Preferences, Selection, and the Structure of Teacher Pay

Andrew C. Johnston

August 12, 2021

Abstract

Human capital shapes income, inequality, and growth. In the public sphere, human-capital formation depends largely on the selection and retention of teachers. To understand selection and retention, I use a discrete-choice experiment to estimate teacher preferences for compensation structure, working conditions, and contracts. High-performing teachers have stronger preferences for schools offering performance pay, which implies it fosters positive selection. Under a variety of objectives, schools appear to underpay in salary as well as performance pay while overpaying in retirement. The results suggest significant efficiency gains from restructuring compensation: both teacher welfare and student achievement can be significantly improved.

JEL Codes: I20, J32, J45, M50

1 Johnston: Department of Economics, University of California, Merced; email: acjohnston@ucmerced.edu. For clear insight, I am grateful to David Card, Damon Clark, Gordon Dahl, Mark Duggan, Laura Giuliano, Alex Mas, Jesse Rothstein, Kenneth Shores, and Christopher Walters, as well as seminar participants at the National Bureau of Economic Research, Princeton University, UC Berkeley, and Stanford University. Benjamin Feis provided outstanding research assistance. Financial support from the Institute for Education Science, the U.S. Department of Labor, and National Bureau of Economic Research is gratefully acknowledged. Views expressed are those of the author and should not be attributed to The University of California. © Johnston, 2021.
I. Introduction

Human capital is a pervasive factor shaping income, inequality, and growth (Neal and Johnson 1996; Barro 2001; Chetty, Friedman, and Rockoff 2014). In the formation of human capital, teachers are quite possibly the most influential public input (Darling-Hammond 2003; Rockoff 2004; Rivkin, Hanushek, and Kain 2005). High-performing teachers promote greater achievement and non-cognitive skills, which translate to higher earnings in adulthood (Chetty et al. 2011; Petek and Pope 2019).\(^2\) Merely replacing a poor teacher with a median one for a single year is estimated to be worth over half a million dollars in students’ future earnings in net present value (Chetty, Friedman, and Rockoff 2014; Opper 2019; Gilraine and Pope 2020).\(^3\) The effect teachers have on human capital varies widely and improves systematically with experience. This implies the focal importance of teacher selection and retention in building the stock of human capital.

Governments typically play a central role in the provision and financing of education. In the United States, governments spend almost $1 trillion per year on K–12 education, the principal cost of which is personnel (80 percent). Teachers are subject to a distinctive compensation structure: low salary, generous retirements, and no performance incentives. Because public schools operate as local monopolists with significant market power, it is not obvious that schools will structure compensation to maximize achievement (Hoxby 2000; Rothstein 2007; de Ree et al. 2018). Political incentives, in particular, may distort compensation structures away from a natural optimum (Hoxby 1996; Clemens and Cutler 2014; Glaeser and Ponzetto 2014; Fitzpatrick 2015; Lovenheim and Willen 2019). The question I address in this paper is whether massive investments in teacher compensation are structured well.

Teacher compensation can affect human capital formation through a few channels. If compensation is allocated to deliver the most utility for teachers (subject to a budget constraint), the value of teaching rises and the potential for retention improves. By delivering teachers a preferred package, schools can deliver students more experienced and effective faculty. Likewise,

\(^2\) For example, Chetty et al. (2014) find that being exposed to a teacher with 1σ higher value-added (VA) for a single year increases a student’s future earnings by about 1 percent each year; these students are also more likely to attend college, less likely to have children while in high school, and they save a greater share of their income. What’s more, the impact of teaching extends beyond the students in their classroom. Peer effects from teaching quality suggest the ultimate effect of a quality teacher is about a third larger than typical VA measures (Opper 2019). Gilraine and Pope (2020) find that traditional VA measures contain substantial measurement error driven by short-term improvements. VA measures that avoid mismeasurement imply that teacher quality is twice as influential as previously measured.

\(^3\) Providing talented teachers is a rare intervention that produces long-term benefits, especially for low-income children. See, for instance, Altonji and Mansfield (2011); Dahl, Kostol, and Mogstad (2014); Chetty, Friedman, and Rockoff (2014); Heckman, Humphries, and Veramendi (2018).
if high-performing teachers have distinctive preferences, simply structuring compensation to appeal to high-performers can induce positive selection. In these channels, compensation affects achievement by guiding teachers’ labor supply on the extensive margin. In some cases, pay and working conditions affects the intensive margin in a way that influences student achievement. Performance pay may elicit greater effort by teachers, and reductions in class size focus a teacher’s attention on fewer students.

I examine the ideal structure of teacher pay and working conditions in three movements. First, I estimate teacher preferences for each component of compensation and working conditions using an experiment. Schools can improve the appeal of teaching by reallocating resources into compensation vehicles where the ratio between willingness to pay and the cost of provision is high on the margin. Second, I test whether high-performing teachers have distinctive preferences that would be useful to differentially attract and retain them. Third, I use these estimates to calculate counterfactual compensation policies that achieve policy objectives subject to the current budget constraint. I compare the “optimal” bundles from each of the maximization exercises to what schools currently do to examine what goals they actually pursue. I use the model to locate opportunities for efficiency gains: how can policymakers reallocate pay to improve student achievement, and can they do so while also increasing teacher welfare?

On the empirical front, teacher preferences are difficult to study. Normally, economists disentangle preferences by collecting data on the menu of options available when agents make a selection (Train 2009; Wiswall and Zafar 2017). The records necessary to utilize this strategy (concurrent job offers) do not appear to exist, and teachers almost never entertain simultaneous offers. Second, naturally occurring records would likely produce biased results since observed characteristics are endogenous to important unobserved ones. Most critically, the natural variation in attributes in the real world is extremely limited since contracts are essentially uniform and many important features are absent or colinear.

To address these challenges, I deploy a discrete-choice experiment that permits me to estimate teacher preferences for compensation structure, contract type, and working conditions. I present

4 Contacted districts did not keep records of job offers made. Conversations with firms that provide HR software to school districts indicate that fewer than 1% of schools use the software to make offers. Teachers, moreover, rarely entertain simultaneous offers because offers explode on the same day they are extended.

5 State policy and common union influence generate similar compensation structures across districts. Within district, compensation is totally uniform. Many states provide a broadly shared pension and health insurance programs, rendering teacher choice uninformative. Importantly, real-world data are particularly unhelpful in determining preferences for merit pay or alternative retirement vehicles which almost never vary. When studying choices across states, say in a city that spans two states like St. Louis, the transition cost associated with state licensing may be such that teachers are only able to choose across state lines at an additional cost, collinear with any state-level differences.
primary- and secondary-school teachers with a series of hypothetical job offers, among which they select their preferred option. The response rate is high (97 percent). In each question, teachers make tradeoffs between features including starting salary, retirement generosity, merit rewards, class sizes, principal support, and expedited time-to-tenure. Their choices in the experiment illuminate the structure of their preferences. By estimating preferences over several facets of the work setting, I can assess the allocation of payments and calculate the “preferred” compensation structure, something not possible by estimating preferences one element at a time in different settings.

There is good reason to believe the experimental design reveals true preferences. When discrete-choice experiments are tested, analysts find that hypothetical choices produce the same preferences as choices in the real world (Camerer and Hogarth 1999; Mas and Pallais 2017; Wiswall and Zafar 2018; Maestas et al. 2018). As examples, work-setting preferences estimated from hypothetical and real choice are identical (Mas and Pallais 2017), and hypothetical career choices accurately predict the eventual careers students select (Wiswall and Zafar 2018). Several features of the experiment are conducive to truth-telling: subjects face tradeoffs, the anonymity of the design circumvents social desirability bias, and teachers have experience in the domain of choice. In this setting, moreover, teachers have a consequential reason to reveal their preferences: the survey was delivered to inform the district’s new personnel regime, and their responses affected the new policy (Carson et al. 2000).

The experimental design elicits responses that match each realism benchmark available. For a handful of attributes, I can compare the estimates from this study to theory or touchstone literatures; consistently, the estimates retrieved here closely match these benchmarks, lending support to the other, more novel, estimates. If teachers pay part of their health insurance premium, they should be indifferent between an additional dollar of salary and an additional dollar offsetting what they pay for insurance. Reassuringly, teachers value health-insurance subsidies identically to an equivalent increase in salary. Similarly, the discount rate that rationalizes teachers’ salary-retirement tradeoff is the same as that estimated in the empirical literature on discounting (Best et al. 2018; Ericson and Laibson 2018). And the cost of commuting implied by teacher choices exactly matches a developed urban literature estimating the same (Small 2012; Mas and Pallais 2017). The success on these benchmarks instills confidence that teachers responded realistically.

Policymakers can improve the appeal of teaching by shifting compensation into vehicles that teachers prefer relative to their cost. To understand how teachers value different components of their workplace, I use the choice experiment to estimate willingness-to-pay (WTP) for each of
several attributes. Teachers value a ten-student class-size reduction (in a class of 30) equal to a
$5,950 increase in salary (11.9 percent of base pay), six times less than the cost of such a
reduction. Teachers consistently prefer riskier, though portable, defined-contribution retirement
plans over a traditional pension. Teachers also value quicker tenuring: an additional year of
probationary status is equivalent to a salary reduction of $500 (1 percent). Many of these results
are novel, and I provide additional estimates on the WTP for a broad array of other school attributes
including shorter commutes, administrative support, and different evaluation schemes. The
attribute teachers most value (that is, that having the highest odds ratio) is a principal who “supports
them with disruptive students.” Having such a principal is valued equal to a 17.3-percent increase
in salary. A “supportive” principal also reduces teacher aversion to disadvantaged settings. A
supportive principal erases 90 percent of the disutility of teaching in a low-achieving school and
reduces the cost of teaching in a low-income setting by 85 percent. The results imply that student
misbehavior is taxing but that attentive principals greatly reduce those costs.

I explore whether high-performing teachers have distinctive preferences which policymakers
could use to shape selection. Forecasting which (prospective) teachers will be most effective is
challenging (Hanushek 1986, 1997; Greenwald et al. 1996; Rockoff et al. 2011; Jacob et al. 2018;
Sajjadi et al. 2019). If high-performing teachers have distinctive preferences for conditions
controlled by policy, policymakers can construct a “separating equilibrium” by structuring
compensation, contracts, and working conditions to conform to the preferences of high performers
(Ballou 1996; Hanushek 2011). Using value-added models and principal evaluations, I find that
high-performing teachers have broadly similar preferences to their colleagues, except in one
regard. Excellent teachers systematically prefer jobs that include the opportunity to earn
performance pay. High-performing teachers (top decile) are 22 percent more likely than low-
performing ones (bottom decile) to select an offer providing $3,000 in merit pay, which induces
favorable selection in retention. It is less clear whether merit pay would affect sorting into the
profession since prospective teachers may not know their teaching ability prior to entering.

I then use the model of teacher preferences to examine how schools would structure pay to
achieve various objectives. Those objectives include maximizing (i) teacher welfare, (ii) teacher

6 Here, base starting pay is $50,000 for a new teacher without a master’s degree.
7 Said another way, student poverty and achievement matter much less to teachers in the presence of a supportive principle.
8 Over time, the effect may be especially pronounced since the preferred compensation differentially retains high-
performing teachers who also prefer work settings inhabited by other high-caliber colleagues (Feng and Sass 2017).
Raising everyone’s compensation may improve the average quality of new recruits, but it reduces the scope for new hiring
since ineffective teachers are also more likely to be retained (Ballou 1996).
retention (i.e., how long teachers remain in the district), and (iii) student achievement. To this end, I estimate teacher utility with diminishing marginal returns, map teacher utility to attrition decisions (Hendricks 2014), and calibrate a model of schools’ achievement production function (Krueger 1999; Papay and Kraft 2015; Imberman and Lovenheim 2015).

