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Abstract

Modern empirical work in Regression Discontinuity (RD) designs employs local

polynomial estimation and inference with a mean square error (MSE) optimal band-

width choice. This bandwidth yields an MSE-optimal RD treatment effect estimator,

but is by construction invalid for inference. Robust bias corrected (RBC) inference

methods are valid when using the MSE-optimal bandwidth, but we show they yield

suboptimal confidence intervals in terms of coverage error. We establish valid coverage

error expansions for RBC confidence interval estimators and use these results to pro-

pose new inference-optimal bandwidth choices for forming these intervals. We find that

the standard MSE-optimal bandwidth for the RD point estimator must be shrank when

the goal is to construct RBC confidence intervals with the smaller coverage error rate.

We further optimize the constant terms behind the coverage error to derive new optimal

choices for the auxiliary bandwidth required for RBC inference. Our expansions also

establish that RBC inference yields higher-order refinements (relative to traditional

undersmoothing) in the context of RD designs. Our main results cover sharp and

sharp kink RD designs under conditional heteroskedasticity, and we discuss extensions

to fuzzy and other RD designs, clustered sampling, and pre-intervention covariates ad-

justments. The theoretical findings are illustrated with a Monte Carlo experiment and

an empirical application, and the main methodological results are available in R and

Stata packages.
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1 Introduction

The Regression Discontinuity (RD) design is widely used in program evaluation, causal

inference, and treatment effect settings. (For general background on these settings, see Im-

bens and Rubin (2015) and Abadie and Cattaneo (2018), and references therein.) In recent

years, RD has become one of the prime research designs for the analysis and interpretation

of observational studies in social, behavioral, biomedical, and statistical sciences. For in-

troductions to RD designs, literature reviews, and background references, see Imbens and

Lemieux (2008), Lee and Lemieux (2010), Cattaneo and Escanciano (2017), and Cattaneo,

Idrobo and Titiunik (2018a,b).

Modern empirical work in RD designs employs a mean square error (MSE) optimal

bandwidth for local polynomial estimation of and inference on treatment effects.1 This MSE-

optimal bandwidth choice yields a MSE-optimal RD point estimator, but is by construction

invalid for inference. Robust bias corrected (RBC) inference methods provide a natural

solution to this problem: RBC confidence intervals and related inference procedures remain

valid even when the MSE-optimal bandwidth is used (Calonico, Cattaneo and Titiunik,

2014; Calonico, Cattaneo, Farrell and Titiunik, 2018c). In this paper, we show that this

choice of bandwidth is suboptimal when the goal is to construct RBC confidence intervals

with minimal coverage error (CE), and we establish a new bandwidth choice delivering CE-

optimal RBC confidence interval estimators or, analogously, minimizing the error in rejection

probability of the associated hypothesis testing procedures for RD treatment effects.

Our main results are valid coverage error expansions for local polynomial RBC confidence

interval estimators. The precise characterization offered by these expansions allow us to

study bandwidth selection in detail, and to propose several novel bandwidth choices that

are optimal for inference. First and foremost, we derive a CE-optimal bandwidth choice

designed to minimize coverage error of the interval estimator, which is a fundamentally

1See Imbens and Kalyanaraman (2012), Calonico, Cattaneo and Titiunik (2014), Arai and Ichimura (2016,
2018), Calonico, Cattaneo, Farrell and Titiunik (2018c), and references therein. Cattaneo and Vazquez-Bare
(2016) gives a general discussion of bandwidth/neighborhood selection methods in RD designs.
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different goal than minimizing mean square error of the point estimator. The MSE- and

CE-optimal bandwidths are therefore complementary, as both can be used in empirical work

to construct, respectively, optimal point estimators and optimal inference procedures for

RD treatment effects. For example, we find that in the case of the popular local linear RD

estimator, if the sample size is n = 500, then shrinking the MSE-optimal bandwidth by

approximately 27% leads to RBC confidence intervals with the fastest coverage error decay

rate. Further, we use our expansions to derive bandwidth choices that trade off coverage

error against interval length, which is conceptually analogous to trading size and power of the

associated statistical tests, while retaining asymptotically correct coverage (or size control).

Finally, by examining the leading constant terms of our coverage error expansions, we can

deliver novel optimal choices for the auxiliary bandwidth required for RBC inference. We

also provide plug-in, data-driven bandwidth selectors for use in practice and illustrate their

performance with real and simulated data.

Our theoretical results prove that RBC confidence interval estimators have coverage er-

ror strictly smaller (i.e., vanishing faster) than those of interval estimators based on under-

smoothing, as long as enough smoothness of the underlying conditional expectation functions

is available to at least characterize the MSE of the RD point estimator, the most natural

case in empirical applications. RBC intervals are as good as their undersmoothed counter-

parts when no additional smoothness is available beyond what is needed to quantify the

asymptotic bias of the t-test statistic. These results, coupled with our bandwidth selectors,

provide precise theory-based guidance for empirical practice employing RD designs: RBC

confidence interval estimators constructed with the CE-optimal, and even with the MSE-

optimal, bandwidth choice dominate the alternative procedures in terms of coverage error

performance.

Our main theoretical results focus on sharp RD designs with heteroskedastic data, cover-

ing both levels (standard sharp RD design) as well as derivatives (kink and higher-order RD

designs). The latter case being of interest in, for example, Card, Lee, Pei and Weber (2015,
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2017), Dong and Lewbel (2015), Cerulli, Dong, Lewbel and Poulsen (2017), and Ganong and

Jäger (2018). We also discuss extensions to fuzzy, geographic, multi-score, and multi-cutoff

RD designs (Hahn, Todd and van der Klaauw, 2001; Papay, Willett and Murnane, 2011;

Keele and Titiunik, 2015; Cattaneo, Keele, Titiunik and Vazquez-Bare, 2016), as well as to

clustered data and/or inclusion of pre-intervention covariates (Lee and Card, 2008; Bartalotti

and Brummet, 2017; Calonico, Cattaneo, Farrell and Titiunik, 2018c). Our results can also

be applied to other RD settings such as those considered in Xu (2017), Dong (2018), and

Dong, Lee and Gou (2018).

