0 : β = β0.

In our case, we test H0 : β = 0, so AR-CCE is equivalent to performing CCE to test the

hypothesis H0 : γ = 0 in the regression Y = Zγ + U .

We look at several configurations. The number of instruments k varies in the set {1, 5, 10}.

The first-stage strength is chosen such that ‖π‖2 ∈ {0.1, 0.5}, with π = ‖π‖2ιk/
√
k and

ιk being a k-vector of 1’s. For example, in the case of ‖π‖2 = 0.1 and k = 5, we have

π = (0.1, 0.1, 0.1, 0.1, 0.1)′/
√

5. We also consider both balanced and imbalanced groups. In

the balanced-group case, we have 30 groups of 30 observations; in the imbalanced-group

case, we have 5 groups of 90 observations and 25 groups of 18 observations.

The sizes are reported in Table 2 and the power curves are in Figures 3, 4, and 5. Among

all methods, only FMUT is able to deliver a robust inference result at the null across all

settings. CCE displays a noticeable bias under ‖π‖2 and over-identification. AR-CCE is

robust to weak instruments, but not under group imbalance.
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Table 2
Summary (α = 0.05)

Balanced Groups Imbalanced Groups

Median MAD Size Median MAD Size

k = 1 π = 0.5 CCE 0.002 0.050 0.040 0.001 0.049 0.062

AR-CCE - - 0.040 - - 0.060

FMTU -0.010 0.057 0.039 -0.035 0.087 0.052

π = 0.1 CCE 0.010 0.254 0.043 0.007 0.251 0.048

AR-CCE - - 0.040 - - 0.060

FMTU 0.032 0.303 0.066 0.002 0.354 0.048

k = 5 π = 0.5 CCE 0.011 0.051 0.051 0.010 0.052 0.063

AR-CCE - - 0.037 - - 0.092

FMTU -0.068 0.110 0.033 -0.078 0.141 0.034

π = 0.1 CCE 0.194 0.256 0.119 0.202 0.256 0.136

AR-CCE - - 0.037 - - 0.092

FMTU 0.073 0.260 0.047 0.029 0.312 0.044

k = 10 π = 0.5 CCE 0.022 0.051 0.076 0.021 0.050 0.082

AR-CCE - - 0.063 - - 0.116

FMTU -0.055 0.105 0.046 -0.074 0.131 0.037

π = 0.1 CCE 0.277 0.284 0.259 0.279 0.285 0.267

AR-CCE - - 0.063 - - 0.116

FMTU 0.067 0.247 0.075 0.026 0.294 0.046
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Fig 3: Power curves with nominal size α = 0.05 and k = 1.
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Fig 4: Power curves with nominal size α = 0.05 and k = 5.
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Fig 5: Power curves with nominal size α = 0.05 and k = 10.
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5. Empirical Application: Urban Geometry in India

In this section I use the proposed inferential method to study the effect of city shape on

population density. The data used in this section were originally collected and analyzed in

Harari (2020). The shape of a city affects its compactness, where compactness is measured

by how convenient its residents travel for daily activities. Ideally, a compact city should look

like a circle, whereas cities develop into various shapes for many reasons including geographic

constraints. Compact cities are attractive to residents because their daily activities operate

more efficiently than those in cities that are less compact. This argument suggests the

hypothesis that more compact cities should have higher population density. However, city

shape is highly endogenous because it is the outcome of economic activities. Harari (2020)

proposes a solution to this edogeneity problem by utilizing geographic obstacles such as

mountains and lakes as an instrument. I apply the method proposed in this paper, FMTU,

in order to obtain a more robust set of empirical results.

5.1. Methodology

To facilitate quantitative analysis, Harari (2020) proposes a shape metric that is based on the

average distance between any two points in a polygon, in order to measure the compactness

of a city. Namely, the Shape index is defined by

Shape =
1

B(B − 1)

B∑
i=1

∑
j 6=i

dij ,

where i and j stand for two points sampled from interior points of the city, dij is the

Euclidean distance between i and j, and B is the number of sampled points. We consider

the Normalized Shape obtained by dividing Shape by the radius of the Equivalent Area

Circle (EAC), where EAC is the circle with the same area as the city. That is, Normalized

Shape measures how much the city shape is different from a circle.

The instrument is the Normalized Shape index for the projected city. Constructing the

projected city is a two-step procedure. First, predict the area that a city should occupy in

a given year, based on its projected historical population growth. Second, predict the shape

of the city given projected area and geographic constraints. We then instrument the shape

of the actual city with shape of the potential one.

I consider the same setup as Harari (2020) does. The regression of interest is

∆Population density = α+ β∆Normalized shape + U,
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where the dependent variable is the change in population density from 1951 to 2011, the

endogenous variable is the change in the city shape index from 1950 to 2010, and the

instrument is the change in the city-shape index for the projected city expansion from 1950

to 2010. The instrument is the difference of Normalized Shape for projected cities. This

model can be interpreted as a difference-in-difference design with continuous treatment and

endogeneity.