Whether maximizing teacher utility, teacher retention, or student achievement, I find that teachers are underpaid in salary as well as performance pay and are overpaid in retirement benefits. Restructuring what teachers are paid—subject to the current budget constraint—to maximize their utility generates a 21.6 percent increase in teacher welfare, the equivalent of a permanent $17,000 raise (without spending any additional money).\(^9\)

Structuring pay to maximize teacher retention increases starting pay and includes a modest growth rate to promote retention among already-experienced teachers. The resulting compensation structure raises the average teacher tenure by 22 percent and increases the odds of a student having a veteran teacher by 33 percent. When maximizing tenure, achievement increases by 0.07σ per year, generated by a more experienced workforce and the introduction of a modest performance-pay program (which conduces cost-effective retention since teachers value it at more than its cost).

Restructuring pay to maximize student achievement also increases salaries and performance pay. This structure differentially retains high performers such that students are 24 percent more likely to have a teacher from the top of the original performance distribution. The achievement-optimal structure improves achievement by 0.19σ per year, though the full effect takes form over time. The achievement gains are driven by better overall retention, fostering a more experienced faculty (5%), added effort by teachers (35%), and positively selected retention (60%). This pay structure offers a Pareto improvement: in addition to substantially increasing achievement, it improves teacher welfare by seven percent over the status quo. Salary increases come at the expense of lower replacement rates in retirement and shifts toward defined-contributions plans. These retirement plans are preferred by teachers and less costly to schools than traditional pensions.

The preferences of marginal teachers helps evaluate the generalizability of the estimates and the stability of the counterfactuals. Marginal teachers are not only the germane margin of labor supply, but also have higher academic ability and value-added. Thus, their retention decision affects the quality distribution of the teacher workforce (Weaver 1979; Schlechty and Vance 1981, 1982; Stinebrickner 2001; Wiswall 2013; Wheelan 2019). To explore the preferences of marginal teachers, (1) I test whether teachers who eventually leave the district have the same preferences as

\(^9\) Here, tenure refers to how long a person remains in teaching, equivalent to the average experience level.
those who remain; and (2) I survey college students in the vicinity of the district and test whether preferences differ between students who plan to become teachers and those on the margin. In each case, preferences among marginal and inframarginal teachers are indistinguishable.

This fact suggests the counterfactuals are robust to changing selection on entry. The consistency of preferences along the willingness-to-enter-teaching margin among college students implies that the preferences of entrants in counterfactual scenarios will be similar to those of status quo entrants, even if teaching is made significantly more attractive in the counterfactual. Therefore, the counterfactual results are likely to hold even if a selection into the profession changes as a result of the policy. Moreover, any change in pay structure is naturally self-reinforcing since, if entrants do differ, they will be more likely than incumbents to prefer the new regime to the old. This also implies the counterfactual calculations are stable. Because marginal teachers are stronger instructors, on average, than inframarginal ones, the counterfactuals presented will tend to produce conservative estimates of outcome improvements since they assume the quality distribution is held constant. In reality, the output of marginal teachers tends to be higher and what improves selection in retention may also improve selection on entry.

It is useful to consider how the partial-equilibrium effects of the simulations (where a single district reforms its compensation) would translate to general equilibrium (where all districts adopt the reform). The key is to understand the degree to which local salary-induced retentions prevent (i) transfers to other districts or (ii) departures from the profession. The former retentions come at the expense of other districts. The latter do not. If local compensation increases only prevent teachers from transferring, the selection and experience effects present in partial equilibrium will not materialize in general equilibrium. I estimate the effect of compensation on district transfers and professional departure in Texas using a triple-difference design following Hendricks (2014). District compensation has a significant effect retaining both teachers who would have transferred to other districts and teachers who would have left the profession. One-third of those retained by local-salary increases were dissuaded from district transfers and two-thirds were dissuaded from leaving the profession. This implies the general-equilibrium effects on achievement would be a quarter smaller than the partial-equilibrium effect.

10 The direct effect of class size and the effect of incentives on effort remain in general equilibrium.
11 It appears that the local market power of school districts (who set compensation at dozens or hundreds of nearby schools) make the primary margin of choice whether teachers continue teaching rather than which district to teach in.
This study continues several robust literatures exploring teacher compensation, teacher quality, and selection.12 Boyd et al. (2013) use a model to estimate teacher preferences for school characteristics from equilibrium matches. Rothstein (2015) calibrates a model of the teacher labor market and shows that performance incentives or greater dismissals expose teachers to risk such that the practical costs of those policies exceed the likely benefits. Hendricks (2014) exploits natural variation in compensation to estimate the retentive effects of compensation. Fitzpatrick (2015) and Biasi (2020) exploit reforms to measure how teachers value the marginal dollar of their pensions. Biasi (2021) shows that a state reform to individuate teacher pay leads to improved selection and effort among teachers. Finally, Brown and Andrahi (2021) find that performance pay induces positive selection into schools in an experimental design in Pakistan.

In the study of preferences, previous studies have largely relied on either exploratory simulations, or used equilibrium data to estimate preferences. The first is a kind of principled conjecture. The latter suffers from a host of confounding factors. In this study, preferences are estimated using a field experiment and those preferences animate a model of teacher behavior grounded in real data. Moreover, prior studies are not able to estimate willingness-to-pay for most important components of teacher compensation and working conditions since they do not vary independently in the real world. Finally, where natural variation allows the analyst to estimate marginal preferences relevant to a reform, they do not elucidate the whole preference structure, which is needed for counterfactual analysis.

The key contribution of this study is to circumvent these issues by creating a transparent choice environment to measure teacher preferences over a broad set of important elements of the work setting, including dimensions for which there would be insufficient variation in naturally occurring records. By measuring preferences for a comprehensive set of attributes in a broad policy space, I can calculate “preferred” structures and evaluate their effect on teacher welfare, teacher retention, and student achievement. This is the first study to use choice data to calculate policy experiments for compensation structure and working conditions, and it does so in a profession of pivotal importance. Finally, this paper uses preferences to demonstrate that compensation structure may be an effective tool for policymakers, not by eliciting effort, but by influencing selection.

12 The papers in these traditions are extensive. To name only several: Antos and Rosen 1975; Boyd et al. 2013; Biasi 2019; Hanushek 1986; Ballou and Podgursky 1995, 1997; Figlio 1997; Loeb and Page 2000; Hendricks 2014; Rockoff 2004; Hanushek and Rivkin 2006; Jackson 2009; Chetty, Friedman, and Rockoff 2014; Staiger and Rockoff 2010; Winters and Cowen 2013; Rothstein 2015; Baron 2020; Brown and Andrahi 2020.
II. Experimental Design and Econometric Framework

The Empirical Challenge

When economists set out to estimate preferences, they collect data on the choices people make and the options available to them at the time of choosing. Unfortunately, the records needed to construct menus from which teachers select offers are unavailable. Districts have no reason to keep records of offers made, and—because of the structure of the market—teachers tend not to receive competing offers. If these records were collected, omitted variables would make it impossible to isolate the causal effect of each attribute. As an example, salary would appear to be more preferred than it really is if schools that pay more also had nicer amenities. Alternatively, salary would appear less preferred than it really is if schools pay more to compensate for unobservably difficult work settings (Antos and Rosen 1975). In either case, the resulting estimates would not be useful for predicting the effect of policy experiments.

Even if these challenges were somehow surmountable, the results would not be particularly informative. There is essentially no independent variation in most of the school attributes that form a work setting for teachers. It is common for competing schools to have identical compensation structures, tenure timelines, and rules governing working conditions like class size. Even across districts, variation is extremely limited by market concentration, statewide policy, and the shared effect of union bargaining. Districts within a state often share a pension program, health-insurance plan, class-size regulations, and salary schedules. Where variation sometimes exists at the borders between districts, the wealthier district usually offers a work setting that exceeds the neighboring district in every dimension, providing no information on preferences other than what was already known: that more is usually preferred.

How, then, to study teacher preferences? I use a discrete-choice experiment in the field. I generate hypothetical job offers that randomly vary compensation structure and working conditions and measure teacher choice. The experiment neatly addresses the empirical challenges.

13 The job market is highly decentralized, so schools make offers at widely varying times; since offers explode within 24 hours, teachers rarely entertain two or more concurrent offers. If these records could be assembled, the resulting estimation would reflect the preferences of a relatively distinct subsample of highly sought-after teachers. In the dozens of districts interviewed, none kept records of offers made, precluding the assembly of what offers from which a teacher selected. One alternative is to work through software companies providing application and hiring software to multiple school districts, called consortiums. These software systems include the functionality to extend and accept offers through their interface, but less than one percent of offers were delivered through the software, and many appear to have been in error. Essentially no one accepted their offer through the interface.

14 This empirical problem is inherent to the setting: wealthy areas often create their own district so as not to subsidize poorer areas. For instance, the wealthy parts of Los Angeles—Beverly Hills, Manhattan Beach, Santa Monica—each have their own district visibly gerrymandered out of the largely poor Los Angeles Unified School District.
endemic to the question. First, the setting allows us to directly observe menus so that we can see
the options from which teachers select. Second, the experiment addresses omitted variables using
a controlled experimental setting in which there are no factors unobserved. And third, the
environment allows me to introduce independent variation in important policy variables that don’t
exist or vary in the natural world. These are precisely the issues that make the study of teacher
preferences challenging, and in some cases impossible, with naturally occurring records.

Evaluating the Validity of Discrete-Choice Experiments

The discrete-choice experiment, sometimes called a conjoint, is a tool initially developed to
measure consumer preferences and forecast demand for components of a prospective product or
service. The design started in marketing and is valued because these experiments faithfully predict
real-world purchasing behavior and broader market shares (Beggs, Cardell, and Hausman 1981;
Green and Srinivasan 1990; Hainmueller, Hopkins, and Yamamoto 2013). Since then, a rich
literature has been developed in public, environmental, and experimental economics to assess
under what circumstances subjects reveal their preferences truthfully. Based on both theory
and evidence, there is good reason to believe responses reflect truth-telling in my setting.

A variety of features of my experiment conduce truthful responses in hypothetical choice.
(1) Preference estimates from hypothetical choices where tradeoffs are emphasized align with
preference estimates from incentive-compatible mechanisms. (2) Recent studies in labor find
the career preferences elicited in incentivized settings match those elicited in hypothetical
ones. (3) Hypothetical choices where people have experience with the context produce reliable
responses. (4) The actual preferences elicited in my experiment closely match the theoretical
and empirical benchmarks available. (5) Social-desirability bias is credibly avoided. And, (6)
in this setting, there is consequence to teachers’ choices because the district using the results
of the survey to reform its compensation. Therefore, each question is a kind of referendum,
the response to which is incentive compatible under a few weak conditions. I expand on the
main points.