Finally, we remark that our discussion of inference-optimal bandwidth selection, as well

as all treatments of MSE-optimal choices, are within the context of local polynomial methods

(Fan and Gijbels, 1996) under continuity assumptions of the underlying conditional expec-

tation functions. CE- and MSE-optimal bandwidth choices should not be used when the

goal is to employ local randomization assumptions in the context of RD designs (Cattaneo,

Frandsen and Titiunik, 2015), because in this setting the underlying assumptions are dif-

ferent and the targeted neighborhood around the cutoff is conceptually distinct. As such,

the appropriate neighborhood under local randomization can not be generated by MSE- or

CE-optimal bandwidth choices, and other methods are more appropriate: see Section 3 in

Cattaneo, Frandsen and Titiunik (2015) for one example. For further discussion of these

different assumptions and methodologies, as well as comparisons between neighborhood se-

lectors, see Cattaneo and Vazquez-Bare (2016), Cattaneo, Titiunik and Vazquez-Bare (2017),

and Sekhon and Titiunik (2017).

The rest of the paper proceeds as follows. Section 2 presents the RD setup and outlines

a brief, but self-contained, introduction to standard estimation and inference methods. Sec-

tion 3 gives the main results of the paper: valid higher-order coverage error expansions for

commonly used confidence intervals as well as CE-optimal and related bandwidth choices.

Section 4 discusses implementation and other practical issues. Section 5 briefly outlines

several extensions, while numerical results using real and simulated data are reported in
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Section 6. Finally, Section 7 concludes. The supplemental appendix (SA, hereafter) contains

all technical details and proofs, as well as more discussion of methodological, implementa-

tion and numerical issues. Calonico, Cattaneo, Farrell and Titiunik (2017) details general

purpose Stata and R software packages implementing our main methodological results.

2 Setup

We assume the researcher observes a random sample (Yi, Ti, Xi)
′, i = 1, 2, . . . , n, where Yi

denotes the outcome variable of interest, Ti denotes treatment status, and Xi denotes an

observed continuous score or running random variable, which determines treatment assign-

ment for each unit in the sample. In the canonical sharp RD design, all units with Xi

not smaller than a known threshold c are assigned to the treatment group and take-up

treatment, while all units with Xi smaller than c are assigned to the control group and do

not take-up treatment, so that Ti = 1(Xi ≥ c). Using the potential outcomes framework,

Yi = Yi(0) · (1− Ti) + Yi(1) · Ti, with Yi(1) and Yi(0) denoting the potential outcomes with

and without treatment, respectively, for each unit. The parameters of interest in sharp RD

designs are either the average treatment effect at the cutoff or its derivatives:

τν = τν(c) =
∂ν

∂xν
E[Yi(1)− Yi(0)|Xi = x]

∣∣∣∣
x=c

.

where here and elsewhere we drop evaluation points of functions when it causes no confusion.

With this notation, τ0 corresponds to the standard sharp RD estimand, while τ1 denotes the

sharp kink RD estimand (up to scale). In Section 5, we discuss imperfect treatment compli-

ance (i.e., fuzzy RD designs) and other extensions of this basic RD setup. Identification of

τν , as well as estimation and inference using local polynomial regression methods (Fan and

Gijbels, 1996), proceed under the following standard regularity conditions.

Assumption 1 (RD). For all x ∈ [xl, xu], where xl < c < xu, and t ∈ {0, 1}: E[Yi(t)|Xi = x]

is S ≥ min{1, ν} times continuously differentiable with an Sth derivative that is Hölder
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continuous with exponent a ∈ (0, 1]; the Lebesgue density of Xi, f(x), and V[Yi(t)|Xi = x]

are positive and continuous; and E[|Yi(t)|δ|Xi = x], δ > 8, is continuous.

“Flexible” (i.e., nonparametric) local polynomial least squares estimators are indeed the

most standard approach for estimation and inference in RD designs. The idea is to first

choose a neighborhood around the cutoff c via a positive bandwidth choice h, and then

employ (local) weighted polynomial regression using only observations with score Xi laying

within the selected neighborhood. That is,

τ̂ν(h) = ν!e′νβ̂+,p(h)− ν!e′νβ̂−,p(h), ν = 0, 1, 2, . . . , p,

where eν denotes the conformable (ν+1)-th unit vector, and β̂−,p(h) and β̂+,p(h) correspond

to the weighted least squares coefficients given by

β̂−,p(h) = arg min
β∈Rp+1

n∑
i=1

1(c > Xi)
(
Yi − rp(Xi − c)′β

)2
Kh(Xi − c),

β̂+,p(h) = arg min
β∈Rp+1

n∑
i=1

1(c ≤ Xi)
(
Yi − rp(Xi − c)′β

)2
Kh(Xi − c),

with rp(x) = (1, x, · · · , xp)′ and Kh(·) = K(·/h)/h for a kernel (weighting) function K(·).

The kernel is assumed to obey the following regularity conditions.

Assumption 2 (Kernel). K(u) = 1(u < 0)k(−u) + 1(u ≥ 0)k(u), where k(·) : [0, 1] 7→ R is

bounded and continuous on its support, positive (0, 1), zero outside its support, and either is

constant or (1, K(u)r3(p+1)(u)′) is linearly independent on (−1, 1).

The kernel and bandwidth serve to localize the regression fit near the cutoff. The choice

of bandwidth, h, is the key parameter when implementing the RD estimator, and we discuss

this choice in detail below. The most popular choices of kernel are the uniform kernel and the

triangular kernel, which give equal weighting and linear down-weighting to the observations

with Xi ∈ [c − h, c + h], respectively. Finally, although our results cover any choice of
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p ≥ 0, the preferred choice of polynomial order for point estimation is p = 1 (i.e., local-linear

RD treatment effect estimator) because of the poor behavior of higher-order polynomial

approximations at or near boundary points. See Section 2.1.1 of Calonico, Cattaneo and

Titiunik (2015) and Gelman and Imbens (2018) for more discussion.

2.1 MSE-Optimal Bandwidth Choice and Point Estimation

Selecting the bandwidth h or, equivalently, the neighborhood around the cutoff c, is chal-

lenging in applications. The default approach in modern empirical work is to minimize

an approximation to the MSE of the point estimator τ̂ν(h), or some other closely related

quantity. Under standard regularity conditions, the conditional MSE of τ̂ν(h) can be ap-

proximated as h→ 0 and nh→∞ as follows:

E[(τ̂ν(h)− τν)2|X1, . . . , Xn] ≈P h
2p+2−2νB2 +

1

nh1+2ν
V , (1)

where ≈P denotes an approximation in probability (see SA for precise statement), and where

V and B denote, respectively, approximations to the variance and bias of the τ̂ν(h).

Using (1), the MSE-optimal bandwidth choice for the RD treatment effect estimator

τ̂ν(h) is

hMSE =

[
(1 + 2ν)V

2(1 + p− ν)B2

]1/(2p+3)

n−1/(2p+3), (2)

where, of course, it is assumed that B 6= 0. Further details and exact formulas are given in

the SA to conserve space.