I consider the potential dependence among observations by applying the framework sug-

gested by Cao et al. (2019). Namely, I first apply k-medoids to generate a partition of cities

using their geographic locations, and then use the given clustering structure to perform

the proposed group-based inference method. I use this method to obtain inference results

robust to spatial correlation. Factors that affect population density in a city may include

climate, culture, economy, personal preferences, etc. Those factors are multidimensional and

the natural administrative division4 does not necessarily capture the underlying dependence

structure. That is, cities in neighboring states may be highly correlated in factors that con-

tribute to population density.

The idea of Cao et al. (2019) is to use k-mediods, a clustering algorithm, to generate a

partition of observations that helps obtain robust results in group-based inferential methods.

Cao et al. (2019) show the clustering generated by k-medoids satisfies group-balance and

diminishing-boundary. The former, group-balance, requires there is no diminishingly small

group, and the latter, diminishing-boundary, requires across-group dependence is approxi-

mately ignorable. The algorithmic details are repsented in Appendix E. I apply k-medoids

to generate a clustering of 10 group. The resulting structure is visualized in Figure 6.

5.2. Results

Table 3 compares the original results in Table 8 of Harari (2020) with those obtained from

the proposed method. Note that the first-stage t-statistic being 5.311 does not imply we

can ignore the instrument strength. Lee et al. (2020) show that in order to have a level-0.05

second-stage test in a single IV model, the first-stage F -statistic needs to exceed 104.7,

which translates into a t-statistic of 10.23. Comparing 2SLS and the proposed method of

this paper, the estimates are qualitatively similar (-171.79 vs. -199.26), whereas the standard

errors are quite different. Although the new p-value still suggests rejecting the null at some

levels such as 0.1, the implication is vastly different from the original p-value, suggesting

that including spatial correlation in analysis is crucial.

4India is a federal union comprising 28 states and 8 union territories.
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Fig 6: Partition of cities in India by k-medoids using 10 clusters. Distances are Euclidean
distances based on latitude and longitude coordinates recorded at cities’ centroids. Different
colors correspond to different clusters in the partition. Marks are plotted at city centroids.

Table 3

∆ Normalized shape ∆ Population density

First stage 2SLS FMUT

(1) (2) (3)

∆ Potential normalized shape 0.0996

(0.0188)

∆ Normalized shape -171.8 -199.3

(37.32) (88.35)

t-stat 5.311 -4.603 -2.255

p-value 0.000 0.051

Observations 351 351 351

Notes: This table reports estimates of the impacts of city shape on population. Col-
umn 1 reports the first-stage results. Column 2 reports 2SLS results with the White
robust standard error. Column 3 reports results from the truncated unbiased Fama-
MacBeth method. The p-value for FMUT is calculated using a Student’s t-distribution
of 9 degrees of freedom.
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6. Conclusion

In the setting of IV regression, this paper proposes an inferential method that is based on

the idea of Fama-MacBeth estimation, in order to deal with weak IV and heterogeneous

clustering dependence. To overcome the finite-sample bias of IV regression, the group-level

estimator is a truncated version of the unbiased IV estimator proposed by Andrews and

Armstrong (2017). I give high-level conditions under which the proposed method is asymp-

totically valid. Asymptotic validity is also shown under both strong and weak IV sequences.

Finite-sample performance is shown by simulation. The proposed method is applied to study

the effect of city compactness on population density.

Appendix A: Implementation

In this section, I describe the details of implementing the proposed procedure. The idea is

simply to replace each quantity by its sample analog. Section A.1 discusses the case with

only one instrument. Section A.2 covers the case with more than one instrument.

A.1. One single instrument

The algorithm consists of three steps: group-level estimation, debiasing and truncation, and

a t-test.

Step 1 We fix some group g and only use observations in this group. Let the corresponding

group-level estimators be ψ̂g = (ψ̂1,g, ψ̂2,g)
′ as in (2.2), and the residuals be {Ûi, V̂i}i∈Ig .