First, whereas questions asking for open-ended willingness-to-pay introduces
hypothetical bias, choices that make tradeoffs salient appear to produce the same results as
truth-telling mechanisms. For instance, hypothetical auctions produce higher valuations than
truth-telling Vickery auctions, but a hypothetical auction that merely emphasizes tradeoffs
(asking subjects to visualize paying one’s stated valuation) produces the same valuation as the
Vickery auction (List 2001). In the same arc, hypothetical choices that emphasize tradeoffs produce indistinguishable estimates from incentive-compatible referenda for public goods, eliminating hypothetical bias (Cummings and Taylor 1999). In discrete choice experiments, too—where tradeoffs are explicitly presented—subjects do not appear to misrepresent their preferences (Vossler, Doyon, and Rondeau 2012). In my discrete choice experiment—where each choice presents tradeoffs—it’s therefore likely that teachers provide their preferences truthfully.

Second, recent experiments fielded in labor and public find that the same preferences are found when choice is incentivized or purely hypothetical. Mas and Pallais (2017) present a menu of job alternatives in a real labor market and find that the revealed preferences there are exactly those implied by answers to hypothetical questions. Wiswall and Zafar (2018) find that hypothetical career choices in a lab successfully predict student’s eventual career selection two years later. Maestas et al. (2018) find that preferences estimated from hypothetical job choices match the endogenous sorting of workers to jobs. The strongest test of the external validity of conjoint experiments is found in Hainmueller, Hangartner, and Yamamoto (2015). In Switzerland, local citizens vote on whether to naturalize individual migrants using migrant-specific referenda. For each immigrant, citizens cast a secret vote whether to grant permanent status, and citizens are provided detailed demographic information on each candidate migrant: age, sex, origin, language, and integration status. Hainmueller and coauthors compare the results of these real-world referenda to those implied by hypothetical choice. They conclude, “the effects of the applicant attributes estimated from the survey experiments perform remarkably well in recovering the effects of the same attributes in the behavioral benchmark [(the referenda)]” (emphasis added). These recent papers provide reason for confidence that discrete choice experiments elicit true preferences, even without incentives.

Third, incentive compatibility seems to matter only when discovering one’s preferences requires significant effort, or if subjects have a distinct reason to dissemble; estimates from hypothetical choices align with those from incentivized elicitations in settings where respondents already know their preferences (Camerer and Hogarth 1999; Mas and Pallais 2017; Maestas et al. 2018). Because compensation and working conditions affect a teacher’s daily life, they have likely

15 Camerer and Hogarth (1999) remark “In many tasks incentives do not matter, presumably because there is sufficient intrinsic motivation…or additional effort does not matter.”
considered their preferences, suggesting the need for no new effort to discover them. Several papers document that experimental valuations approach a neo-classical ideal as subjects gain experience in the setting (List 2003, 2004a, 2004b).

Fourth, I evaluate whether the estimated preferences match various benchmarks. In each benchmark available, the survey performs remarkably well as summarized in the last section and expanded upon in section III.

Fifth, the method avoids the influence of social-desirability bias. There is a large literature documenting that respondents (significantly) alter their answers to present socially desirable responses or please an interviewer (Atkin and Chaffee 1972; Campbell 1981; Cotter, Cohen, and Coulter 1982; Finkel, Guterbock, and Borg 1991; Fisher 1993; Krosnick 1999). Surveys were an interviewer is not present conduce truth-telling (Legget et al. 2003; List, Berrens, Bohara, and Kerkvliet 2004; Alpizar et al. 2008). The online survey avoids these issues by providing the subject essentially anonymous privacy. Moreover, the survey design allows the subject to be honest by shrouding sensitive preferences. Subjects are presented a “long list” of attributes, and so they have multiple plausible justifications for any choice in the conjoint setting (Karlan and Zinman 2012; Hainmueller, Hopkins, and Yamamoto 2014). If a teacher selects an offer with fewer minority students, for instance, she can point to any of the other attributes of the option she chose as her rationale. Respondents enjoy privacy, even from the researcher. The analyst cannot infer the preferences of any individual because each respondent makes fewer choices than there are factors (Lowes et al. 2017). Teacher responses are kept confidential and have been reliably private in previous surveys implemented by the consulting group with whom I partnered; thus, teachers have no reason to believe their employer will ever be able to review their individual responses.

Last, there is an actual consequence of teachers’ response to the survey, which provides incentives for teachers to respond truthfully. Because each question provided to teachers is essentially a referendum, the dominant strategy is to report their preferences in earnest (Carson, Groves, and Machina 2000; see also Vossler, Doyon, and Rondeau 2012). Carson and coauthors demonstrate that, for any binary choice where the outcome function is weakly responsive in each agent’s message, the dominant strategy is for every agent to report truthfully, selecting the hypothetical offer if and only if they prefer that alternative. Several authors show empirically that responses are equivalent, even as they vary the degree of

Implementation

This paper estimates teacher utility over prospective compensation structures, contract terms, and working conditions. I construct a survey that invites teachers to make a series of choices between hypothetical job offers. To increase power, I use the statistical package, JMP, which varies the attributes using a fractional conjoint design. Each choice set requires the teacher to make tradeoffs, and the package maximizes efficiency of the parameters of the utility model for a given number of choice sets. The choice experiment allows the analyst to evaluate several hypotheses in a single study and, importantly, compare the influence of various factors within a shared setting, making the estimates directly comparable and useful for understanding tradeoffs in counterfactuals.

I consider fourteen attributes recommended by the literature. These include (1) starting salary, (2) salary growth rate, (3) health insurance plan (in terms of the deductible and monthly premium), (4) retirement benefits (in terms of the expected replacement rate and the mode, either a defined benefits (DB) or defined contribution (DC) plan), (5) performance-pay program, (6) class size, (7) the duration of the probationary contract (essentially “time-to-tenure”), (8) the frequency of contract review and renewal, (9) how many hours of teaching assistance a school provides the teacher, (10) the percent of students who are low income, (11) the percent of students who are minorities, (12) the average achievement percentile of students, (13) commuting distance in time, and (14) whether the principal is “supportive” or “hands-off” with disruptive students. In this paper, I focus on the estimates for compensation and costly working conditions to examine the effect of compensation structure. I report on results for a few other relevant attributes, and those that allow us to assess the realism of responses. Attributes take on several values, shown in online Appendix table 1.

16 I assume, for instance, that teachers prefer more of each type of compensation (higher starting salary, greater salary growth, a more generous retirement, etc.) while assuming that teachers prefer less of other things (e.g., fewer students to a class, shorter probationary period, smaller student-poverty shares, etc.). The software generates choice sets that present tradeoffs between attributes that are assumed to be desirable. The compensation questions present options that are essentially equally costly.

17 Some of these features change in more than one dimension. For instance, the retirement description varies the replacement rate the plan provides in expectation and whether retirement is based on a defined-contribution or a traditional, defined-benefit plan (essentially the difference between a 401(k) and a pension). The health insurance description varied how much the district paid, the deductible, and the copay for an office visit. The performance-pay attribute varied how much a teacher could receive for being in the top 25 percent of teachers, either based on student growth and principal evaluations or student growth alone.
When constructing the survey, the analyst faces a tradeoff between the realism of the options (made richer in the number and detail of attributes) and the ability of respondents to compute their preferences in a short time. If the attributes are too numerous (generally considered more than six in a single choice (Green and Srinivasan 1990)), respondents tend to resort to a simplifying rule in which they consider a subset of attributes they find most important. To estimate preferences over many factors, I split the attributes into three sets of questions, called “decks.”

The first deck asks teachers to choose between different compensation structures, varying starting salary, salary growth rate, health insurance subsidies, retirement plans, and merit compensation. I include the starting-salary attribute in each of the other decks to “bridge” the decks, allowing for preference comparisons between attributes in different decks. The second deck varies working conditions, including class size, how long new teachers are on probationary contracts, how often term contracts are reviewed and renewed, distance to work from home in travel time, and how many hours of instructional support are provided the teacher each week. The third asks teachers to choose between job offers that vary starting salary (again, to assimilate estimates across decks), student poverty share, student minority share, average achievement percentile, and whether a principal was “supportive” or “hands-off” with disruptive students, as well as a placebo attribute. The statistical software generated 30 questions for each of the three decks and respondents were presented, at random, four questions from the compensation deck, four questions from the working-conditions deck, and three questions from the student and principal characteristic deck, since the final deck had fewer parameters to estimate. Examples of these survey questions are presented in online Appendix figures 1–3.

One important criticism of conjoint experiments is that by asking subjects to make tradeoffs between options, the researcher implicitly designates as valuable attributes subjects might not care about in a normal life—a type of Hawthorne effect that results in upward-biased estimates of unimportant items. To examine this concern, I include in the choice sets a placebo feature that should have no plausible impact on teacher utility—whether the school bus at the featured school is blue (McFadden 1981)—to evaluate whether the experimental setting stimulates teachers to exhibit preferences for things that have no impact whatever on their welfare. Reliably, I find that teachers express no preference over this irrelevant detail, aiding a preferential interpretation. Uninstructed, subjects may fill in the state space, inferring other characteristics that influence their choice other than those features explicitly described. I frame each question by asking teachers to imagine that two hypothetical job offers are identical in every other way, indicating that the
presented school qualities do not relate to unobserved aspects, following Wiswall and Zafar (2017): “If two schools that were identical in every other way made the following offers, which would you prefer?”

Inattention is not a major issue. First, inattention that is not correlated with the attributes themselves generates classical measurement error in utility (Wooldridge 2010). Second, the survey is administered digitally, and the option to advance to the next question does not appear for the first few seconds each question is available, nudging teachers to read the prompt as they wait for an unstated amount of time. Third, the online survey environment records how long each teacher takes to respond to each question; teachers appear to take enough time to read and understand the options, on average 35 seconds per question. I estimate the models separately among respondents who took longer-than-average and shorter-than-average times to respond, and the estimates are identical in the two subsamples, suggesting that more attention is not associated with different estimates. This alleviates the concern that variation in attention drives the result.

I deployed the experiment in a large, urban school district in Texas, at end of the school year in May 2016. I invited each of the district’s 4,358 teachers to participate in the experiment, 97.8 percent of whom completed the survey. The high response rate was encouraged by district support, reminder emails, and a lottery for gift cards.

Conceptual and Econometric Framework

Teachers are presented a series of eleven questions in which they choose between two competing job offers. I use their choices to estimate canonical utility models (Louviere 2000; Train 2009; Zafar and Wiswall 2017). Each selection requires teachers to make tradeoffs between features that are assumed to generate positive utility. One option may provide a higher salary but comes at the cost of a larger class; a more generous retirement plan accompanies a smaller potential for performance pay. Under weak conditions, the hypothetical job selection data identify job preferences over several factors while standard realized choice data do not. Teacher \(i\) chooses offer \(a\) if \(U_i(c_a, \bar{w}_a) > U_i(c_b, \bar{w}_b)\), where \(c_x\) represents a vector describing the compensation structure of option \(x \in [a, b]\), and \(\bar{w}_x\) is a vector describing the working conditions, including contract features like the time-to-tenure. For simplicity, I assume utility is additively separable.