The infeasible MSE-optimal bandwidth choice hMSE can be used to construct an MSE-

optimal point estimator of the RD treatment effect τν , given by τ̂ν(hMSE). In practice, be-

cause V and B involve unknown quantities, researchers rely on a plug-in estimator of the

MSE-optimal bandwidth hMSE, say ĥMSE, which is constructed by forming plug-in estimators

(V̂ (b), B̂(b)) of (V ,B), for some preliminary bandwidth b → 0; the formulas for V̂ (b) and
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B̂(b) are also given in the SA. This approach gives a feasible, asymptotically MSE-optimal,

RD point estimator τ̂ν(ĥMSE), and is commonly used in empirical work. All other MSE-

optimal bandwidth choices available in the literature are also proportional to n−1/(2p+3),

where the factor of proportionally depends on the specific MSE objective function being op-

timized and/or other specific methodological choices. See Imbens and Kalyanaraman (2012),

Calonico, Cattaneo and Titiunik (2014), Arai and Ichimura (2016, 2018), and Calonico, Cat-

taneo, Farrell and Titiunik (2018c) for concrete examples, and Cattaneo and Vazquez-Bare

(2016) for more general discussion.

2.2 Robust Bias Corrected Inference

The infeasible estimator τ̂ν(hMSE) and its data-driven counterpart τ̂ν(ĥMSE) are MSE-optimal

point estimators of τν in large samples. In empirical work, these point estimators are used

not only to construct the “best guess” of the unknown RD treatment effect τν , but also

to conduct statistical inference, in particular for forming confidence intervals for τν . The

standard approach employs a Wald test statistic under the null hypothesis, and inverts it to

form the confidence intervals. Specifically, for some choice of bandwidth h, the näıve t-test

statistic takes the form

T (h) =
τ̂ν(h)− τν√

V̂ (h)/(nh1+2ν)
,

where it is assumed that T (h) ∼ N (0, 1), at least approximately in large samples, and hence

the corresponding confidence interval estimator for τν is

IUS(h) =

 τ̂ν(h)− z1−α
2
·

√
V̂ (h)

nh1+2ν
, τ̂ν(h)− zα

2
·

√
V̂ (h)

nh1+2ν

 ,
where zα denotes the (100α)-percentile of the standard normal distribution. Crucially, the

confidence interval IUS(h) will only have correct asymptotic coverage, in the sense of P[τν ∈
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IUS(h)] = 1 − α + o(1), if h obeys nh2p+3 → 0, that is, the bandwidth is “small enough”.

In particular, the MSE-optimal bandwidth is “too large”: it is easy to show that P[τν ∈

IUS(hMSE)] 6→ 1 − α, rendering inference and confidence intervals based on the näıve t-test

statistic T (hMSE) invalid.

An approach to resolve the invalidity of the confidence interval IUS(hMSE) is to undersmooth

(hence the “US” notation) by selecting a bandwidth “smaller” than hMSE, or than ĥMSE in

practice, when constructing the interval estimator. This approach, however, has at least

two empirical and theoretical drawbacks: (i) interval length is enlarged (that is, power is

decreased) because fewer observations are used, and (ii) undersmoothing is suboptimal in

terms of coverage error of IUS(h). The first drawback is methodologically obvious and we

will discuss it further after the new CE-optimal bandwidth choice is presented. The second

drawback is formally established for RD designs in the following section as part of our main

results, using novel valid coverage error expansions.

Bias correction is an alternative to undersmoothing. In the context of RD designs,

Calonico, Cattaneo and Titiunik (2014) introduced a robust bias correction method to con-

duct statistical inference in general, and to form confidence intervals in particular, which in

its simplest form is given as follows:

TRBC(h) =
τ̂ν,BC(h)− τν√
V̂BC(h)/(nh1+2ν)

, τ̂ν,BC(h) = τ̂ν(h)− h1+p−νB̂(b),

and

IRBC(h) =

 τ̂ν,BC(h)− z1−α
2
·

√
V̂BC(h)

nh1+2ν
, τ̂ν,BC(h)− zα

2
·

√
V̂BC(h)

nh1+2ν

 ,
where again exact formulas for B̂(b) and V̂BC(h) are discussed in the SA. For inference, a key

feature is that V̂BC(h) is an estimator of the variance of τ̂ν,BC(h), not of the variance of τ̂ν(h).

For implementation, B̂(b) depends on a local polynomial regression of order p+ 1.
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An important empirical and theoretical property of IRBC(h) is that P[τν ∈ IRBC(hMSE)] →

1 − α, where the same bandwidth is used for both (optimal) point estimation and (subop-

timal yet valid) statistical inference. Furthermore, Calonico, Cattaneo and Titiunik (2014)

showed that the interval estimator remains valid under a wider set of bandwidth sequences,

even when minimal additional smoothness of the unknown regression functions is assumed,

and it was found to perform much better than other methods in both simulations and repli-

cation studies (Ganong and Jäger, 2018; Hyytinen, Meriläinen, Saarimaa, Toivanen and

Tukiainen, 2018). In this paper we offer principled, theoretical results that explain the good

numerical properties of IRBC(h), and we also provide new concrete ways to further improve

its implementation. In the upcoming sections we present the following main results:

1. We establish that IRBC(h) has no larger, and strictly smaller in most practically relevant

cases, asymptotic coverage error relative to IUS(h), even when the corresponding best

possible bandwidth is used to construct each confidence interval.

2. We show that employing the MSE-optimal bandwidth hMSE to construct IRBC(h) is valid

but suboptimal in terms of coverage error.

3. We derive new optimal bandwidth choices that minimize the coverage error of the RBC

confidence intervals. We discuss the consequences for interval length and how length

can be further optimized, including automatic, optimal auxiliary bandwidths.

We also discuss the implications of these results for empirical work and explore them

numerically with real and simulated data.

3 Main Results

Our main theoretical results are valid coverage error expansions for both IUS(h) and IRBC(h).

These are based on generic, valid Edgeworth expansions in the context of RD designs, which
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could be used for other purposes, such as studying the error in rejection probability of

hypothesis tests. The generic results, and other technical details, are given in the SA.

To state our first main result, recall that IUS(h) is constructed using V̂ (b), while IRBC(h)

is constructed using both B̂(b) and V̂BC(b), all of which are precisely described in the SA

(heuristically, they are consistent estimators of higher-order biases and variances of the RD

point estimator). In particular, b denotes the bandwidth used to construct the bias correction

estimate B̂(b) and the associated variance estimate V̂BC(b). An important quantity is ρ = h/b,

which we discuss in detail further below.