Let Λ̂g be a heteroskedasticity and autocorrelation correction estimator (HAC) of

V ar

 1
√
ng

∑
i∈Ig

ZiUi
ZiVi

 .
In the simulation section, we use the Newey-West estimator with b4(T/100)1/4c lags (Newey

and West, 1987). The estimator for V ar[ψ̂] is thus

Σ̂g =

Q−1
ZZ,g 0

0 Q−1
ZZ,g

 Λ̂g

Q−1
ZZ,g 0

0 Q−1
ZZ,g

 ,

where QZZ,g = n−1
g

∑
i∈Ig ZiZ

′
i. The group-level (δ̂, τ̂) is given by

δ̂g = δ̂(ψ̂g, Σ̂g), τ̂g = τ̂(ψ̂g, Σ̂g),

and the unbiased IV is β̂g = δ̂τ̂ + σ̂12,g/σ̂
2
2,g.
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Step 2 Consider a uniform truncation parameter where π∗g = π∗ for each g. Let

π∗SIV = min
g

1
√
ng

Ψ−1

(
c

√
n̄

ng

)

and

π∗WIV = min
g

1
√
ng

Ψ−1

(√
n

ng
Ψ

(
−c
√
n

n̄

))
,

where n̄ = maxg ng and n = ming ng. The former is suggested by assumptions under the

strong IV asymptotics in section 3.2 and the latter by the weak IV asymptotics in section 3.3.

The truncation parameter is chosen to be π∗ = min{π∗SIV , π∗WIV }. In practice, I recommend

using c = 10. Using the selected threshold π∗, we can obtain a set of group-level truncated

unbiased IV estimators {β̃g}Gg=1.

Step 3 We apply the t-test to the set of group-level estimators {β̃g}Gg=1. Namely, let

t =
β̄ − β0

se
,

where

β̄ =
1

G

G∑
g=1

β̃g

and

se =

√√√√ 1

G(G− 1)

G∑
g=1

(β̃g − β̄)2.

We reject the null hypothesis H0 : β = β0 if |t| > cv, where cv is the (1− α)-quantile of the

t-distribution of G− 1 degrees of freedom.

A.2. Multiple instruments

When multiple instruments are available, we follow Andrews and Armstrong (2017) and

use a weighted average of unbiased IV estimators with respect to all instruments. Namely,

for the j-th instrument, we perform Steps 1 and 2 as in section A.1 and obtain the j-th

unbiased IV estimator β̃g,j . The group-level estimator is then given by

β̃g =
∑
j

wj β̃g,j ,

where {wj}kj=1 is a set of weights that sum up to one. See Andrews and Armstrong (2017)

for a discussion on optimal weight selection. In the simulation section, {wj}kj=1 are simply

chosen to be equal weights. Finally, we follow Step 3 in section A.1 using {β̃g}Gg=1.
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Appendix B: Truncation Parameter Choices

In this section, we investigate the impact of the choice of the truncation parameter. As in

Appendix A, we recommend using π∗ = min{π∗SIV , π∗WIV } with c = 10 as the truncation

parameter. We look into different choices of c in this experiment.

The data regenerating process is the same as in section 4.1. FMUT methods with three

different values of c are reported. The CCE method is also reported for comparison. The

power curves are shown in Figure 7. Generally, the proposed method is quite robust to

the choice of the truncation parameter in terms of null rejection rate. Moreover, Figure 7

exhibits a “bias-variance” tradeoff. That is, a smaller c corresponds to high power but causes

more bias.
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Fig 7: Power comparison among truncation-parameter choices (α = 0.05)

Appendix C: Useful Results

In this section, I present some results that are useful for proofs in Appendix D.

Lemma 1. E[τ̂1{π̂ ≥ π∗}] = ηπ−1, where

η = (1− Φ((π∗ − π)/σ2))− (1− Φ(π∗/σ2)) exp(ππ∗/σ2
2 − π2/(2σ2

2)).
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Proof.

E[τ̂1{π̂ ≥ π∗}]

= E

[
1

σ2
· 1− Φ(π̂/σ2)

φ(π̂/σ2)
1{π̂ ≥ π∗}

]
=

∫ ∞
π∗/σ2

1

σ2
· 1− Φ(x)

φ(x)
φ(x− π/σ2)dx

=
1

σ2

∫ ∞
π∗/σ2

(1− Φ(x)) exp(xπ/σ2 − π2/(2σ2
2))dx

=
1

π
exp(−π2/(2σ2

2))

(
(1− Φ(x)) exp

(
π

σ2
x

)∣∣∣∣∞
π∗/σ2

−
∫ ∞
π∗/σ2

exp(xπ/σ2)d(1− Φ(x))

)
=

η

π
.

The fourth equality is integration by parts.

Kummer’s confluent hypergeometric functions

K(a, b, z) =

∞∑
k=0

ak̄

bk̄
zk

k!
,

where the rising factorial is defined by

xk̄ = x(x+ 1) . . . (x+ n− 1).

For z < 0,

K(a, b, z) =
Γ(b)

Γ(b− a)
(−z)−a[1 +O(|z|−1)],

where the Gamma function is

Γ(x) =

∫ ∞
0

ux−1e−udu.

See Abramowitz and Stegun (1965) for reference.