18 I confirm this fact in Monte Carlo simulations in both logistic and OLS (not presented).

19 To identify people who take longer, I regress response time on question and teacher indicators. The composite of the residual plus the teacher fixed effect reflects the average residualized time that the teacher took to respond to questions. The method identifies people who systematically take longer and shorter durations when rendering a decision to a given question. The only systematic association between taking longer and preferences appears to be that those taking longer express stronger preferences for defined contributions plans over defined benefits (\(p < 0.001\)).
Offers are indexed by j, and there is a finite set of them $j = 1, \ldots, J$. Each offer is characterized by a vector of K attributes: $X_j = [X_{j1}, \ldots, X_{jk}]$. These offer attributes include compensation structure and non-pecuniary attributes. To explore the influence of each factor, I use conditional logistic models as well as linear-probability models to estimate utility, regressing respondent choices on a vector of characteristics while conditioning on choice-set fixed effects to account for the options available to the teacher in each selection:

$$u_{i}(X) = X'_{j} \beta + \alpha_{s} + \varepsilon_{i}$$

Here, teacher i selects option j from choice set S. Parts-worth utilities are denoted β and characteristics of alternative j are given by X_j. To aid interpretation in the main table, I convert parts-worth estimates into willingness-to-pay (WTP) by dividing each coefficient by the salary coefficient and multiplying by $1,000$. In the main analysis, the linear-probability model is marginally better in explaining choice variation and in accurately predicting the choices of subjects. The standard errors are clustered by teacher to account for persistence in preferences across questions by a single respondent. Summary statistics for the attributes are presented in table 1, and a demographic description of teachers is presented in online Appendix table 2.

The Setting

To set the stage for the analysis, I briefly describe the district. Aldine Independent School District instructs 70,000 students each year in Houston, Texas, with an annual budget of $700 million dollars (USDOE, 2016; NCES, 2019). Over three-quarters are eligible for free school meals (77 percent), which places them at the 92nd percentile of student poverty among districts in Texas (calculation from data provided by TEA 2018, ESIS 2019). At the time the survey was delivered, the district had 4,358 full-time teachers who were invited to take a survey by a consulting firm hired by the district to deliver recommendations which, in 2016, included my experiment. The average teacher in the district has nine years of experience, and 30 percent of them have advanced degrees. Just over two-thirds are female (68 percent); the plurality is black (37 percent), and the remaining teachers are white (28 percent) and Hispanic (21 percent) (online Appendix table 2).

III. Teacher Preferences for Compensation and Other Factors

The first movement of the paper measures teacher preferences for compensation and working conditions. By estimating willingness-to-pay, we can later assess whether teacher welfare can be improved by reallocating compensation.
The main preference estimates are presented in figures 1–3 and table 2. The figures visualize the results nonparametrically by showing estimates of model (1) with bins of each attribute, making it easy to gauge the response function and simple to compare the influence of different offer characteristics. In table 2, I use the continuous variables to present part-worth utility \(\beta_i \)'s and translate them into an interpretable average willingness-to-pay (WTP) for each trait; the left three columns represent estimates from linear probability models, and the right three represent estimates from conditional logistic models estimated with maximum likelihood. All estimates are standardized across the three decks using subjects’ responses to the salary feature.\(^{20}\) Columns (3) and (6) represent a money metric, calculating how much teachers value a unit of that feature in terms of a permanent salary increase. As far as I am aware, these are the first direct estimates of teacher WTP for several attributes including elements of compensation structure, class size, contract attributes (time-to-tenure, review frequency), commuting time, and principal support.

Teachers value $1,000 of district subsidies for insurance equal to $970 in salary increases, suggesting the marginal utility is close to the marginal cost. (These two forms of compensation receive the same tax treatment: employer-paid premiums are exempt from federal income tax as are employee contributions (Brookings 2016)). An additional one-percent increase in salary growth is valued equivalent to a permanent $2,270 increase in salary. This suggests that the average teacher expects to remain in teaching for at least six years, since only then does the total present value of an additional 1 percent growth exceed the total present value of $1,000 higher in starting salary.\(^{21}\)

Moving to a defined-contribution (DC) retirement plan from a traditional pension increases teacher utility equal to a salary increase of $907, presumably because DC plans are portable and insulated from perceived political risk. Prior work finds that public workers are concerned about the future of their pensions because of underfunding (Ehrenberg 1980; Smith 1981; Inman 1982). Teachers value an additional ten-point replacement rate in pension equivalent to a $1,730 salary increase, somewhat less than its cost of $2,870 per year, consistent with Fitzpatrick (2015). I use the tradeoff teachers are willing to make between higher salary today and higher retirement benefits in the future to calculate their intertemporal substitution parameter, \(\delta \), the discount factor. Teachers value a 1 percent increase in their retirement replacement the equivalent of a $173 starting-salary increase, which would increase their yearly retirement benefit by $840 under the current salary

\(^{20}\) Specifically, each coefficient in Deck 2, for instance, is multiplied by \(\frac{\beta_{\text{Deck1}}}{\beta_{\text{Deck2}}} \), relating estimates across decks to be in the same units. Each coefficient in Deck 3 is multiplied by \(\frac{\beta_{\text{Deck1}}}{\beta_{\text{Deck3}}} \).

\(^{21}\) Interestingly, teachers in the district have on average just over six years of experience, again suggesting the realism of teacher responses.
schedule after 30 years when teachers become eligible for retirement. Reassuringly, the implied discount factor is 0.949 (solving for delta, \(840 \times \delta^{30} = 173\)), a value that aligns closely with the empirical literature estimating discount factors (Best et al. 2018; Ericson and Laibson 2018). This reinforces the claim that teachers respond realistically to the experiment.

Teachers value performance pay but are averse to being evaluated only on the basis of value-added measures. An additional $1,000 in performance pay to the top quarter of teachers costs $250 per teacher ($1,000 \times 1/4$). On average, teachers value a thousand dollars in merit awards available at $346, a third more than its cost. Teachers in these schools already know their VA from internal assessments, so the preference for performance pay in excess of its expected value may reflect its perceived nonpecuniary effects. Having rewards based solely on value-added measures is the equivalent of reducing a salary by $910. It is possible that teachers prefer Danielson scores because they can be influenced less costlessly (Phipps 2018). While a teacher can prepare for a small number of scheduled observations, success in value-added models (VAM) requires continual effort. Alternatively, teachers may prefer an objective measure to an observation score that could be permeated by bias of evaluators. In the end-of-survey questions I ask a few more questions and learn that teachers also prefer a tandem evaluation over being evaluated by observation scores alone. What this implies is that teachers prefer having multiple, independent measures enter their evaluation. I also test whether teachers’ aversion to rewards based only on VAM differs by whether the teacher has a relatively low VAM compared to their Danielson score. Preferences do not differ by relative strength on VAM or Danielson, suggesting that teacher preferences for evaluation form are not strategic.

The presented job offers vary how many years teachers are evaluated before they are granted a permanent contract similar to tenure. Reducing the probationary period by one year (when it normally takes three years to receive permanent status) is valued equivalent to a $470 salary increase. The district also has regular review periods in which a teacher’s performance is reviewed once she has permanent status. More frequent reviews impose no disutility, suggesting they are not searching or demanding. An additional ten-minute commute is equivalent to a salary reduction of $530, suggesting that teachers are willing to be paid $9 per hour to commute to work, half a teacher’s hourly wage ($19)—exactly consistent with the literature on the cost of commuting (Small 2012; Mas and Pallais 2017).

22 The WTP for retirement income by new teachers is slightly lower, but implies a similar \(\delta\) of 0.939.
Reducing class size by one student increases teacher utility the equivalent of a $595 salary increase (1.2 percent of starting salary). Translating estimates of the effects of class size and compensation on teacher attrition, we can infer WTP from previous studies for comparison, though these estimates do not rely on experimental designs. Estimates from Mont and Rees (1996) suggest that a teacher would give up 3 percent of her salary to reduce class size by one student; Feng (2005) finds no relationship between class size and teacher turnover, suggesting weaker preferences. Teachers value an additional hour of teaching assistance each week at $260, less than the cost of hiring someone to provide assistance at minimum wage. This preference is possibly related to the costly nature of transferring tasks (Goldin 2014). The WTP for the first few hours of help is high, implying a low level of support would be cost effective. The third deck varies student attributes and school-leadership characteristics. Teachers prefer schools with higher-achieving students and fewer children in poverty, but they have no preference over the racial composition of their students, consistent with Antos and Rosen (1975).

The most predictive attribute in any deck is whether the principal is “supportive” of or “hands-off” with disruptive students. Having a supportive principal provides utility equivalent to a permanent $8,700 increase in salary. The importance of this factor is so large that a supportive principal in the lowest-utility setting presented is preferred to a hands-off principal in the highest-utility one. To understand how teachers interpreted having a “supportive” or “hands-off” principal regarding disruptive students, I contacted a random sample of respondents, who indicated that a supportive principal would meet with disruptive students, support the teacher in enforcing discipline, and side with the teacher in disputes over discipline with parents.

An important question is whether supportive principals reduce teacher aversion to working in low-income or low-achieving schools. I estimate models where achievement and poverty share are interacted with the supportive-principal indicator. Supportive principals erase 90 percent of the costs of working in a low-achieving school and 85 percent of the disutility associated with teaching in a high-poverty setting (table 3). This suggests both that disruptive students are perceived as costly to teachers and that principal support is effective in mitigating those costs.

IV. Using Compensation to Affect Selection

In this second movement of the paper, I examine the scope for compensation and working conditions to affect selection. If excellent teachers have distinctive preferences, a structure that differentially appeals to them can improve the distribution of teacher quality.
Whether or not compensation and working conditions can generate a “separating equilibrium” in which high-type teachers differentially select into (or differentially remain in) a school depends on whether excellent teachers have distinctive preferences. Perhaps high-quality teachers have weaker aversion to long probationary periods (worrying less about dismissal), stronger preferences for small classes (placing a higher value on individual attention), greater value on high starting salaries (having stronger outside options), or distinctive appreciation for generous pensions (being more committed to a long career in teaching) (Morrissey 2017; Weller 2017). It’s also important to know whether highly rated teachers have different preferences for working conditions that are not affected by policy—such as student demographics—to understand whether larger compensating differentials are needed to draw high-performing teachers to low-income schools.

To measure teacher performance, I estimate value-added models (VAM) from student data and incorporate Danielson observation scores. The student data contain test scores for each student in each year they are tested with links to the student’s teacher in grades 3–8 for years running from 2011 through 2016. I estimate VAMs using all the available test scores that a student has from their previous school year while controlling for student fixed effects, school-year fixed effects, and indicators for whether last year’s test score is missing in each subject. The VAM used in the primary analysis is the average of the subject-specific VAMs available, usually math and reading. The resulting VAM measure is 0 on average with a standard deviation of 1. I sort teachers into ten deciles based on their VAM and generate a quality index from those deciles from 0 to 1. Since students are not tested in all grades, there are records to estimate value-added for just under half of teachers. To provide a measure of quality that covers a broader array of teachers, I supplement with Danielson observation scores which reflect yearly principal evaluations.