Theorem 1 (Coverage Error Expansions). Suppose Assumptions 1 and 2 hold, that nh1+2ν/ log(nh)2+η →
∞ for η > 0, and ρ = h/b is bounded and bounded away from zero.

(a) If S ≥ p+ 1 and nh2p+3 log(nh)1+η → 0, then

P[τν ∈ IUS(h)]− (1− α) =
1

nh
QUS,1 + nh3+2pQUS,2 + h1+pQUS,3 + εUS

P[τν ∈ IRBC(h)]− (1− α) =
1

nh
QRBC,1 + εUS,

where εUS = o(n−1h−1) +O(nh3+2p+2a + h1+p+a).

(b) If S ≥ p+ 2 and nh2p+5 log(nh)1+η → 0, then

P[τν ∈ IRBC(h)]− (1− α) =
1

nh
QRBC,1 + nh5+2pQRBC,2 + h2+pQRBC,3 + εRBC,

where εRBC = o(n−1h−1) +O(nh5+2p+2a + h2+p+a).

The n-varying, bounded quantities (QUS,`,QRBC,`), ` = 1, 2, 3, are very cumbersome and hence

further discussed in the SA.

This theorem establishes higher-order coverage error characterizations for the RD confi-

dence intervals IUS(h) and IRBC(h), under two distinct smoothness regimes, controlled by S.

(Coverage error expansions under ρ→ 0 are given in the SA because they require additional

regularity conditions.) In the first case, described in part (a), the two confidence intervals

are compared when the same level of smoothness is allowed. Specifically, we consider the

setting where smoothness is exhausted after the leading higher-order terms of the RD point
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estimator τ̂ν are characterized, which is the minimal smoothness needed to compute the

MSE-optimal bandwidth hMSE, as commonly done in practice (see (1) and (2)). Thus, in this

regime, IRBC(hMSE) can be formed, but no additional smoothness is available, which gives the

least favorable setting for robust bias-correction techniques. Part (a) shows, nonetheless,

that even in this case, IRBC(h) is never worse in terms of asymptotic coverage error than

IUS(h), an important practical and theoretical result.

From a practical point of view, researchers first select a polynomial order (usually p =

1), and then form confidence intervals using some bandwidth choice (often an empirical

implementation of hMSE). It is rarely the case that the underlying regression functions are

not smoother than what is exploited by the procedure. Part (b) discusses this case, and shows

that IRBC(h) is strictly superior to IUS(h) in terms of coverage error rates when additional

smoothness is available. To be specific, comparing parts (a) and (b), it is shown that

the coverage error of IRBC(h) vanishes faster than that of IUS(h). This results gives strong

theoretical justification for employing IRBC(h) in empirical work.

The derivations in the SA also show that both IUS(h) and IRBC(h) exhibit higher-order

boundary carpentry thanks to the specific fixed-n variance estimators used (see Calonico,

Cattaneo and Farrell, 2018b, for more discussion). This result is empirically important

because it shows that the good boundary properties possessed by local polynomial estimators

in point estimation carry over to inference under proper Studentization. Thus, our results

formalize the crucial importance of using fixed-n standard error formulas, as sometimes

implemented in software for RD designs (Calonico, Cattaneo, Farrell and Titiunik, 2017).

Finally, the expansions given in Theorem 1, as well as the underlying technical work pre-

sented in the SA, are new to the literature. They can not be deduced from results already

available (Calonico, Cattaneo and Farrell, 2018a,b) because they apply to the difference of

two local polynomial estimates, τ̂ν(h) = ν!e′νβ̂+,p(h) − ν!e′νβ̂−,p(h), and higher order terms

of these differences are not trivially expressible as differences or sums of terms for each

component, unlike the case when analyzing first order asymptotic approximations or MSE
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expansions. It is possible to upgrade the results in the SA to also show that IRBC(h) is a cov-

erage error optimal confidence interval estimator, uniformly over empirically-relevant classes

of data generating processes, employing the optimality framework presented in Calonico,

Cattaneo and Farrell (2018a). We do not provide details on this result only for brevity.

3.1 CE-Optimal Bandwidths and Methodological Implications

We now employ Theorem 1 to develop a CE-optimal bandwidth choice for RD designs. This

bandwidth choice will be made feasible in Section 4, where we address implementation issues

in detail. The following theorem is our second main result.

Theorem 2 (Coverage Error Optimality). Suppose the conditions of Theorem 1(b) hold. If

QRBC,2 6= 0 or QRBC,3 6= 0, then the robust bias corrected CE-optimal confidence interval is

IRBC(hRBC), where

hRBC = H n−1/(3+p), H = arg min
H>0

∣∣∣∣ 1

H
QRBC,1 +H5+2pQRBC,2 +H2+pQRBC,3

∣∣∣∣ .
The coverage obeys P[τν ∈ IRBC(hRBC)] = 1− α +O(n−(2+p)/(3+p)).

This theorem gives the CE-optimal bandwidth choice, hRBC, and the corresponding CE-

optimal RBC confidence interval estimator, IRBC(hRBC). The optimal rate for the bandwidth

sequence is hRBC ∝ n−1/(3+p), along with the associated optimal constant H , which cannot

be given in closed form (c.f. (2)). An analogous result is given in the SA for IUS(h), where

it is shown that the corresponding CE-optimal bandwidth choice is hUS ∝ n−1/(2+p), and

with a different constant of proportionality. Furthermore, this shows that P[τν ∈ IUS(hUS)] =

1−α+O(n−(1+p)/(2+p)), and therefore the RBC confident interval estimator IRBC(hRBC) has a

faster coverage error rate than the best possible undersmoothed confidence interval IUS(hUS).

Our results establish that hMSE 6= hRBC 6= hUS in rates (and constants, of course) for all

p ≥ 1, and hMSE � hRBC 6= hUS for p = 0. That is, a bandwidth different than the MSE-optimal

one should be used when the goal is to construct confidence intervals with small asymptotic
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coverage error whenever p ≥ 1. More generally, focusing on the bandwidth choice and its

consequences for coverage (interval length is addressed in the next section), we can offer

three key methodological conclusions for inference in RD designs:

1. MSE-Optimal Bandwidth. In this case, the researcher chooses h = hMSE ∝ n−1/(3+2p).

This choice of bandwidth is simple and very popular, but leads to first-order bias, ren-

dering IUS(h) invalid. On the other hand, TRBC(hMSE) ∼ N (0, 1) in large samples, and

hence IRBC(h) is still asymptotically valid. Theorem 1 quantifies the rate of coverage

error decay precisely, and we find:

P[τν ∈ IUS(hMSE)]− (1− α) � 1,

P[τν ∈ IRBC(hMSE)]− (1− α) � n−min{2,2+p}/(2+p).