Appendix D: Proofs

Proof of Proposition 1. Let η be defined as in Lemma 1. Note

|E[β̃]− E[β̂U ]| = |E[δ̂(τ̃ − τ̂)]|

= |E[δ̂]| · |E[τ̃ − τ̂ ]|

= |E[δ̂]| · E[(τ̂ − τ∗)1{π̂ < π∗}]

≤ |E[δ̂]| · E[τ̂1{π̂ < π∗}]

= |π(β − σ12/σ
2
2)| · (π−1 − ηπ−1)

= |β − σ12/σ
2
2 | · (1− η)

→ 0.
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The second equality uses the independence between δ̂ and π̂, which implies the independence

between δ̂ and functions of π̂. The inequality is because Ψ is strictly decreasing, and thus

0 ≤ τ̂ − τ∗ ≤ τ̂ under the event π̂ < π∗. The fourth equation is by Lemma 1 and the fact

that E[τ̂ ] = 1/π. The convergence is because η → 1 under (i), (ii), and (iii), and σ12/σ
2
2 is

bounded.

Proof of Theorem 1. By Assumption 1 and following the proof of Proposition 1,

sup
g
|E[β̃g]− β| → 0.

So

t = t∗ +
G−1

∑G
g=1(E[β̃g]− β)

se
= t∗ + op(1),

where

t∗ =
G−1

∑G
g=1(β̃g − E[β̃g])

se
.

Under Assumption 2, for some absolute constant C,

sup
x
|P(t∗ < x)− Φ(x)| ≤ CB−3

G∑
g=1

E[|β̃g − β|3]

. CB−3Gmax
g

E[|δ̂g|3]E[|τ̃g|3]

. CB−3Gσ̄3
δκM

3

= o(1). (D.1)

The inequality is by a Berry-Esseen bound for Student’s statistic in Bentkus et al. (1996).

The third line uses a representation of the third raw absolute moment of normal distribution

(e.g., see Winkelbauer, 2012). Combining (D.1) with t = t∗ + op(1), we obtain t
d→ N(0, 1).

Proof of Proposition 2. Assumption 1(i) holds automatically by Assumption S1(ii). For

1(ii), note

max
g

π∗g − π
σ2,g

= max
g

Ψ−1(σ2,gM)− π

σ2,g
≤ Ψ−1(σ2M)→ −∞

by S1(iii) and the fact that Ψ−1(x)→ −∞ as x→∞. For 1(iii), note

max
g

ππ∗g
σ2

2,g

= max
g

πΨ−1(σ2,gM)

σ2,g
≤ πΨ−1(σ2M)

σ̄2
→ −∞

by S1(iii).

To see Assumption 2, first note for some constant C1, C2,

K

(
−3

2
,

1

2
;− µ2

δ

2σ2
δ

)
≤ C1

(
µ2
δ

2σ2
δ

)3/2

+ C2

(
µ2
δ

2σ2
δ

)1/2

. C1σ
−3
δ
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by properties of Kummer’s confluent hypergeometric function (e.g., 13.1.5 of Abramowitz

and Stegun, 1965). Therefore,

M = o

(
B

σ2(σ̄−3
2 G)1/3

)
= o

(
B

σ2(κG)1/3

)
.

Proof of Proposition 3. Assumptions 1(i) and 1(ii) follow the same reasoning as in the

proof of Proposition 2. For 1(iii), note

max
g

ππ∗g
σ2

2,g

.
Ψ−1(σ2M)√

nσ̄2
→ −∞.

To see Assumption 2, for some constant C,

K

(
−3

2
,

1

2
;− µ2

δ

2σ2
δ

)
≤ 1 + C

∣∣∣∣− µ2
δ

2σ2
δ

∣∣∣∣ = 1 +O

(
π2

σ2
δ

)
, (D.2)

by properties of Kummer’s confluent hypergeometric function. Combining (D.2) with W2(ii)

gives Assumption 2.

Appendix E: k-Medoids Algorithm

This section states the k-medoids algorithm used in Section 5. Let (X, d) be a metric space

with a finite set of locations X and a distant metric d. For some cluster C ⊆ X and medoid

i ∈ X, define the cost to be

cost(C, i) =
∑
j∈C

d(i, j)2.

Let C = {Cg}Gg=1 be a partion of X, i.e., clustering strucutre. Define the total cost for C with

a set of medoids {iC}C∈C by summing over clusters

total cost(C, {iC}C∈C) =
∑
C∈C

cost(C, iC).

Algorithm k-medoids Clustering

Input. (X, d), G.

Procedure.

1. Initialize cluster centroids {i1, ..., iG} ⊂ Xn arbitrarily.

2. While total cost decreases,

a. For each k 6 G, for each j /∈ {i1, ..., iG} compute the cost with new medoids

{i1, ..., ik−1, j, ik+1, ...iG};

b. Assign new medoids membership if the new set of medoids has less total cost.

Output. C with |C| = G .
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