I sum each teacher’s four Danielson scores (one for each of four categories planning and preparation, classroom environment, instruction, and professional responsibilities) and assign deciles based on the total score to generate a quality index from 0 to 1. The VAM index and the Danielson index are significantly correlated for teachers with both measures ($p < 0.001$). For those teachers who do not have a VAM index, I input the Danielson index as their quality measure. Together, the VAM index and the Danielson index provide a quality measure for just under 80 percent of respondents. I find the same results when using either measure in isolation.23

23 This finding also holds when using only VAM or only Danielson observation scores, shown in online Appendix table 5.
To test whether preferences vary by teacher rating, I interact each of the attributes from table 2 with the quality index in a model of teacher choice. To show visually how preferences vary throughout the teacher-quality distribution, I interact decile dummies with each attribute and plot the resulting coefficients. In both the statistical test and the nonparametric figures, I condition on experience dummies that indicate having exactly n years of experience to account for the fact that more experienced teachers may systematically have higher value-added and have distinct preferences related to experience and not necessarily their ability to teach. The results are also robust to controlling for experience bins interacted with each attribute (table 4).

The most highly rated teachers have similar preferences to their colleagues for most school attributes (table 4 and online Appendix tables 3 and 4). High-quality teachers do not, for instance, have a stronger preference for more generous pensions, higher salary, or high-performing students. In terms of work setting characteristics that policymakers can influence, effective teachers have the same preferences as other teachers with regards to class size, salary, income growth, insurance subsidies, retirement benefits, and supportive principals. The only way in which high-performing teachers systematically differ is their preferences for offers including merit rewards (table 4 and figure 4). A teacher in the bottom decile values a $1,000 merit reward as equivalent to a $160 salary increase. Teachers in the top decile value the same merit program as equivalent to a $610 salary increase (the interaction $p < 0.001$). If teachers entertained two comparable offers, a high-performing teacher (top decile) is 22 percent more likely than a bottom-decile one to select the offer providing an additional $3,000 in merit pay per year. Over time, this preference generates positive selection in retention where performance pay is implemented. Since the best performers receive increased compensation, the probability of attrition is reduced relative to teachers with lower performance. Whether merit rewards can generate favorable selection into teaching is not clear from this examination. Performance pay may not affect selection on entry if prospective teachers do not know their ability to teach.

The relationship between teacher quality and preferences for performance pay is illustrated in figure 4. Deciles 2 through 7 express differential preferences that are very close to zero. Teachers in deciles 9 and 10, however, have significantly stronger preferences for performance pay than low-decile teachers. The top decile is 4.1 percent ($p = 0.010$) more likely to select an offer

24 In the district, teachers are informed their VA measure and Danielson score each year, so they know their placement in the distribution. Why then do low-performers have some preference for offers containing performance pay. Potentially, low-rated teachers believe they can improve their instruction to benefit directly from the incentive, or low-rated teachers believe the incentive would improve the professional environment.
providing $1,000 in merit pay and teachers in the next top decile are 3.7 percent ($p = 0.004$) more likely. Corollary plots for each of the other attributes lack a systematic pattern, findings that are consistent with the results in table 4 and in online Appendix tables 3 and 4 in which higher quality teachers do not differ significantly in their preferences for school attributes. In future work, it may be fruitful to examine whether there are differential preferences for other attributes including dismissal rules and measures of colleague quality.

The Preferences of Marginal Teachers

An important dimension of heterogeneity is whether marginal teachers (those close to indifference between remaining in the profession and exiting) have similar preferences to their inframarginal peers. For marginal teachers, changes in the compensation structure are more likely to affect their labor-supply decision, and they may also have preferences similar to prospective teachers who, also being near indifference, choose not to become teachers. I incorporate information on which teachers who took the survey in 2016 left the district by 2018 and interact an indicator for leaving with each attribute while controlling for experience dummies and experience bins interacted with each attribute. Marginal teachers have largely identical preferences for compensation structure and student characteristics. Of the 18 attributes in the study, teachers who leave the profession have systematically different preferences in two of those attributes, both significant at the five-percent level. Leavers have slightly weaker aversion to large classes and slightly stronger interest in having teaching aids. In all other attributes, leavers have statistically identical preferences (online Appendix tables 6–8).

To explore whether the preferences of marginal teachers differ on entry, I survey 1,193 college students in a large public university near the district. Students are asked to describe how likely they are to teach (on a Likert scale from “I would never consider teaching” to “I’ve never considered it, but I’d be open to it” to “I’ve thought about teaching” to “I’ve considered it seriously” to “I plan to be a teacher”). I ask the respondents to imagine that, regardless of their interest in teaching, they decided to become a teacher for one year. They then respond to the same choice experiment used in the district to elicit their preferences for compensation structure and working conditions. What is of interest for our purposes here is whether those planning on teaching have similar preferences to marginal teachers—those considering or open to it. Preferences are similar throughout the range of interest in teaching. Comparing the preferences of those set on teachings with those seriously considering it reveals no difference in preferences. The significance in the interacted terms (attributes interacted with teaching propensity) is null in each model. Even when
including the full spectrum of interest in teaching, preferences differ little along the teacher-propensity index. The joint significance of attributes interacted with the teacher-propensity index is jointly insignificant in the compensation deck. Areas in which inframarginal teachers seem to differ from other respondents tend to be in attributes on which those investigating the profession would have a clearer view. For instance, those who plan on teaching have a deeper aversion to larger classes and a stronger preference for supportive principals than those who do not intend to teach. This exercise implies that tastes for compensation structure are largely uniform along the distribution of interest in teaching, suggesting that the preferences uncovered in the experiment generalize to other workers, including teachers on the entry and exit margins of teaching. What differs is their tastes for teaching, not their preference for compensation structure. What this implies is that if compensation were made more attractive, any differences in selection into the profession will have little or no impact on the preferences of teachers. This implies the stability of any counterfactual (e.g., the new teachers won’t have opposite preferences, upending the retentive properties of the counterfactual).

V. Optimizing the Compensation Structure

In this final movement of the paper, I use the estimates describing teacher preferences and selection to calculate the policies that would maximize various objectives, principally maximizing student achievement.

Compensation Structure

What do preferences suggest about how schools “should” structure compensation? I calculate the structure of teacher compensation that maximizes three related objective functions schools might pursue: First, I consider an objective that allocates resources to maximize the utility of teachers. Second, I calculate the compensation structure affecting retention to maximize teacher tenure (i.e., retention). Third, I calibrate a model of the schools’ achievement production function from the literature that includes the influence of teacher experience (Papay and Kraft 2015), class size (Krueger 1999; Hoxby 2000; Cho Glewwe, and Whitley 2012), and performance pay (Imberman and Lovenheim 2015). Retention—which gives rise to experience—is influenced by the teacher utility from compensation and working conditions. Performance pay affects achievement by the effort of teachers (Lavy 2002, 2009; Imberman and Lovenheim 2015; Biasi 2019) and by retaining high-performing teachers (Lazear 2000, 2003). I use the utility estimates from my experiment to simulate quality-specific attrition patterns as performance pay increases,
allowing me to calculate the resulting distribution of teacher VA from introducing various levels of performance pay.

All the simulations are based on the same model of teacher utility derived from my field experiment. By using the estimated utility function for current teachers, I assume that incoming teachers have similar preferences. This assumption is supported since preferences are constant along the propensity-to-enter-teaching index. If anything, the assumption produces a conservative estimate of the outcomes if performance pay encourages positive selection on entry, as it does on retention. The optima in some exercises fall outside of the experimental range. Since preferences are primitives (and not treatment effects) the extrapolations resulting from optimization tend to perform well in predicting out-of-sample effects (Todd and Wolpin 2006).

The Optimization Problem

I begin by specifying the objective functions schools might maximize. The first is simply an objective to maximize teacher utility. This may be the goal of a district with a strong union presence that faithfully represents the preferences of its members. To simulate the optimal pay structure for teacher utility, I estimate teacher utility models that allow for diminishing marginal returns by including a squared term of relevant non-binary features including salary growth, class size, performance pay, and the replacement rate in retirement. I include starting pay as a linear numeraire (online Appendix tables 9 and 10).

\[U_a = (\beta_1^1 S_a + \beta_2^1 G_a + \beta_3^1 G_a^2 + \beta_4^1 P_a + \beta_5^1 P_a^2 + \beta_6^1 M_a + \beta_7^1 R + \beta_8^2 R^2 + \beta_9^2 D + \beta_{10}^2 H)/\beta_1^1 + (\beta_2^1 C + \beta_3^1 C^2)/\beta_1^2 \]

Here, the utility of an allocated bundle \(a \) is a function of starting salary (\(S \)), the growth rate (\(G \)), performance pay (\(P \)), the basis of performance pay (\(M \)), the retirement replacement rate (\(R \)), the retirement plan type (\(D \)), health insurance subsidies (\(H \)), and class size (\(C \)). The equation blends utility estimates on compensation from the compensation-structure deck and utility estimates on class size from the working-conditions deck. Without allowing for nonlinearity, the results would degenerate to a corner solution in which all compensation would load into the attribute with the highest average utility per dollar. The parameter \(\beta_x^y \) refers to the coefficient on variable number \(x \) displayed in deck \(y \). To aid interpretation, I convert utility into a money-metric by dividing each of the coefficients by the beta on starting salary (\(\beta_1^1 \) in deck 1 and \(\beta_1^2 \) in deck 2). The resulting scale of utility is its money-metric equivalent in 1,000s of dollars. The calculation of utility in this objective will refer to the average utility of faculty (Hoxby 1996; Figlio 2002).
Maximizing tenure (the average experience of teachers) is a related objective, and teacher experience is one of few reliable predictors of teacher performance (Wiswall 2013). Hendricks calculates base retention probabilities over the life cycle of a teacher as well as how those probabilities change in response to an exogenous increase in salary (Hendricks 2014). These estimates neatly cohere with my utility calculations which are also in units of salary. Importantly, because the estimates in Hendricks (2014) come from Texas, they immediately generalize to teachers in my setting. Let λ_e denote the baseline retention rate for each experience level e, and let η_e represent the change in retention rates for a percent change in salary which changes with experience. The retention probability at experience level e is calculated:

$$r_{ea} = \lambda_e + \eta_e \times \Delta a$$

The Δa is the difference in utility between the compensation in Hendricks and the salary-equivalent utility of the bundle under consideration, U_a from equation (2), where the difference enters the model as a percent. Suggesting the reliability of the model the average tenure predicted by the model using status quo compensation matches the district’s actual average experience (9.0 years). To determine the average tenure, I calculate the share of teachers remaining in each experience cell to simulate the equilibrium experience distribution: the stock of teachers in experience cell e, is simply the number remaining from the experience cell $e-1$ (where the stock persisting in year e is calculated $S_e = S_{e-1} \times r_{e-1}$). I normalize the shares so they sum to one and denote the distribution of these normalized shares $D_e = [D_1, D_2, ..., D_{35}]$ where D_e states the share of teachers employed with experience level e. The object I maximizes is the average level of teaching experience for allocation a:

$$E_a = \sum_{e=1}^{35} D_e \times e$$

The central objective I consider is the maximization of student achievement. In the achievement function, students learn more in smaller classes (Krueger 1999; Hoxby 2000; Cho, Glewwe, and Whitler 2012). Improving teacher welfare affects the retention probabilities in each experience cell. Retention increases achievement since more experienced teachers have increasing, concave impacts on student learning (Papay and Kraft 2015). To calculate the influence of experience on achievement, I calculate retention probabilities, as above, and then simulate the equilibrium experience profile and take the dot product with VAM-over-the-life-cycle vector from
Papay and Kraft. Performance pay improves achievement somewhat by eliciting additional effort (Lavy 2009; Imberman and Lovenheim 2015), and produces positive selection in retention based on preferences.