2. CE-Optimal Bandwidth for IUS(h). While ad-hoc undersmoothing of hMSE is a pos-

sible method for fixing the first-order coverage distortion of IUS(h), a more theoretically

founded choice is to use h = hUS ∝ n−1/(2+p), which is also a valid choice for IRBC(h).

In fact, this choice yields the same coverage error rate for both intervals:

P[τν ∈ IUS(hUS)]− (1− α) � n−(1+p)/(2+p),

P[τν ∈ IRBC(hUS)]− (1− α) � n−(1+p)/(2+p).

3. CE-Optimal Bandwidth for IRBC(h). Finally, the researcher can also choose h =

hRBC ∝ n−1/(3+p). This bandwidth choice is again too “large” for IUS(h), and hence

leads to a first-order coverage distortion, but is optimal for IRBC(h):

P[τν ∈ IUS(hRBC)]− (1− α) � 1,

P[τν ∈ IRBC(hRBC)]− (1− α) � n−(2+p)/(3+p).
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The first point formalizes that an MSE-optimal bandwidth is always a valid choice for

robust bias correction inference, with the coverage error rates depending on the polynomial

order p. Crucially, for any p ≥ 1, the robust bias-corrected interval IRBC(hMSE) will never

achieve the fastest decay in coverage error, and therefore hMSE must always be undersmoothed

if the goal is to constructed confidence intervals for the RD treatment effect with fastest

vanishing coverage error rate. In Sections 4 and 5, we employ this insight to propose simple

rule-of-thumb CE-optimal bandwidth choices.

The last two points above reemphasize the virtues of robust bias corrected inference:

IUS(hUS) and IRBC(hUS) exhibit the same coverage error rates, which are suboptimal relative to

IRBC(hRBC). In other words, IRBC(hRBC) should be preferred to all the other alternatives discussed

above, when the goal is to construct CE-optimal confidence intervals in RD designs where

smoothness of the underlying regression functions is not binding. This is one of the main

theoretical and practical findings of this paper.

3.2 Interval length

An obvious concern is that the improvements in coverage offered by robust bias correction

may come at the expense of larger (average) interval length. However, we now show that

this is not the case. By symmetry, the square length of the intervals IUS(h) and IRBC(h) take

the same form:

|IUS(h)|2 = 4 · z2α
2
· V̂ (h)

nh1+2ν
and |IRBC(h)|2 = 4 · z2α

2
· V̂BC(h)

nh1+2ν
.

Thus, comparing asymptotic (square) length amounts to examining the rate of contraction,

n−1h−1−2ν , and the limiting variance constants, V̂ (h) →P V and V̂BC(h) →P VBC, which we

show in the SA depend on the “equivalent kernel” function induced by the choice of K(·)

and ρ (and p). See Fan and Gijbels (1996, Section 3.2.2) for more discussion on equivalent

kernels in local polynomial estimation.
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First, regarding the contraction rate of the confidence intervals, the formal compari-

son follows directly from the discussion above: robust bias correction can accommodate

and will optimally employ a slower vanishing bandwidth (i.e., h is “larger”) than under-

smoothing, and hence IRBC(h) will contract more quickly (i.e., nh1+2ν →∞ faster than with

undersmoothing). This result formalizes the heuristic idea that using a larger bandwidth

leads to more observations being used and hence improved power. To be precise, we have

|IRBC(hRBC)|2 � n−(2+p)/(3+p) compared to |IUS(hUS)|2 � n−(1+p)/(2+p). It is also instructive to

note that |IRBC(hMSE)|2 � n−(2p+2)/(2+p) and |IRBC(hUS)|2 � n−(1+p)/(2+p), which agrees with the

above discussion regarding the impact of using hMSE, hUS, and hRBC to construct the interval

estimators. The intervals IUS(hMSE) and IUS(hRBC) do not have correct asymptotic coverage.

Second, it is possible to optimize the asymptotic variance constant entering the length

of the RBC confidence interval, as a function of K(·) and the quantity ρ = h/b. We can

then select these two optimally to minimize the asymptotic constant portion of interval

length. Specifically, Cheng, Fan and Marron (1997) show that the asymptotic variance

of a local polynomial point estimator at a boundary point is minimized by employing the

uniform kernel K(u) = 1(|u| ≤ 1). If IRBC(h) is formed choosing K(u) to be uniform, it

follows immediately that ρ = 1 is optimal, as with this choice the induced equivalent kernel

becomes pointwise equal to the optimal equivalent kernel. For other choices of kernel K(·) we

can derived the optimal choice of ρ, depending on p, by minimizing the L2 distance between

the induced equivalent kernel and the optimal variance-minimizing equivalent kernel. See

the SA appendix for all technical details.

In particular, for ν = 0, we computed the L2-optimal ρ for two popular kernels in RD

applications: the triangular kernel K(u) = (1 − |u|)1(|u| ≤ 1), which Cheng, Fan and

Marron (1997) show is MSE-optimal (i.e., optimal from a point estimation perspective), and

the Epanechnikov kernel. Table 1 gives the results. These ρ∗ optimal choices do not depend

on the data, and thus are immediately implementable. For example, in the leading empirical

case of p = 1 and triangular weighting, ρ∗ = 0.8571 is the recommended choice minimizing
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the asymptotic variance and hence the interval length of IRBC(h). We explore the numeric

properties of these choices in Section 6.

4 Data-Driven Implementations

We discuss several implementable CE-optimal and related bandwidth selectors, building on

our theoretical and methodological results. We focus exclusively on data-driven implemen-

tations of IRBC(h), that is, in constructing a data-driven version of hRBC and other related

bandwidth selectors for RBC inference. We first present two main approaches to selecting

the CE-optimal bandwidth choice: (i) a rule-of-thumb (ROT) based on an implementation

of the MSE-optimal choice hMSE, generically denoted by ĥMSE, and (ii) a direct plug-in (DPI)

rule based on estimating the unknown quantities QRBC,`, ` = 1, 2, 3, and solving the opti-

mization problem in Theorem 2. We then discuss other choices that trade-off coverage error

and interval length, leveraging our coverage error expansions (Theorem 1).