To calculate the influence of performance pay on selection, I take a large cross section of simulated new teachers, uniformly distributed in performance. I calculate individual utility based on the attribute bundle with heterogeneity in preferences along the performance dimension. I add to their calculated utility a random component from the empirical distribution of the error terms in preference model. This accounts for the fact that many of the factors affecting teacher choice are outside of the empirical model. Without incorporating the random influence of unobserved factors, only the highest performing teachers would remain. After calculating the quantity who exit each year from the retention probabilities r_{eq}, I remove teachers with the lowest calculated utility up to that cutoff and repeat the process for every experience cell over the life cycle. The result produces the equilibrium “quality” distribution, which I denote Q_d, where each Q_d describes the share of teachers in equilibrium who are in the d^{th} decile of the initial performance distribution. In practice, re-solving for this distribution each time the search iterates is computationally burdensome. I linearize the problem by calculating the quality distribution with no performance pay, and also the quality distribution with $4,000 in performance pay and calculate the average change in value-added for a $1,000 increase in performance compensation. I allow that gradient to differ when performance pay is based on value-added models alone or in conjunction with observation scores. Teachers prefer to be evaluated on both, but pay based on value-added models alone more closely targets higher payments to achievement-enhancing teachers.

The resulting achievement production function averages the per-student impact of class size changes in domestic studies across grades (Krueger 1999; Hoxby 2000; Cho, Glewwe, and Whitler 2012). A thousand dollars in performance pay increases achievement via effort by 0.014 standard deviations from Imberman and Lovenheim (2015), whose study has the virtue of being from the same setting (Houston, Texas). Performance pay increases achievement through selection in equilibrium by 0.017 standard deviations if it is based on value-add and observation measures; if it is based on value-added models alone, teacher utility is somewhat lower, but achievement rises by 0.023 standard deviation from selection for an additional $1,000 in performance pay. The effect of teacher retention is the dot product of the experience distribution and experience-specific value-added measures.
So that the resulting bundles are directly comparable to the status quo, they are maximized subject to the current budget constraint, which takes a form:

(5) \[\{S \cdot D_e \times (1 + \phi R) + T(t) + U + P/4 + H\}N < B \]

Here, \(S \) is the salary schedule implied by a starting salary \(S \) and a growth rate \(G \). The cost implied by the dot product between the salary schedule and the equilibrium distribution of teacher experience is the equilibrium cost of salary. In order to provide a replacement rate \(R \), the school has to pay a fraction of salary \(\phi R \) to retirement accounts. Therefore the cost parameter \(\phi \) reflects the needed contribution for a one-percent replacement in retirement. There is a budget cost to turnover \(t \) (Barnes, Crowe, and Shaefer 2007; Watlington et al. 2010). Turnover is calculated by summing the departures calculated when simulating the experience distribution. Retention is therefore partly budget saving. Some small per-person costs, \(U \), are required, which captures the cost of unemployment insurance and workman’s compensation. \(P \) is the performance pay provided to the top quarter of performers each year, and \(H \) is the health insurance subsidy provided to the worker. The number \(N \) is the quantity of teachers a principle would need to provide a class size \(C \) to a grade of 100 students, where teachers are perfectly divisible (\(N = 100/C \)). The search operates such that the total cost must be no more than the current personnel cost of educating 100 students, $291,572 per year. The costs interact. For example, retirement replacement becomes more expensive as salary increases. Class-size reductions become more costly as total compensation rises since hiring additional teachers (among whom to divide students) become more expensive.

I also constrain the optimization exercise to conform to some practical requirements. No unit of compensation can be negative. I’ve included class size as a way of seeing whether smaller classes function as a cost-effective compensation provision to teachers or a cost-effective means of achievement promotion, and so I constrain class size so that it cannot rise greater than 30 students per class. Without this constraint, the model pushes towards large classes with very well-paid teachers. Performance pay is also constrained so that it can be no larger than $5,000. Without this constraint, some models recommend substantial allocations of performance pay. Constraints on starting salary, growth, and retirement replacement never bind. Binary attributes (defined contributions indicator and using-VAM-only evaluations) are constrained to be within \([0,1]\). I go into additional detail about the maximization exercise and cost calibration in online Appendix D.\(^{25}\)

\(^{25}\) Inattention in the survey will suggest a larger random component than exists in nature. If inattention played a role, the achievement effects discovered in the simulation will tend to be conservative.
I solve the optimization problem using a nonlinear programming solver. For inference, I bootstrap 1,000 estimates of teacher utility and solve the maximization problem separately with each estimate to produce an empirical distribution of optima consistent with the data (results displayed in Table 5).

Compensation Structure to Maximize Teacher Utility

At the time of the survey, the district paid $50,000 in base salary, with a 1.8 percent average yearly increase in salary earnings. They provided no performance pay, had an average class size of 28.7 students, paid $3,960 in health-insurance subsidies, and promised to replace 69 percent of a teacher’s top earnings in retirement through a pension program after 30 years of service.

To maximize teacher utility subject to the current budget constraint, the school would pay 50 percent more in base salary ($75,655) and offer $1,477 in merit pay to the top quarter of teachers. These increases are financed by reduced expenditure elsewhere: slightly increased class size (4.5 percent), reductions in salary growth (from 1.8 percent growth to 0.0), and a reduced replacement in retirement (20 percent). Schools would also shift to defined-contributions retirement plans that are both less costly to districts and more attractive to teachers. In total, these changes increase teacher welfare by 21.6 percent, the equivalent of a $17,000 increase in annual salary—without spending additional money. Utility improvements are generated by salary increases (91.6%), the introduction of merit pay (5.0%), and shifting toward a defined-contributions retirement plan (3.4%).

I assess the influence of this compensation structure on other outcomes using the other objective functions specified in the last section. Maximizing teacher utility would increase teacher retention and thereby raise average teacher experience by 21 percent in equilibrium. This reform also increases student achievement by 0.066σ each year, which comes from increased teacher experience (31%), induced effort from merit pay (30%), and increased retention of high-caliber teachers (38%).

Moving to a defined-contributions plan may not be politically feasible. To understand the optimal replacement rate without shifting to a DC retirement program, I re-calculate the optimal structure constraining the model to use a traditional pension. The calculation suggests an optimal replacement rate 55.5 percentage points (or 80 percent) lower than the status quo, owing to a higher salary (which makes replacement more expensive) and the expense of guaranteeing income.

Compensation Structure to Maximize Teacher Experience
Experience reliably predicts teacher effectiveness, and new evidence suggests that teacher output improves throughout their career (Wiswall 2013; Papay and Kraft 2015). Moreover, whenever any teacher departs, it opens a vacancy chain resulting in a novice hired somewhere. Districts could structure compensation and working conditions to promote long tenures of their teachers.

The compensation structure that maximizes (average) experience implies starting salary above the status quo ($66,688). The optima targets higher compensation to teachers that already have experience with a positive salary growth rate of 1.4 percent. Like the teacher-optimal bundle, the retention-optimal bundle offers performance bonuses of $1,487 for the top quarter of teachers each year. These increases are paid for with larger classes (3.5 percent) and 18 percent lower replacement rate in retirement. When I require the district to use a pension, the solution replaces 25.5 percent of salary in retirement instead of 56.6 percent. These lower replacement rates overstate the reduction in retirement income since the replacement rate applies to a higher final salary.26

The “optimal” structure for maximizing average tenure increases average teacher experience by 22 percent, raises the odds that a student has a veteran teacher by 33 percent, and reduces the chances they have a novice by 28 percent. When compared to the utility-maximizing bundle, the retention-optimal structure increases average teacher experience using a higher salary growth rate that improves the odds of retaining teachers who already have a stock of experience. The changes produce a 0.067σ increase in student achievement each year, an improvement that arises from an increase in teacher experience (32%), an increase in teacher effort from performance pay (30%), and positive selection in retention (38%).

Compensation Structure to Maximize Student Achievement

Improving teacher welfare may not directly increase achievement (see, for example, de Ree et al. 2018). The reform that maximizes achievement would include higher base pay than the status quo ($66,774), a modest rate of salary growth rate (1.3 percent growth rate), $5,000 payments in performance pay, and a class size that’s 3.5 percent larger. Whereas the other optimizations recommended using VAM in combination with observation scores to distribute performance

26 The replacement rate for DB is a third as large than the status quo, but the resulting retirement annuity is half as large owing to the higher salary replaced. I implement an alternative model which excludes retirement preferences from utility and uses retention effects from pensions estimated in Costrell and McGee (2010), who estimates the influence of pension wealth accumulation on attrition. Pensions benefits are backloaded, so they produce a strong pull for teachers nearing eligibility, when pension benefits spike, but they do little to retain younger teachers. These simulations suggest that defined contributions plans, on net, increase teacher tenure, consistent with regression-discontinuity evidence in Goda, Jones, and Manchester (2017). The logic is twofold: teachers prefer defined contributions, and the marginal accretion of retirement wealth is larger for the main mass of teachers in DC plans than in pensions.
payments, this model recommends using VAM-only to evaluate performance. This practice is not preferred by teachers, but it improves targeting payments to high-VA teachers to reduce their attrition.27 The resulting achievement-optimal bundle reduces the replacement rate by 17 percent in retirement, relative to the status quo, while moving to a defined-contributions retirement plan. This structure increases student achievement by 0.194\(\sigma\) per year while also improving teacher welfare by 7 percent at the same time. The achievement gains come from more experienced teachers (5%), effort induced by merit pay (35%), and improved retention of high-caliber teachers (60%). About half of the equilibrium achievement gains (53 percent) are realized in the first five years; 81 percent of the potential gains are realized in the first 20 years, and the whole effect is realized in 35 years.

These reforms are simulated based on a partial-equilibrium framework in which one district adopts the estimated structure that is assumed to have no impact on the selection into teaching or into the school district, leading to a conservative estimate. The achievement gains are fully realized in time by affecting retention patterns. One question of interest is whether performance pay can generate positive selection into teaching if broadly adopted. Though the question is beyond the scope of this study, two testable conditions are necessary. First, prospective teachers would need to have private information regarding their ability to teach before they enter the profession. If the beliefs of prospective teachers about their effectiveness is uncorrelated with their eventual quality, performance pay programs will fail to drive positive selection on the entry margin. Second, marginal teachers must have similar (affirmative) preferences for performance pay as other teachers. Both in the district and among prospective teachers, I find that marginal teachers have similar preferences for performance pay.

Across objectives, the maximization exercises suggest an increase in salary and merit pay and a reduction in the replacement rate while moving towards defined-contributions retirement programs would improve outcomes. The achievement-maximizing structure recommends a level of performance pay that roughly mirrors the share of compensation private sector workers receive in bonuses, about 2 percent of total compensation (BLS 2018).

As would be true in a survey of any district, the experimental variation reveals the preferences for a given group of workers, possibly because of the compensation structure already in place. The

27 When performance pay influences selection (on entry or exit), the standard for being in the top quarter evolves. Schools could fix the standard by benchmarking VA measures to the distribution of VA in districts that do not implement VA, or they could benchmark VA so that scores that would have qualified as being in the top quarter of the original distribution are still rewarded.
estimates provide an indication for whether the district compensation structures are distorted from its own optimal based on those already there. It is striking that—even among a selected group of teachers choosing the district—the status quo compensation structure does not reflect either teacher preferences or a structure that maximizes tenure or achievement. If the calculated optimal structures were similar to the district’s practice, we might suspect that it reflects endogenous sorting into the district. That the optimal structure diverges so clearly among an endogenously selected group implies that working conditions and compensation structure are structured especially poorly.