The discussion below focuses on the main bandwidth h, which is the crucial choice in

applications. For ρ = h/b, i.e. the auxiliary bandwidth b, we consider three choices: (i)

ρ = 1, for any kernel, which corresponds to the practically relevant case h = b; (ii) ρ = ρ∗

discussed above (Table 1); and (iii) ρ = h/b estimated from the data by replacing h and b

with plug-in estimators, ĥMSE and b̂MSE, of the MSE-optimal choices for the point estimator

and the bias correction, respectively. The first two choices of ρ are fully automatic once h is

chosen; the third requires a data-driven implementation of b as well. The form of bMSE can be

found by selecting (ν, p) appropriately and referring to (2). For example, for τ0 and p = 1,

(ν, p) = (2, 2) when a quadratic approximation is used for bias correction. See the SA for

details.
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4.1 ROT Bandwidth Choice

A simple strategy to construct a feasible bandwidth selector that yields the optimal coverage

error decay rate is to rescale an existing choice so that the rate agrees with hRBC. We call

this the rule-of-thumb (ROT) approach. For ĥMSE a data-driven implementation of hMSE, we

simply set

ĥrotRBC = n−p/((2p+3)(p+3)) ĥMSE.

It is immediate that ĥrotRBC ∝ hRBC, and therefore this empirical choice has the optimal rate of

decay and yields an interval IRBC(ĥ
rot
RBC) with the fastest possible coverage error decay. As an

example, for the popular local-linear RD estimator (p = 1) and a sample of size n = 500,

the MSE-optimal bandwidth selector ĥMSE is shrank by 100(1 − n−1/20)% ≈ 27% to obtain

RBC confidence intervals with the fastest coverage error decay rate.

Feasible MSE-optimal bandwidths are widely available in software: see Calonico, Catta-

neo, Farrell and Titiunik (2017), and references therein, for second generation plug-in choices

satisfying ĥMSE/hMSE →P 1. Following this, ρ is selected according to the options above (ρ = 1,

ρ = ρ∗, or ρ = ρ̂). It is worth noting that despite the constants being suboptimal in this

approach, the “direction” of the trade off is still correct in the sense that if the bias is small

relative to higher moments, the CE- and MSE-optimal bandwidths will increase, and ĥrotRBC

reflects this.

4.2 DPI Bandwidth Choice

Our second approach to constructing fully data-driven CE-optimal bandwidth choices em-

ploys plug-in estimators of the unknown constants underlying hRBC in Theorem 2. While this

bandwidth choice does not have a closed form solution in general, it is easy to form plug-in

(consistent) estimators of the quantities QRBC,`, ` = 1, 2, 3, for any ν, p, kernel, and ρ. Given
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these estimators, the DPI bandwidth selector yielding CE-optimal RBC inference is

ĥRBC = Ĥ n−1/(3+p), Ĥ = arg min
H>0

∣∣∣∣ 1

H
Q̂RBC,1 +H5+2pQ̂RBC,2 +H2+pQ̂RBC,3

∣∣∣∣ ,
where Q̂RBC,` →P QRBC,`, ` = 1, 2, 3, are discussed in the SA. Again, ρ is chosen afterward

according to the three options above (ρ = 1, ρ = ρ∗, or ρ = ρ̂).

Estimating the quantities QRBC,`, ` = 1, 2, 3, is straightforward. These are expressed in

pre-asymptotic form, so constructing the estimators boils down to replacing marginal expec-

tations by sample averages and employing pilot bandwidth choices. Natural choices of pilot

bandwidths are the corresponding MSE-optimal bandwidth selectors, already implemented

in the literature. It is easy to show (see the SA for discussion) that, under regularity condi-

tions, the DPI bandwidth selector will be consistent in the sense that ĥRBC/hRBC →P 1. The

resulting data-driven RBC confidence intervals will be CE-optimal, given the choice of point

estimator and enough smoothness of the unknown regression functions.

4.3 Coverage Error and Interval Length Trade-Off

It is natural to have a preference for shorter intervals that still have good coverage properties.

Our main results allow us to discuss formally such a trade-off, and to propose alternative

bandwidth choices reflecting it. Larger bandwidths (i.e., smaller values of γ when h = Hn−γ)

yield on average shorter intervals: as already highlighted, one of the strengths of RBC

inference is that it allows for, and will optimally employ, a larger bandwidth relative to the

best undersmoothing procedure. Thus, we may seek to use a bandwidth larger than hRBC

that reduces interval length, while still retaining good coverage properties.

We consider the generic bandwidth choice hTO = HTOn
−γTO , for constants HTO > 0 and

γTO > 0, where “TO” stands for “trade-off”. First we set the exponent γTO. For valid inference,

Theorem 1 requires that γTO lie in (1/(5 + 2p), 1) and Theorem 2 gives hRBC � n−1/(p+3). For

any bandwidth smaller than this (h� hRBC), both coverage error and length can be reduced
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with a larger bandwidth, and hence we restrict attention to:

1

5 + 2p
< γTO ≤

1

3 + p
, (3)

Any choice in this range is valid in the sense that coverage error vanishes asymptotically and

length is reduced compared to what γRBC = 1/(p+ 3) would give.

To choose the constant HTO we characterize more precisely the trade off we are making.

It is perhaps not surprising that this will be about balancing, in a certain way, bias and

variance type terms. This is also true for CE and MSE minimization, because all three

methods deal with, at heart, similar fundamental quantities, but in every case the specific

manifestation is different. The particulars in this case are described as follows.

Recall from Section 3.2 that the length of IRBC(h) does not depend on the bias, only upon

the variance, and more precisely, scales as the standard deviation. Thus, squared length is

proportional to variance and is therefore analogous to the first term in coverage error, which

captures variance (and other centered moment) errors, but not bias. Furthermore, for the

range in (3), the third term of coverage error is of higher order relative to the other two.

Therefore, we can view a trade off of interval length against coverage error as comparing the

second term of coverage error (the squared scaled bias) against a variance-type term: the

square of interval length, which changes not only the constants involved but also properly

adjusts for any ν ≥ 0 because |IRBC(h)|2 � n−1h−1−2ν . The leading constant portions of

coverage error and length are H5+2pQ̂RBC,2 and 4z2α
2
V̂BCH

−1−2ν , respectively, where V̂BC and

Q̂RBC,2 are preliminary feasible estimators of VBC and QRBC,2. Therefore, we select the constant

HTO in hTO = HTOn
−γTO as

ĤTO = arg min
H>0

W ×H5+2pQ̂RBC,2 + (1−W )×H−1−2ν4z2α
2
V̂BC

=

(
1−W
W

1 + 2ν

5 + 2p

4z2α
2
V̂BC

Q̂RBC,2

) 1
6+2p+2ν

,
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for a researcher-chosen weight W ∈ (0, 1). In Section 6 we find that ĥTO = ĤTOn
−γTO (and

its infeasible counterpart hTO) behaves as expected, with the natural choice of W = 1/2 and

γTO = 0.1964, the midpoint of (3) for p = 1.