The Effects of Compensation Reform in General Equilibrium

The core simulation exercise is partial equilibrium. It is useful to consider the extent to which these effects would scale in general equilibrium, if all schools adopt similar reforms. Some of the effects in this partial equilibrium calculation will directly apply in general equilibrium. For instance, the effects of class size on achievement exist no matter how many districts implement class-size adjustments. The idea is that the effect of class size is direct (not mediated by allocation) and one district implementing class size changes does not affect the productivity of another district changing its class size. The same logic applies to the effect of performance incentives on effort. These inputs do not affect achievement through the reallocation of scarce resources among districts, and therefore they have the same effect in a partial or general equilibrium framework.

The place in which partial and general equilibria depart is in the domain of district retention and selective retention. (For simplicity, we have ignored the effects of selection on entry other than to show that compensation preferences are indistinguishable for groups more and less disposed to teaching, which implies the stability of the optima.) The key is to understand to what extent compensation-induced retention at a district retains teachers who would have otherwise gone to another district, and to what extent compensation-induced retention at the district retains those who would have otherwise left public school teaching in Texas.

I collect staffing data from Texas that cover all public-school employees in the state from 1989 to 2021. The data include the base pay, education, experience, district, and a unique teacher identification code for each staffing record. I impute when a teacher leaves a district when they have stopped working for a district for at least three years and begin working at a new one. I impute that a teacher has departed public-school teaching when they have stopped working in public schools in Texas for at least three years. I recover the salary schedule of each district in each year
by calculating the modal base salary for each experience cell in every district among full-time teachers for whom we have a record of them having a bachelors degree but not a masters.

When a teacher disappears from a district two outcomes are possible. One, the teacher has kept teaching but moved to another district. Two, the teacher has retired from public-school teaching in Texas. The method I pursue here is to estimate the effect of salary changes on district exit and professional exit. I follow Hendricks (2014) who implements a clever strategy exploiting changes in salary schedules that vary by district, experience level, and time. What this permits is a rich, saturated set of controls including year-district fixed-effects, year-experience fixed-effects, and district-experience fixed effects:

\[
E_{idst} = \beta \times S_{dst} + \theta_{dt} + \alpha_{st} + \gamma_{ds} + \epsilon_{idst}
\]

Where \(E \) indicates the exit of a teacher \(i \) in district \(d \) at experience \(s \) at time \(t \), and we measure two types of exit: that in which a teacher moves to another district in Texas, and that in which a teacher leaves teaching completely. \(\theta_{dt} \) denotes a set of district-year fixed-effects, \(\alpha_{st} \) denotes a set of experience-year fixed-effects, and \(\gamma_{ds} \) denotes a set of district-experience fixed-effects. \(S \) is the salary paid to teachers in district \(d \) at experience-level \(s \) at time \(t \), in $1,000s of dollars. Therefore the \(\beta \) captures the relationship between a $1,000 increase in salary on the probability of exit as a percentage point. Intuitively, the strategy leverages within-district comparisons where one experience rung has a raise relative to another experience rung in the same district at the same time. To gauge the plausibility of the estimates and estimate the dynamic effects of compensation on retention, the main specification I run is a distributed lag model in which I include four leads and four lags of \(S \) into the model as well as the contemporaneous effect. I cluster the standard errors by teacher. The results are presented in online Appendix table 11.

The contemporary effects of compensation are largest, and smaller effects exist immediately before the raise (anticipatory effects) and immediately after the raise (satisfaction effects). To produce a simple number reflecting the impact of compensation on the two types of retention, I sum the contemporary effect with one lead effect and one lag effect and compute the standard error of the composite using the delta method. A $1,000 increase in district salary reduces exit to other districts by 0.10 percentage points (on a base of 5.29 percent; \(t \)-statistic of 2.98) and reduces exit from the profession by 0.21 percentage points (on a base of 11.70 percent; \(t \)-statistic of 10.05). In other words, 33 percent \((0.10 / (0.10 + 0.21) = 0.33) \) of retentions induced by compensation changes in an individual district are the result of retaining teachers who would
have transferred to another district, and 67 percent \((0.21 / (0.10 + 0.21) = 0.67)\) of retentions induced by compensation changes in an individual district are the result of retaining teachers who would have left the profession completely. In practice, most of the retentions induced by higher salaries do not come at the expense of other districts since they retain teachers who would have departed teaching. To calculate what portion of the partial equilibrium effect would be seen in general equilibrium, we sum the part coming from class size and the effort effects of incentives (35 percent) plus 67 percent of the effects from retention and selection (65 percent) which yields 78.3 percent of the partial equilibrium gains would be seen in general equilibrium. The majority of the partial equilibrium effects flow through in general equilibrium because induced retention is largely not at the expense of other districts.

VI. Discussion and Conclusion

The district’s compensation scheme does not conform to goals of teacher welfare, teacher retention, or achievement maximization. Although it has weak union presence, it may be that political constraints or bargaining affect compensation structure. Since unions are typically led by older, veteran teachers, they might bargain for compensation structures that reflect their private preferences especially if the costs of pensions are shrouded to voters (Glaeser and Ponzetto 2014).28 If true, we would expect places with stronger union presence to pay a larger share of compensation in benefits, conditional on total compensation.29 I gather a measure of state-level union strength provided by the Fordham Institute, which identifies the strength of unions based on five measures: resources and membership, involvement in politics, scope of bargaining, state policies, and perceived influence. These several factors are combined to form five quintiles, with the top quintile representing states with the strongest union presence. A one quintile increase in union strength is associated with a benefit-share increase of 2.6–2.8 percentage points \((p < 0.001)\), explaining a 10-point difference between states with the weakest unions (where compensation is 29.8 percent benefits) and where unions are strongest (where compensation is 39.8 percent benefits), conditional on total compensation (online Appendix table 12).

28 Indeed, I find that teachers value more generous retirement plans the more senior they are, and the relationship is strictly monotonic for bins of teacher experience.

29 There is a strong negative relationship between total compensation and salary share, perhaps since other amenities become more important as the value of a marginal increase in salary diminishes. There is also a strong relationship between total compensation and union strength. I control for total compensation to avoid confounding benefit-share increases with increased total compensation.
To evaluate the generalizability of the recommendations for optimal structure, I compare the district’s compensation structure to the rest of the state and country. One of the consistent lessons from the maximization exercise is that the district can improve teacher welfare, tenure, and student achievement by increasing salary expenditures as a fraction of total compensation. If the district has low salary share compared to other districts, it may simply fall on the high side of a distribution that is centered on what is optimal. Two-thirds of school districts have salary shares below the district; when weighting by the number of teachers in a district, we learn that 90 percent of teachers are in school districts with salary shares lower than the district. Since the district appears to underinvest in salary, the many school districts who invest less are likely also underinvesting.

The results highlight several avenues for future work. Work that examines entry and exit in the profession would provide a more tailored equilibrium examination of teacher sorting. To examine entry, analysts could measure how policy variables affect career preferences for teaching among college students using a similar hypothetical choice design. This would further illuminate how to efficiently draw larger numbers of able young people into the profession. To examine exit, researchers might field a similar set of questions as those I’ve presented with options to leave the profession either for home production or their preferred alternative career. Because of the potential benefits of separating equilibria, designs that study whether excellent teachers have distinct preferences for colleague quality, dismissal risk, or other attributes may afford policymakers with additional tools to recruit and retain excellent instructors. And, considering the apparent importance of principals, a deeper examination of principal influence would pay dividends.

In this study, I use a choice experiment to measure teacher preferences for compensation and working conditions. This approach has several advantages. First, the variation in attributes I study is credibly exogenous. It is not variation generated by endogenous political or market processes. Second, the design allows me to introduce independent variation in important attributes that don’t vary (independently) in the real world. In practice, competing schools offer the same compensation and contracts because of market concentration, pattern bargaining, and public regulations. Third, in addition to the fact that researchers find a high degree of realism in response to hypothetical choice, the use of my experiment to inform the district’s new compensation ballasts the incentives for teachers to provide realistic responses.

30 Compared to teachers in other districts, teachers in the district receive total compensations at the 55th percentile in Texas and the 24th percentile across the country.
This study demonstrates how teachers value a wide variety of compensation vehicles, contract types, and working conditions. Most of these estimates are novel in themselves. Using real performance measures, I test whether high-performing teachers have distinctive preferences that can be used to shape selection. Consistent with theory, preference differences between high-performers and their colleagues imply that performance pay meaningfully alters the selection over time (Lazear 2000). Other compensation, contract, and working-condition attributes provide little scope for enhancing selection.

Using the model of teacher utility and the scope for shaping selection, I model how schools would structure compensation and costly working conditions to achieve various objectives. What’s surprising is that the optimal structures under a variety of objectives are substantially different from the status quo, and these simulated bundles are each closer to one another than any are to current structure. Each implies a higher allocation of salaries and performance pay to teachers at the expense of generous defined-benefits retirement programs. In each, both achievement and teacher welfare are simultaneously improved.
References

39

FIGURE 1—EFFECTS OF COMPENSATION ATTRIBUTES ON THE PROBABILITY THAT TEACHERS ACCEPT A JOB OFFER

Note: Dots with horizontal lines indicate point estimates with cluster-robust, 95%-confidence intervals (CI) from least-squares regression. The unfilled dots on the zero line denote the reference category for each job-offer attribute.
Figure 2—Effects of Working-Condition Attributes on the Probability that Teachers Accept a Job Offer

Note: Dots with horizontal lines indicate point estimates with cluster-robust, 95%-confidence intervals (CI) from least-squares regression. The unfilled dots on the zero line denote the reference category for each job-offer attribute.
FIGURE 3—EFFECTS OF STUDENT AND PRINCIPAL ATTRIBUTES ON THE PROBABILITY THAT TEACHERS ACCEPT A JOB OFFER

Note: Dots with horizontal lines indicate point estimates with cluster-robust, 95%-confidence intervals (CI) from least-squares regression. The unfilled dots on the zero line denote the reference category for each job-offer attribute.
FIGURE 4—DIFFERENTIAL EFFECT OF MERIT PAY ON THE PROBABILITY THAT TEACHERS ACCEPT A JOB OFFER

Note: In this figure, I identify the teacher-quality decile of each teacher using VAM and, for those teachers who lack a VAM score, the decile of their Danielson observation score. The coefficients above represent the differential effect of merit pay (in $1,000s) on the probability a teacher will accept a job offer.
TABLE 1—SUMMARY STATISTICS ON OFFER ATTRIBUTES FOR CONJOINT EXPERIMENT