5 Extensions

We briefly discuss several extensions of our main results. Unlike results based on first-

order asymptotic approximations, establishing valid higher-order Edgeworth expansions in

the settings of this section would require non-trivial additional work beyond the scope of

this paper. Nevertheless, following the logic and results above, we can provide simple ROT

bandwidth choices targeting inference, based on already-available MSE-optimal bandwidth

selectors.

5.1 Other RD Designs

In the context of fuzzy (and fuzzy kink) RD designs, the estimand and estimator are ratios

of sharp RD design estimands and estimators, respectively. First-order asymptotic approx-

imations follow directly from standard linearization methods, and although the validity of

the coverage error expansion can be similarly proven to hold, this is no help in computing

the terms of the expansion. That is, even though the linearization error has no effect on

the first-order asymptotic approximation, it can have a direct effect on the Edgeworth and

coverage error expansions. Without capturing the effect of the linearization, full derivation

of inference optimal bandwidths is not possible. However, in this context we propose the

following ROT bandwidth:

h̆rotRBC = n−p/((2p+3)(p+3)) h̆MSE,

where h̆MSE denotes an implementation of the MSE-optimal bandwidth for the fuzzy (or fuzzy

kink) RD estimator. Sharp, fuzzy, and kink RD designs also arise in geographic, multi-score,
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and multi-cutoff RD settings (Papay, Willett and Murnane, 2011; Keele and Titiunik, 2015;

Cattaneo, Keele, Titiunik and Vazquez-Bare, 2016), and the results in this paper can also

be used in those cases directly.

5.2 Clustered Data

When the data exhibits clustering, first-order asymptotic results can be easily extended to

account for clustered sampling where (i) each unit i belongs to exactly one of G clusters and

(ii) G → ∞ and Gh → ∞ (see Bartalotti and Brummet (2017) and Calonico, Cattaneo,

Farrell and Titiunik (2018c)). Since MSE-optimal bandwidth choices in this context are

available and fully implemented, the corresponding ROT implementation is:

ȟrotRBC = G−p/((2p+3)(p+3)) ȟMSE,

where now G denotes the number of clusters, and ȟMSE denotes an implementation of the

MSE-optimal bandwidth accounting for clustering. Robust bias-corrected confident intervals

ar formed using this bandwidth choice, together with appropriate (cluster-robust) standard

error estimators.

5.3 Pre-intervention Covariates

Calonico, Cattaneo, Farrell and Titiunik (2018c) employs first-order asymptotics to char-

acterize formally the implications of including pre-intervention covariates in the estimation

of and inference for RD treatment effects. Again, this is not sufficient for higher order

expansions and the inclusion of covariates will impact the coverage error expansion, render-

ing a fully-optimal bandwidth impossible to derive from existing results. However, a ROT

bandwidth selector in this context is:

h̃rotRBC = n−p/((2p+3)(p+3)) h̃MSE,
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where n denotes the sample size and h̃MSE denotes an implementation of the MSE-optimal

bandwidth accounting for the inclusion of additional pre-intervention covariates. Robust

bias-corrected confident intervals are formed using this bandwidth choice, together with

appropriate covariate-adjusted standard error estimators.

6 Numerical Results

We present empirical evidence highlighting the performance of the new RD bandwidth se-

lection and inference methods developed. We consider a Monte Carlo experiment and an

empirical application, both employing the dataset of Ludwig and Miller (2007) used to study

the effect of Head Start assistance on child mortality. This canonical dataset was employed

before by Calonico, Cattaneo and Titiunik (2014), Cattaneo, Titiunik and Vazquez-Bare

(2017) and Calonico, Cattaneo, Farrell and Titiunik (2018c), where further institutional and

descriptive information is provided.

6.1 Monte Carlo Experiment

The simulations use n = 500 i.i.d. draws, i = 1, 2, ..., n, from the model

Yi = m(Xi) + εi, Xi ∼ 2B(2, 4)− 1, εi ∼ N (0, σ2
ε)

where B(α, β) denotes a beta distribution with parameters α and β, and the regression

function m(x) is obtained from the Head Start data. Specifically, we estimate the regression

function using a 5-th order polynomial with separate coefficients for Xi < c and Xi > c,

where Xi is a poverty index and c = 59.1984 is the RD cutoff point. This estimation leads
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to:

m(x) =


3.71 + 2.30x+ 3.28x2 + 1.45x3 + 0.23x4 + 0.03x5 if x < c

0.26 + 18.49x− 54.81x2 + 74.30x3 − 45.02x4 + 9.83x5 if x ≥ c

,

with σε = 0.6136.

We consider 5, 000 replications, and report empirical coverage and average interval length

for a variety of inference procedures. Specifically, Table 2 considers undersmoothing (IUS(h))

and robust bias-corrected (IRBC(h)) confidence intervals for different choices of bandwidths

h and parameter ρ. In all cases we consider a local-linear RD estimator (p = 1) with the

triangular kernel and “HC3” heteroskedasticity consistent standard errors, motivated by the

fact that the least-squares residuals are on average too small (see the SA for more).

The results in Table 2 are organized as follows. The table presents three groups by row:

(i) procedures employing MSE-optimal bandwidth choices (hMSE, ĥMSE, h̃MSE), (ii) procedures

employing CE-optimal bandwidth choices (hRBC, ĥRBC, h
rot
RBC, ĥ

rot
RBC, h̃

rot
RBC), and (iii) procedures

employing trade-off CE-IL bandwidth choices (hTO, ĥTO). Quantities without hats or tildes

correspond to infeasible bandwidth choices, quantities with hats denote feasible implementa-

tions (DPI without label, or ROT with corresponding label), and quantities with tilde denote

feasible implementations with covariate adjustment. For the latter the model includes, as a

predetermined covariate, percentage of urban population in 1960.

The table also presents three groups by columns: (i) “Bandwidth” reports infeasible or

average feasible bandwidth choices (recall ρ̂ = ĥ/b̂MSE with ĥ as appropriate); (ii) “Empirical

Coverage” reports coverage of IUS(h) and of IRBC(h) for three choices of ρ = h/b; and (iii)

“Interval Length” reports the average length of the same four distinct confidence intervals

(undersmoothing, and three implementations of RBC indexed by the choice of ρ). Further

implementation details are given in the SA.

All the finding emerging from the simulation study are in qualitative agreement with

the main theoretical results from our paper. Confidence intervals based on undersmoothing,
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IUS(h), did not exhibit good coverage properties, while those based on RBC, IRBC(h), per-

formed well. While the MSE-optimal bandwidth selectors also worked well, the CE-optimal

bandwidth selectors offered some empirical refinements in terms of coverage error. Further-

more, the bandwidth selector based on coverage error and interval length trade-off discussed

in Section 4.3 also performed well. Other empirical findings are in line with our theoretical

and methodological discussions.

6.2 Empirical Application

To complement the Monte Carlo experiment, we also employed the Head Start data to

illustrate the performance of our new bandwidth selection and inference methods using a

realistic empirical application. Specifically, we study the RD treatment effect of Head Start

assistance on child mortality following the original work of Ludwig and Miller (2007). See

also Cattaneo, Titiunik and Vazquez-Bare (2017) for a recent re-examination of the empirical

findings using modern RD methodology.

In this application, the unit of analysis is a U.S. county, and eligibility into Head Start

assistance was based on each county’s poverty index in 1960. The RD design naturally

emerges by the assignment rule to the program: Ti = 1(Xi ≥ c), where Xi denotes the 1960

poverty index of county i and c = 59.1984 was the federally-mandated cutoff point. The

outcome variable considered is mortality rates per 100, 000 for children between 5–9 years

old, with Head Start-related causes, during the period 1973–1983.

The main empirical results are presented in Table 3. We first report the sharp RD

treatment effect estimator using a local-linear estimator (p = 1) with triangular kernel and

MSE-optimal bandwidth. In line with previous findings, we obtain τ̂0(ĥMSE) = −2.409 with

ĥMSE = 6.81. Next, we compute several RBC confidence intervals with different choices of

bandwidths h and ρ, including the new inference procedures proposed in this paper. In

all cases, the empirical results are in qualitatively agreement and confirm an RD treatment

effect that is statistically different from zero.
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7 Conclusion

This paper presented two main results for RD designs, which have concrete practical impli-

cations for empirical work. First, we established valid coverage error expansions of näıve and

robust bias-corrected confidence intervals for RD treatment effects, and showed that the lat-

ter confidence intervals never have asymptotically larger coverage errors and can indeed offer

higher-order refinements whenever the underlying regression functions are smooth enough

(arguably the most relevant case in applications). Thus, this result offers concrete guid-

ance for empirical work in RD designs by ranking competing confidence interval estimators

encountered in practice.

Second, using our coverage error expansions, we also developed CE-optimal bandwidth

choices and discussed how to implement them in practice. The same way that MSE-optimal

bandwidths deliver MSE-optimal point estimators for RD treatment effects, our new CE-

optimal bandwidth choices deliver inference-optimal confidence intervals in the sense that

their coverage error is the smallest possible given the choice of point estimator used. This

second result also offers concrete empirical guidance for applied work using RD designs,

providing a companion bandwidth choice to be used when forming confidence intervals for

RD treatment effects.
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Table 1: L2-Optimal ρ

p Kernel
Triangular Epanechnikov Uniform

0 0.8000 0.8706 1.000
1 0.8571 0.9086 1.000
2 0.8889 0.9293 1.000
3 0.9091 0.9423 1.000

Note: Computed by minimizing the L2 distance between the RBC induced equivalent kernel and the optimal
variance-minimizing equivalent kernel obtained by Cheng, Fan and Marron (1997) for ν = 0.

Table 2: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

Bandwidth Empirical Coverage Interval Length
h ρ̂ US RBC: ρ̂ ρ∗ ρ = 1 US RBC: ρ̂ ρ∗ ρ = 1

hMSE 0.154 0.520 92.7 94.5 93.5 92.8 1.14 1.28 1.51 1.64

ĥMSE 0.174 0.571 88.7 93.7 93.4 93.0 1.08 1.24 1.43 1.55

h̃MSE 0.173 0.571 88.9 93.7 93.5 93.0 1.08 1.24 1.43 1.56

hRBC 0.145 0.492 93.1 94.6 93.5 92.6 1.17 1.31 1.56 1.69

ĥRBC 0.163 0.535 88.7 93.6 90.9 90.5 1.15 1.32 1.51 1.64
hrotRBC 0.113 0.381 94.0 94.7 93.0 91.9 1.35 1.46 1.79 1.94

ĥrotRBC 0.127 0.418 92.4 94.3 93.3 92.2 1.28 1.39 1.69 1.83

h̃rotRBC 0.127 0.416 92.5 94.3 93.2 92.1 1.28 1.39 1.70 1.84

hTO 0.203 0.686 88.8 94.2 93.9 93.4 0.98 1.19 1.30 1.42

ĥTO 0.172 0.566 87.3 93.6 90.7 90.7 1.11 1.31 1.46 1.59

Note: US denotes undersmoothed confidence interval, IUS(h), and RBC denotes robust bias-corrected confi-
dence interval, IRBC(h). Procedures are computed using the triangular kernel, p = 1, and HC3 variance esti-

mation. Recall that ρ̂ = ĥ/b̂MSE for corresponding bandwidth selectors ĥ (given in the table), and ρ∗ = 0.8571
(Table 1).
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Table 3: Head Start Empirical Application

Point Estimate Bandwidth RBC Confidence Intervals

ĥ ρ̂ ρ̂ ρ∗ ρ = 1

ĥMSE -2.409 6.81 0.635 [-5.46 , -0.1] [-5.92 , -0.48] [-6.41 , -1.09]

h̃MSE -2.473 6.98 0.651 [-5.21 , -0.37] [-5.81 , -0.72] [-6.54 , -1.39]

ĥRBC -3.311 4.467 0.416 [-6.14 , -0.82] [-6.51 , -1.07] [-6.23 , -0.27]

ĥrotRBC -3.273 4.581 0.427 [-6.12 , -0.78] [-6.56 , -1.14] [-6.26 , -0.39]

h̃rotRBC -3.526 4.696 0.438 [-6.13 , -1.25] [-7.06 , -1.73] [-6.93 , -1.23]

Note: Procedures are computed using the triangular kernel, p = 1, and HC3 variance estimation. Recall
that ρ̂ = ĥ/b̂MSE for bandwidth selectors ĥ (given in the table), and ρ∗ = 0.8571 (Table 1).
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