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Average</th>
<th>Std. Dev.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choice</td>
<td>0.50</td>
<td>(0.50)</td>
<td>Indicator</td>
</tr>
<tr>
<td>Starting Salary</td>
<td>49.51</td>
<td>(2.38)</td>
<td>$1,000s</td>
</tr>
<tr>
<td>Salary Growth</td>
<td>1.44</td>
<td>(0.71)</td>
<td>% growth</td>
</tr>
<tr>
<td>Bonus amount</td>
<td>1.25</td>
<td>(1.29)</td>
<td>$1,000s</td>
</tr>
<tr>
<td>VAM only</td>
<td>0.20</td>
<td>(0.40)</td>
<td>Indicator</td>
</tr>
<tr>
<td>Replacement</td>
<td>48.09</td>
<td>(9.31)</td>
<td>% of salary</td>
</tr>
<tr>
<td>401k-style</td>
<td>0.37</td>
<td>(0.48)</td>
<td>Indicator</td>
</tr>
<tr>
<td>Premium (yearly)</td>
<td>0.78</td>
<td>(0.30)</td>
<td>$1,000s</td>
</tr>
<tr>
<td>Deductible</td>
<td>1.48</td>
<td>(0.18)</td>
<td>$1,000s</td>
</tr>
<tr>
<td>Probationary period</td>
<td>1.72</td>
<td>(0.93)</td>
<td>Years</td>
</tr>
<tr>
<td>Term length</td>
<td>2.26</td>
<td>(0.96)</td>
<td>Years</td>
</tr>
<tr>
<td>Commute time</td>
<td>0.187</td>
<td>(0.096)</td>
<td>Hours</td>
</tr>
<tr>
<td>Class size</td>
<td>24.55</td>
<td>(3.39)</td>
<td>Students</td>
</tr>
<tr>
<td>Assistance</td>
<td>3.26</td>
<td>(3.66)</td>
<td>Hours/week</td>
</tr>
<tr>
<td>Percent low income</td>
<td>6.79</td>
<td>(1.86)</td>
<td>10%</td>
</tr>
<tr>
<td>Percent minority</td>
<td>5.62</td>
<td>(2.97)</td>
<td>10%</td>
</tr>
<tr>
<td>Ave. achievement</td>
<td>4.99</td>
<td>(1.65)</td>
<td>10%tiles</td>
</tr>
<tr>
<td>Supportive</td>
<td>0.42</td>
<td>(0.49)</td>
<td>Indicator</td>
</tr>
<tr>
<td>Blue bus</td>
<td>0.50</td>
<td>(0.50)</td>
<td>Indicator</td>
</tr>
</tbody>
</table>

Note: This table presents the mean and standard deviation of the experimental data. The units column describes the units of each variable to aid interpretation of regression results.
TABLE 2—LINEAR PREFERENCES OVER COMPENSATION STRUCTURE AND WORKING CONDITIONS

<table>
<thead>
<tr>
<th></th>
<th>Linear Probability</th>
<th></th>
<th>Conditional Logit</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff</td>
<td>SE</td>
<td>WTP</td>
<td>Coeff</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Panel 1: Compensation Deck</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting salary</td>
<td>0.085**</td>
<td>(0.002)</td>
<td>$1,000</td>
<td>0.395**</td>
</tr>
<tr>
<td>Salary growth</td>
<td>0.192**</td>
<td>(0.009)</td>
<td>$2,270</td>
<td>0.948**</td>
</tr>
<tr>
<td>Merit reward</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonus amount</td>
<td>0.029**</td>
<td>(0.003)</td>
<td>$346</td>
<td>0.192**</td>
</tr>
<tr>
<td>VAM only</td>
<td>-0.077**</td>
<td>(0.015)</td>
<td>-907</td>
<td>-0.209**</td>
</tr>
<tr>
<td>Retirement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replacement</td>
<td>0.015**</td>
<td>(0.001)</td>
<td>$173</td>
<td>0.071**</td>
</tr>
<tr>
<td>401k-style</td>
<td>0.077**</td>
<td>(0.010)</td>
<td>$907</td>
<td>0.413**</td>
</tr>
<tr>
<td>Health insurance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premium (yearly)</td>
<td>-0.082**</td>
<td>(0.014)</td>
<td>-970</td>
<td>-0.438**</td>
</tr>
<tr>
<td>Deductible</td>
<td>-0.312</td>
<td>(0.212)</td>
<td>$3,688</td>
<td>-1.009</td>
</tr>
<tr>
<td>Panel 2: Working-Conditions Deck</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probationary period</td>
<td>-0.058**</td>
<td>(0.005)</td>
<td>-502</td>
<td>-0.320**</td>
</tr>
<tr>
<td>Term length</td>
<td>-0.004</td>
<td>(0.005)</td>
<td>-33</td>
<td>0.014</td>
</tr>
<tr>
<td>Working conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commute time</td>
<td>-0.365**</td>
<td>(0.043)</td>
<td>$3,177</td>
<td>-2.880**</td>
</tr>
<tr>
<td>Class size</td>
<td>-0.068**</td>
<td>(0.001)</td>
<td>-595</td>
<td>-0.399**</td>
</tr>
<tr>
<td>Assistance</td>
<td>0.030**</td>
<td>(0.001)</td>
<td>$257</td>
<td>0.175**</td>
</tr>
<tr>
<td>Panel 3: Students-&-Leaders Deck</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent low income</td>
<td>-0.022**</td>
<td>(0.002)</td>
<td>-324</td>
<td>-0.117**</td>
</tr>
<tr>
<td>Percent minority</td>
<td>0.0027</td>
<td>(0.0014)</td>
<td>$40</td>
<td>0.007</td>
</tr>
<tr>
<td>Ave. achievement</td>
<td>0.036**</td>
<td>(0.003)</td>
<td>$546</td>
<td>0.237**</td>
</tr>
<tr>
<td>Principal affect</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supportive</td>
<td>0.575**</td>
<td>(0.009)</td>
<td>$8,673</td>
<td>3.04**</td>
</tr>
<tr>
<td>Placebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue bus</td>
<td>0.007</td>
<td>(0.008)</td>
<td>$101</td>
<td>0.019</td>
</tr>
</tbody>
</table>
Notes: * p < 0.05, ** p < 0.001. Each coefficient represents the parts worth impact of an attribute on the odds of accepting a presented job offer. These estimates are translated into willingness-to-pay values by scaling the impact of an attribute by the impact of $1,000 starting salary. Regression summaries: Deck 1: N=31,820, %Predicted=64, R-squared=0.19; Deck 2: N=31,574, %Predicted=64, R-squared=0.28; Deck 3: N=23,678, %Predicted=62, R-squared=0.36.

TABLE 3—DO PRINCIPALS MITIGATE DIFFICULT WORK SETTINGS?

<table>
<thead>
<tr>
<th></th>
<th>LPM</th>
<th>LPM</th>
<th>LPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Principal supportive (PS)</td>
<td>0.575**</td>
<td>0.794**</td>
<td>0.683**</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.054)</td>
<td>(0.067)</td>
</tr>
<tr>
<td>Achievement pctl.</td>
<td>0.036**</td>
<td>0.058**</td>
<td>0.067**</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.006)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Achievement × PS</td>
<td>.</td>
<td>-0.045**</td>
<td>-0.061**</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>(0.011)</td>
<td>0.0115</td>
</tr>
<tr>
<td>Poverty rate</td>
<td>-0.022**</td>
<td>-0.020**</td>
<td>-0.033**</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Poverty × PS</td>
<td>.</td>
<td>.</td>
<td>0.028*</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>(0.009)</td>
</tr>
</tbody>
</table>

Observations 23,678 23,678 23,678

R-squared 0.365 0.366 0.366

Note: * p < 0.05, ** p < 0.001. This table presents the results of linear probability models in which I test whether having a principal “supportive with disruptive students” attenuates a teachers’ aversion to poorer or lower-achieving school settings.
Table 4—Teacher Preferences by Quality

<table>
<thead>
<tr>
<th>Choice</th>
<th>Reference Group (1)</th>
<th>Quality-index interaction (2)</th>
<th>Reference Group (3)</th>
<th>Quality-index interaction (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting salary</td>
<td>0.090**</td>
<td>-0.002</td>
<td>0.091**</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.006)</td>
<td>(0.004)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Salary growth</td>
<td>0.178**</td>
<td>0.004</td>
<td>0.183**</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.017)</td>
<td>(0.014)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>Merit reward</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonus amount</td>
<td>0.014*</td>
<td>0.041**</td>
<td>0.018*</td>
<td>0.041**</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.011)</td>
<td>(0.007)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>VAM only</td>
<td>-0.064*</td>
<td>-0.025</td>
<td>-0.075*</td>
<td>-0.022</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>(0.027)</td>
<td>(0.025)</td>
<td>(0.028)</td>
</tr>
<tr>
<td>Retirement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replacement</td>
<td>0.013**</td>
<td>0.002</td>
<td>0.013**</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.0014)</td>
<td>(0.001)</td>
<td>(0.0014)</td>
</tr>
<tr>
<td>401k-style</td>
<td>0.062*</td>
<td>0.034</td>
<td>0.079**</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.030)</td>
<td>(0.022)</td>
<td>(0.030)</td>
</tr>
<tr>
<td>Health insurance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premium (yearly)</td>
<td>-0.112**</td>
<td>0.071</td>
<td>-0.106**</td>
<td>0.071</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.054)</td>
<td>(0.031)</td>
<td>(0.054)</td>
</tr>
<tr>
<td>Deductible</td>
<td>-0.453</td>
<td>-0.130</td>
<td>-0.270</td>
<td>-0.163</td>
</tr>
<tr>
<td></td>
<td>(0.284)</td>
<td>(0.226)</td>
<td>(0.287)</td>
<td>(0.225)</td>
</tr>
</tbody>
</table>

Experience bins X X
Exp. interactions X
R-squared 0.201 0.203
Observations 21,358 21,358

Note: * p < 0.05, ** p < 0.001. Columns (1) and (2) represent one regression in which the main effects are displayed in column (1) and the interactions with the quality index are represented in column (2). The regression displayed in columns (3) and (4) follows a similar form but adds controls for experience bins interacted with each attribute.
<table>
<thead>
<tr>
<th></th>
<th>Status quo</th>
<th>Teacher-utility optimal</th>
<th>Teacher-retention optimal</th>
<th>Student-achievement optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Starting salary</td>
<td>$50,000</td>
<td>$75,655**</td>
<td>$66,688**</td>
<td>$66,774**</td>
</tr>
<tr>
<td>Salary growth</td>
<td>1.8%</td>
<td>0.0%**</td>
<td>1.4%</td>
<td>1.3%</td>
</tr>
<tr>
<td>Merit pay</td>
<td>$0</td>
<td>$1,477**</td>
<td>$1,487**</td>
<td>$5,000**</td>
</tr>
<tr>
<td>VAM-only merit</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1**</td>
</tr>
<tr>
<td>Replacement rate</td>
<td>69.0%</td>
<td>55.5%**</td>
<td>56.6%**</td>
<td>56.9%**</td>
</tr>
<tr>
<td>Defined contribution</td>
<td>0</td>
<td>1**</td>
<td>1**</td>
<td>1**</td>
</tr>
<tr>
<td>Insurance subsidy</td>
<td>$3,960</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Class size</td>
<td>28.7</td>
<td>30.0**</td>
<td>30.0**</td>
<td>30.0**</td>
</tr>
</tbody>
</table>

Teacher utility	79.2	**96.3**	90.8	85.0
Teacher experience	9.03 years	10.9 years	**11.0 years**	10.0 years
Student achievement	0.092σ	0.158σ	0.158σ	**0.286σ**

Note: * p < 0.05, ** p < 0.001. This table presents the results of maximizing teacher utility, teacher experience, and student achievement subject to the current budget constraint. Statistical significance is calculated by bootstrapping 1,000 estimates of the utility function and re-solving the maximization problem for each one.